Vybrané kapitoly z elektronové mikroskopie část 4 – Vakuové systémy pre elektronovou mikroskopii Marek Talába Vybrané kapitoly z elektronové mikroskopie 2 Content • Introduction • Why we need vacuum in electron microscopes? • Pumping of vacuum system - Basic vacuum terms and relations • Vacuum pumps • Vacuum gauges • Design of vacuum system in electron microscopes • Leak checking and Residual Gas Analysis (RGA) • Summary Vybrané kapitoly z elektronové mikroskopie 3 Introduction Vybrané kapitoly z elektronové mikroskopie 4 What is vacuum? • Vacuum is space that is devoid of matter. • An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure.[Wikipedia] • The quality of a vacuum is measured by the amount of matter remaining in the system. Vybrané kapitoly z elektronové mikroskopie 5 Vacuum ranges • No defined borders, only consensus • Sometimes in a broader sense High Vacuum = any environment < 0.1 Pa Vybrané kapitoly z elektronové mikroskopie Vacuumrange Pressurein Pa Low vacuum 103 – 102 Medium vacuum 102 – 0.1 High vacuum 0.1 – 10−5 Ultra high vacuum 10−5 – 10−10 Extremely high vacuum <10−10 6 Why we need vacuum? Vybrané kapitoly z elektronové mikroskopie 7 Why we need vacuum in electron microscopes? There are three main reasons why the electron microscope must be operated under vacuum: • to ensure straight particle movement without collisions • to protect electron emitter from oxidationand damage by ion sputtering • to keep clean environment and sample surface Vybrané kapitoly z elektronové mikroskopie 8 Avoiding Collisions • Basic parameter describingprobability of collision between particles in vacuum is mean free path (MFP). • The MFP of an electron is the average distance an electron travels betweentwo consecutive scatteringevents 𝜆 = ( 2𝜎𝑛)−1 l is MFP, 𝜎 is Collision cross-section and n is particle density • Approximation MFP = 6.4*10-3 / p [m; Pa] • Example: 1 cm at 0.6 Pa Vybrané kapitoly z elektronové mikroskopie 9 Avoiding Collisions • Basic parameter describingprobability of collision between particles in vacuum is mean free path (MFP). Vybrané kapitoly z elektronové mikroskopie Vacuumrange Pressurein Pa Molecules / m3 Mean free path Ambient pressure 105 2.7 × 1025 ~100 nm Low vacuum 103 – 100 1025 – 1022 0.1 – 100 μm Medium vacuum 100 – 0.1 1022 – 1019 0.1 – 100 mm High vacuum 0.1 – 10−5 1019 – 1015 10 cm – 1 km Ultra high vacuum 10−5 – 10−10 1015 – 1010 1 km – 105 km Extremely high vacuum <10−10 <1010 >105 km 10 Electron and ion beam scattering • Collisions with residual gas deflects particles from straight movement • Expected beam trajectory (optical path) not valid anymore Vybrané kapitoly z elektronové mikroskopie 11 Emitter Tip Environment • Oxygencan damage thermionic cathodes • Suppress ion bombardment of the FEG tip Vybrané kapitoly z elektronové mikroskopie 12 • Contamination influences high resolution even at high accelerating voltage like on the example below (30 kV) Sample contamination Clean sampleContamination grown during single scan! Vybrané kapitoly z elektronové mikroskopie 13 Pumping of vacuum system Vybrané kapitoly z elektronové mikroskopie 14 • The vacuum achieved at steady state is the result of a dynamic balance betweenthe total gas load Qtot and the ability of the pump to remove gas from the volume – effective pumping speed Seff. The ultimate pressure pu is then given by: Pumping of Vacuum System 𝑝 𝑢 = 𝑄𝑡𝑜𝑡 𝑆 𝑒𝑓𝑓 𝑄 𝐺 = ෍ 𝑖 𝑄𝑖 Vybrané kapitoly z elektronové mikroskopie 15 We can divide these sources into several categories: • Leaks (real or virtual) • Outgassing (surface) • Diffusion (volume) • Vaporization • Permeation • Back-streaming • Process generatedgases Gas Load Sources Vybrané kapitoly z elektronové mikroskopie 16 We can divide these sources into several categories: • Leaks (real or virtual) • Outgassing (surface) • Diffusion (volume) • Vaporization • Permeation • Back-streaming • Process generatedgases Gas Load Sources Vybrané kapitoly z elektronové mikroskopie 17 We can divide these sources into several categories: • Leaks (real or virtual) - no trapped volumes, effective sealing method • Outgassing (surface) - keep system in evacuated state, venting with dry nitrogen or inert gas • Diffusion (volume) - selection of suitable materials for chamber construction • Vaporization - materials (e.g. lubricants) with low vapor pressure • Permeation - suitable materials, sufficient wall thickness • Back-streaming - use low backing pressure • Process generated gases - design system with high enough effective pumping speed Gas Load Reduction Vybrané kapitoly z elektronové mikroskopie 18 • Viscous Flow - collisions between molecules dominate, generally p > 10 Pa. • Molecular Flow - collisions between molecules and wall dominate, generally p < 0.1 Pa. • Transition Flow - region between viscous and molecular flow. Types of gas flow Vybrané kapitoly z elektronové mikroskopie 19 The conductance for an aperture of surface area A (in cm2) in the case of laminar flow of air is given by The conductance for an aperture of surface area A (in cm2) in the case of molecular flow of air is given by Conductance of Aperture 𝐶𝐿 = 20 ∙ 𝐴 𝑙 ∙ 𝑠−1 𝐶 𝑀 = 11.6 ∙ 𝐴 𝑙 ∙ 𝑠−1 Vybrané kapitoly z elektronové mikroskopie 20 The conductance for long pipe (L >> D, p2 > p1, p = average value) in the case of laminar flow is given by The conductance for long pipe (L >> D, p2 > p1, p = average value) in the case of molecular flow is given by Conductance of pipe 𝐶𝐿 = 137 ∙ 𝑝 ∙ 𝐷4 𝑙 𝑙 ∙ 𝑠−1 𝐶𝐿 = 12,1 ∙ 𝐷3 𝑙 𝑙 ∙ 𝑠−1 Vybrané kapitoly z elektronové mikroskopie 21 Analogy with electric circuit • Vacuum resistance W = 1 / C • Pressure ~ Voltage • Flow ~ Current Vacuum system calculations W = W1 + 1/(1/W2 + 1/W3) = W1 + W2W3/(W2+W3) Vybrané kapitoly z elektronové mikroskopie 22 • Diaphragm (membrane) pump 1 l/s, ultimate pressure ~1000 Pa • Hose length = 3 m Pumping speed vs. hose diameter ? Example 1 - Vacuum oven 50 l Vybrané kapitoly z elektronové mikroskopie 23 Pumping speed vs. hose diameter ? • ConductancePipe: GP = 137*D^4*p/L (aperture effect negligible) Example 1 - Vacuum oven 50 l D [mm] p [kPa] GP [l/s] G total [l/s] 25 100 1.8E+06 1.00 1 1.8E+04 1.00 10 100 4.6E+05 1.00 1 46 1.00 5 100 2.9E+04 1.00 1 29 0.97 2 100 7.3 1.00 1 0.73 0.42 Vybrané kapitoly z elektronové mikroskopie 24 • Typical HV pressure range 10-2 – 10-4 Pa • Maximum pumping speed for selected valve ? • Effective pumping speed ? • Valve diameter 10 cm • Tube length 0,5 m • TMP shield 80 % open • TMP pumping speed 300 l/s Example 2 – high vacuum chamber 50 l Vybrané kapitoly z elektronové mikroskopie 25 1. Valve (aperture) conductance GV = 11.6*3.14*102/4 = 911 l/s = maximum pumping speed for selected port 2. Tube conductance GT = 12.1*103/50 = 242 l/s 3. TMP shield = GV * 0.8 = 730 l/s Effective pumping speed: TMP inlet = 300 l/s TMP + shield = 213 l/s TMP + tube = 113 l/s At chamber port = 100 l/s Example 2 – high vacuum chamber 50 l Vybrané kapitoly z elektronové mikroskopie 26 Vacuum pumps