FN Clarivate Analytics Web of Science VR 1.0 PT J AU Chekanov, SV Gavalian, G Graf, NA AF Chekanov, S. V. Gavalian, G. Graf, N. A. TI Jas4pp? A data-analysis framework for physics and detector studies ? , ?? , ? SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE End-user data analysis; Software frameworks; Python; Jython; Java; Groovy AB This paper describes the Jas4pp framework for exploring physics cases and for detector-performance studies of future particle collision experiments. Jas4pp is a multi-platform Java program for numeric calculations, scientific visualization in 2D and 3D, storing data in various file formats and displaying collision events and detector geometries. It also includes complex data-analysis algorithms for function minimization, regression analysis, event reconstruction (such as jet reconstruction), limit settings and other libraries widely used in particle physics. The framework can be used with several scripting languages, such as Python/Jython, Groovy and JShell. Several benchmark tests discussed in the paper illustrate significant improvements in the performance of the Groovy and JShell scripting languages compared to the standard Python implementation in C. The improvements for numeric computations in Java are attributed to recent enhancements in the Java Virtual Machine. Program summary Program title: Jas4pp CPC Library link to program files: https://doi.org/10.17632/jzvddk26cy.1 Developer & rsquo;s repository link: https://atlaswww.hep.anl.gov/asc/jas4pp/ Licensing provisions: GNU General Public License 3 Programming language: Java, Jython, Groovy Nature of problem: Develop a platform-independent data-analysis framework for high-energy and nuclear physics (HEP and NP) with a support of fast dynamically-typed scripting languages, comprehensive data-visualisation and I/O libraries. Solution method: The solution adopted here is to use Java and the scripting languages integrated with Java VM. Additional comments: All 3rd party Java libraries included with this program are licensed by GPLv3, GNU Lesser General Public License (LGPL) or by other licenses compatible with the GPLv3 license, and adhere to Mendeley Data approved open-source software licenses. These licenses files are includes with the program. Published by Elsevier B.V. C1 [Chekanov, S. V.] Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Gavalian, G.] Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23602 USA. [Graf, N. A.] SLAC Linear Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RP Chekanov, SV (corresponding author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chekanov@anl.gov; gavalian@jlab.org; Norman.Graf@slac.stanford.edu FU Argonne, a U.S. Department of Energy Office of Science laboratoryUnited States Department of Energy (DOE) [DE-AC0206CH11357]; U.S. Department of Energy, Office of High Energy PhysicsUnited States Department of Energy (DOE) [DE-AC02-06CH11357] FX We thank Marco Lucchini for help with debugging the Jas4pp program. We gratefully acknowledge the computing resources provided on a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (``Argonne''). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC0206CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.Argonne National Laboratory's work was funded by the U.S. Department of Energy, Office of High Energy Physics under contract DE-AC02-06CH11357. All authors approved the version of the manuscript to be published. CR Ablikim M, 2010, NUCL INSTRUM METH A, V614, P345, DOI 10.1016/j.nima.2009.12.050 Abramowicz H., 2013, TECH REP ILC REPORT, V4 Allison J, 2016, NUCL INSTRUM METH A, V835, P186, DOI 10.1016/j.nima.2016.06.125 [Anonymous], 2020, XROOTD HIGH PERFORMA [Anonymous], 2020, HIPO 4 HIGH PERFORMA [Anonymous], 2008, ATLAS COLLABORATION, V3, DOI [10.1088/1748-0221/3/08/s08003, DOI 10.1088/1748-0221/3/08/S08003] Antcheva I, 2009, COMPUT PHYS COMMUN, V180, P2499, DOI 10.1016/j.cpc.2009.08.005 Apache Software Foundation, 2020, APACHE COMMONS MATH Ballaminut A, 2001, COMPUT PHYS COMMUN, V140, P266, DOI 10.1016/S0010-4655(01)00277-6 Baltzell N, 2020, NUCL INSTRUM METH A, V959, DOI 10.1016/j.nima.2020.163421 Baltzell N, 2017, NUCL INSTRUM METH A, V859, P69, DOI 10.1016/j.nima.2017.03.061 Behnke T., 2013, ARXIV13066327 Benedikt M., 2013, P5 WORKSH FUT HIGH E Blyth D, 2019, COMPUT PHYS COMMUN, V241, P98, DOI 10.1016/j.cpc.2019.03.018 BOCK R, 1987, COMPUT PHYS COMMUN, V45, P181, DOI 10.1016/0010-4655(87)90154-8 Cacciari M, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/04/063 Cacciari M, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1896-2 Chekanov S., 2016, NUMERIC COMPUTATION, P620 Chekanov SV, 2019, NUCL INSTRUM METH A, V931, P92, DOI 10.1016/j.nima.2019.04.031 Chekanov SV, 2017, COMPUT PHYS COMMUN, V220, P91, DOI 10.1016/j.cpc.2017.06.017 Chekanov SV, 2017, J INSTRUM, V12, DOI 10.1088/1748-0221/12/06/P06009 Chekanov SV, 2015, ADV HIGH ENERGY PHYS, V2015, DOI 10.1155/2015/136093 Chekanov SV, 2014, COMPUT PHYS COMMUN, V185, P2629, DOI 10.1016/j.cpc.2014.06.016 da Costa J.a.B. Guimaraes, 2018, CEPC CONCEPTUAL DESI, V2 Donszelmann M., 2005, WIRED 4 A GENERIC EV, DOI [10.5170/CERN-2005-002.369, DOI 10.5170/CERN-2005-002.369] Gaede F., 2003, ARXIV0306114 Gavalian G., 2020, GROOT JAVA DATA VISU Gilman J., 2020, IMPROVING JAVA MATH Graf N.A., 2012 IEEE NUCL SCI S Groovy, MULTIFACETED LANGUAG Harris CR, 2020, NATURE, V585, P357, DOI 10.1038/s41586-020-2649-2 Hocquet S, 2008, J PHYS CONF SER, V112, DOI 10.1088/1742-6596/112/3/032016 JAS3, 2020, JAVA ANAL STUDIO JAS4pp, 2020, JAVA ANAL STUDIO PAR Johnson A., 1996, JAVA BASED ANAL ENV Linssen L., 2012, PHYS DETECTORS CLIC, DOI [10.5170/CERN-2012-003, DOI 10.5170/CERN-2012-003] Perl J., 2000, SLAC PUB 8332 Repond J., 2018, 24 INT WORKSH DEEP I, P179, DOI [10.22323/1.316.0179, DOI 10.22323/1.316.0179] Roberts A, 2019, J INSTRUM, V14, DOI 10.1088/1748-0221/14/06/P06001 Romer D, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0227545 Tang J., 2015, ARXIV150703224 Yeh C., 2019, POS ICHEP2018, P905, DOI [10.22323/1.340.0905, DOI 10.22323/1.340.0905] NR 42 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAY PY 2021 VL 262 AR 107857 DI 10.1016/j.cpc.2021.107857 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA RD3EE UT WOS:000633365000008 DA 2021-04-21 ER PT J AU Granelli, A Moffat, K Perez-Gonzalez, YF Schulz, H Turner, J AF Granelli, A. Moffat, K. Perez-Gonzalez, Y. F. Schulz, H. Turner, J. TI ULYSSES: Universal LeptogeneSiS Equation Solver SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Python; Boltzmann equation; Leptogenesis; Neutrino physics AB ULYSSES is a python package that calculates the baryon asymmetry produced from leptogenesis in the context of a type-I seesaw mechanism. The code solves the semi-classical Boltzmann equations for points in the model parameter space as specified by the user. We provide a selection of predefined Boltzmann equations as well as a plugin mechanism for externally provided models of leptogenesis. Furthermore, the ULYSSES code provides tools for multi-dimensional parameter space exploration. The emphasis of the code is on user flexibility and rapid evaluation. It is publicly available at https://gith ub.com/earlyuniverse/ulysses. Program summary Program Title: ULYSSES CPC Library link to program files: https://doi.org/10.17632/rzd24f34h2.1 Developer's repository link: github.com/earlyuniverse/ulysses Licensing provisions: MIT Programming language: python3 Nature of problem: Solving semi-classical momentum averaged Boltzmann equations for leptogenesis in the context of a type-I seesaw mechanism. Solution method: Numerically solving coupled differential equations that can be complex. (c) 2020 Elsevier B.V. All rights reserved. C1 [Granelli, A.] SISSA INFN, Via Bonomea 265, I-34136 Trieste, Italy. [Moffat, K.] Univ Durham, Inst Particle Phys Phenomenol, Durham, England. [Perez-Gonzalez, Y. F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Perez-Gonzalez, Y. F.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Perez-Gonzalez, Y. F.] Colegio Fis Fundamental & Interdisciplinaria Amer, 254 Norzagaray St, San Juan, PR 00901 USA. [Schulz, H.; Turner, J.] Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England. RP Turner, J (corresponding author), Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England. EM jessicaturner.5390@gmail.com OI Perez Gonzalez, Yuber Ferney/0000-0002-2020-7223; Granelli, Alessandro/0000-0002-0941-8126 FU Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility; European Research Council under the European UnionEuropean Research Council (ERC) [617143]; Fermi Research Alliance, LLC (FRA) [DE-AC02-07CH11359]; U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program [1013935]; U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC02-76SF00515] FX We are deeply grateful to Serguey T. Petcov for useful discussions and suggestions. It is a pleasure to thank Marco Drewes for helpful discussions on this code. This research was supported by the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. K.M. acknowledges the (partial) support from the European Research Council under the European Union Seventh Framework Programme (FP/2007-2013)/ERC Grant NuMass agreement n. [617143]. