
12. SOIL TEMPERATURE
AND HEAT FLOW

IMPORTANCE OF SOIL TEMPERATURE

Soil temperature, its value at any moment and the manner of its variation
in time and space, is a factor of primary importance in determining the rates
and directions of soil physical processes and of energy and mass exchange with
the atmosphere. Temperature governs evaporation and aeration as well as the
types and rates of chemical reactions that take place in the soil. Finally, soil
temperature strongly influences biological processes, such as seed germination,
seedling emergence and growth, root development, and microbial activity.

Soil temperature varies in response to changes in the radiant, thermal, and
latent energy exchange processes that take place primarily through the soil
surface. The effects of these phenomena are propagated into the soil profile
by a complex series of transport processes, the rates of which are affected by
time-variable and space-variable soil properties. Hence the quantitative for-
mulation and prediction of the soil thermal regime can be a formidable task.
Even beyond passive prediction, the possibility of actively controlling or modi-
fying the thermal regime requires a thorough knowledge of the processes at
play and of the environmental and soil parameters determining their rates.
The pertinent soil parameters include the specific heat capacity, thermal con-
ductivity and thermal diffusivity (all of which are strongly affected by bulk
density and wetness) as well as the internal sources and sinks of heat operat-
ing at any time.

Many reviews of soil temperature and heat flow have been published over
the years by (among others): de Vries (1975b), Campbell (1977), Taylor and
Jackson (1986), Fuchs (1986), Hanks (1992), Evett (2002), and McInnes
(2002).
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216 CHAPTER 12 SOIL TEMPERATURE AND HEAT FLOW

MODES OF ENERGY TRANSFER

We begin with basic physics. There are three principal modes of energy trans-
fer: radiation, convection, and conduction. By radiation, we refer to the emis-
sion of energy in the form of electromagnetic waves from all bodies above 0 K.
According to the Stefan–Boltzmann law, the total energy emitted by a body, Jt,
integrated over all wavelengths, is proportional to the fourth power of the
absolute temperature T of the body’s surface. This law is usually formulated

Jt = εσT4 (12.1)

where σ is a constant and ε is the emissivity coefficient, which equals unity for
a perfect emitter (generally called a black body). The absolute temperature
also determines the wavelength distribution of the emitted energy. Wien’s law
states that the wavelength of maximal radiation intensity λm is inversely pro-
portional to the absolute temperature:

λm = 2900/T (12.2)

where λm is in micrometers. The radiative intensity as a function of wavelength
and temperature is given by Planck’s law:

Eλ = C1/λ
5 [exp(C2/λT) − 1] (12.3)

where Eλ is energy flux emitted in a given wavelength range and C1, C2 are
constants.

Since the temperature of the soil surface averages about 300 K (though it
can range from below 273 K, the freezing point, to 330 K or even higher), the
radiation emitted by the soil surface has its peak intensity at a wavelength of
about 10 µm and its wavelength distribution over the range of 3–50 µm. This
is in the realm of infrared, or heat, radiation.

A very different spectrum is emitted by the sun, which acts as a black body
at an effective surface temperature of about 6000 K. The sun’s radiation includes
the visible light range of 0.3–0.7 µm as well as some infrared radiation of greater
wavelength (up to about 3 µm) and some ultraviolet radiation (λ < 0.3 µm).
Since there is very little overlap between the two spectra, it is customary to
distinguish between them by calling the incoming solar spectrum short-wave
radiation and the spectrum emitted by the earth long-wave radiation.

The second mode of energy transfer, called convection, involves the move-
ment of a heat-carrying mass, as in the cases of ocean currents and atmos-
pheric winds. An example more pertinent to soil physics would be the
infiltration of warm wastewater into an initially cold soil.

Conduction, the third mode of energy transfer, is the propagation of heat
within a body by internal molecular motion. Because temperature is an expres-
sion of the kinetic energy of a body’s molecules, the existence of a temperature
difference within a body will normally cause the transfer of kinetic energy by
the collisions of rapidly moving molecules from the warmer region of the body
to their neighbors in the colder region. The process of heat conduction is thus
analogous to diffusion; and in the same way that diffusion tends in time to
equilibrate a mixture’s composition throughout, heat conduction tends to
equilibrate a body’s internal temperature.

In addition to the three modes of energy transfer described, there is a com-
posite phenomenon that one may recognize as a fourth mode, namely, latent
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heat transfer. A prime example is the process of distillation, which includes the
heat-absorbing stage of evaporation, followed by the convective or diffusive
movement of the vapor, and ending with the heat-releasing stage of condensa-
tion. A similar catenary process can also occur in transition back and forth
from ice to liquid water in soils subject to freezing and thawing.

ENERGY BALANCE FOR A BARE SOIL

A detailed elucidation of the energy and water balances of vegetated fields is
given in Chapter 20. At this stage we outline the energy regime of a bare
(unvegetated) soil. We begin with the radiation balance of a bare surface,
which can be written thus (van Bavel and Hillel, 1976):

Jn = (Js + Ja)(1 − α) + Jli − Jlo (12.4)

Here Jn is the net radiation, that is, the sum of all incoming minus outgoing
radiant energy fluxes, Js is the incoming flux of short-wave radiation directly
from the sun, Ja is the short-wave diffuse radiation from the atmosphere (sky),
Jli is the incoming long-wave radiation flux from the sky, Jlo is the outgoing
long-wave radiation emitted by the soil, and α is the albedo, or reflectivity
coefficient, which is the fraction of incoming short-wave radiation reflected by
the soil surface rather than absorbed by it. We shall disregard in the present
context all terms that do not pertain to the soil, namely, Js, Ja, and Jli.