Vybrané kapitoly z elektronové mikroskopie 27 • Gas transfer pumps: compress and move gas out • Gas capture pumps: entrap gas inside the pump Vacuum pumps Gas transfer pumps Gas capture pumps Gas displacement pump Momentum transfer pump Membrane pump Turbomolecular pump Ion getter pump Rotary vane pump Molecular pump Cryo pump Scroll pump Diffusion pump Roots pump Screw pump Piston pump Vybrané kapitoly z elektronové mikroskopie 28 • Requires inlet and outlet valve to achieve aligned gas displacement • Oil free, corrosion resistant • Only about 7 kPa ultimate pressure for single stage • Multiple stages – ultimate pressure up to 50 Pa • Well suited for low pumping speeds up to 10 m3/h Diaphragm pump Vybrané kapitoly z elektronové mikroskopie 29 Rotary Vane Pump • Enclosed gas is compressed until the dischargevalve opens against atmosphere • Pump oil is essential for the function – lubricates and seals • Single and two stage versions – higher flow x higher compression ratio • Pumping speed 2 – 200 m3/h • Ultimate pressure <1 Pa Vybrané kapitoly z elektronové mikroskopie 30 • Lubricant-free withinthe vacuum envelope • No need of shaft seals • Pumping of corrosive and oxidizinggases • Pumping speed 5 – 100 m3 / h • Ultimate pressure <10 Pa Scroll pump Vybrané kapitoly z elektronové mikroskopie 31 • High speed moving blades transfer momentum to molecules • Can not aperate at atmospheric pressure - Requires backingpump • Backing pressure ~1 kPa • Ultimate pressure 10-6 Pa (ISO-K) or 10-8 Pa (CF) Turbomolecular pump Vybrané kapitoly z elektronové mikroskopie 32 Ion getter pump • Gas ionizationby free acceleratedelectrons • Ion accelerates to cathode • Neutral Ti atoms sputtered • Gas atoms chemically bounded or “buried” • For noble gasses • Triode version • Ta cathode Vybrané kapitoly z elektronové mikroskopie 33 Vacuum gauges Vybrané kapitoly z elektronové mikroskopie 34 Direct measurement of force = gas independent • Piezo sensors • Capacitance sensors Indirect measurement = gas dependent • Pirani and thermocouple sensors • Cold cathode (Inverted magnetron, Penning, Philips) • Hot cathode (Ionisation, Bayard-Alpert) sensors Pressure measurement Vybrané kapitoly z elektronové mikroskopie 35 Measurement ranges Vybrané kapitoly z elektronové mikroskopie 36 • Usually measures over 4 decades, usable 3 decades • Very high accuracy 0.2% and stability Capacitance diaphragm gauges p p0 p0 << p Condenser capacity C = ε . S / d -thermal effects -usually linear output Vybrané kapitoly z elektronové mikroskopie 37 • Measurement of heat los through conduction • Radiation and convection must be minimized • Accuracy 10-15% (50% near to atmopshere), repeatability 2%, gas dependent, low price Pirani gauge Vybrané kapitoly z elektronové mikroskopie 38 • Measures current in glowing discharge • Sputtering effects at higher pressures • Accuracy 30%, repeatability 5%, gas dependent. Cold Cathode / Penning Gauges Vybrané kapitoly z elektronové mikroskopie 39 • Heated cathode emits constant electron current • Accuracy 10%, repeatability 5% •Sensitive to pressure burst Hot cathode (Bayard-Alpert) gauge Vybrané kapitoly z elektronové mikroskopie 40 Vacuum systems Vybrané kapitoly z elektronové mikroskopie 41 Vacuum systems consists of several stages: • Low or roughing vacuum – achieved with either rotary vane pump, scroll pump or diaphragm pump • High vacuum – achieved with turbomolecularpump – vacuum in microscope chamber. • Ultra high vacuum – achieved ion getter