Mnitairq wet selfad^oťnb operators #h a space, U have 41 Mys ůůtW oj basis iv\ H fom&et b^j ecqeh vectors. generally -this ťs heb true for other operators,
an \ / v
This operator fitfs ttobeŕfehraftie. (L of atyebniľc.
toulttpliatcß 2 4lMt qeovn&tiric* tou liľplľaéc^ 4 abau's ih R* famed eíqenvetbo**. Thtirf*
cf cannot have ť» #h„ hasť^u
HotívAhiok\ Tor^pevatortcf With the property -čh&ů the 9(4m of atyebwa nulbťph'tCtfeš <ž>f l-U ei'fe*ua/ífe& ťs &fwt re> the eťihi&picťoto of spzce. oh whťch cf> is 4efihee( we wnb
bo fth* a tes/s (n urhfeh the vnztrtY of
ef-ľmtľoh of JCF [■f) Tlotáah cg II X, 00 is -the mitrti
o o> O
0
/4 toa-ŕť/'x Ts in lortfAh canonical -f-otvn (f ít cs block, (diagonál weh Oorohh ccIk
£ ta tuple.
®
ôhaľn for the e.ľq^nmlne % č>f <&s&ah cpefä
6or Cf> : IA —> IA /'s ^ ce> Wfc , —> • ■ —^ -? u* -> «1 —?0
The» Y - C «fí 0Z/ % J o, 14 c$> #h Mvturitwt basts éhe makmi* o >
TWf (w^-f«/ ^or -the au*putehbrts) The conditio*e -finovi £Jie rtef-ťhtbn of Aehetfy
Hence,
0 0 ■
1 ■ ■
\ 0
d orda n Theorem
M be- * sector jf^ece *f fitťmen&ton h apd (f \ (Aa* operator, suppose
éhair th^e suht of alqebmcc multiplicities of all eigenvalues of <^> is ofu to 6he Oiroter &f Votáah Col(x .
TfeniarL The basis o( from theorem f~
^}oWl4.h Theorem e>ve\ŕ Cotop/ex hi4i*tbors If Cf : IA-7 U ti ľs 4 čoňip/ey. i/ectoir
gpzc& t we CA* omi'-t the assu rnjptioftM
oh the toulítplľcťŕte* , *i*ce> lí í2c al^x
of äeq^ee h lits * iroots incl^i^ nv/éi-folľcítf'es.)
(E)
Haitis version of ÜoirafaH The IK =-~R0\r£,
Gumose thah the H i*«fé9pti#'érľ*£
of (ts eigenvalues /i &fu^l áo h. ZT/fet?
A ľs eľtoľte^ ío ahviuŕť* XI ľh /: ^.
there ľs 4 refuted huzéin'* V ££* The nuikVii J (s dt&éeirmľyiGBŕ unľfHelq up 60 éhe order of 3owfah ce/U.
~R&V)rú.\rí. ®The HVLbrť* T ľs hoir 4&uermľn&>/ ahifuelq I
(S) Ove\r d! We özn omi'b ůh& tissuinptľoh. Troof : 7<ŕ>rafoJt Theory* =-> Ma&ľy teuton
in Ot^TgôrC. Then f& äef( pes ^ b&eis * in
/ tí Mas
I.
3 -<
flo&te, €, = (^1 is the sbzučet basis,
FIMĎIMG 1CF FOR OPERA TPR$> AM£)
HATRICBS /// DlMEÁ/SlQH 3 AA/D fy
Tule 1
there
\ one i c
eiqehvalues> af eur Cfembor ce> (h>a.érty A)
i
e-vetu- as tnafiq times as íás. pm a/, - 2 alf* null, iŕ qeow- null. 1
eiqefi vector [1( o£o)T
/4^h^/^ t# ^ule1 the oiC^om.I of ~JCF
1 bh\ree cells t oůh*rWse. é he qeom. mult* of ^1 would be* 2-. So 3tF Jms to h&
/2_
o
oh /
e
(D
dve IooIlChq for & boat's. « f h vvhcc\r\
et
0 t?
0 1
J
T-o\t -b^^Cíqey\\ŕčili4iqe^vecbor
Vi in oc . Tor the f-ŕhat čĺ cteín e>£ the length 2.-far *ffii*te>í
T4& firs6 vector this chain is &h eťqeft ve~cbo\r \ri • The ^e**** vector is |/S $uoh éhaé
2 c
1 >
/y^rď wer
__. ©
Tittle. 2. f
The tnuinlpeir of- Oerfáh c&Ds. fot the.
e-iq e rvalue > ,'s eefital to ehe qeoinetn'c
foul-tiplia'irc/ of %
EW\aWLbCoiň : Chain
f- Krt -W f-M
V«. —> Vfc.f - -. . —> f2 —> k, —? o
Byam jole. 1~ y —? R5 A x
Qcc&teti^ /é** IZtdb Z j OCF >&>o #kUj tme.
That frkej we have ío looí f-ov a basis <* fa the of £ čhzih p-f length 3 ${#irhi*q
Mt h the vector ^ t
I
We so/t/e &fu4Ů/OHs>
(A - Z£) (42 - ^
(A - ZET) *3 - *2.
£ hwo ehaľhs f oř the eigenvalues 2.^ ohz* o£ lehfúh 2 4 há &htun of-
We loot -for Ct in é h e £om
au -t by
4Q 4 vector fay* which the s (-4, 1t ij^
'—-—'' :
6
•ŕ?
-2
J" £
1
in which
7-8
3/
tíľnér : £ľfl&nvetnej Cite. 2 a f afy-tokli 3 tfl^ A ,