Mnitairq wet selfad^oťnb operators #h a space, U have 41 Mys ůůtW oj basis iv\ H fom&et b^j ecqeh vectors. generally -this ťs heb true for other operators, an \ / v This operator fitfs ttobeŕfehraftie. (L of atyebniľc. toulttpliatcß 2 4lMt qeovn&tiric* tou liľplľaéc^ 4 abau's ih R* famed eíqenvetbo**. Thtirf* cf cannot have ť» #h„ hasť^u HotívAhiok\ Tor^pevatortcf With the property -čh&ů the 9(4m of atyebwa nulbťph'tCtfeš <ž>f l-U ei'fe*ua/ífe& ťs &fwt re> the eťihi&picťoto of spzce. oh whťch cf> is 4efihee( we wnb bo fth* a tes/s (n urhfeh the vnztrtY of

ef-ľmtľoh of JCF [■f) Tlotáah cg II X, 00 is -the mitrti o o> O 0 /4 toa-ŕť/'x Ts in lortfAh canonical -f-otvn (f ít cs block, (diagonál weh Oorohh ccIk £ ta tuple. ® ôhaľn for the e.ľq^nmlne % č>f <&s&ah cpefä 6or Cf> : IA —> IA /'s ^ ce> Wfc , —> • ■ —^ -? u* -> «1 —?0 The» Y - C «fí 0Z/ % J o, 14 c$> #h Mvturitwt basts éhe makmi* o > TWf (w^-f«/ ^or -the au*putehbrts) The conditio*e -finovi £Jie rtef-ťhtbn of Aehetfy Hence, 0 0 ■ 1 ■ ■ \ is ofu to 6he Oiroter &f Votáah Col(x . TfeniarL The basis o( from theorem f~ ^}oWl4.h Theorem e>ve\ŕ Cotop/ex hi4i*tbors If Cf : IA-7 U ti ľs 4 čoňip/ey. i/ectoir gpzc& t we CA* omi'-t the assu rnjptioftM oh the toulítplľcťŕte* , *i*ce> lí í2c al^x of äeq^ee h lits * iroots incl^i^ nv/éi-folľcítf'es.) (E) Haitis version of ÜoirafaH The IK =-~R0\r£, Gumose thah the H i*«fé9pti#'érľ*£ of (ts eigenvalues /i &fu^l áo h. ZT/fet? A ľs eľtoľte^ ío ahviuŕť* XI ľh /: ^. there ľs 4 refuted huzéin'* V ££* The nuikVii J (s dt&éeirmľyiGBŕ unľfHelq up 60 éhe order of 3owfah ce/U. ~R&V)rú.\rí. ®The HVLbrť* T ľs hoir 4&uermľn&>/ ahifuelq I (S) Ove\r d! We özn omi'b ůh& tissuinptľoh. Troof : 7<ŕ>rafoJt Theory* =-> Ma&ľy teuton in Ot^TgôrC. Then f& äef( pes ^ b&eis * in / tí Mas I. 3 -< flo&te, €, = (^1 is the sbzučet basis, FIMĎIMG 1CF FOR OPERA TPR$> AM£) HATRICBS /// DlMEÁ/SlQH 3 AA/D fy Tule 1 there \ one i c eiqehvalues> af eur Cfembor ce> (h>a.érty A) i e-vetu- as tnafiq times as íás. pm a/, - 2 alf* null, iŕ qeow- null. 1 eiqefi vector [1( o£o)T /4^h^/^ t# ^ule1 the oiC^om.I of ~JCF 1 bh\ree cells t oůh*rWse. é he qeom. mult* of ^1 would be* 2-. So 3tF Jms to h& /2_ o oh / e (D dve IooIlChq for & boat's. « f h vvhcc\r\ et 0 t? 0 1 J T-o\t -b^^Cíqey\\ŕčili4iqe^vecbor Vi in oc . Tor the f-ŕhat čĺ cteín e>£ the length 2.-far *ffii*te>í T4& firs6 vector this chain is &h eťqeft ve~cbo\r \ri • The ^e**** vector is |/S $uoh éhaé 2 c 1 > /y^rď wer __. © Tittle. 2. f The tnuinlpeir of- Oerfáh c&Ds. fot the. e-iq e rvalue > ,'s eefital to ehe qeoinetn'c foul-tiplia'irc/ of % EW\aWLbCoiň : Chain f- Krt Vfc.f - -. . —> f2 —> k, —? o Byam jole. 1~ y —? R5 A x Qcc&teti^ /é** IZtdb Z j OCF >&>o #kUj tme. That frkej we have ío looí f-ov a basis <* fa the of £ čhzih p-f length 3 ${#irhi*q Mt h the vector ^ t I We so/t/e &fu4Ů/OHs> (A - Z£) (42 - ^ (A - ZET) *3 - *2. £ hwo ehaľhs f oř the eigenvalues 2.^ ohz* o£ lehfúh 2 4 há &htun of- We loot -for Ct in é h e £om au -t by 4Q 4 vector fay* which the s (-4, 1t ij^ '—-—'' : 6 •ŕ? -2 J" £ 1 in which 7-8 3/ tíľnér : £ľfl&nvetnej Cite. 2 a f afy-tokli 3 tfl^ A ,