Funkce více proměnných Tomáš Racek Potenciální energie vazby OP Energie pružiny . Energie vazby >—- X„>o Molekula vody I Potenciální energie závisí na: • délka O-H vazby • velikost úhlu H-O-H 4» => °^ A- Funkce jedné, dvou a více proměnných 1 proměnná 2 proměnné N proměnných Předpis Příklad Graf 2 Funkce jedné a dvou proměnných - příklady vlastností 1 proměnná Definiční obor Limity G>=lí2. tiš Do 33 2 proměnné ij —. Tabulky funkčních hodnot 1 proměnná X -2 -i 0 i 2 f(x) r 2 1 f 2 proměnné Vy -2 -1 0 1 2 -2 í -i A 0 2 Molekula vody II ^ ó£ =o How flexible is the water molecule structure? Analysis of crystal structures and the potential energy surface (https://doi.org/10.1039/C9CP07042G) Parabola, paraboloid 1 proměnná 4- (*-><>y Molekula vody III Změna potenciální energie AE molekuly vody 1.00 Optimalizace ve více proměnných • často výrazně větší počet proměnných (= parametrů modelu) • příklad pro molekuly: lokální minimum - stabilní konformace Způsoby řešení • 2 proměnné, jednoduchá funkce ^> AcNkUhTnCln • více proměnných nebo složitější funkce ^) MJ^lQZI OC^\ Extrémy funkcí jedné a dvou proměnných 1 proměnná 2 proměnné Parciální derivace 4- "í^oj 5 c. ctov. 2- Radlic v r.^ £e \ _ c> \M „ ^ ^ "bx- íf7 Výpočet parciálních derivací • Při derivaci dle konkrétní proměnné považuji ostatní proměnné za konstanty. • Platí všechna ostatní pravidla z derivací funkcí jedné proměnné. C^))CD^" TU*W' i L *1 - o Výpočty druhých parciálních derivací bafe> V|c*o) ^JM ~ ž>iM Matematický model = formální popis nějakého systému. Přesnost vs. jednoduchost Cena lístku v divadle h—f— Metoda nejmenších čtverců I UM^wa* Ts>CtBL I t . Nil Metoda nejmensfch ctvercü II https://www.geogebra.0rg/m/JsFmFEg6 n—i— .)—1—|. - 1 *S 1 --t---I----1----1--- +---* I I Guess: y = 0.84x + 1.15 Sum of Squares = 9.2 El Show squares Show LSRL ■ -t---r 1 10 11 12 13 14 15 IS 17 13 19 Metoda nejmenších čtverců - příklad Metoda nejmenších čtverců IV - příklad 28k+12q = 22 12k + 6q = 10 U Míf 1 V1 Metoda nejmenších čtverců V - zobecnění Obecně různé modely: Výběr modelu