The albedo α is an important characteristic of soil surfaces, and it can vary
widely in the range of 0.1–0.4, depending on the soil’s basic color (whether
dark or light colored), the surface’s roughness, and the inclination of the inci-
dent radiation relative to the surface (Sellers, 1965). In the short run, the
albedo also depends on the changing wetness of the exposed soil (Jackson
et al., 1974). The drier the soil, the smoother its surface; the brighter its color,
the higher its albedo. To a certain extent, the albedo can be modified by vari-
ous surface treatments, such as tillage and mulching.

Apart from the reflected short-wave radiation, governed by the albedo, we
have another soil-dependent process, namely, the emission of long-wave radi-
ation. In accordance with Eq. (12.1), the emitted flux Jle depends on surface
temperature but is also affected by emissivity ε. This parameter, in turn,
depends on soil wetness and generally varies between 0.9 and 1.0.

The net radiation received by the soil surface is transformed into heat,
which warms the soil and air and vaporizes water. We can thus write the sur-
face energy balance as follows:

Jn = S + A + LE (12.5)

where S is the soil heat flux (the rate at which heat is transferred from the sur-
face downward into the soil profile), A is the “sensible” heat flux transmitted
from the surface to the air above, and LE is the evaporative heat flux, a product
of the evaporative rate E and the latent heat per unit quantity of water evapo-
rated, L. The total surface energy balance [combining Eqs. (12.4) and (12.5)] is:

(Js + Ja)(l − α) + Jli − Jlo − S − A − LE = 0 (12.6)

Conventionally, all components of the energy balance are taken as positive if
directed toward the surface and negative otherwise.



218 CHAPTER 12 SOIL TEMPERATURE AND HEAT FLOW

Sample Problem

Consider the energy balance of a bare-surface soil, assuming the following conditions:
The daytime (12-hr) average global (sun and sky) radiation is 3.35 × 104 J/m2 min (0.8
cal/cm2 min). The albedo is 0.15. The average soil surface temperature during the diur-
nal period is 27°C. Advection in daytime balances the outflow of sensible heat during
the night, so diurnal net sensible heat exchange with the atmosphere is negligible.
Evaporation is 2 mm/day. The emissivity is 0.9, and the atmosphere returns 60% of the
long-wave radiation emitted by the ground. Estimate the daytime soil heat transfer
term. Is it positive or negative?

Following Eq. (12.6), the diurnal energy balance can be written

Js(1 − α) − Jl − S − A − LE = 0

where Js is incoming global short-wave radiation, α is albedo, Jl is net long-wave emit-
ted radiation, S is heat flow into the soil, A is sensible heat transfer to the air, and LE is
latent heat loss. To obtain S, we rearrange this equation to read

S = Js(1 − α) − Jl − A − LE

For the net short-wave radiation, we have

Js(1 − α) = (3.35 × 104 J/m2 min)(720 min/day)(1 − 0.15)
= 2.05 × 107 J/m2 daytime

Net outgoing long-wave radiation (using the Stefan–Boltzmann law) is:

Jl = 0.4 (εσT)

Note: The total energy radiated per unit surface of a “black body” in unit time is
proportional to the fourth power of the thermodynamic temperature. The constant of
proportionality has the value of 5.67 × 10−8 J sec−1 m−2 K−4.

Jl = 0.4 × 0.9 × (5.67 × 10−8 J sec−1 m−2 K−4)(8.64 × 104 sec/diurnus)(273 + 27)4 K
= 1.43 × 107 J/m2

Note: The factor 0.4 is used because, as stated, the atmosphere returns 60% of the out-
going Jl. Also, the emission of longwave radiation takes place throughout the 24-hr day.

The net sensible heat transfer A is negligible. For the latent heat loss term, we have

LE = 2.43 × 106 J/kg × 2 kg/m2 day = 4.86 × 106 J/m2 per daytime
(= 580 cal/g × 0.2 g/cm2 day = 116 cal/cm2 day)

Note: Evaporation = 2 mm/day = 2 L/m2 day = 2 kg/m3 (water density = 1000 kg/m3).
Finally, we can sum up all of these quantities to obtain the soil heat flow:

S = 2.05 × 107 − 1.43 × 107 − 0 − 0.49 × 107

= 1.3 × 106 J/m2 per diurnus (~32.1 cal/cm2 day)

Ergo, the soil is gaining heat. If this amount of heat is absorbed in the top 0.2 m of
the soil with a specific heat capacity of 2000 J/kg and a bulk density of 1600 kg/m3, it
will raise the temperature by 2 degrees.

CONDUCTION OF HEAT IN SOIL

The conduction of heat in solids was analyzed as long ago as 1822 by
Fourier, whose name is given to the linear equation that has been used ever
since to describe heat conduction. This equation is mathematically analogous
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to the diffusion equation (Fick’s law) as well as to Ohm’s law for the conduc-
tion of electricity and Darcy’s law for water flow in soil.

