LF\ - ORTHOaomi OTERATDKS J!L qrouviol the *u's x, = xa/ x3«0fej the ahflle. Jl ,* such a iPaq f tfak Cf(1tofo) has all three. tbuib /V? standard coordinihes $>Q) ~ Ax . Solution : (?) Hfe W(i\ ff&t ikirutth* ($>X* in a &u(la\>\o(<*>ot z*o 1 ^//c direction (D Heh ce % % 0 % -% o 0 0 4 i s orthogonal toain'yt si'nce ' 1 vir? o 0 0 4 -1 l 12- '2. Ol (£) Anoiheir £oln£fph uea-s -bUe fach th&t ■b\\e Co In Mus of* the imttn'Y A A .< he « Iľ^atr čf* : V —y Ij ts called ad foittt 6>o . Then cp*-/* the »*/>/.,Wg =<*M,> -(4*)^ . ,r^Y £yitopl& 2. Had!* V*^ (fOŕi^Av, ecu {nation . The frcof- /i ŕŕrfl to the one aIpovb . ® Theôtew Let oc be a* orthohoirynac fa^'s in 14f A 4>» eríkohotmat kkisc* ,}j ]/ ^. anM q>* : y-?tí. They) T £o\r íasIA awt ve V we q&t čfirollah^ To ever^ Iihe4\r m4f>f>ľiu^ y : 14—y ]/ there is a* 4#'joint mapping ý>* Let M be a vector space wůh * a&k* product Ah Ppeplbor (f : lj-*7t4 is calleof celfatfönb if fiov all <£"■ f q>Cf \ - A)' Hernu'tian wiabriy A - ( 2 c \ \ Zt^ 3-4r -y pro^&cbľovi onéo ůhbemators fs Tea.1 (even if \#e work over 4?j (£) EifrsHvector bo 4ifLfL*wt efyenwfre-* are pswy&d^ul^'r &ack -bo anobhCu) - fa, «*c? Then which ^(V«s ^ = >vf 4wi sv % fs real 4* Hir^O7- Theft (V^J) <6^, © »*e> tests o^K^,-,"*) fame* b„ et'ie» recto* . ,„ hh(& ^ Mere ^ ^rč? d?^*W#es . ( 77>/i /3 * m lotete, to sťnľto.* chlorem foir Uhťl&ir^ opem ůors vtbho^owtt probation Oh (mutual^ wbko^ where. %- ate ^^etenb '*fé&#/ucs opO & projection on kľ$ek vec bote of írfee (Ppe^a^o^ (f ( of the yiatrt* A). //* í^/Js b*s qiireto the corresponding sykne. © So in -the CooräiViA^es of- the ortbohonnaO basis <* we k^e Ä *fflf2+ M* M* iVf which é h er ^u^ämérľc f-&M>\ f: B?3^^1 has d äiqo^t form, HOH&wo&^iO IZi'nd 4" er ukojena £ teste touch hkc quzdwbc fom f : /n has 4 ^k'afoh^e form. ( ffiViér; *r #e