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program, grant HEP Data Analytics on HPC, No. 1013935. It was supported by the U.S. Department of Energy under contracts DE-AC02-76SF00515. CR Ade PAR, 2016, ASTRON ASTROPHYS, V594, DOI 10.1051/0004-6361/201525830 Akhmedov EK, 1998, PHYS REV LETT, V81, P1359, DOI 10.1103/PhysRevLett.81.1359 Bambhaniya G, 2017, PHYS REV D, V95, DOI 10.1103/PhysRevD.95.095016 Biondini S, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2016)126 Biondini S, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2016)191 Biondini S, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2013)028 Blanchet S, 2013, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2013/01/041 Buchmuller W, 2011, NUCL PHYS B, V851, P481, DOI 10.1016/j.nuclphysb.2011.06.004 Buchmuller W, 2005, ANN PHYS-NEW YORK, V315, P305, DOI 10.1016/j.aop.2004.02.003 Buchner J, 2014, ASTRON ASTROPHYS, V564, DOI 10.1051/0004-6361/201322971 Casas JA, 2001, NUCL PHYS B, V618, P171, DOI 10.1016/S0550-3213(01)00475-8 Ciolfi R, 2018, INT J MOD PHYS D, V27, DOI 10.1142/S021827181842004X COHEN AG, 1991, NUCL PHYS B, V349, P727, DOI 10.1016/0550-3213(91)90395-E Dalcin L, 2005, J PARALLEL DISTR COM, V65, P1108, DOI 10.1016/j.jpdc.2005.03.010 Dalcin L, 2008, J PARALLEL DISTR COM, V68, P655, DOI 10.1016/j.jpdc.2007.09.005 Dalcin LD, 2011, ADV WATER RESOUR, V34, P1124, DOI 10.1016/j.advwatres.2011.04.013 Dev Bhupal, 2018, INT J MODERN PHYS A, V33 Dev PSB, 2018, INT J MOD PHYS A, V33, DOI 10.1142/S0217751X18420010 Dev PSB, 2015, NUCL PHYS B, V891, P128, DOI 10.1016/j.nuclphysb.2014.12.003 Dev PSB, 2014, NUCL PHYS B, V886, P569, DOI 10.1016/j.nuclphysb.2014.06.020 Dorsch GC, 2017, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2017/05/052 Dutta B, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/10/025 Esteban I, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2019)106 Feroz F, 2009, MON NOT R ASTRON SOC, V398, P1601, DOI 10.1111/j.1365-2966.2009.14548.x Feroz F., 2013, IMPORTANCE NESTED SA Fowlie A, 2016, EUR PHYS J PLUS, V131, DOI 10.1140/epjp/i2016-16391-0 FUKUGITA M, 1986, PHYS LETT B, V174, P45, DOI 10.1016/0370-2693(86)91126-3 Garbrecht B, 2020, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2020)117 Garbrecht B, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/10/012 Garbrecht B, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2013)099 Gell-Mann M., 1979, Supergravity, P315 Ghisoiu I, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/12/032 Hagedorn C, 2018, INT J MOD PHYS A, V33, DOI 10.1142/S0217751X1842006X Laine M, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2013)138 Lam Siu Kwan, 2015, P 2 WORKSH LLVM COMP Lopez-Pavon J, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2015)030 Lopez-Pavon J, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.093007 Marzola Luca, 2012, LEPTOGENESIS FLAVOUR McDonald J, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/09/027 MINKOWSKI P, 1977, PHYS LETT B, V67, P421, DOI 10.1016/0370-2693(77)90435-X Moffat K, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.015036 Nardi E, 2006, J HIGH ENERGY PHYS Oliphant T.E., 2006, A GUIDE TO NUMPY, VVolume 1 Patrignani C, 2016, CHINESE PHYS C, V40, DOI 10.1088/1674-1137/40/10/100001 Pilaftsis A, 2004, NUCL PHYS B, V692, P303, DOI 10.1016/j.nuclphysb.2004.05.029 Salvio A, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2011)116 SHAPOSHNIKOV ME, 1987, NUCL PHYS B, V287, P757, DOI 10.1016/0550-3213(87)90127-1 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Virtanen P, 2020, SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods, V17, P261 Weckesser Warren, 2014, ODEINTW COMPLEX MATR Yanagida Tsutomu, 1979, P WORKSH UN THEOR BA, VC7902131, P95 NR 51 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAY PY 2021 VL 262 AR 107813 DI 10.1016/j.cpc.2020.107813 PG 12 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA RD3EE UT WOS:000633365000001 DA 2021-04-21 ER PT J AU Dingel, K Huhnstock, R Knie, A Ehresmann, A Sick, B AF Dingel, Kristina Huhnstock, Rico Knie, Andre Ehresmann, Arno Sick, Bernhard TI AdaPT: Adaptable Particle Tracking for spherical microparticles in lab on chip systems SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Particle tracking; Machine learning; Python code; Superparamagnetic beads; Janus particle; Magnetic particle AB Due to its rising importance in science and technology in recent years, particle tracking in videos presents itself as a tool for successfully acquiring new knowledge in the field of life sciences and physics. Accordingly, different particle tracking methods for various scenarios have been developed. In this article, we present a particle tracking application implemented in Python for, in particular, spherical magnetic particles, including superparamagnetic beads and Janus particles. In the following, we distinguish between two sub-steps in particle tracking, namely the localization of particles in single images and the linking of the extracted particle positions of the subsequent frames into trajectories. We provide an intensity-based localization technique to detect particles and two linking algorithms, which apply either frame-by-frame linking or linear assignment problem solving. Beyond that, we offer helpful tools to preprocess images automatically as well as estimate parameters required for the localization algorithm by utilizing machine learning. As an extra, we have implemented a technique to estimate the current spatial orientation of Janus particles within the x-y-plane. Our framework is readily extendable and easy-to-use as we offer a graphical user interface and a command-line tool. Various output options, such as data frames and videos, ensure further analysis that can be automated. Program summary Program Title: AdaPT CPC Library link to program files: https://doi.org/10.17632/xxpnsbv3cs.1 Developer's repository link: https://git.ies.uni-kassel.de/adapt/adapt Licensing provisions: MPL-2.0 Programming language: Python 3.6 Supplementary material: We provide supplementary material to increase the traceability of the provided example. It consists of an exemplary input video, the corresponding annotated video with tracked particles, a data frame including the tracking information, and a plot displaying the trajectories. Nature of problem: Particle tracking in videos is an important tool for acquiring new knowledge in diverse fields. Several particle tracking methods have been developed for these diverse applications. The presented particle tracking software has been developed for the motion analysis of spherical or close to spherical magnetic particles. Up until now, no easily extensible automated particle tracking software for close to spherical microparticles and their current positioning status is available. Solution method: AdaPT is an extensible, easy-to-use microparticle tracking application developed explicitly for lab on chip applications but easily extensible to other applications and further functionalities. Currently implemented linking algorithms are a frame-by-frame linking approach as well as an approach solving linear assignment problems. In addition to many assistance possibilities for the user in the form of estimates of parameter values through machine learning, we offer the particular option to determine the orientation and rotation of spherical polymer particles with hemispherical metallic caps (Janus particles). The application can be used via console and graphical user interface. Additional comments including restrictions and unusual features: This software requires video data with spherical or close to spherical magnetic particles. It was tested on videos containing spherical superparamagnetic and magnetic Janus particles. Only mobile particles are detected; immobile particles are ignored by the software, reducing the amount of output data considerably. As a unique feature, the spatial orientation within the x-y-plane of Janus particles can be determined. The application has been tested on a variety of two-dimensional particle motion patterns. The latest version of AdaPT can be found here: https://git.ies.uni- kassel.de/adapt/adapt. (c) 2021 Elsevier B.V. All rights reserved. C1 [Dingel, Kristina; Sick, Bernhard] Univ Kassel, Dept Elect Engn & Comp Sci, Intelligent Embedded Syst, Wilhelmshoher Allee 73, D-34121 Kassel, Germany. [Huhnstock, Rico; Knie, Andre; Ehresmann, Arno] Univ Kassel, Inst Phys, Heinrich Plett Str 40, D-34132 Kassel, Germany. [Huhnstock, Rico; Knie, Andre; Ehresmann, Arno] Univ Kassel, Ctr Interdisciplinary Nanostruct Sci & Technol, Heinrich Plett Str 40, D-34132 Kassel, Germany. [Dingel, Kristina; Huhnstock, Rico; Knie, Andre; Ehresmann, Arno; Sick, Bernhard] Berlin HZB, Joint Lab Helmholtzzentrum Mat & Energie, Artificial Intelligence Methods Expt Design AIM E, Hahn Meitner Pl 1, D-14109 Berlin, Germany. [Dingel, Kristina; Huhnstock, Rico; Knie, Andre; Ehresmann, Arno; Sick, Bernhard] Univ Kassel, Hahn Meitner Pl 1, D-14109 Berlin, Germany. RP Dingel, K (corresponding author), Univ Kassel, Dept Elect Engn & Comp Sci, Intelligent Embedded Syst, Wilhelmshoher Allee 73, D-34121 Kassel, Germany.; Dingel, K (corresponding author), Berlin HZB, Joint Lab Helmholtzzentrum Mat & Energie, Artificial Intelligence Methods Expt Design AIM E, Hahn Meitner Pl 1, D-14109 Berlin, Germany.; Dingel, K (corresponding author), Univ Kassel, Hahn Meitner Pl 1, D-14109 Berlin, Germany. EM kristina.dingel@uni-kassel.de OI Huhnstock, Rico/0000-0002-3326-8084 FU Hesse State initiative LOEWE 3, Germany (HAProject) [576/1758]; Helmoltzzentrum fur Materialien und Energie, Berlin; University of Kassel FX Parts of this research were supported by the Hesse State initiative LOEWE 3, Germany (HAProject No. 576/1758) . We gratefully acknowledge the assistance and support of the Joint Laboratory Artificial Intelligence Methods for Experiment Design (AIM-ED) between Helmoltzzentrum fur Materialien und Energie, Berlin and the University of Kassel. CR Abdulkarim M, 2015, EUR J PHARM BIOPHARM, V97, P230, DOI 10.1016/j.ejpb.2015.01.023 Allan D.B, 2018, TRACKPY TRACKPY V041 Bradski G., 2008, LEARNING OPENCV Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Crocker JC, 1996, J COLLOID INTERF SCI, V179, P298, DOI 10.1006/jcis.1996.0217 Ehresmann A, 2004, J MAGN MAGN MATER, V280, P369, DOI 10.1016/j.jmmm.2004.03.048 Ehresmann A, 2015, SENSORS-BASEL, V15, P28854, DOI 10.3390/s151128854 Gaul A, 2016, J APPL PHYS, V120, DOI 10.1063/1.4958847 Gay G, 2013, LAP TRACKER GITHUB R Holzinger D, 2015, ACS NANO, V9, P7323, DOI 10.1021/acsnano.5b02283 HORN BKP, 1977, ARTIF INTELL, V8, P201, DOI 10.1016/0004-3702(77)90020-0 Jaqaman K, 2008, NAT METHODS, V5, P695, DOI 10.1038/nmeth.1237 Kelley DH, 2011, AM J PHYS, V79, P267, DOI 10.1119/1.3536647 Kompenhans J., 1999, PARTICLE IMAGE VELOC Mougin A, 2001, J APPL PHYS, V89, P6606, DOI 10.1063/1.1354578 Newby JM, 2018, P NATL ACAD SCI USA, V115, P9026, DOI 10.1073/pnas.1804420115 Ouellette NT, 2006, EXP FLUIDS, V40, P301, DOI 10.1007/s00348-005-0068-7 REID DB, 1979, IEEE T AUTOMAT CONTR, V24, P843, DOI 10.1109/TAC.1979.1102177 Savin T, 2005, BIOPHYS J, V88, P623, DOI [10.1529/biophysj.104.042457, 10.1529/biophysj.104.04245] Shen H, 2017, CHEM REV, V117, P7331, DOI 10.1021/acs.chemrev.6b00815 Xiao X, 2016, MED IMAGE ANAL, V32, P157, DOI 10.1016/j.media.2016.03.007 NR 21 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAY PY 2021 VL 262 AR 107859 DI 10.1016/j.cpc.2021.107859 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA QT4QZ UT WOS:000626574900002 DA 2021-04-21 ER PT J AU Santra, R Obermeyer, M AF Santra, Robin Obermeyer, Michael TI A first encounter with the Hartree-Fock self-consistent-field method SO AMERICAN JOURNAL OF PHYSICS LA English DT Article AB This paper is intended to serve as a bridge between introductory textbooks on quantum mechanics, which typically do not cover the Hartree-Fock self-consistent-field method, and more advanced ones which treat this important computational method for fermionic many-body systems in an abstract and formal way. We derive the Hartree-Fock equation for the 1s orbital of a realistic two-electron atom. By employing a two-dimensional basis-set representation, we avoid the use of variational calculus and are able to visualize key aspects of the method. We explain the basic self-consistent-field algorithm and provide a python script to illustrate how the algorithm works in practice. Utilizing perturbation theory, we perform an analysis of the convergence behavior of the self-consistent-field algorithm, thereby facilitating a deeper understanding of the numerical examples presented. We expect that this work will be useful for teaching computational techniques to physics students. C1 [Santra, Robin] Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany. Univ Hamburg, Dept Phys, Jungiusstr 9, D-20355 Hamburg, Germany. RP Santra, R (corresponding author), Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany. CR ALMLOF J, 1983, J CHEM PHYS, V79, P2284, DOI 10.1063/1.446079 Baldo M, 2012, REP PROG PHYS, V75, DOI 10.1088/0034-4885/75/2/026301 Behringer E, 2017, AM J PHYS, V85, P325, DOI 10.1119/1.4981900 Bender M, 2003, REV MOD PHYS, V75, P121, DOI 10.1103/RevModPhys.75.121 Bethe H.A., 2008, QUANTUM MECH ONEAND BLINDER SM, 1965, AM J PHYS, V33, P431, DOI 10.1119/1.1971665 Boas M.L., 1983, MATH METHODS PHYS SC Booth GH, 2013, NATURE, V493, P365, DOI 10.1038/nature11770 BUNGE CF, 1992, PHYS REV A, V46, P3691, DOI 10.1103/PhysRevA.46.3691 Chonacky N, 2008, AM J PHYS, V76, P327, DOI 10.1119/1.2837811 Condon E.U., 1999, THEORY ATOMIC SPECTR Devaney, 1992, 1 COURSE CHAOTIC DYN FACELLI JC, 1982, J CHEM PHYS, V77, P1076, DOI 10.1063/1.443922 Friedrich H., 1998, THEORETICAL ATOMIC P GAZQUEZ JL, 1977, J CHEM PHYS, V67, P1887, DOI 10.1063/1.435119 Golub G.H., 1992, SCI COMPUTING DIFFER Golub GH., 1996, MATRIX COMPUTATIONS Gottfried K., 2003, QUANTUM MECH FUNDAME Haken H., 2004, MOL PHYS ELEMENTS QU HARRISS DK, 1980, J CHEM EDUC, V57, P491, DOI 10.1021/ed057p491 Hogaasen H, 2010, AM J PHYS, V78, P86, DOI 10.1119/1.3236392 Johnson W.R., 2007, ATOMIC STRUCTURE THE Kandula DZ, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.063001 Khalili K, 2019, STRUCT DYN-US, V6, DOI 10.1063/1.5097653 Koopmans T., 1933, Physica, V1, P104 Krumnow C, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.210402 Kuleff AI, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.093002 LATHAM WP, 1973, AM J PHYS, V41, P1258, DOI 10.1119/1.1987540 Loh ZH, 2020, SCIENCE, V367, P179, DOI 10.1126/science.aaz4740 Mazziotti DA, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.153001 Messina M, 1999, J CHEM EDUC, V76, P1439, DOI 10.1021/ed076p1439 Michel N, 2008, J MATH PHYS, V49, DOI 10.1063/1.2830976 Morris TD, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.152503 MOSHINSKY M, 1968, AM J PHYS, V36, P52, DOI 10.1119/1.1974410 NOGAMI Y, 1976, AM J PHYS, V44, P886, DOI 10.1119/1.10291 RAMAKER DE, 1975, PHYS REV LETT, V34, P812, DOI 10.1103/PhysRevLett.34.812 ROOTHAAN CCJ, 1960, REV MOD PHYS, V32, P186, DOI 10.1103/RevModPhys.32.186 Sakurai J., 1994, MODERN QUANTUM MECH Schwabl F., 2007, QUANTUM MECH Shankar R., 2008, PRINCIPLES QUANTUM M STANTON RE, 1981, J CHEM PHYS, V75, P3426, DOI 10.1063/1.442451 STANTON RE, 1968, J CHEM PHYS, V48, P257, DOI 10.1063/1.1667913 STANTON RE, 1981, J CHEM PHYS, V75, P5416, DOI 10.1063/1.441942 Strogatz S. H., 2018, NONLINEAR DYNAMICS C Theel F, 2017, CHAOS, V27, DOI 10.1063/1.5001681 VAUTHERIN D, 1972, PHYS REV C, V5, P626, DOI 10.1103/PhysRevC.5.626 Veeraraghavan S, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.022512 Veeraraghavan S, 2014, PHYS REV A, V89, DOI 10.1103/PhysRevA.89.010502 Virtanen P, 2020, NAT METHODS, V17, P261, DOI 10.1038/s41592-019-0686-2 NR 49 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0002-9505 EI 1943-2909 J9 AM J PHYS JI Am. J. Phys. PD APR PY 2021 VL 89 IS 4 BP 426 EP 436 DI 10.1119/10.0002644 PG 11 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA RA2KI UT WOS:000631244300013 DA 2021-04-21 ER PT J AU May, S AF May, Simon TI minimal-lagrangians: Generating and studying dark matter model Lagrangians with just the particle content SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Quantum field theory; Lagrangians; Model building; Beyond the Standard Model; Dark matter; Neutrino masses; SARAH AB minimal-lagrangians is a Python program which allows one to specify the field content of an extension of the Standard Model of particle physics and, using this information, to generate the most general renormalizable Lagrangian that describes such a model. As the program was originally created for the study of minimal dark matter models with radiative neutrino masses, it can handle additional scalar or Weyl fermion fields which are SU(3)(C) singlets, SU(2)(L) singlets, doublets or triplets, and can have arbitrary U(1)(Y) hypercharge. It is also possible to enforce an arbitrary number of global U(1) symmetries (with Z(2) as a special case) so that the new fields can additionally carry such global charges. In addition to human-readable and (LTEX)-T-A output, the program can generate SARAH model files containing the computed Lagrangian, as well as information about the fields after electroweak symmetry breaking (EWSB), such as vacuum expectation values (VEVs) and mixing matrices. This capability allows further detailed investigation of the model in question, with minimal-lagrangians as the first component in a tool chain for rapid phenomenological studies of "minimal" dark matter models requiring little effort and no unnecessary input from the user. Program summary Program title: minimal-lagrangians CPC Library link to program files: https://doi.org/10.17632/4mm2zk5r84.1 Licensing provisions: GPLv3 Programming language: Python Nature of problem: Given a quantum field theory's gauge group, it is sufficient to specify the particle (field) content in order to identify the full renormalizable theory, up to the parameters in its Lagrangian. However, the process of determining the Lagrangian manually is not only tedious and error-prone, but also involves additional complications such as redundant terms or the question of whether the theory is anomaly-free. Solution method: minimal-lagrangians generates the complete renormalizable Lagrangian for a given model with the Standard Model gauge group SU(3)(C) x SU(2)(L) x U(1)(Y), including interaction terms. Redundant terms in the Lagrangian are eliminated in order to avoid duplicated parameters. The particle content is also checked for gauge anomalies, including the Witten SU(2) anomaly [1]. The model will automatically be modified to make fermions