The first law of heat conduction, known as Fourier’s law, states that the
flux of heat in a homogeneous body is in the direction of, and proportional to,
the temperature gradient:

qh = −κ∇T (12.7)

Here qh is the thermal flux (i.e., the amount of heat conducted across a unit
cross-sectional area in unit time), κ (Greek letter kappa) is thermal conductiv-
ity, and ∇T is the spatial gradient of temperature T. In one-dimensional form,
this law is written

qh = −κx (dT/dx) or qh = −κz (dT/dz) (12.8)

Here dT/dx is the temperature gradient in any direction, designated x, and
dT/dz is, specifically, the gradient in the vertical direction representing soil
depth (z = 0 being the soil surface). The subscripts attached to the thermal con-
ductivity term are meant to account for the possibility that this parameter may
have different values in different directions (i.e., that it may be nonisotropic).
The negative sign in these equations is due to the fact that heat flows from a
higher to a lower temperature (i.e., in the direction of, and in proportion to, a
negative temperature gradient).

Equation (12.7) is sufficient to describe heat conduction under steady-state
conditions, that is to say, where the temperature at each point in the conduct-
ing medium is invariant and the flux is constant in time and space. To account
for nonsteady (transient) conditions, we need a second law analogous to Fick’s
second law of diffusion as embodied in Eq. (9.13). To obtain the second law
of heat conduction, we invoke the principle of energy conservation in the form
of the continuity equation, stating that, in the absence of internal sources or
sinks of heat, the time rate of change in heat content of a volume element must
equal the change of flux with distance:

ρcm (∂T/∂t) = −∇ ⋅ qh (12.9)

where ρ is mass density and cm specific heat capacity per unit mass (defined as
the change in heat content of a unit mass of the body per unit change in tem-
perature). The product ρcm (often designated C) is the specific heat capacity
per unit volume, and ∂T/∂t is the time rate of temperature change. Note that
the symbol ρ represents the total mass per unit volume, including the water in
the case of a moist soil. The symbol ∇ (del) is the shorthand representation of
the three-dimensional gradient. Equation (12.9) can thus be restated as

ρcm (∂T/∂t) = −(∂qx/∂x + ∂qy/∂y + ∂qz/∂z)

where x, y, z are the orthogonal direction coordinates.
Combining Eqs. (12.9) and (12.7), we obtain the desired second law of heat

conduction:

ρcm (∂T/∂t) = −∇ ⋅ (κ ∇T) (12.10)

which, in one-dimensional form, is

ρcm (∂T/∂t) = (∂/∂x) [κ (∂T/∂x)] (12.11)
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Sometimes we may need to account for the possible occurrence of heat
sources or sinks in the realm where heat flow takes place. Heat sources include
such phenomena as organic matter decomposition, wetting of initially dry soil
material, and condensation of water vapor. Heat sinks are generally associated
with evaporation. Lumping all these sources and sinks into a single term S, we
can rewrite the last equation as

ρcm (∂T/∂t) = (∂/∂x) [κ (∂T/∂x)] ± S(x, t) (12.12)

in which the source–sink term is shown as a function of both space and time.
The ratio of the thermal conductivity κ to the volumetric heat capacity C (=

ρcm) is called the thermal diffusivity, designated DT. Thus,

DT = κ/C (12.13)

Substituting DT for κ, we can rewrite Eq. (12.8) and (12.11):

qh = −DTC (∂T/∂x) (12.14)

In the special case where DT can be taken as constant (not a function of dis-
tance), we can write

∂T/∂t = DT (d2T/dx2) (12.15)

To solve the foregoing equations so as to obtain a description of how tem-
perature varies in space and time, we need to know, by measurement or cal-
culation, the pertinent values of the three parameters just defined, namely, the
volumetric heat capacity C, thermal conductivity κ, and thermal diffusivity
DT. Together, they are called the thermal properties of soils.

VOLUMETRIC HEAT CAPACITY OF SOILS

A soil’s volumetric heat capacity C is defined as the change of a unit volume’s
heat content per unit change in temperature. It is expressed as calories per
cubic centimeter per degree or joules per cubic meter per degree. Thus, C
depends on the composition of the soil’s solid phase (mineral and organic com-
ponents), on bulk density, and on soil wetness (Table 12.1).

TABLE 12.1 Densities and Volumetric Heat Capacities of Soil

Constituents (at 10°C) and of Ice (at 0°C)

Density ρ Heat capacity C

Constituent (g/cm3) (kg/m3) (cal/cm3K) (J/m3 K)

Quartz 2.66 2.66 × 103 0.48 2.0 × 106

Other minerals (average) 2.65 2.65 × 103 0.48 2.0 × 106

Organic matter 1.3 1.3 × 103 0.6 2.5 × 106

Water (liquid) 1.0 1.0 × 103 1.0 4.2 × 106

Ice 0.92 0.92 × 103 0.45 1.9 × 106

Air 0.00125 1.25 0.003 1.25 × 103
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The value of C can be estimated by summing the heat capacities of the
various constituents, weighted according to their volume fractions. As given
by de Vries (1975a), it is

C = Σ(fsiCsi + fwCw + faCa) (12.16)

Here, f denotes the volume fraction of each phase: solid (subscripted s), water
(w), and air (a).

