LP\ - WEEK f : El&£A/ VALUES AA/Q EI8EA/ VECTORS* Uhear operator ( or linear enttomorphisn or linear bv&HStormtktoh) is 4 h'hear nap op : W —i9 U f vr-fere \4 i'* a vector space over \K » "fl? or C . Always, it koMs Cf>(l4)^H, cf(ift)~io}. IA av\o( ib*J are so called 6h'ml sub spaces. The vector subspa.ce, V c~ 14 called //tngfryfr*f£ &u bspace of an operator cf : 14—? L4 { if- C>) ~ Ay A= 14 ~4 4 -3\ CeusiMer the cctbspace^ 1-10 2] w r H -2 3 V -/ ' We chow th«fc v(s ******** h6r*ce (D DeffVufa'oH The v*4.t\r(% o$ ůhe opeméoir Cf : lA—? Id iVi -ŕtoe fc>4S/'s t* Ci {or?. In -this b*s<:* Ifre have 4-dim iW*r(**ffc- sub&paoss - emkora*0t a e Of <£/*e* one-0lmen&ioM& gj&Lce. Cn2cLi is inwiriavt bh&H Cf(ti) - 'XH. 7V*i for all mtilbpte of H ~e f£ £/?e Operator (f> is totitbfplieAitbq bcf e*i^&*Vecbo\s for q>: Ii-7 14 ff- therx 4 % e \K such th% h . ^^ik ^ /'s eepuiva, \evi-b bo ^ >e) ä^ • 3> Ts \ ^ 4t/ © LeitototL 'X e IK is 4* eitien value* of ■i he of>e\raío^ Cf> f f 60 = A> / if 4táôhlfl ff /S0 u a toot &£4&>kBP He ehiHicbehtbi potyvomťač čfal LA-Ie) . /f we know th-e eigenvalue -theh we ca* debeirm(v\e Cot res.founding ^(qevecto^ solvťnq He s^cbeim of ho tot of eneous \ ifiea \r ecfuaui'eh & CompHÜLbio* * f- eigenvalues jot ířene^mC linečtí ope-ros-kots cf : IA~> \A . Ute Ulco ty W/n< 41 e>f- 4 h čjeeKí éoir of. aHíj yndbHy. (jf)^ wh&re ol ťs !pa.si's e>-f- l/i . ( AH such polynenikč s. 4,1ns. JExan>p)&- Q_ ftMíi eiqen values. 4** etyeurecéorx of the operator (f : F *—? Ks, (f (1- V» A V / A - I'4 10 -1 -h O akt 2-2 2- 1-4-71 O \ - ->5-4?^25Uy 7, -z z->y (o, ot p) S^Sh? TiM e^e^l^s ei%e» vector A- - í4 'I -1 t