Problems Week 5 1. A sech2 potential. Verify that the solution to the associated Legendre equation ˆψ(x; k) = a(k)2ik ( sech x)−ik F(c+, c−; 1 − ik; 1 2 (1 + tanh x)) , where c± = 1 2 − ik ± U0 + 1 4 behaves asymptotically as ˆψ = e−ikx + beikx x → +∞ ae−ikx x → −∞ for a(k) = Γ(c+)Γ(c−) Γ(1 − ik)Γ(ik) , b(k) = a(k) Γ(1 − ik)Γ(−ik) Γ(c+ + ik)Γ(c− + ik) . The hypergeometric function is defined as F(a, b; c; z) = ∞ n=0 (a)n(bn) (c)n zn n! , (q)n = q(q+1) · · · (q+n−1) (q)0 = 1 . It satisfies the following identity due to Euler F(a, b; c; z) = Γ(c)Γ(c − a − b) Γ(c − a)Γ(c − b) F(a, b; a + b + 1 − c; 1 − z) + (1 − z)c−a−b Γ(c)Γ(a + b − c) Γ(a)Γ(b) F(c − a, c − b; 1 + c − a − b; 1 − z) . 2. The scattering coefficients. With u(x) = −U0 sech2 x show, by using the properties of the gamma function, that a(k) and b(k) in the previous problem satisfy the conditions |a|2 + |b|2 = 1 and a → 1 and b → 0 as k → ∞. 3. Inverse scattering about −∞. Find the equation for L(x, z) if ψ−(x; k) = e−ikx + x −∞ L(x, z)e−ikz dz is a solution of ψ + (λ − u(x))ψ = 0. What boundary conditions must L(x, z) satisfy? 1