The solid phase includes a number of components subscripted i, such as
various minerals and organic matter, and the symbol Σ indicates the summa-
tion of the products of their respective volume fractions and heat capacities.
The C value for water, air, and each component of the solid phase is the prod-
uct of the particular density and the specific heat per unit mass (i.e., Cw =
ρwcmw, Ca = ρacma, Csi = ρsicmi).

Most of the minerals composing soils have nearly the same values of density
(about 2.65 g/cm3, or 2.65 × 103 kg/m3) and of heat capacity (0.48 cal/cm3 K,
or 2.0 × 106 J/m3 K). Since it is difficult to separate the different kinds of
organic matter present in soils, it is tempting to lump them all into a single con-
stituent (with an average density of about 1.3 g/cm3, or 1.3 × 103 kg/m3, and
an average heat capacity of about 0.6 cal/cm3 K, or 2.5 × 106 J/m3 K).

Although the density of water is less than half that of mineral matter
(about 1 g/cm3, or 1.0 × 103 kg/m3), its specific heat is more than twice as
large (1 cal/cm3 K, or 4.2 × 106 J/m3 K). Finally, since the density of air is only
about 1/1000 that of water, its contribution to the specific heat of the com-
posite soil can generally be neglected.

Thus, Eq. (12.16) can be simplified as follows:

C = fmCm + foCo + fwCw (12.17)

where subscripts m, o, w refer to mineral matter, organic matter, and water,
respectively. Note that fm + fo + fw = 1 − fa and the total porosity f = fa + fw.
The reader will recall that in preceding chapters we designated the volume
fraction of water fw as θ. Knowing the approximate average values of Cm, Co

and Cw, we can further simplify Eq. (12.17) to give

C = 0.48fm + 0.60fo + fw (12.18)

The use of Eq. (12.18) must be qualified in the case of frozen or partially
frozen soils, since the properties of ice differ from those of liquid water (ρ = 0.92
g/cm3, or 0.92 × 103 kg/m3, and C = 0.45 cal/cm3 K, or 1.9 × 106 J/m3 K). In
typical mineral soils, the volume fraction of solids is in the range of 0.45–0.65,
and C values range from about 1 MJ/m3 K (less than 0.25 cal/cm3 K) in the dry
state to about 3 MJ/m3 K, or 0.75 cal/cm3 K, in the water-saturated state.

The measurement of heat capacity and specific heat is described by
Kluitenberg (2002).

THERMAL CONDUCTIVITY AND DIFFUSIVITY

Thermal conductivity κ is defined as the quantity of heat transferred
through a unit area of the conducting body in unit time under a unit tempera-
ture gradient. As shown in Table 12.2, the thermal conductivities of specific
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soil constituents differ widely (see also Table 12.3). Hence the space-averaged
(macroscopic) thermal conductivity of a soil depends on its mineral compos-
ition and organic matter content as well as on the volume fractions of water
and air.

Since the thermal conductivity of air is very much smaller than that of water
or solid matter, a high air content (or low water content) corresponds to a low
thermal conductivity. Moreover, since the proportions of water and air vary
continuously, κ is also time variable. Soil composition is seldom uniform in
depth; hence κ is generally a function of depth as well as of time. It also varies
with temperature, but under normal conditions this variation is ignored.
Unlike heat capacity, thermal conductivity is sensitive not only to the mineral
composition of a soil but also to the sizes, shapes, and arrangements of soil
particles. In the normal range of soil wetness experienced in the field, C may
undergo a threefold or fourfold change, whereas the corresponding change in
κ may be a hundredfold or more.

TABLE 12.2 Thermal Conductivities of Soil

Constituents (at 10°C) and of Ice (at 0°C)

Constituent mcal/cm sec K (W/m K)

Quartz 21 8.8

Other minerals (average) 7 2.9

Organic matter 0.6 0.25

Water (liquid) 1.37 0.57

Ice 5.2 2.2

Air 0.06 0.025

TABLE 12.3 Average Thermal Properties of Soils and Snowa

Damping

Thermal Volumetric depth

Soil Volumetric conductivity heat capacity Cv (diurnal)

type Porosity f wetness θ (10−3 cal/cm sec °C) (cal/cm sec °C) d (cm)

Sand 0.4 0.0 0.7 0.3 8.0

0.4 0.2 4.2 0.5 15.2

0.4 0.4 5.2 0.7 14.3

Clay 0.4 0.0 0.6 0.3 7.4

0.4 0.2 2.8 0.5 12.4

0.4 0.4 3.8 0.7 12.2

Peat 0.8 0.0 0.14 0.35 3.3

0.8 0.4 0.7 0.75 5.1

0.8 0.8 1.2 1.15 5.4

Snow 0.95 0.05 0.15 0.05 9.1

0.8 0.2 0.32 0.2 6.6

0.5 0.5 1.7 0.5 9.7

a After van Wijk and de Vries (1963).
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The relationship between the overall thermal conductivity of a soil and the
specific conductivities and volume fractions of the soil’s constituents is very
intricate. Two relatively simple alternative cases can be envisaged: a dry soil
and a water-saturated soil with the same internal structure. In both cases we
have a two-phase system in which the particles are dispersed in a continuous
fluid (air or water) with a volume fraction f0 and thermal conductivity κ0. The
particles then occupy a volume fraction f1 = 1 − f0 and have a thermal con-
ductivity κ1. A composite thermal conductivity for the medium can be defined
as follows: Consider a representative cube of soil with side L, large in com-
parison with the diameters of the particles and pores. Assume that the upper
face is at a temperature T1 and the bottom face is at a lower temperature, T2.
A constant heat flux qh will then pass through the cube, proportional to the
temperature gradient, with κc as the proportionality factor for the composite
medium:

qh = −κc (dT/dx) = κc(T1 − T2)/l

Since the cube is a mixture of two phases, the composite thermal conductivity
κc will be intermediate between κ0 and κ1. According to de Vries (1975a),