vector-like if necessary. The generated Lagrangian can be output in SARAH [2,3] model file format so that the model is immediately available for detailed phenomenological study using the capabilities of SARAH. Additional comments including restrictions and unusual features: Instead of manually determining the details of a model, the only input to the program minimal-lagrangians is the particle content. Using the output to SARAH, minimal-lagrangians thus forms the first step in a tool chain which enables the complete implementation and study of a new model with minimal effort and no "boilerplate'' user input. The focus is on "minimal" dark matter models, i.e. those with the Standard Model gauge group (no additional gauge fields), where the new fields are color singlets and at most triplets under SU(2)(L). (C) 2020 Elsevier B.V. All rights reserved. C1 [May, Simon] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. RP May, S (corresponding author), Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. EM simon.may@mpa-garching.mpg.de OI May, Simon/0000-0002-2781-6304 CR Allanach BC, 2009, COMPUT PHYS COMMUN, V180, P8, DOI 10.1016/j.cpc.2008.08.004 Belanger G, 2018, COMPUT PHYS COMMUN, V231, P173, DOI 10.1016/j.cpc.2018.04.027 Belanger G, 2002, COMPUT PHYS COMMUN, V149, P103, DOI 10.1016/S0010-4655(02)00596-9 Cheung C, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/02/011 Dreiner HK, 2010, PHYS REP, V494, P1, DOI 10.1016/j.physrep.2010.05.002 Esch S, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2018)055 Farzan Y, 2009, PHYS REV D, V80, DOI 10.1103/PhysRevD.80.073009 Fiaschi J, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2019)015 Kanemura S, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.115009 Ma E, 2006, PHYS REV D, V73, DOI 10.1103/PhysRevD.73.077301 May S., 2018, ARXIV200304157 Porod W, 2003, COMPUT PHYS COMMUN, V153, P275, DOI 10.1016/S0010-4655(03)00222-4 Porod W, 2012, COMPUT PHYS COMMUN, V183, P2458, DOI 10.1016/j.cpc.2012.05.021 Restrepo D, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2013)011 Skands P, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/07/036 Staub F., 2015, ADV HIGH ENERGY PHYS, V2015, DOI [10.1155/2015/840780, DOI 10.1155/2015/840780] Staub F, 2015, ADV HIGH ENERGY PHYS, V2015, DOI 10.1155/2015/840780 Staub F, 2014, COMPUT PHYS COMMUN, V185, P1773, DOI 10.1016/j.cpc.2014.02.018 The Unicode Standard, 2019, 10646 ISOIEC WITTEN E, 1982, PHYS LETT B, V117, P324, DOI 10.1016/0370-2693(82)90728-6 NR 20 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD APR PY 2021 VL 261 AR 107773 DI 10.1016/j.cpc.2020.107773 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA QH4ZO UT WOS:000618285100004 OA Green Accepted DA 2021-04-21 ER PT J AU Robertson, EJ Sibalic, N Potvliege, RM Jones, MPA AF Robertson, E. J. Sibalic, N. Potvliege, R. M. Jones, M. P. A. TI ARC 3.0: An expanded Python toolbox for atomic physics calculations SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Alkaline earth atoms; Divalent atoms; Alkali atoms; Rydberg states; Atom-surface van der Waals interaction; Quantum technologies; Neutral-atom quantum computing; Atom-based sensors AB ARC 3.0 is a modular, object-oriented Python library combining data and algorithms to enable the calculation of a range of properties of alkali and divalent atoms. Building on the initial version of the ARC library (Sibalic et al., 2017), which focused on Rydberg states of alkali atoms, this major upgrade introduces support for divalent atoms. It also adds new methods for working with atom-surface interactions, for modelling ultracold atoms in optical lattices and for calculating valence electron wave functions and dynamic polarisabilities. Such calculations have applications in a variety of fields, e.g., in the quantum simulation of many-body physics, in atom-based sensing of DC and AC fields (including in microwave and THz metrology) and in the development of quantum gate protocols. ARC 3.0 comes with an extensive documentation including numerous examples. Its modular structure facilitates its application to a wide range of problems in atom-based quantum technologies. (c) 2021 The Authors. Published by Elsevier B.V. C1 [Robertson, E. J.; Potvliege, R. M.; Jones, M. P. A.] Univ Durham, Joint Quantum Ctr JQC Durham Newcastle, Dept Phys, South Rd, Durham DH1 3LE, England. [Sibalic, N.] Univ Paris Saclay, Inst Opt, Lab Charles Fabry, CNRS,Grad Sch, F-91127 Palaiseau, France. RP Sibalic, N (corresponding author), Univ Paris Saclay, Inst Opt, Lab Charles Fabry, CNRS,Grad Sch, F-91127 Palaiseau, France. EM nikolasibalic@physics.org RI Sibalic, Nikola/B-7622-2016 OI Sibalic, Nikola/0000-0001-9198-1630 FU H2020 Marie Sklodowska-Curie Actions (COQUDDE, H2020-MSCA-IF-2017) [786702]; EPSRCUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/R002061/1, EP/R035482/1]; project EMPIR-USOQS (EMPIR project - European Union's Horizon 2020 research and innovation programme); project EMPIR-USOQS (EMPIR project - EMPIR) FX We thank Tsz-Chun Tsui and Trey Porto for tabulating the ytterbium data. We also thank Hei Yin Andrea Kam for the use of her code to check the calculations of strontium dipole matrix elements, Paul Huillery for help with Stark map calculations, and Ifan Hughes for suggesting the bootstrap method. N. S. is supported by the H2020 Marie Sklodowska-Curie Actions (COQUDDE, H2020-MSCA-IF-2017 Grant Agreement No. 786702). The project was supported by the EPSRC Platform grant EP/R002061/1 and Standard grant EP/R035482/1. We also acknowledge funding from the project EMPIR-USOQS (EMPIR projects are co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States). CR Adams CS, 2020, J PHYS B-AT MOL OPT, V53, DOI 10.1088/1361-6455/ab52ef [Anonymous], 2020, J PHYS B AT MOL OPT, V53 Archimi M, 2019, PHYS REV A, V100, DOI 10.1103/PhysRevA.100.030501 ARMSTRONG JA, 1979, J OPT SOC AM, V69, P211, DOI 10.1364/JOSA.69.000211 AYMAR M, 1980, J PHYS B-AT MOL OPT, V13, P1089, DOI 10.1088/0022-3700/13/6/016 Baig MA, 1998, OPT COMMUN, V156, P279, DOI 10.1016/S0030-4018(98)00467-2 Barredo D, 2020, PHYS REV LETT, V124, DOI 10.1103/PhysRevLett.124.023201 BEIGANG R, 1982, PHYS SCRIPTA, V26, P183, DOI 10.1088/0031-8949/26/3/007 BEIGANG R, 1982, OPT COMMUN, V42, P19, DOI 10.1016/0030-4018(82)90082-7 BEIGANG R, 1983, PHYS SCRIPTA, V27, P172, DOI 10.1088/0031-8949/27/3/005 Bernien H, 2017, NATURE, V551, P579, DOI 10.1038/nature24622 Bowden W, 2017, JOINT CONF IEEE INT, P154, DOI 10.1109/FCS.2017.8088831 Budker D, 2007, NAT PHYS, V3, P227, DOI 10.1038/nphys566 Busche H, 2017, NAT PHYS, V13, P655, DOI [10.1038/NPHYS4058, 10.1038/nphys4058] Couturier L, 2019, PHYS REV A, V99, DOI 10.1103/PhysRevA.99.022503 Cox KC, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.110502 DeSalvo BJ, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.031403 Downes LA, 2020, PHYS REV X, V10, DOI 10.1103/PhysRevX.10.011027 Dudin YO, 2012, SCIENCE, V336, P887, DOI 10.1126/science.1217901 Dunning FB, 2016, J PHYS B-AT MOL OPT, V49, DOI 10.1088/0953-4075/49/11/112003 Dutta SK, 2000, PHYS REV LETT, V85, P5551, DOI 10.1103/PhysRevLett.85.5551 ESHERICK P, 1977, PHYS REV A, V15, P1920, DOI 10.1103/PhysRevA.15.1920 Esherick P, 1977, OPT LETT, V1, P19, DOI 10.1364/OL.1.000019 Kien FL, 2013, EUR PHYS J D, V67, DOI 10.1140/epjd/e2013-30729-x FICHET M, 1995, PHYS REV A, V51, P1553, DOI 10.1103/PhysRevA.51.1553 Fritzsche S, 2019, COMPUT PHYS COMMUN, V240, P1, DOI 10.1016/j.cpc.2019.01.012 Gaj A, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5546 Gallagher T.F, 1994, RYDBERG ATOMS, DOI [10.1017/CBO9780511524530, DOI 10.1017/CBO9780511524530] GENTILE TR, 1990, PHYS REV A, V42, P440, DOI 10.1103/PhysRevA.42.440 Gross C, 2017, SCIENCE, V357, P995, DOI 10.1126/science.aal3837 Hostetter J, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.012507 Hughes I. G., 2010, MEASUREMENTS THEIR U Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones MPA, 2017, J PHYS B-AT MOL OPT, V50, DOI 10.1088/1361-6455/aa5d06 Kozlov MG, 2015, COMPUT PHYS COMMUN, V195, P199, DOI 10.1016/j.cpc.2015.05.007 Labuhn H, 2016, NATURE, V534, P667, DOI 10.1038/nature18274 Lehec H, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.062506 Madjarov IS, 2020, NAT PHYS, V16, P857, DOI 10.1038/s41567-020-0903-z MAEDA H, 1992, PHYS REV A, V45, P1732, DOI 10.1103/PhysRevA.45.1732 Meurer A, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.103 Meyer DH, 2020, J PHYS B-AT MOL OPT, V53, DOI 10.1088/1361-6455/ab6051 Millen J, 2011, J PHYS B-AT MOL OPT, V44, DOI 10.1088/0953-4075/44/18/184001 Mitroy J, 2010, J PHYS B-AT MOL OPT, V43, DOI 10.1088/0953-4075/43/20/202001 Miyabe M, 2006, J PHYS SOC JPN, V75, DOI 10.1143/JPSJ.75.034302 Newville M, 2019, LMFIT LMFIT PY 1, DOI [10.5281/zenodo.3588521, DOI 10.5281/ZENODO.3588521] Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 OUMAROU B, 1988, PHYS REV A, V37, P1885, DOI 10.1103/PhysRevA.37.1885 Peyronel T, 2012, NATURE, V488, P57, DOI 10.1038/nature11361 Peyrot T, 2019, PHYS REV A, V100, DOI 10.1103/PhysRevA.100.022503 Pritchard JD, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.193603 Robicheaux F, 2019, J PHYS B-AT MOL OPT, V52, DOI 10.1088/1361-6455/ab4c22 RUBBMARK JR, 1978, PHYS SCRIPTA, V18, P196, DOI 10.1088/0031-8949/18/4/002 Saffman M, 2016, J PHYS B-AT MOL OPT, V49, DOI 10.1088/0953-4075/49/20/202001 