Statní závěrečná zkouška N-BIC BMCH: Nezbytné základy a příklady testující jejich znalost NEZBYTNÉ ZÁKLADY • Koncentrace hmotnostní a molární, hustota, objem a hmotnost roztoku, vztahy mezi nimi (výpočty). • Hmotnost, rychlost, zrychlení, hybnost, síla, moment hybnosti, kinetická energie, vztahy mezi nimi, Newtonovy zákony. • Elektrický náboj, eletrický dipólový moment, elektrostatická interakce, Coulombův zákon, elektrická intenzita, síla působící na náboj v elektrickém poli, potenciální energie náboje v elektrickém poli, elektrický potenciál • Elektromagnetické vlnění. Rovnice rovinné vlny, vztahy mezi energií, frekvencí, periodou, vlnovou délkou, vlnočtem, vzájemné přepočty, jednotky. Dualismus částice-vlna (fotony, elektrony, neutrony), elastický rozptyl, index lomu, difrakce, mikroskopie. Rozsah frekvencí/vlnových délek používaný ke studiu biomakromolekul: rentgenové záření, ultrafialové/viditelné záření, infračervené záření, radiové vlny. Interakce elektromagnetické vlny s molekulami, absorpce, absorbance, fluorescence. • Chiralita molekul. Asymetrický uhlík (příklady chirálních molekul bez asymetrického uhlíku a nechirálních molekul s asymetrickým uhlíkem), lineárně a cirkulárně polarizované světlo a jeho interakce s chirálními molekulami, cirkulární dichroismus. • Magnetický dipólový moment, magnetická indukce, síla působící na pohybující se náboj v magnetickém poli, energie magnetického dipólového momentu v homogenním magnetickém poli, precese magnetického dipólového momentu v homogenním magnetickém poli, vztah mezi momentem hybnosti a magnetickým dipólovým momentem. • Termodynamická rovnováha, teplota a nultá věta termodynamiky, stavová rovnice ideálního plynu, vnitřní energie, teplo, práce, první věta termodynamiky, entropie, druhá věta termodynamiky, volná energie (Gibbsova, Helmholtzova), vztah mezi volnou energií a rovnovážnými konstantami (zejména disociační), entropie a počet mikrostavů, Boltzmannův zákon. • Kinetika chemických reakcí, závislost na koncentraci reaktantů, molekularita a řád reakce, diferenciální rovnice popisující kinetiku prvního řádu a její řešení, následné reakce ve stacionárním (ustáleném) stavu, teorie aktivovaného komplexu, aktivační energie, Arrheniův vztah, reakční koordináta, katalýza jako alternativní reakční koordináta s nižší aktivační energií. • Kovalentní vazba, atomové a molekulové orbitaly, polarita a polarizovatelnost vazby, nuk-leofil a elektrofil, kyselina Bronstedova a Lewisova, výpočet pH roztoku slabé/silné kyseliny/baze, v přítomnosti soli, pufry. • Schopnost rozpoznat jednotlivé kroky základních drah metabolismu sacharidů a lipidů (glykolýza, Krebsův cyklus, beta-oxidace, pentosafosfátový cyklus, Calvinův cyklus), trans-aminaci aminokyselin. PŘÍKLADY 1. Kolik gramů glukosy (Mr = 180) je v celé krevní oběhové soustavě diabetika, pokud v jeho těle obíhá pět litrů krve, ve které byla změřena lOmM koncentrace glukosy? [9 g] 2. Kolik gramů glycerolu bude obsahovat jeden gram roztoku, který vznikne smícháním jednoho litru čistého glycerolu (hustota 1,26 gem-3) a 740 mililitrů vody (hustota 1,00 gem-3)? [0,63 g] 3. Smícháním 80 g methanolu (Mr = 34) a 20 g vody (Mr = 18) vznikne roztok o hustotě 0,85 g cm-3. Jaká je jeho molární koncentrace? [20 mol dm-3] 4. Při proteomické analýze získal peptid o molekulové hmotnosti 1 200 Da (což odpovídá 2 • 10-24kg) v hmotnostním spektrometru kinetickou energii 2,5 • 10-15 J. Za jak dlouho proletí trubicí průletového (TOF) detektoru o délce 1,5 m? [3 • 10-5s] 5. Během MD simulace působila na atom o hmotnosti 2 • 10-26kg po dobu jedné femto-sekundy (10-15 s) síla 10-10 N. O kolik se působením této síly zvýšila