A 7P£A/P/X V'£'ClOR SVPiCES. WITH SCfiLAf> TR00I4CT Ďe fínt hon Let U he a tecboy ^paC a (D <ÍU/H> >0 fioir CiíO* ^xanfúle 0 Siahdaircfi rc&fafr product oh Etaw^e~-(D C r^/^J ^ ^fe trecom S/aace £>f- Defi'yttlt'on Let 64 be a vector cjpa^e, over € ( eefey. ttukubers.) 4 m#f> < , > : //* H -> & is Oallevt 4 sözk.^ product H ■ « Were bat" — means cop^pley. = 44~ 14.2. Example (£) g-b&uAwd scalar product - 3 - Space of- Continuous Cotopte* fuhcbx'o^s 0Y\ the Cntemrzô Ľ4, . The norm g?/ £Ae vec&or (A & U ťs £:X4t*tpJe. fens/Weir IK*1 \fibh &k<*.n4/a.vt>ŕ zcal&r product. Then Two vectors utv e 14 are. ott^omt '"f = č?. ' Hte write u ± v . Let 14,1/ čri/l , Then \<^(v>\ ±ll«IIHrll The &?UQ.lľt<4 i's $«st for linea r/y aŕe/eetfo^ut vectors u ana/ v. -4- l£yjwp/e. Consider IA- uyt'Gh sbwrtfy ZO&l&ir product. Then lYoof- f.Q\r real Q\paa* M If v » O* then tfKd' theorem holds. If- v^o9( censiMeir 6he sectors for a/I t €r7R 0 ^ //fcf-tf //2 - ^tv-u, tv-ny =. 77//!s *s fuadimtrib pofyhotnfot ih & Vvhi'oVi cs ±o. That is fjyhq its *t(kcn'~ toift&nh D is le« or etfiidl to Ot \\ * MM . ^ r/?/t( cf ~0