κc = (f0κ0 + kfiκi)/(f0 + kfi) (12.19)

where the factor k is the ratio of the average temperature gradient in the par-
ticles to the corresponding gradient in the continuous fluid:

k = (dT/dz)2/(dT/dz)1

The value of k depends not only on the ratio κ1/κ0, but also on the particle
sizes, shapes, and mode of packing.

If there are several types of particles with different shapes or conductivities,
Eq. (12.20) can be generalized:

(12.20)

Here n is the number of particle classes within which all particles have about
the same shape and conductivity. The thermal conductivity of soils of widely
differing compositions can be estimated by Eq. (12.20).

The following form of Eq. (12.20), for an unsaturated soil, was used by van
Bavel and Hillel (1975, 1976):

κc = (fwκw + ksfsκs + kafaκa)/(fw + ksfs + kafa)

where κw, κa, and κs are the specific thermal conductivities of the soil con-
stituents (water, air, and an average value for the solids, respectively). The fac-
tor ks represents the ratio between the space average of the temperature
gradient in the solidphase and that in the water phase. It depends on grain
shapes as well as on mineral composition and organic matter content. The ka

factor represents the corresponding ratio for the thermal gradient in the air
and water phases.
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The dependence of thermal conductivity and diffusivity on soil wetness is
illustrated in Fig. 12.1. The influence of latent heat transfer by the diffusion of
water vapor in the air-filled pores is proportional to the temperature gradient
in these pores. It can be taken into account (van Bavel and Hillel, 1976; Hillel,
1977) by adding to the thermal conductivity of air an apparent conductivity
due to evaporation, transport, and condensation of water vapor (the so-called
vapor enhancement factor). This value is strongly temperature dependent and
rises rapidly with increasing temperature.

Methods of measuring thermal conductivity were summarized by Jackson
and Taylor (1986) and more recently by Bristow (2002).

The thermal diffusivity Dh, instead of the conductivity κ, is sometimes
desired (Horton, 2002). It can be defined as the change in temperature pro-
duced in a unit volume by the quantity of heat flowing through the volume in
unit time under a unit temperature gradient. An alternative definition, easier
to perceive, is that the thermal diffusivity is the ratio of the conductivity to the
product of the specific heat and density:

Dh = κ/csρ = κCv (12.21)
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Fig. 12.1. Thermal conductivity and thermal diffusivity as functions of volume wetness (vol-

ume fraction of water) for (1) sand (bulk density 1460 kg/m3, volume fraction of solids 0.55);

(2) loam (bulk density 1330 kg/m3, volume fraction of solids 0.5); and (3) peat (volume frac-

tion of solids (0.2). (After de Vries, 1975.)
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where Cv is the volumetric heat capacity. As shown in the preceding section,
the specific heat and density of both solids and water must be considered when
calculating Cv:

Cv = ρs(cs + cww) (12.22)

where ρs is the density of dry soil, cs is the specific heat of dry soil, cw is the
specific heat of water, and w is the ratio of the mass of water to the mass of
dry soil. The thermal diffusivity can be measured directly, as described by
Jackson and Taylor (1986).

SIMULTANEOUS TRANSPORT OF HEAT AND MOISTURE

The flows of water and of thermal energy under nonisothermal conditions
in the soil are interactive phenomena: The one entails the other. Temperature
gradients affect the moisture-potential field and induce both liquid and vapor
movement. Reciprocally, moisture gradients move water, which carries heat.
The simultaneous occurrence of temperature gradients and moisture gradients
in the soil therefore brings about the combined transport of heat and moisture.
This combined transport can generally be ignored in the extreme cases of a satu-
rated or nearly saturated soil and of a nearly dry soil. In the former, the influ-
ence of temperature gradients on liquid water flow is generally small in
comparison with the influence of gravity or pressure gradients; in the latter,
the movement of heat can entail no significant movement of either liquid water
or vapor. Thus, we are left with the problem of how to deal with the wide
range of intermediate situations in which transport of liquid water and of
vapor can be both significant and mutually influenced.

Two separate approaches to the combined transfer of heat and moisture
have been attempted: (1) a mechanistic approach, based on a physical model
of the soil system, and (2) a thermodynamic approach, based on the phenom-
enology of irreversible processes in terms of coupled forces and fluxes. Though
starting from different points of view, the two approaches have been shown to
be related and, properly formulated, can be cast into an equivalent mold
(Groenevelt and Bolt, 1969; Jury, 1973).

