Lash 6ttyie. we derived two rules f&r eov*f>nhi-bt'OVl of Jordan &ahontd4,l fetyns* (VCT) T?nle 1 Oh the 0tia (mtttriy. A) h£ m atfhtenst'ons 2 4*43 b«i not If we hare ah efy&nw/iie, ^ ^mlti'plt^'ty ^ and qeemekirCc touth'flicii:^ 2. t the* c&rr&sjoovi- XJordah cells cah fce. either 0fr hi0 0 I 11 ^ oyi \ 0 00 > ---'—v- s—"--v-----' There i\s 4 chain of There i^i Ho ehafn . „ 3 fcrre 3,- 0 1 \ oo / Don OoO 0 Of we. hAve a. rnaéri} A o-f t*«r h •+if au eiqe*vf. al$. ivutbíphcihh h ľ f Ü s HHľ/air to 7r <£>ť 72 2 *0 (D and §eOM • Mulk- Z f eh rectors y = (i(of%ŕo)rí \, * /rQ0,1r2*F We Panb bo a ehath of tehqéh 2 or 3 first fredjre looking for ^ieR Qu&k bteir the efuikí'on (A* E) /v- = gm bv Us a soluble* . tp<5 ^// ŕAe Hčhce &f a cJvtt* of Jehý&h *2 &ih steré-With érh& etqevivecbor (4 4.&t 4.\so wbh ^e I ť near Cndepetoôtenb Vector K 5 o titele a (r e £u^o //W*^ / ntfep&HeteHir ďfratMs c f lehyéh ói*t> . 7A*£ / c o -1 \ v o -11 o -i tfre Oct h Cewipt* <£e the chains Wh\cM corsairs of hoU chaľhs OrX* - 7 - where. j> » O o 0 O 3 -2 s- IfcVúf ^^„t efficient 4(blCl* we qek ak'freut (»ces Mtf^etenk A - &l$- foulk. H and "4 -2 4 6 6 é -6 / 0 \ 3 2-3 2 -2 /o 0-101 0 O Ü O 3 t* The system has a solktron ľ f ' o»/y -1 t 4t + £bf =- 0. 0 1 0 0 \ -7 \ ® A dfete*b colubľovi urhťch is yo^ihle £>kl§ fcite cases. U/keh ail iheetqetei/ues ôht?oc& a vector a ma computer Hz - . Q£ H-i+C? compute lAn ~CA-E)nz. if *i*0( then Hit form a cktih a f length 3. we \cive. * , 4y * if - [ 4 0 1 ) 1 1 Ol o * ! \ 0 \^ome\X/o\rk. AI A Tah* a forrfah canonical £etml the main y avtfl ď tnaáfíY p sua h that 3 = T"1 F V. S -3 -? -f O 0 o o H -8 Z -9 (D Home work. 41 B Tin* 4. 3CF J o$ the. N = euch hha.h [UíYib : eigenvalue 4 of a/q. toulíľplťaíq £J T-f/V P. Ď - r -í h -n 11 e - 2 1 3 and 4 mčihtn'^ V Such ůk&é 0^ T'1 D P. ( «rufe eigenvalue 2 of alf. toulbiplľaéi] 2?