C8953 NMR structural analysis - seminar 1D ¹³C-NMR

Michal Knor 437395@mail.muni.cz

March 17, 2021

¹H vs ¹³C NMR

	¹ H	¹³ C	
Spin number	¹ H: s= <u>1</u> ² H: s=1	¹³ C: s= ¹ / ₂ ¹² C: s=0	
Abundance [%]	99.98 1.1		
Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]	26.8 6.7		
Chemical shift range [ppm]	0 - 15 0 - 200		
Nuclear shielding	$\sigma_{ m dia}$	$\sigma_{\rm dia}$ + $\sigma_{\rm para}$	
Integration of signals	С		
T ₁ relaxation [s]	1-20	1-40	
Homonuclear J-interaction	С		
H↔C <i>J</i> -interaction (~ 100-250 Hz)	carbon satellites	(n + 1) splitting decoupling	

¹H vs ¹³C NMR

	¹ H	¹³ C		
Spin number	¹ H: s= <u>1</u> ² H: s=1	¹³ C: s=1/2 ¹² C: s=0		
Abundance [%]	99.98	- 1.1		
Gyromagnetic ratio [10 ⁷ rad.T ⁻¹	.s ⁻¹] 26.8	6.7		
Chemical shift range [ppm]	0 - 15	0 - 200		
Nuclear shielding	$\sigma_{ m dia}$	$\sigma_{ m dia}$ + $\sigma_{ m para}$		
Integration of signals	С	С		
T ₁ relaxation [s]	1-20	1-20 1-40		
Homonuclear J-interaction	С	С		
H↔C J-interaction (~ 100-250	Hz) carbon satellites	(n + 1) splitting decoupling		
1D ¹ H NMR	1D ¹ H NMR 1D ¹³ C NMR			
ω _c +0.5 ¹ J _{Hc}	ω _c -0.5 ¹ J _{HC} ¹ H- ¹³ Cβ ¹ Hα- ¹³ C	1Hβ-13C		
<mark>¹H</mark> -¹²C	¹ H	¹ H decoupled		

¹H decoupled

Important regions of ¹³C chemical shifts

 $^{1}J_{CH}$ depends on the bond order (hybridization \Leftrightarrow c. haracter)

- -C-H ¹J_{CH} ≈ 125 Hz
 =C-H ¹J_{CH} ≈ 160 Hz
 ≡C-H ¹J_{CH} ≈ 250 Hz
 X-C-H
 -) $X = N, O, S, F, CI, \dots {}^{1}J_{CH}$
 -) $X = Li, Mg, \dots {}^{1}J_{CH} \Downarrow$
- $^{2}J_{CH}$ < 0 or close to zero (<3 Hz)
 - often not observable

in 1D ¹³C H-C interaction suppressed by DECOUPLING \Rightarrow simplification of spectra (splitting removed, sensitivity)

► saturation of ¹H energy levels during decoupling enhances relatively intensity of ¹³C signals because of heteronuclear nOe ⇒ quaternary carbons usually less intensive.

Values of chemical shift of important solvents

Abbr.	Formula	¹ H	¹³ C
ACN	CH₃CN	1.9	118
Benzene	C_6H_6	7.2	128
	CHCI ₃	7.2	77
DCM	CH_2CI_2	5.3	54
DMF	(CH ₃) ₂ NCHO	2.9, 8.0	32, 163
DMSO	(CH ₃) ₂ SO	2.5	40
MeOH	CH₃OH	3.3, 4.8	49
Water	H ₂ O	4.8	-

EXPLAIN effect of solvent on the position of residual ¹H water signal:

CHCl₃ - 1.6, ACN - 2.1, DMSO - 3.3, MeOH - 4.9

How many ¹³C signal would you expect in the NMR spectrum?

How many ¹³C signal would you expect in the NMR spectrum? **7**

1D ¹³C-NMR 1, bottom without CPD

9

1D ¹³C-NMR 1, bottom without CPD

Notes:

- numbers at top of peaks refers to values J_{HC} constants
- C1+C7 connected to electronegative groups (C1 quaternary)
- C2 ipso aromatic, C4+C6 shielded by M+ of OH
- C5+C4 NOE-enhanced in bit larger extend by close H
- C9→C12: decaying effect of N8

1D ¹³C-NMR 2

11

1D ¹³C-NMR 2

1D ¹³C-NMR 3, *b* - zoom of right region, *a* - full decoupled spectrum

1D ¹³C-NMR 3, *b* - zoom of right region, *a* - full decoupled spectrum

1D ¹³C-NMR 4, consider equilibrium minor-major form

Which form dominates and why?

1D ¹³C-NMR 4, consider equilibrium minor-major form

Draw structural formula of compound with summary formula $C_9H_{11}NO_2$ (use 1D ¹³C NMR spectrum to find the right structure)

Draw structural formula of compound with summary formula $C_9H_{11}NO_2$ (use 1D ¹³C NMR spectrum to find the right structure)

Draw structural formula of compound with summary formula C₇H₉NO (use 1D ¹³C NMR spectrum to find the right structure)

Draw structural formula of compound with summary formula C₇H₉NO (use 1D ¹³C NMR spectrum to find the right structure)

20

Next topic

Vector Model + ¹³C APT experiment