The mechanistic approach was originally formulated by Philip and de Vries
(1957). Their model was based on the concept of viscous flow of liquid water
under the influence of gravity and of capillary and adsorptive forces and on
the concept of vapor movement by diffusion. Local “microscopic-scale”
thermodynamic equilibrium between liquid and vapor was assumed to exist
at all times and at each point within the soil. The general differential equa-
tion describing moisture movement in a porous system under combined
temperature and moisture gradients for unidimensional vertical flow is,
accordingly,

∂θ/∂t = ∇ ⋅ (DT ∇T) + ∇ ⋅ (Dw∇θ) − ∂K/∂z (12.23)

where q is volumetric wetness, t is time, T is absolute temperature, DT is the
water diffusivity under a temperature gradient (the sum of the liquid and
vapor diffusivities), Dw is the water diffusivity under a moisture gradient, K is
the hydraulic conductivity, and z is the vertical space coordinate. The last term
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on the right-hand side is due to the gravity gradient and becomes positive if z
is taken to be increasing downward.

The heat transfer equation is, similarly,

Cv ∂T/∂t = ∇ ⋅ (κ ∇T) − L∇⋅(Dw,vap ∇θ) (12.24)

Here Cv is volumetric heat capacity, κ is apparent thermal conductivity of the
soil, L is latent heat of vaporization of water, and Dw,vap is diffusivity for heat
conveyed by water movement (mostly vapor). The preceding equations are
both of the diffusion type, involving θ- and T-dependent diffusivities as well
as gradients of both θ and T.

Taken together, Eqs. (12.23) and (12.24) describe the coupled transport of
moisture and heat in soils. The mechanistic nature of the theory and of the
coefficients involved was explained by de Vries (1975b). The assumption of
local thermodynamic equilibrium links the vapor pressure pv to the matric
potential ψ by the following relation: pv = pvsh = pvs exp(Mgψ/RT), where pvs

is the saturated vapor pressure at the particular temperature T, h is relative
humidity, M is molar mass, g is the acceleration of gravity, and R is the uni-
versal gas constant. The diffusivities for water and heat by vapor transport are
obtained by use of this relationship. However, the difficulty encountered in
making the theory operational is in measuring the diffusivities. A more funda-
mental problem is that, since the two mechanisms of flow represented in each
equation do interact, they are not, strictly speaking, simply additive.

To consider the approach based on irreversible thermodynamics, we must
first understand in principle the difference between this relatively new branch
of science and the older, “classical” thermodynamics, which deals with
reversible processes and equilibrium states. Classical thermodynamics can pre-
dict whether, and in what direction (but not at what rate), a spontaneous
process will occur in a system not at equilibrium. However, in a natural sys-
tem any number of different forces might be operating simultaneously to pro-
duce mutually interacting fluxes in a combination of irreversible processes. For
instance, a concentration gradient causes diffusion, a pressure gradient causes
convection, and a temperature gradient results in the transfer of heat, with
each of these fluxes affecting the others. If the system is not too far from equi-
librium, the fluxes are taken to be related linearly to the forces causing them.

In application to simultaneous water and heat flow, as an example, the
approach based on the thermodynamics of irreversible processes formulates a
pair of phenomenological equations in which the fluxes of moisture qw and
heat qh are expressed as linear functions of the moisture potential (e.g., pres-
sure) gradient dP/dz and the temperature gradient dT/dz:

qw = −Lww(1/T) (dP/dz) − Lwh(1/T 2)(dT/dZ)

qh = −Lww(1/T) (dP/dz) − Lhh(1/T 2)(dT/dZ)
(12.25)

The four phenomenological coefficients occurring in these equations (Lww,
Lwh, Lhw, Lhh, relating water flow to the water potential gradient, water flow
to the thermal potential gradient, heat flow to the water potential gradient,
and heat flow to the thermal potential gradient, respectively) are unknown
functions of P (or θ) and T. According to Onsager’s theorem (Katchalsky and
Curran, 1965), the cross-coupling coefficients Lwh and Lhw are equal when the
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fluxes and forces are properly formulated. Thus, the number of coefficients
that must be measured is reduced.

An apparent advantage of the irreversible thermodynamics approach is that
it makes no a priori assumptions regarding the mechanisms of the transport
phenomena formulated. Hence it would seem to be less restrictive than a phys-
ical theory, whose validity is constrained at the outset by its mechanistic
assumptions. The disadvantage of the approach, however, is precisely in its fail-
ure to provide insight into the nature and internal workings of the processes
considered.

THERMAL REGIME OF SOIL PROFILES

In nature, soil temperature varies continuously in response to the ever-
changing meteorological regime acting on the soil–atmosphere interface. That
regime is governed by a regular periodic succession of days and nights and of
summers and winters. Yet the regular diurnal and annual cycles are perturbed
by such irregular episodic phenomena as cloudiness, cold waves, warm waves,
rainstorms or snowstorms, and periods of drought. Added to these external
influences are the soil’s own changing properties (i.e., temporal changes in
reflectivity, heat capacity, and thermal conductivity as the soil alternately wets
and dries, and the variation of all these properties with depth), as well as the
influences of geographic location, vegetative cover, and — finally — human
management. All these labile factors complicate the effort to define the ther-
mal regime of soil profiles.

The simplest mathematical representation of nature’s fluctuating thermal
regime is to assume that at all depths in the soil the temperature oscillates as
a pure harmonic (sinusoidal) function of time around an average value. Since
nature’s actual variations are not so orderly, this may be a rather crude
approximation. Nonetheless, it is an instructive exercise in itself, and when
used in conjunction with field data it may lead to a better understanding, and
perhaps even provide a basis for the prediction, of a soil’s thermal regime.

