Lecture 11: INEPT, HSQC Simultaneous spin echo INEPT 1 H 1 3C or15N 1 1 H 3C or15N 1 4J 1 y I ii i INEPT 1 H 1 3C or15N 1 1 H 3C or15N 1 4J 1 y I ii i z INEPT 1 H 1 3C or15N 1 1 H 3C or15N 1 4J i\y /5(e) = + cos^j^y - i«x sin (2j^z) - |«2^ INEPT 1 H 1 3C or15N 1 1 H 3C or15N 1 4J i\y I ii i p(e) = -j^t - -«i (2j^^) - -«2-^ INEPT 11 1 WL - X lx -2/1/2 lx lz y-2,ylzI2z INEPT P(g) = -*t - -«1 (2^y) + -«2^y INEPT P(g) = -*t - -«1 (2^y) + -K2^J/ INEPT st -2szyy y y ■> st —v st -C2 ISzSTy -> +s2 2sxyz —> +c2y y -s2yx —> | -c2cj 2szyy \ +c2sj yx I +s2cj 2j^x { +s2sj ^ | +c2cj 1 -c2sj 2^x^e -s2cj ^ -s2sj 2,yyyz Relaxation with J-coupling =>- = j?ix + \j?iy —>■ —\2j?i+j?2z different R2 • relaxation of depends on 2^1+^ relaxation of 2s±+S2z depends on cross-correlated cross-relaxation (ingnored here) cf. cross-relaxation of A{Mlz) and A(M22> (NOE) INEPT - ^2 - INEPT vs. direct excitation 1 H 3C or15N if//* 1H 13C or15N , 1 Ay r * 1431 1H 13C or15N INEPT vs. direct excitation INEPT (phase cycled): fc{Y(uj)} = A/"7i72^ bq 16kBT R2 R2 \ Direct excitation: U{Y(a>)} = A/7272^ B0 16kBT I R2 R\ + (W - Q2 + 7T^)2 ' i?2 + - ^2 - 7T^)2 R2 \ I1/12 ~ 4 for 13C 71/72 ~ 10 for 15N Insensitive Nuclei Enhanced by Polarization Transfer HSQC Spectroscopy (Heteronuclear Single-Quantum Coherence) 1 H 1 3C or15N COMPLEX EXPERIMENT ANALYSIS FACILITATED BY SIMPLIFICATIONS Using results of already analyzed building blocks (echoes) Ignoring components of 5 that cannot produce signal HSQC Spectroscopy Measured quantity: Mi_|_ (M2+ does not pass the frequency filters) Only jxM^-\. and JvM^-\. have non-zero traces: Tr{sy(Slx + \Sly)} = i Directly measurable: JXl Jy (in-phase single-quantum of nucleus 1) Evolve to measurable due to j coupling: IJx&z, l^y&z (anti-phase single-quantum of nucleus 1) Need 90° pulse + j coupling: Jz (90° pulse), IJz^z (populations, longitudinal polarization) .yx, yy, 2j?zy?x, 2-^z^y (single-quantum of nucleus 2) lJ?xyx, ISySTy, ISxSry, 2j?yyx (multiple-quantum) Never measurable: Jt (unit matrix) HSQC Spectroscopy ■ 5f 1 3C or15N 1 1 y x/y I I - i BLOCK 1: INEPT p(e) = \jt ~ 5«1 (ZSzfy) + ^2-Sy HSQC Spectroscopy 1 H 1 3C or15N I 4j I 4j I x/y g i I h 1 4j ill t2 1 UV*VVV ™lr BLOCK 2: DECOUPLING ECHO, INCREMENTED tx p(e) = ^ - (2^^y) + ^k2yy p(f) = §J«Jt + 5«l (C2l2^^y - S212^^x)+5«2 (C21^/ ~ «21^) HSQC Spectroscopy — Real 1 3C or15N ■ JSP 1 ■ ■ 1 y ■ — ■ 1 ■ 1 t2 l ill 4j i {c2\2^zyy - s2i2szyx) +1«2 (c2l^y ~ «21^) p(g) = \st-\*>\ {c2\2^yyz - s2i2syyx)+^K2 (c2iyz - s2iyx) HSQC Spectroscopy — Real 1 3C or15N ■ JSP 1 ■ ■ 1 y ■ — ■ 1 ■ 1 t2 l ill 4j i (C2i2^zyy - s2i2yzyx) + \k2 (c2i^/ - s2iyx) ß(g) = —i«iC2i2^v^z+ unmeasurable (no more 90° pulses) HSQC Spectroscopy — Real ■ _i ± y | 4j | 4j | 1 3C or15N X I l 5f ■ II t1 g BLOCK 4: SIMULTANEOUS ECHO ^(g) = —\k\C2\l^yyz-\- unmeasurable p(h) = ^/«iC2i^x+ unmeasurable HSQC Spectroscopy — Real 13C or15N KiC2lSx —>• 1 2«lC2iCi2 Sx +i«ic2ic12cj +2K1C21C12SJ 2j^^ r +9^1C21S12CJ ^/ HSQC Spectroscopy — Imaginary 13C or15N BLOCK 3: TWO 90° PULSES, PHASE y (13C or 15N) p(f) = \^t + \&\ {c2\2^zyy - s2i2yzyx) + \k2 (c2i^y - s2i^r) HSQC Spectroscopy — Imaginary 13C or15N BLOCK 3: TWO 90° PULSES, PHASE y (13C or 15N) p(f) = l^t + ^i (s2i2^zyy - s2i2j?zyx) + \k2 (c2i^y - s^i^x) ^(g) = — ^KiS2i2jfyyz-\- unmeasurable (no more 90° pulses) HSQC Spectroscopy — Imaginary 13C or15N BLOCK 4: SIMULTANEOUS ECHO ^(g) = —^KiS2i2^yyz-\- unmeasurable —>• ^(h) = ^k\S2isx-\- unmeasurable HSQC Spectroscopy — Imaginary 13C or15N +|K1S21C12CJ ^a; + 2«1S21C12SJ 2^y^ +o^ls21s12Cj -2«lS21s12sJ 2j^xj^ HSQC Spectroscopy — Hypercomplex 1 1 3C or15N 1 ± y H x/y f g i i 1 4j ill t2 1 h t ±«ie,SÍ2*l^ +4«ie,fí2íiCl2Cj Jx +2«ie'^2íiCl2Sj 2^ +§/íielQ2íiSl2Cj ^ -5«ie,n2Í1«i2*j HSQC Spectroscopy — Hypercomplex 1 H 1 3C or15N j_ 4j i y x/y i i ti i i fi \ g h t 1 4j li t2 1 16kBT ( X i?2 2 + O - ^2)2 1^2 i + TT J)2 ' R%1 + (u;-n1- ttJ) R2A -t<2 ß2,l V Decoupling in direct dimension C22 2 ttJ Decoupling in direct dimension 1 H 1 3C or15N | 4j | 4j | x/y i ti 1 4J 1 is A/712 ft2 £0 8kBT r\^ + {u- Q2)2 Ri x + ( -^2.2 Decoupling in direct dimension VfJW" 1H 3C or15N ± ± y i 4j | 4j | •t>i/*t>i i I ti j_ j_ | 4j | 4j 2 i ■i GARP =X,-X,X-X,X-X,X-X (|>2=X,X-X-X,X,X,-X-X