pump – vacuum in electron/ion column. Pressure ranges Vybrané kapitoly z elektronové mikroskopie 42 SEM/SDB vacuum systemPressures Gun: 10-7 – 10-8 Pa Column: 10-5 – 10-7 Pa S. Chamber: 10-2 – 10-5 Pa Vybrané kapitoly z elektronové mikroskopie 43 SEM/SDB vacuum systemPressures Gun: 10-7 – 10-8 Pa Column: 10-5 – 10-7 Pa S. Chamber: 103 – 10-5 Pa Vybrané kapitoly z elektronové mikroskopie 44 • Vacuum system of EM has several stages with different vacuum level • Stages are isolated by valves or differential pumping apertures (DPA) • DPA prevents diffusionof gas molecules into the higher vacuum area faster than they can be pumped out. Differential Pumping – ESEM Mode PLA Set of 5 apertures 4 kPa TMP-interstage ~ 100 Pa TMP-main ~ 3e-2 Pa aperture IGP 2 ~ 1.5e-6 Pa aperture ~ 4e-4 PaIGP 1 Specimen chamber FEG module Vybrané kapitoly z elektronové mikroskopie 45 SEM/SDB vacuum systemPressures Gun: 10-7 – 10-8 Pa Column: 10-5 – 10-7 Pa S. Chamber: 10-2 – 10-5 Pa Vybrané kapitoly z elektronové mikroskopie 46 TEM vacuum system Pressures 10-6 – 10-8 Pa 10-4 – 10-6 Pa 10-2 – 10-5 Pa Vybrané kapitoly z elektronové mikroskopie 47 Leak checking and Residual gas analysis Vybrané kapitoly z elektronové mikroskopie 48 Leak detection • Two types leaks – real and virtual • Large vs. Small leaks – selecting a leak detection method Vybrané kapitoly z elektronové mikroskopie Leak rate [mbar.l.s-1] Test Method 100 10-2 10-4 10-6 10-8 10-10 10-12 Acoustic Leak Detection Bubble Testing Pressure Decay HalogenGas Detection Helium Leak Detection 49 Helium is a superior choice of tracer gas used to find leaks for a multitude of reasons. Helium is: • Non-toxic • Inert and non-condensable • Normally not present in the atmosphere at more than trace amounts • Relatively inexpensive • Readily passes through leaks due to its small atomic size • Non-flammable • Available in various size cylinders • Available in purities appropriate for medical usage Helium leak detection Vybrané kapitoly z elektronové mikroskopie 50 • Helium counter-flowleak detectors are designedin accordance with the schematic diagram in figure below. • A mass spectrometer (MS) is mounted on the intake flange of a Turbomolecular pump. • A backing pump Sv evacuates the Turbomolecular pump via valve V2. Helium leak detection Vybrané kapitoly z elektronové mikroskopie 51 • Typpical vacuum system without leaks • To reach <10-6 Pa, bakeout is used • Metal seals in UHV region Residual gas composition Pressure [Pa] Major constituents atm. wet air 0.1 water vapor 10-4 H2O, CO 10-7 CO, N2, H2 10-8 CO, H2 10-9 H2 Vybrané kapitoly z elektronové mikroskopie 52 • Most frequent– quadrupole mass spectrometer • Analysis whole residual gas composition • Reveals leaks • Evaluates contamination Mass Spectrometer for RGA Spectrum 1.00E-14 1.00E-13 1.00E-12 1.00E-11 1.00E-10 1.00E-09 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 Mass [au] Intensity[A] Vybrané kapitoly z elektronové mikroskopie 53 Mass Spectrometers for RGA 1. Sector Field MS 2. Quadrupole MS Vybrané partie z elektronové mikroskopie From: www.pfeiffer-vacuum.com 54 Design of vacuum system in electron microscopes • Consider basic vacuum rules • Calculate dimensions of pipes and apertures • Select suitable sealingfor each part (minimize number of joints) • Choose active components (pumps, gauges) with respect to specific EM requirements • Verify assembly of whole system • Measure leak rates and RGA Summary Vybrané kapitoly z elektronové mikroskopie