Sansonetti JE, 2010, J PHYS CHEM REF DATA, V39, DOI 10.1063/1.3449176 Sedlacek JA, 2012, NAT PHYS, V8, P819, DOI [10.1038/NPHYS2423, 10.1038/nphys2423] Shah V, 2007, NAT PHOTONICS, V1, P649, DOI 10.1038/nphoton.2007.201 Sibalic N, 2017, COMPUT PHYS COMMUN, V220, P319, DOI 10.1016/j.cpc.2017.06.015 Sibalic N., 2018, RYDBERG PHYS, P2399, DOI [10.1088/978-0-7503-1635-4, DOI 10.1088/978-0-7503-1635-4] Sibalic N., ARC DOCUMENTATION Sibalic N., ARC GITHUB PAGE Vaillant CL, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.042705 Vaillant CL, 2014, J PHYS B-AT MOL OPT, V47, DOI 10.1088/0953-4075/47/15/155001 Vaillant CL, 2012, J PHYS B-AT MOL OPT, V45, DOI 10.1088/0953-4075/45/13/135004 Vaillant C.L., 2014, THESIS U DURHAM Wade CG, 2017, NAT PHOTONICS, V11, P40, DOI [10.1038/NPHOTON.2016.214, 10.1038/nphoton.2016.214] Weber S, 2017, J PHYS B-AT MOL OPT, V50, DOI 10.1088/1361-6455/aa743a Ye S, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.043430 Younge KC, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.173001 Zelener BB, 2019, JETP LETT+, V110, P761, DOI 10.1134/S0021364019240093 Zhi MC, 2001, CHINESE PHYS, V10, P929, DOI 10.1088/1009-1963/10/10/309 NR 70 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD APR PY 2021 VL 261 AR 107814 DI 10.1016/j.cpc.2020.107814 PG 15 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA QH4ZO UT WOS:000618285100014 OA Green Accepted, Other Gold DA 2021-04-21 ER PT J AU Sartore, L Schienbein, I AF Sartore, Lohan Schienbein, Ingo TI PyR@TE 3 SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Renormalization group equations; Quantum field theory; Running coupling constants; Model building; Physics beyond the Standard Model AB We present a new version of PyR@TE, a Python tool for the computation of renormalization group equations for general, non-supersymmetric gauge theories. Its new core relies on a recent paper by Poole & Thomsen (2019) to compute the beta-functions. In this framework, gauge kinetic mixing is naturally implemented, and the Weyl consistency relations between gauge, quartic and Yukawa couplings are automatically satisfied. One of the main new features is the possibility for the user to compute the gauge coupling beta-functions up to the three-loop order. Large parts of the PyR@TE code have been rewritten and improved, including the group theory module PyLie. As a result, the overall performance in terms of computation speed was drastically improved and the model file is more flexible and user-friendly. Program summary Program Title: PyR@TE 3 CPC Library link to program files: https://doi.org/10.17632/8h454kdd5n.2 Licensing provisions: Apache 2.0 Programming language: Python 3 Journal reference of previous version: PyR@TE [1], PyR@TE 2 [2] Does the new version supersede the previous version?: Yes. Reasons for new version: The software was essentially rewritten and new functionalities were added. The performance in terms of computation speed was improved by a factor of 100 to 10000 compared to the previous version. The code now relies on Python 3 instead of the deprecated Python 2. Summary of revisions: The core of the software was rewritten, based on a new formalism. One of the major new features is the possibility of computing the 3-loop RGEs for gauge couplings. The structure and the syntax of the model file were enhanced. The output of the software was improved. Nature of problem : Computing the renormalization group equations for any renormalizable, 4dimensional, non-supersymmetric quantum field theory. Solution method: Group theory, tensor algebra. (C) 2020 Elsevier B.V. All rights reserved. C1 [Sartore, Lohan; Schienbein, Ingo] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, 53 Ave Martyrs, F-38026 Grenoble, France. RP Sartore, L (corresponding author), Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, 53 Ave Martyrs, F-38026 Grenoble, France. EM sartore@lpsc.in2p3.fr; schien@lpsc.in2p3.fr OI Sartore, Lohan/0000-0003-3278-5423 FU IN2P3 project "Theorie - BSMGA'', France FX We are indebted to Florian Lyonnet from whom we have taken over the development of PyR@TE.This work would not have been possible without the foundations laid by him in the previous versions of the code. We are also grateful to Colin Poole and Anders Eller Thomsen for many useful discussions. Finally, we would like to thank Jan Kwapisz, Aaron Held and Fabien Besnard for their helpful contributions in testing and validating PyR@TE3. We also wish to thank Tom Steudtner for his help with the validation of the SUSY toy model from [13]. This work was supported in part by the IN2P3 project "Theorie - BSMGA'', France. CR Alloul A, 2014, COMPUT PHYS COMMUN, V185, P2250, DOI 10.1016/j.cpc.2014.04.012 Antipin O, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.125017 Jack I, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2015)138 JACK I, 1983, J PHYS A-MATH GEN, V16, P1101, DOI 10.1088/0305-4470/16/5/026 JACK I, 1990, NUCL PHYS B, V343, P647, DOI 10.1016/0550-3213(90)90584-Z Litim DF, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2016)081 Lyonnet F, 2017, COMPUT PHYS COMMUN, V213, P181, DOI 10.1016/j.cpc.2016.12.003 Lyonnet F, 2014, COMPUT PHYS COMMUN, V185, P1130, DOI 10.1016/j.cpc.2013.12.002 OSBORN H, 1991, NUCL PHYS B, V363, P486, DOI 10.1016/0550-3213(91)80030-P OSBORN H, 1989, PHYS LETT B, V222, P97, DOI 10.1016/0370-2693(89)90729-6 Pickering AGM, 2001, PHYS LETT B, V510, P347, DOI 10.1016/S0370-2693(01)00624-4 Poole C, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2019)055 Sartore L, 2020, PHYS REV D, V102, DOI 10.1103/PhysRevD.102.076002 Schienbein I, 2019, NUCL PHYS B, V939, P1, DOI 10.1016/j.nuclphysb.2018.12.001 Thomsen A.E., CURRENTLY DEV NR 15 TC 1 Z9 1 U1 1 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD APR PY 2021 VL 261 AR 107819 DI 10.1016/j.cpc.2020.107819 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA QH4ZO UT WOS:000618285100007 OA Green Accepted DA 2021-04-21 ER PT J AU Singh, V Herath, U Wah, B Liao, XY Romero, AH Park, H AF Singh, Vijay Herath, Uthpala Wah, Benny Liao, Xingyu Romero, Aldo H. Park, Hyowon TI DMFTwDFT: An open-source code combining Dynamical Mean Field Theory with various density functional theory packages SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE DFT; DMFT; Strongly correlated materials; Python; Condensed matter physics; Many-body physics AB Dynamical Mean Field Theory (DMFT) is a successful method to compute the electronic structure of strongly correlated materials, especially when it is combined with density functional theory (DFT). Here, we present an open-source computational package (and a library) combining DMFT with various DFT codes interfaced through the Wannier90 package. The correlated subspace is expanded as a linear combination of Wannier functions introduced in the DMFT approach as local orbitals. In particular, we provide a library mode for computing the DMFT density matrix. This library can be linked and then internally called from any DFT package, assuming that a set of localized orbitals can be generated in the correlated subspace. The existence of this library allows developers of other DFT codes to interface with our package and achieve the charge-self-consistency within DFT+DMFT loops. To test and check our implementation, we computed the density of states and the band structure of well-known solidstate correlated materials, namely LaNiO3, SrVO3, and NiO. The obtained results are compared to those obtained from other DFT+DMFT implementations. Program summary Program title: DMFTwDFT CPC Library link to program files: https://doi.org/10.17632/y27fngtkdw.1 Licensing provisions: GNU General Public License 3 Programming language: Python2/3, C++, and FORTRAN External routines: MPI, FFTW, BIAS, LAPACK, Numpy, Scipy, mpi4py, Glib, gsl, weave, PyProcar, and PyChemia Subprograms used: Wannier90 (v3.0), Siesta (v4.1-b4), VASP (v5.4.4), Quantum Espresso (v6.5), CTQMC Nature of problem: Need for a simple, efficient, higher-level, and open-source package to study strongly correlated materials interfacing to various DFT codes regardless of basis sets used in DFT. Solution method: We present an open-source Python code which can be easily interfaced with Wannier90 and different DFT packages and perform a full charge-self-consistent DFT+DMFT calculation using a modern continuous-time quantum Monte Carlo (CTQMC) impurity solver. (C) 2020 Elsevier B.V. All rights reserved. C1 [Singh, Vijay; Wah, Benny; Liao, Xingyu; Park, Hyowon] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Singh, Vijay; Herath, Uthpala; Romero, Aldo H.] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. RP Singh, V (corresponding author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. EM vsingh83@uic.edu RI romero, aldo/B-2344-2016 OI romero, aldo/0000-0001-5968-0571; Herath, Uthpala/0000-0002-4585-3002; Singh, Vijay/0000-0002-4985-2445 FU NSF SI2-SSE Grant [1740112]; DMREF-NSFNational Science Foundation (NSF)NSF - Directorate for Computer & Information Science & Engineering (CISE) [1434897]; DOEUnited States Department of Energy (DOE) [DE-SC0016176]; ACS-PRF grant [60617]; National Science FoundationNational Science Foundation (NSF) [ACI-1053575, TG-PHY190035]; Texas Advances Computer Center (Stampede2 supercomputer); Texas Advances Computer Center (Bridges supercomputer) FX The authors thank Javier Junquera from Cantabria University for insightful discussions and help with the interface with Siesta. This work is supported by the NSF SI2-SSE Grant 1740112. Uthpala Herath and Aldo H. Romero are also supported by DMREF-NSF 1434897 and DOE DE-SC0016176 grants. Xingyu Liao is supported by ACS-PRF grant 60617. This work used the XSEDE which is supported by National Science Foundation grant number ACI-1053575 and allocation number TG-PHY190035. The authors also acknowledge the support from the Texas Advances Computer Center (with the Stampede2 and Bridges supercomputers). We acknowledge the West Virginia University supercomputing clusters (Spruce Knob and Thorny Flat) and the Advanced Cyberinfrastructure for Education and Research (ACER) group at the University of Illinois at Chicago for providing HPC resources which were used for the development of the library. CR Aichhorn M, 2016, COMPUT PHYS COMMUN, V204, P200, DOI 10.1016/j.cpc.2016.03.014 Amadon B, 2012, J PHYS-CONDENS MAT, V24, DOI 10.1088/0953-8984/24/7/075604 Amadon B, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.205112 ANDERSEN OK, 1975, PHYS REV B, V12, P3060, DOI 10.1103/PhysRevB.12.3060 ANISIMOV VI, 1991, PHYS REV B, V44, P943, DOI 10.1103/PhysRevB.44.943 Anisimov VI, 1997, J PHYS-CONDENS MAT, V9, P767, DOI 10.1088/0953-8984/9/4/002 ARYASETIAWAN F, 1995, PHYS REV LETT, V74, P3221, DOI 10.1103/PhysRevLett.74.3221 Avella A., 2011, SPRINGER SERIES SOLI BLOCHL PE, 1994, PHYS REV B, V50, P17953, DOI 10.1103/PhysRevB.50.17953 BRANDOW BH, 1977, ADV PHYS, V26, P651, DOI 10.1080/00018737700101443 Bredow T, 2000, PHYS REV B, V61, P5194, DOI 10.1103/PhysRevB.61.5194 Bulla R, 2008, REV MOD PHYS, V80, P395, DOI 10.1103/RevModPhys.80.395 Burke K, 1997, INT J QUANTUM CHEM, V61, P287, DOI 10.1002/(SICI)1097-461X(1997)61:2<287::AID-QUA11>3.0.CO;2-9 CEPERLEY DM, 1980, PHYS REV LETT, V45, P566, DOI 10.1103/PhysRevLett.45.566 CHAMBERL.BL, 1971, J SOLID STATE CHEM, V3, P243, DOI 10.1016/0022-4596(71)90035-1 Choi S, 2019, COMPUT PHYS COMMUN, V244, P277, DOI 10.1016/j.cpc.2019.07.003 Cococcioni M, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.035105 Cox P., 2010, INT SERIES MONOGRAPH Dang HT, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.161113 Dobin AY, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.113408 Dudarev SL, 1998, PHYS REV B, V57, P1505, DOI 10.1103/PhysRevB.57.1505 Eguchi R, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.115122 Faleev SV, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.126406 Gaenko A, 2017, COMPUT PHYS COMMUN, V213, P235, DOI 10.1016/j.cpc.2016.12.009 Galitskii V., 1958, ZH EKSP TEOR FIZ+, V34 GARCIAMUNOZ JL, 1992, PHYS REV B, V46, P4414, DOI 10.1103/PhysRevB.46.4414 Georges A, 1996, REV MOD PHYS, V68, P13, DOI 10.1103/RevModPhys.68.13 Giannozzi P, 2009, J PHYS-CONDENS MAT, V21, DOI 10.1088/0953-8984/21/39/395502 Gonze X, 2016, COMPUT PHYS COMMUN, V205, P106, DOI 10.1016/j.cpc.2016.04.003 Gonze X, 2009, COMPUT PHYS COMMUN, V180, P2582, DOI 10.1016/j.cpc.2009.07.007 Gonze X, 2002, COMP MATER SCI, V25, P478, DOI 10.1016/S0927-0256(02)00325-7 Gou GY, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.144101 Granas O, 2012, COMP MATER SCI, V55, P295, DOI 10.1016/j.commatsci.2011.11.032 Gull E, 2011, REV MOD PHYS, V83, P349, DOI 10.1103/RevModPhys.83.349 Hafner J, 2008, J COMPUT CHEM, V29, P2044, DOI 10.1002/jcc.21057 Haule K., 2016, PHYS REV B, V94, DOI 10.103/PhysRevB.94.195146 Haule K, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.155113 Haule K, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.196403 Haule K, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.075136 Haule K, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.195107 Hepting M, 2020, NAT MATER, V19, P381, DOI 10.1038/s41563-019-0585-z Herath U, 2020, COMPUT PHYS COMMUN, V251, DOI 10.1016/j.cpc.2019.107080 HOHENBERG P, 1964, PHYS REV B, V136, pB864, DOI 10.1103/PhysRev.136.B864 Horiba K, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.155104 Huang L, 2015, COMPUT PHYS COMMUN, V195, P140, DOI 10.1016/j.cpc.2015.04.020 Imada M, 1998, REV MOD PHYS, V70, P1039, DOI 10.1103/RevModPhys.70.1039 JARRELL M, 1989, PHYS REV LETT, V63, P2504, DOI 10.1103/PhysRevLett.63.2504 JARRELL M, 1992, PHYS REV LETT, V69, P168, DOI 10.1103/PhysRevLett.69.168 Jauch W, 2004, PHYS REV B, V70, DOI 10.1103/PhysRevB.70.195121 Kang B., 2019, ARXIV PREPRINT ARXIV KOHN W, 1960, PHYS REV, V118, P41, DOI 10.1103/PhysRev.118.41 Kotliar G, 2006, REV MOD PHYS, V78, P865, DOI 10.1103/RevModPhys.78.865 KRESSE G, 1993, PHYS REV B, V47, P558, DOI 10.1103/PhysRevB.47.558 Kresse G, 1996, COMP MATER SCI, V6, P15, DOI 10.1016/0927-0256(96)00008-0 Kuo CY, 2017, EUR PHYS J-SPEC TOP, V226, P2445, DOI 10.1140/epjst/e2017-70061-7 Lechermann F, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.125120 Leonov I, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.146401 Li DF, 2019, NATURE, V572, P624, DOI 10.1038/s41586-019-1496-5 Li JL, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.193102 Lu Y, 2017, EUR PHYS J-SPEC TOP, V226, P2549, DOI 10.1140/epjst/e2017-70042-4 LUTTINGER J, 1961, PHYS REV, V121, P942, DOI 10.1103/PhysRev.121.942 LUTTINGER JM, 1960, PHYS REV, V118, P1417, DOI 10.1103/PhysRev.118.1417 Maier T, 2005, REV MOD PHYS, V77, P1027, DOI 10.1103/RevModPhys.77.1027 Mandal S, 2019, PHYS REV B, V100, DOI 10.1103/PhysRevB.100.245109 Marzari N, 2012, REV MOD PHYS, V84, DOI 10.1103/RevModPhys.84.1419 Massidda S, 1997, PHYS REV B, V55, P13494, DOI 10.1103/PhysRevB.55.13494 MATTHEISS LF, 1972, PHYS REV B-SOLID ST, V5, P306, DOI 10.1103/PhysRevB.5.306 MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI 10.1103/PhysRevB.13.5188 Mostofi AA, 2014, COMPUT PHYS COMMUN, V185, P2309, DOI 10.1016/j.cpc.2014.05.003 Nekrasov IA, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.155112 Nekrasov IA, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.155106 Nowadnick EA, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.245109 Ouellette DG, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.165112 Parcollet O, 2015, COMPUT PHYS COMMUN, V196, P398, DOI 10.1016/j.cpc.2015.04.023 Park H, 2020, PHYS REV B, V101, DOI 10.1103/PhysRevB.101.195125 Park H, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.235103 Park H, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.245133 Pashov D, 2020, COMPUT PHYS COMMUN, V249, DOI 10.1016/j.cpc.2019.107065 Pavarini E, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.176403 Perdew JP, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.136406 Petukhov AG, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.153106 Pickett WE, 1998, PHYS REV B, V58, P1201, DOI 10.1103/PhysRevB.58.1201 Pizzi G., 2019, ARXIV190709788 Rasander M, 2015, J CHEM PHYS, V143, DOI 10.1063/1.4932334 Ren X, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.195114 Savrasov SY, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.245101 SAWATZKY GA, 1984, PHYS REV LETT, V53, P2339, DOI 10.1103/PhysRevLett.53.2339 Schuler TM, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.115113 Schwarz K, 2003, COMP MATER SCI, V28, P259, DOI 10.1016/S0927-0256(03)00112-5 Sekiyama A, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.156402 SHEN ZX, 1991, PHYS REV B, V44, P3604, DOI 10.1103/PhysRevB.44.3604 Sherrill CD, 1999, ADV QUANTUM CHEM, V34, P143, DOI 10.1016/S0065-3276(08)60532-8 Shinaoka H, 2017, EUR PHYS J-SPEC TOP, V226, P2499, DOI 10.1140/epjst/e2017-70050-x Si QM, 1996, PHYS REV LETT, V77, P3391, DOI 10.1103/PhysRevLett.77.3391 Soler JM, 2002, J PHYS-CONDENS MAT, V14, P2745, DOI 10.1088/0953-8984/14/11/302 Stewart MK, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.075125 SVANE A, 1990, PHYS REV LETT, V65, P1148, DOI 10.1103/PhysRevLett.65.1148 Takizawa M, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.235104 Tjernberg O, 1996, PHYS REV B, V54, P10245, DOI 10.1103/PhysRevB.54.10245 Toschi A, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.045118 TROULLIER N, 1991, PHYS REV B, V43, P1993, DOI 10.1103/PhysRevB.43.1993 VANDERBILT D, 1990, PHYS REV B, V41, P7892, DOI 10.1103/PhysRevB.41.7892 von Lohneysen H, 2007, REV MOD PHYS, V79, P1015, DOI 10.1103/RevModPhys.79.1015 VOSKO SH, 1980, CAN J PHYS, V58, P1200, DOI 10.1139/p80-159 Wallerberger M, 2019, COMPUT PHYS COMMUN, V235, P388, DOI 10.1016/j.cpc.2018.09.007 Wang X, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.195136 Wirth S, 2016, NAT REV MATER, V1, DOI 10.1038/natrevmats.2016.51 XU XQ, 1993, PHYS REV B, V48, P1112, DOI 10.1103/PhysRevB.48.1112 Yoshida T, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.146404 Yoshida T, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.085119 Zantout K, 2019, PHYS REV LETT, V123, DOI 10.1103/PhysRevLett.123.256401 NR 111 TC 2 Z9 2 U1 5 U2 5 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD APR PY 2021 VL 261 AR 107778 DI 10.1016/j.cpc.2020.107778 PG 21 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA QH4ZA UT WOS:000618283700005 DA 2021-04-21 ER PT J AU Chatzipapas, KP Papadimitroulas, P Loudos, G Papanikolaou, N Kagadis, GC AF Chatzipapas, Konstantinos P. Papadimitroulas, Panagiotis Loudos, George Papanikolaou, Niko Kagadis, George C. TI IDDRRA: A novel platform, based on Geant4-DNA to quantify