Let (as/Kt/ig be a real vecčor &ptce~ ifowjßw/o of U mil fee called sometimes., pot*H Affľhtz cubs pace, of If (s a no*e*n 6-^ subset of 14 of the, forw Vis called the direction , č>f m and tie m ted 20r>)\ W-fotz, h e Ol £$ *L point V ^14 i& « vecéor /s so called fHr*»ietm description of £ 2-rf/i#i. 4 (fine su b £ face, ( jole) ^/Ve* fc^ 6Jje M - C c?, 2<*J <%v\ol the vector culozpaie- Eia\n?\e. t 14* ^ ne ^ of all sola hens of b\e C^teto of linear efnaú*e»$ 4**f -2 y* - Ä r ^p,e I/ * fr*e fee ^ *** the homoq^neěds Leh U be. a real vector space m'ih 4, sea lair pra otwk ^ , > ; H + 14 —y JR The distance of tvco pofu fcs A tJš i's the tiovy» of the vector 3-A últst ( Á i B ) - // 3-A í - Í We confute* this. diQbahce. usľnq an erthoqenat pro /e cti ens. Theorem 1 (öS) TM, &tista*crs. of a point A f rem an affine subside ^ * St?:i%) is efm/ to the nerv* o f the crbho^oml f refection of the. veCtov A-£ to the $>f* . (lo) "The f-olfavfi'na 4 sse-rfci'irMi; «re <&f-Klent (<) ^fc í A, - li A-fill f-eir * feint h z * A --<^ Vit, *p«airty occurs jus 6 f er v - ?^'B) ■ Hebte, odít = M>'n 11A-n »«^».ij. ÍA'B^l yen, *" u ftroef- o f £>) OMitbzčH £j ^e ^is^nec of affine......g,ŕgc_ Bt""") / we- 2A)j liehce we qeb THEOREM (a) The distance yetuy^eh W^AtZ/fyJ ahd. 4t * B * ~2rl?u) is the* norm of the crthoqo-nat Tf>ro^e,cbiov\ #f the vector A-B into (2(ft) t 27*^"^ (b) The folleivi'yiq desertions, f&ir fc/'nts h&/Wl Cz) h- N J_ 2-/^?)t tin) Fo\nh A = Cx,, yt/ yi; yv) t J^^/ofeJie Solution : Ot'st ( At%) ^ II IA ~B) II for a feint £ £ *?£ . /*r£ *s cheoz^ B*^}0,0-jS\ 2:1%) : * *ctfv**<^ «£? We. £«? m p6t fc e fc-he otb^xo^oVi^C fire jetton r *f bh* vector AS *C *tt*h *i{ into z-inr)*- - s~- Atopie V f1* w 6-e íAe ^íir6A«ce W the ři«ep : * = (e;tíSll)/ A/* (3, Z, 1,0)) tíomev/of\c 6 Cotopnye. the di'sbtkee* t?-f- k*v (otenes Ahqlez between spaces f) The tfn<*ce f /ij /S X - the av\<$le betwee the i í Vie tt £%le, lA- * vcikh ctáhonoriveit leasts a** the plane, p.- *ŕí^-V«>W4*,-V'*) Monte vor L 7_ compute the* o-hql-e bebiie/^ee^ i