To begin, let us assume that although soil temperature varies differently at
different depths in the soil, the average temperature is the same for all depths.
We next choose a starting time (t = 0) such that the surface is at the average
temperature. The temperature at the surface can then be expressed as a func-
tion of time (Fig. 12.2):

T(0,t) = Tave + A0 sin ωt (12.26)

where T(0,t) is the temperature at z = 0 (the soil surface) as a function of time
t, Tave is the average temperature of the surface (as well as of the profile), and
A0 is the amplitude of the surface-temperature fluctuation (the range from
maximum, or from minimum, to the average temperature). Finally, ω is the
radial frequency, which is 2π times the actual frequency. In the case of diurnal
variation, the period is 86,400 sec (24 hr), so ω = 2π/86,400 = 7.27 × 10−5/sec.
Note that the argument of the sine function is expressed in radians rather than
in degrees.

The last equation is the boundary condition for z = 0. For the sake of con-
venience, let us assume that at infinite depth (z = ∞) the temperature is constant
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and equal to Tave. Under these circumstances, the temperature at any depth z
can also be represented as a sine function of time, as shown in Fig 12.3:

T(z,t) = Tave + Az sin[ωt + φ(z)] (12.27)

in which Az is the amplitude at depth z. Both Az and φ(z) are functions of z but
not of t. They can be determined by substituting the solution of Eq. (12.26) in
the differential equation ∂T/∂t = κ(∂2T/∂z2). This leads to the solution

T(z,t) = Tave + A0[sin(ωt − z/d)]/e−z/d (12.28)

The constant d is a characteristic depth, called the damping depth, at which
the temperature amplitude equals 1/e (1/2.718 = 0.37) of the amplitude at the
soil surface A0. The damping depth is related to the thermal properties of the
soil and the frequency of the temperature fluctuation:

d = (2κ/Cω)1/2 = (2Dh/ω)1/2 (12.29)

It is seen that at any depth the amplitude of the temperature fluctuation Az is
smaller than A0 by a factor ez/d and that there is a phase shift (a time delay of
the temperature peak) equal to −z/d. The decrease of amplitude and increase
of phase lag with depth are typical phenomena in the propagation of a peri-
odic temperature wave in the soil.

The physical reason for the damping and retarding of the temperature waves
with depth is that a certain amount of heat is absorbed or released along the
path of heat propagation when the temperature of the conducting soil increases
or decreases, respectively. The damping depth is related inversely to the fre-
quency, as can be seen from Eq. (12.29). Hence it depends directly on the
period of the temperature fluctuation considered. The damping depth is
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Fig. 12.2. Idealized daily fluctuation of surface soil temperature, according to the equation

T = Tave + Ao sin(ωt/p), where T is temperature, Tave is average temperature, Ao is amplitude, t is

time, and p is the period of the oscillation (in this case, p refers to the diurnal 24 hr).
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(365)1/2 = 19 times larger for the annual variation than for the diurnal variation
in the same soil. For example, van Wijk and de Vries (1963) calculated the
damping depth for a soil with κ = 0.96 J/m sec deg (equal to 2.3 × 10−3 cal/cm
sec deg) and obtained d = 0.12 m for the diurnal temperature fluctuation and
d = 2.29 m for the annual fluctuation. Whereas the amplitude at depth z = d is
0.37 as great as the amplitude at the surface, it is only about 0.05 of the sur-
face amplitude at z = 3d (0.36 m for the diurnal variation in the case of the soil
used by these authors). When an arbitrary zero point t0 is introduced into the
time scale, Eq. (12.28) becomes

T(z,t) = Tave + A0[sin(ωt + φ0 − z/d)]/e z/d (12.30)

The constant φ0 is called the phase constant.
The annual variation of soil temperature down to considerable depth causes

deviations from the simplistic assumption that the daily average temperature
is the same for all depths in the profile. The combined effect of the annual and
diurnal variations of soil temperature can be expressed by

T(z,t) = Tave,y + Ay[sin(ωyt + φy − z/dy)]/e
z/dy

+ Ad[sin(ωdt + φd − z/dd)]/e
z/dd (12.31)

Fig. 12.3. Idealized variation of soil temperature with time for various depths. Note that at

each succeeding depth the peak temperature is damped and shifted progressively in time. Thus,

the peak at a depth of 0.4 m lags about 12 hr behind the temperature peak at the surface and

is only about 1/16 of the latter. In this hypothetical case, a uniform soil was assumed, with a

thermal conductivity of 1.68 J/m sec deg (or 4 × 10−3 cal/cm sec deg) and a volumetric heat

capacity of 2.1 × 106 J/m3 deg (0.5 cal/cm3 deg).
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wherein the subscripted indices y and d refer to the yearly and daily tempera-
ture waves, respectively. Thus Tave,y is the annual mean temperature. The daily
cycles are now seen to be short-term perturbations superimposed on the annual
cycle. Vagaries of weather (e.g., spells of cloudiness or rain) can cause consid-
erable deviations from simple harmonic fluctuations, particularly for the daily
cycles. Longer-term climatic irregularities can also affect the annual cycle, of
course. Also, since the annual temperature wave penetrates much more
deeply than the daily wave, the assumptions of soil homogeneity in depth
and of the time constancy of soil thermal properties are clearly unrealistic
(Gao et al., 2003).