DNA damage by ionizing radiation SO MEDICAL PHYSICS LA English DT Article; Early Access DE DNA damage response ‐ DDR; Geant4‐ DNA; microdosimetry; Monte Carlo simulations AB Purpose This study proposes a novel computational platform that we refer to as IDDRRA (DNA Damage Response to Ionizing RAdiation), which uses Monte Carlo (MC) simulations to score radiation induced DNA damage. MC simulations provide results of high accuracy on the interaction of radiation with matter while scoring the energy deposition based on state-of-the-art physics and chemistry models and probabilistic methods. Methods The IDDRRA software is based on the Geant4-DNA toolkit together with new tools that were developed for the purpose of this study, including a new algorithm that was developed in Python for the design of the DNA molecules. New classes were developed in C++ to integrate the GUI and produce the simulation's output in text format. An algorithm was also developed to analyze the simulation's output in terms of energy deposition, Single Strand Breaks (SSB), Double Strand Breaks (DSB) and Cluster Damage Sites (CDS). Finally, a new tool was developed to implement probabilistic SSB and DSB repair models using MC techniques. Results This article provides the first benchmarks that the user of the IDDRRA tool can use to validate the functionality of the software as well as to provide a starting point to produce different types of DNA simulations. These benchmarks incorporate different kind of particles (e-, e+, protons, electron spectrum) and DNA molecules. Conclusion We have developed the IDDRRA tool and demonstrated its use to study various aspects of the modeling and simulation of a DNA irradiation experiment. The tool is expandable and can be expanded by other users with new benchmarks and applications based on the user's needs and experience. New functionality will be added over time, including the quantification of the indirect damage. C1 [Chatzipapas, Konstantinos P.; Kagadis, George C.] Univ Patras, Sch Med, Dept Med Phys, 3dmi Res Grp, Rion 26504, Greece. [Papadimitroulas, Panagiotis; Loudos, George] Bioemiss Technol Solut BIOEMTECH, Athens 11472, Greece. [Papanikolaou, Niko] Univ Texas San Antonio, Hlth Sci Ctr, San Antonio, TX 78229 USA. RP Kagadis, GC (corresponding author), Univ Patras, Sch Med, Dept Med Phys, 3dmi Res Grp, Rion 26504, Greece. EM gkagad@gmail.com RI Papadimitroulas, Panagiotis/AAN-8203-2020 OI Papadimitroulas, Panagiotis/0000-0002-5981-6149; Chatzipapas, Konstantinos/0000-0003-4006-9304 FU European Union (European Social Fund-ESF)European Social Fund (ESF)European Commission [MIS-5000432]; European Regional Development Fund (ERDF), Greek General Secretariat for Research and Innovation, Operational Programme "Competitiveness, Entrepreneurship and Innovation" (EPAnEK) [POPEYE T11EPA4-00055]; Greek Diaspora Fellowship Program Cycle IIGreek Ministry of Development-GSRT; Greek Diaspora Fellowship Program Cycle IVGreek Ministry of Development-GSRT FX This research is financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme << Human Resources Development, Education and Lifelong Learning >> in the context of the project "Strengthening Human Resources Research Potential via Doctorate Research" (MIS-5000432), implemented by the State Scholarships Foundation (IKY). This work was supported by the European Regional Development Fund (ERDF), Greek General Secretariat for Research and Innovation, Operational Programme "Competitiveness, Entrepreneurship and Innovation" (EPAnEK), under the frame of ERA PerMed (project POPEYE T11EPA4-00055. The authors would also like to thank Afroditi Toufa for her technical support on programming. Furthermore, this study has been partly financed by the Greek Diaspora Fellowship Program Cycles II, and IV. CR Abril I, 2013, ADV QUANTUM CHEM, V65, P129, DOI 10.1016/B978-0-12-396455-7.00006-6 Allison J, 2016, NUCL INSTRUM METH A, V835, P186, DOI 10.1016/j.nima.2016.06.125 [Anonymous], DOXYGEN [Anonymous], 2020, VIRTUALBOX [Anonymous], 2020, VGATE Berman HM, 2000, NUCLEIC ACIDS RES, V28, P235, DOI 10.1093/nar/28.1.235 Bernal MA, 2015, PHYS MEDICA, V31, P861, DOI 10.1016/j.ejmp.2015.10.087 Binder K., 1995, MONTE CARLO MOL DYNA Boscolo D, 2018, CHEM PHYS LETT, V698, P11, DOI 10.1016/j.cplett.2018.02.051 Bustin S, 2015, INT J MOL SCI, V160, P28123 Chatzipapas KP, 2020, CANCERS, V12, DOI 10.3390/cancers12040799 Chatzipapas KP, 2019, MED PHYS, V46, P405, DOI 10.1002/mp.13290 Cucinotta FA, 2008, RADIAT RES, V169, P214, DOI 10.1667/RR1035.1 Cumberworth A, 2018, J CHEM PHYS, V149, DOI 10.1063/1.5051835 Delage E, 2015, COMPUT PHYS COMMUN, V192, P282, DOI 10.1016/j.cpc.2015.02.026 Emfietzoglou D, 2013, J APPL PHYS, V114, DOI 10.1063/1.4824541 Foray N, 1998, INT J RADIAT BIOL, V74, P551, DOI 10.1080/095530098141122 FRANKENBERG D, 1986, INT J RADIAT BIOL, V50, P727, DOI 10.1080/09553008614551121 Friedland W, 1998, RADIAT RES, V150, P170, DOI 10.2307/3579852 Friedland W, 2012, INT J RADIAT BIOL, V88, P129, DOI 10.3109/09553002.2011.611404 Friedland W, 2011, MUTAT RES-FUND MOL M, V711, P28, DOI 10.1016/j.mrfmmm.2011.01.003 Garcia-Molina R, 2017, SURF INTERFACE ANAL, V49, P11, DOI 10.1002/sia.5947 Georgakilas AG, 2013, RADIAT RES, V180, P100, DOI 10.1667/RR3041.1 Hall EJ., 2012, RADIOBIOLOGY RADIOBI Henthorn NT, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-21111-8 Incerti S, 2019, J APPL PHYS, V125, DOI 10.1063/1.5083208 KRAMER M, 1994, RADIAT ENVIRON BIOPH, V33, P91, DOI 10.1007/BF01219334 Kyriakou I, 2019, PHYS MEDICA, V58, P149, DOI 10.1016/j.ejmp.2019.01.001 Lai YF, 2020, MED PHYS, V47, P1971, DOI 10.1002/mp.14036 Lampe N, 2018, PHYS MEDICA, V48, P135, DOI 10.1016/j.ejmp.2018.02.011 LANGRIDGE R, 1957, J BIOPHYS BIOCHEM CY, V3, P767, DOI 10.1083/jcb.3.5.767 Liu RR, 2019, MED PHYS, V46, P5314, DOI 10.1002/mp.13813 Liu RR, 2019, INT J RADIAT BIOL, V95, P1484, DOI 10.1080/09553002.2019.1642537 Liu W, 2018, RADIAT ENVIRON BIOPH, V57, P179, DOI 10.1007/s00411-018-0730-0 Margis S, 2020, PHYS MED BIOL, V65, DOI 10.1088/1361-6560/ab6b47 Mavragani IV, 2019, CANCERS, V11, DOI 10.3390/cancers11111789 McNamara A, 2017, PHYS MEDICA, V33, P207, DOI 10.1016/j.ejmp.2016.12.010 Meylan S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-11851-4 Murray PJ, 2016, J R SOC INTERFACE, V13, DOI 10.1098/rsif.2015.0679 Nikitaki Z, 2016, FREE RADICAL RES, V50, pS64, DOI 10.1080/10715762.2016.1232484 Nikitaki Z, 2016, RADIAT PHYS CHEM, V128, P26, DOI 10.1016/j.radphyschem.2016.06.020 Nikjoo H, 1999, RADIAT ENVIRON BIOPH, V38, P31, DOI 10.1007/s004110050135 Nikjoo H, 2001, RADIAT RES, V156, P577, DOI 10.1667/0033-7587(2001)156[0577:CAFDTS]2.0.CO;2 Nikjoo H, 1997, INT J RADIAT BIOL, V71, P467, DOI 10.1080/095530097143798 Okada S, 2019, MED PHYS, V46, P1483, DOI 10.1002/mp.13370 Pater P, 2014, MED PHYS, V41, DOI 10.1118/1.4901555 Plante I, 2019, GENES-BASEL, V10, DOI 10.3390/genes10110936 Plante I, 2011, RADIAT ENVIRON BIOPH, V50, P405, DOI 10.1007/s00411-011-0368-7 Plante I, 2011, RADIAT ENVIRON BIOPH, V50, P389, DOI 10.1007/s00411-011-0367-8 Qt Company Ltd, 2020, QT TOOLK Rahmanian S, 2014, DNA REPAIR, V22, P89, DOI 10.1016/j.dnarep.2014.07.011 Rogers DWO, 2006, PHYS MED BIOL, V51, pR287, DOI 10.1088/0031-9155/51/13/R17 Sakata D, 2019, PHYS MEDICA, V63, P98, DOI 10.1016/j.ejmp.2019.05.023 Sakata D, 2019, PHYS MEDICA, V62, P152, DOI 10.1016/j.ejmp.2019.04.010 Sarrut D, 2014, MED PHYS, V41, DOI 10.1118/1.4871617 Schipler A, 2013, NUCLEIC ACIDS RES, V41, P7589, DOI 10.1093/nar/gkt556 Schuemann J, 2019, RADIAT RES, V191, P125, DOI 10.1667/RR15226.1 Shin WG, 2019, J APPL PHYS, V126, DOI 10.1063/1.5107511 Stepan V, 2014, EUR PHYS J D, V68, DOI 10.1140/epjd/e2014-50068-8 Stewart RD, 2015, PHYS MED BIOL, V60, P8249, DOI 10.1088/0031-9155/60/21/8249 Stewart RD, 2011, RADIAT RES, V176, P587, DOI 10.1667/RR2663.1 Taleei R, 2015, MUTAT RES-GEN TOX EN, V779, P5, DOI 10.1016/j.mrgentox.2015.01.007 Taleei R, 2013, RADIAT RES, V179, P530, DOI 10.1667/RR3123.1 Taleei R, 2012, INT J RADIAT BIOL, V88, P948, DOI 10.3109/09553002.2012.695098 Tang N, 2019, MED PHYS, V46, P1501, DOI 10.1002/mp.13405 Tang N, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20246204 Tsai MY, 2020, MED PHYS, V47, P1958, DOI 10.1002/mp.14037 Warmenhoven JW, 2020, DNA REPAIR, V85, DOI 10.1016/j.dnarep.2019.102743 WATSON JD, 1953, NATURE, V171, P737, DOI 10.1038/171737a0 NR 69 TC 0 Z9 0 U1 0 U2 0 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0094-2405 EI 2473-4209 J9 MED PHYS JI Med. Phys. DI 10.1002/mp.14817 PG 13 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA RF3VE UT WOS:000634768400001 PM 33657650 DA 2021-04-21 ER PT J AU Lu, L Meng, XH Mao, ZP Karniadakis, GE AF Lu, Lu Meng, Xuhui Mao, Zhiping Karniadakis, George Em TI DeepXDE: A Deep Learning Library for Solving Differential Equations SO SIAM REVIEW LA English DT Article DE education software; DeepXDE; differential equations; deep learning; physics-informed neural networks; scientific machine learning ID NEURAL-NETWORKS; ALGORITHM AB Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from an implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an educational tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging scientific machine learning field. C1 [Lu, Lu] MIT, Dept Math, Cambridge, MA 02139 USA. [Meng, Xuhui; Karniadakis, George