rychlost atomu v daném směru? [o 5ms-1] 6. Optimální vzdálenost dvou atomů kyslíku z pohledu van der Waalsovy interakce je 0,3 nm. Jakou silou by se odpuzovaly ve vakuu dva bodové náboje o velikosti náboje iontu O2-, kdyby se ocitly v této vzdálenosti? Hodnota konstanty Attsq je 111 • 10-12 Fm"1, velikost elementárního náboje 1,6 • 10-19 C. [10 nN] 7. Elektrostatická potenciální energie draselného kationtu klesne při průchodu iontovým kanálem dlouhým 5 nm o 1,5 • 10-20 J. Jak velká elektrostatická síla by na draselný kationt během průchodu kanálem působila, kdyby byl pokles energie lineární? [3 pN] 8. V přístrojích s nejvyšším magnetickým polem používaných v klinické diagnostice pomocí magnetické rezonance je pacient ozařován radiovými vlami o frekvenci 300 MHz. Jaká je vlnová délka tohoto záření? Rychlost světla je 3 • 108 ms_1. [1 m] 9. Peptidová vazba absorbuje ultrafialové záření o vlnové délce 220 nm. Jaká je energie jednoho fotonu o této vlnové délce? Rychlost světla je 3 • 108 m s-1 a Planckova konstanta je 6,6 • 10-34Js. [9 • 10-19 J] 10. Disociační konstanta komplexu lektinu s fukosou při 27°C je 10-3moldm-3. Jaká by byla (včetně znaménka) změna standardní Gibbsovy energie vazby fukosy na lektin, kdybychom za standardní podmínky považovali teplotu 27 °C a 1 M koncentrace fukosy, lektinu a jejich komplexu? Hodnota univerzální plynové konstanty vynásobené přirozeným logaritmem deseti je 19 J K-1 mol-1. [—17,1 kJ mol-1] 11. Na základě dat získaných isotermální titrační kalorimetrií byla pro vazbu ligandu na protein při 25 °C a pH 7 vypočítána změna standardní entalpie —25kJmol-1 a změna standardní entropie +84 J mol-1 K-1. Jaká je změna standardní Gibbsovy energie tohoto děje? [-50kJmol-1] 12. V buňce je přítomno tolik enzymu, že by při saturaci substrátem přeměnil za sekundu tisíc molekul substrátu. Kolik molekul substrátu přemění za sekundu enzym ve skutečnosti, jeli buněčná koncentrace substrátu 10 /iM? Předpokládejte kinetiku Michelise a Mentenové s Michaelisovou konstantou rovnou 0,19 mmol dm-3. [50] 13. Byla změřena rychlost hydrolýzy labilního antibiotika ve vodě při 60 °C. Kvantový výpočet předpovídá, že při teplotě 250 K by byl přirozený logaritmus rychlosti hydrolýzy o deset jednotek nižší. Jakou hodnotu aktivační energie výpočet předpovídá? Univerzální plynová konstanta je 8,3 J K-1 mol-1. [83 kJ mol-1] 14. Nestabilní metabolit se za podmínek měření rozpadá reakcí prvního řádu s rychlostní konstantou 0,033 s-1. Po jedné minutě od zahájení reakce byla naměřena koncentrace metabolitu 10 mmol dm-3. Jaká byla koncentrace metabolitu v okamžiku zahájení reakce? Hodnota Eulerova čísla e je přibližně 2,7. [73 mmol dm-3] 15. V buňce o objemu jeden mikrometr krychlový se při redoxním ději uvolnilo 6 tisíc protonů. Na jakou hodnotu by se změnilo pH z původní hodnoty 7, kdyby nebyla cytoplasma pufrována? [5] 16. Hodnota pK kyseliny mléčné je 3,9. Jaké bude pH (s přesností na desetinu jednotky) pufru připraveného smícháním stejných obejmu roztoků 0,5 M mléčnanu sodného a 50 mM kyseliny mléčné? [4,9] 17. Při oxidatívni dekarboxylaci a-oxoglutarátu vzniká v molekule thiamindifosfátového koenzymu reaktivní funkční skupina odštěpením slabě kyselého vodíku. Na připojeném schématu vyznačte: který vodík se odštěpí, jestli je vzniklá skupina nukleofil či elektrofil, který atom a-oxoglutarátu tato funkční skupina napadá, a jestli je napadená skupina v a-oxoglutarátu nukleofil či elektrofil. [vodík v thiazolovém kruhu, nukleofil, a-uhlík a-oxoglutarátu, elektrofil] 18. Jaký děj jaké metabolické dráhy ukazuje následující schéma? [izomerace dihydroxyace-tonfosfátu na glyceraldehyd-3-fosfát v glykolýze] CH20P0f