An alternative theoretical approach is possible, one with fewer constraining
assumptions. It is based on numerical, rather than analytical, methods for
solving the differential equations of heat conduction. Computer-based math-
ematical simulation models now allow soil thermal properties to vary in time
and space (e.g., in response to periodic changes in soil wetness) so as to
account for alternating surface saturation and desiccation and for profile
layering. They also allow various climatic inputs to follow more realistic and
irregular patterns. The surface amplitude of temperature need no longer be
taken to be an independent variable, but one that depends on the surface
energy balance and thus is affected by both soil properties and above-soil con-
ditions. Examples of the numerical approach can be found in the published
works of van Bavel and Hillel (1975, 1976), Hillel (1977), and Evett et al.
(1994).

Other developments of practical importance include techniques for moni-
toring the soil thermal regime more precisely than was possible previously.
One such technique is the infrared radiation thermometer for scanning or
remote sensing of surface temperature for both fallow and vegetated soils
without disturbance of the measured surface. Knowledge of the surface tem-
perature and its variation in time is important in assessing energy exchange
between soil and atmosphere as well as in determining boundary conditions
for within-soil heat transfer.

An additional technique is the use of heat flux plates. These are flat and thin
plates or disks of constant thermal conductivity, which allow precise measure-
ment of the temperature difference between their two sides so as to yield the
heat flux through them. When embedded horizontally in the soil at regular
depth intervals, a series of such heat flux plates can provide a continuous
record of heat transfer throughout the profile. There are problems, however.
The presence of heat flux plates can distort the flow of heat in the surround-
ing medium if their thermal conductivity is very different from that of the soil.
The experimental error can be minimized by constructing plates of maximal
thermal conductivity and minimal thickness and by calibrating them in a
medium with a thermal conductivity near to that of the soil in which they are
to be placed. Another problem is that such plates preclude vapor flow, which
can sometimes be an important component of heat transfer. The use of heat
flux plates is described by Fuchs (1986) and by Sauer (2002).

The soil-temperature profile as it might vary from season to season in a
frost-free region is illustrated in Fig. 12.4. The diurnal variation of tempera-
ture and the directions of heat flow within a soil profile are illustrated in
Fig. 12.5.
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Fig. 12.4. Soil-temperature profile as it varies from season to season in a frost-free region.

Fig. 12.5. Typical variation of temperature with depth at different times of day in summer.

(From Sellers, 1965; data by Carson, 1961.)
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Sample Problem

The daily maximum soil-surface temperature is 40°C and the minimum is 10°C. Assume
that the diurnal temperature wave is symmetrical, that the mean temperature is equal
throughout the profile (with surface temperature equal to the mean value at 6 A.M. and
6 P.M.), and that the “damping depth” is 0.10 m. Calculate the temperatures at noon
and midnight for depths 0.05, 0.10, and 0.20 m.

Since the temperature range is 30°C and the mean (Tave) 25°C, and the amplitude at
the surface A0, the maximum value above the mean is 15°.

Use Eq. (12.28) to calculate the temperature T at any depth z and time t:

T(z,t) = Tave + A0[sin(ωt − z/d)]/ez/d

where ω is the radial frequency (2π/24 hr) and d is the “damping depth” at which the
temperature amplitude is 1/e ( = 0.37) of A0. Note: Radial angle is expressed in radians,
not in degrees (i.e., sin π/2 = 1, sin 3π/2 = −1).

At the soil surface (depth zero):

Noontime temperature (6 hr after T = Tave)

T(0.6) = 25 + 15 × [sin(π/2 − 0)]/e0 = 25 + 15 = 40°C

Midnight temperature (18 hr after T = Tave)

T(0,18) = 25 + 15 × [sin(3π/2 − 0)]/e0 = 25 − 15 = 10°C

At depth 0.05 m:

Noontime temperature:

T(0.05,6) = 25 + 15 × [sin(π/2 − 0.05/0.1)]/e0.05/0.1

= 25 + 15 × sin(1.07)/1.65 = 33°C

Midnight temperature:

T(0.05,18) = 25 + 15 × [sin(3π/2 − 0.05/0.1)]/e0.05/0.1

= 25 + 15 × sin(4.21)/1.65 = 17°C

At depth 0.1 m (the damping depth):

Noontime temperature:

T(0.1,6) = 25 + 15 × [sin(π/2 − 0.1/0.1)]/e0.1/0.1

= 25 + 15 × sin(0.57)/2.72 = 28°C

Midnight temperature:

T(0.1,18) = 25 + 15 × [sin(3π/2 − 0.1/0.1)]/e0.1/0.1

= 25 + 15 × sin(3.71)/2.72 = 22°C

At depth 20 cm:

Noontime temperature:

T(0.2,6) = 25 + 15 × [sin(π/2 − 0.2/0.1)]/e0.2/0.1

= 25 + 15 × sin( − 0.43)/7.4 = 24.15°C
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Midnight temperature:

T(0.2,18) = 25 + 15 × [sin(3π/2 − 0.2/0.1)]/e0.2/0.1

= 25 + 15 × sin(2.71)/7.4 = 25.85°C

Note: At a depth of 0.2 m the phase shift is so pronounced that at midnight the tem-
perature is higher than at noon. A useful exercise for students is to plot the sinusoidal
course of temperature at each depth, to observe how the phase shift (time lag of max-
imum and minimum values) increases and the amplitude decreases with depth.