Em] Brown Univ, Div Appl Math, Providence, RI 02912 USA. [Mao, Zhiping] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China. [Karniadakis, George Em] Pacific Northwest Natl Lab, Richland, WA 99354 USA. RP Lu, L (corresponding author), MIT, Dept Math, Cambridge, MA 02139 USA. EM lu_lu@mit.edu; xuhui_meng@brown.edu; zpmao@xmu.edu.cn; George_Karniadakis@brown.edu RI Lu, Lu/AAG-7335-2019 OI Lu, Lu/0000-0002-5476-5768 FU DOE PhILMs projectUnited States Department of Energy (DOE) [de-sc0019453]; AFOSRUnited States Department of DefenseAir Force Office of Scientific Research (AFOSR) [FA9550-17-1-0013]; DARPA-AIRA [HR00111990025] FX This work was supported by DOE PhILMs project de-sc0019453, by AFOSR grant FA9550-17-1-0013, and by DARPA-AIRA grant HR00111990025. CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Ainsworth M., 2011, POSTERIORI ERROR EST Baeza A, 2006, INT J NUMER METH FL, V52, P455, DOI 10.1002/fld.1191 Baker M, 2019, PARIS REV, P209 BAYDIN A, 2017, J MACH LEARN RES, V18, P5595, DOI DOI 10.5555/3122009.3242010 Beck C, 2019, J NONLINEAR SCI, V29, P1563, DOI 10.1007/s00332-018-9525-3 Berg J, 2018, NEUROCOMPUTING, V317, P28, DOI 10.1016/j.neucom.2018.06.056 Betancourt M., 2018, PREPRINT Bettencourt J., 2019, NEURIPS 2019 WORKSH Blum A, 1989, ADV NEURAL INFORM PR, V2, P494 Bottou L., 2008, ADV NEURAL INFORM PR, V20, P161, DOI DOI 10.7751/mitpress/8996.003.0015 BYRD RH, 1995, SIAM J SCI COMPUT, V16, P1190, DOI 10.1137/0916069 Chen Y., 2019, PREPRINT Ciarlet, 2002, CLASSICS APPL MATH, DOI 10.1137/1.9780898719208 DISSANAYAKE MWMG, 1994, COMMUN NUMER METH EN, V10, P195, DOI 10.1002/cnm.1640100303 Finn C., 2017, P MACH LEARN RES 06, P1126, DOI DOI 10.5555/3305381.3305498 Grohs P., 2018, PREPRINT Han J, 2018, P NATL ACAD SCI USA, V115, P8505, DOI 10.1073/pnas.1718942115 He J., 2018, PREPRINT He Q., 2019, PREPRINT Hughes TJR, 2005, COMPUT METHOD APPL M, V194, P4135, DOI 10.1016/j.cma.2004.10.008 Jagtap A. D., 2019, PREPRINT Jagtap AD, 2020, J COMPUT PHYS, V404, DOI 10.1016/j.jcp.2019.109136 Jin P., 2019, PREPRINT Johnson C., 2012, NUMERICAL SOLUTION P Karniadakis G., 2013, SPECTRAL HP ELEMENT Khoo Y., 2017, PREPRINT Kingma D. P., 2015, 3 INT C LEARN REPR 2 Lagaris IE, 1998, IEEE T NEURAL NETWOR, V9, P987, DOI 10.1109/72.712178 Lagaris IE, 2000, IEEE T NEURAL NETWOR, V11, P1041, DOI 10.1109/72.870037 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Long Z., 2018, INT C MACH LEARN, P3214 Lu L., 2019, PREPRINT Lu L., 2018, PREPRINT Mao ZP, 2020, COMPUT METHOD APPL M, V360, DOI 10.1016/j.cma.2019.112789 Margossian CC, 2019, WIRES DATA MIN KNOWL, V9, DOI 10.1002/widm.1305 MEADE AJ, 1994, MATH COMPUT MODEL, V19, P1, DOI 10.1016/0895-7177(94)90095-7 Meng X., 2019, PREPRINT Nabian M. A., 2018, PREPRINT Pang GF, 2019, SIAM J SCI COMPUT, V41, pA2603, DOI 10.1137/18M1229845 Paszke A., 2017, NIPS 2017 WORKSH AUT Pinkus A., 1999, Acta Numerica, V8, P143, DOI 10.1017/S0962492900002919 Poggio T, 2017, INT J AUTOM COMPUT, V14, P503, DOI 10.1007/s11633-017-1054-2 Rahaman N., 2019, INT C MACH LEARN, P5301 Raissi M, 2019, J COMPUT PHYS, V378, P686, DOI 10.1016/j.jcp.2018.10.045 Raissi M, 2020, SCIENCE, V367, P1026, DOI 10.1126/science.aaw4741 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Sirignano J, 2018, J COMPUT PHYS, V375, P1339, DOI 10.1016/j.jcp.2018.08.029 Tartakovsky A. M., 2018, PREPRINT VANMILLIGEN BP, 1995, PHYS REV LETT, V75, P3594, DOI 10.1103/PhysRevLett.75.3594 Weinan E, 2018, COMMUN MATH STAT, V6, P1, DOI 10.1007/s40304-018-0127-z Winovich N, 2019, J COMPUT PHYS, V394, P263, DOI 10.1016/j.jcp.2019.05.026 Xu Z.Q. J., 2019, PREPRINT Yang L., 2018, PREPRINT Zhang D., 2019, PREPRINT Zhang DK, 2019, J COMPUT PHYS, V397, DOI 10.1016/j.jcp.2019.07.048 Zhu Y., 2019, PREPRINT Zoph B, 2016, ARXIV161101578 NR 58 TC 1 Z9 1 U1 10 U2 10 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1445 EI 1095-7200 J9 SIAM REV JI SIAM Rev. PD MAR PY 2021 VL 63 IS 1 BP 208 EP 228 DI 10.1137/19M1274067 PG 21 WC Mathematics, Applied SC Mathematics GA QD7RZ UT WOS:000615712100007 OA Bronze DA 2021-04-21 ER PT J AU Roest, LI van Heijst, SE Maduro, L Rojo, J Conesa-Boj, S AF Roest, Laurien, I van Heijst, Sabrya E. Maduro, Louis Rojo, Juan Conesa-Boj, Sonia TI Charting the low-loss region in electron energy loss spectroscopy with machine learning SO ULTRAMICROSCOPY LA English DT Article DE Transmission electron microscopy; Electron energy loss spectroscopy; Neural networks; Machine learning; Transition metal dichalcogenides; Bandgap AB Exploiting the information provided by electron energy-loss spectroscopy (EELS) requires reliable access to the low-loss region where the zero-loss peak (ZLP) often overwhelms the contributions associated to inelastic scatterings off the specimen. Here we deploy machine learning techniques developed in particle physics to realise a model-independent, multidimensional determination of the ZLP with a faithful uncertainty estimate. This novel method is then applied to subtract the ZLP for EEL spectra acquired in flower-like WS2 nanostructures characterised by a 2H/3R mixed polytypism. From the resulting subtracted spectra we determine the nature and value of the bandgap of polytypic WS2, finding E-BG = 1.6(-0.2)(+0.3) eV with a clear preference for an indirect bandgap. Further, we demonstrate how this method enables us to robustly identify excitonic transitions down to very small energy losses. Our approach has been implemented and made available in an open source PYTHON package dubbed EELSfitter. C1 [Roest, Laurien, I; van Heijst, Sabrya E.; Maduro, Louis; Conesa-Boj, Sonia] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Roest, Laurien, I; Rojo, Juan] Nikhef Theory Grp, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands. [Rojo, Juan] VU, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands. RP Conesa-Boj, S (corresponding author), Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. EM s.conesaboj@tudelft.nl OI Roest, Laurien/0000-0003-3135-7929; van Heijst, Sabrya/0000-0001-5436-4019; Maduro, Louis/0000-0003-3776-2802; Rojo, Juan/0000-0003-4279-2192 FU ERC through the Starting Grant ``TESLA'' [805021]; Netherlands Organizational for Scientific Research (NWO) through the Nanofront program; NWO, The NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government FX S. E. v. H. and S. C.-B. acknowledge financial support from the ERC through the Starting Grant ``TESLA'', grant agreement no. 805021. L. M. acknowledges support from the Netherlands Organizational for Scientific Research (NWO) through the Nanofront program. The work of J. R. has been partially supported by NWO, The Netherlands. CR Abadi M, TENSORFLOW LARGE SCA Abdul Khalek R., NNNPDF2 0 QUARK FLAV [Anonymous], 2007, PHYS STATUS SOLIDI, V214 Ball RD, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-5199-5 Ball RD, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2015)040 Ball RD, 2013, NUCL PHYS B, V867, P244, DOI 10.1016/j.nuclphysb.2012.10.003 Ball RD, 2009, NUCL PHYS B, V809, P1, DOI 10.1016/j.nuclphysb.2008.09.037 Bangert U., 1998, J MICROSC-PARIS, V188, P237 Bertone V, 2018, EUR PHYS J C, V78, DOI 10.1140/epjc/s10052-018-6130-4 Bertone V, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-5088-y Bhandavat R, 2012, J PHYS CHEM LETT, V3, P1523, DOI 10.1021/jz300480w Bolhuis M, 2020, NANOSCALE, V12, P10491, DOI 10.1039/d0nr00755b Bosman M, 2006, ULTRAMICROSCOPY, V106, P1024, DOI 10.1016/j.ultramic.2006.04.016 Braga D, 2012, NANO LETT, V12, P5218, DOI 10.1021/nl302389d Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589] de Haan K, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-48444-2 Del Debbio L, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/03/039 Dorneich AD, 1998, J MICROSC-OXFORD, V191, P286 Egerton RF, 2009, REP PROG PHYS, V72, DOI 10.1088/0034-4885/72/1/016502 Egerton RF, 2002, ULTRAMICROSCOPY, V92, P47, DOI 10.1016/S0304-3991(01)00155-3 Egerton RF., 1996, ELECT ENERGY LOSS SP, V2nd edn Erni R, 2005, MICRON, V36, P369, DOI 10.1016/j.micron.2004.12.011 Forte S, 2002, J HIGH ENERGY PHYS Freitag B, 2005, ULTRAMICROSCOPY, V102, P209, DOI 10.1016/j.ultramic.2004.09.013 Fung KLY, 2020, ULTRAMICROSCOPY, V217, DOI 10.1016/j.ultramic.2020.113052 Gao J, 2018, PHYS REP, V742, P1, DOI 10.1016/j.physrep.2018.03.002 de Abajo FJG, 2010, REV MOD PHYS, V82, P209, DOI 10.1103/RevModPhys.82.209 GEIGER J, 1967, PHYS STATUS SOLIDI, V24, P457, DOI 10.1002/pssb.19670240207 Gordon O. M., 2020, MACHINE LEARNING SCI, V1 Granerod CS, 2018, ULTRAMICROSCOPY, V184, P39, DOI 10.1016/j.ultramic.2017.08.006 Hachtel JA, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-23805-5 Haider M, 1998, NATURE, V392, P768, DOI 10.1038/33823 Hanbicki AT, 2015, SOLID STATE COMMUN, V203, P16, DOI 10.1016/j.ssc.2014.11.005 Held JT, 2020, ULTRAMICROSCOPY, V210, DOI 10.1016/j.ultramic.2019.112919 Jany BR, 2017, NANO LETT, V17, P6520, DOI 10.1021/acs.nanolett.7b01789 Jo S, 2014, NANO LETT, V14, P2019, DOI 10.1021/nl500171v KAM KK, 1982, J PHYS CHEM-US, V86, P463, DOI 10.1021/j100393a010 Kaviraj B., 2019, RSC ADV Khalek RA, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-6983-1 Kothleitner G, 2003, MICRON, V34, P211, DOI 10.1016/S0968-4328(03)00037-4 Lazar S, 2003, ULTRAMICROSCOPY, V96, P535, DOI 10.1016/S0304-3991(03)00114-1 Lee JU, 2016, ACS NANO, V10, P1948, DOI 10.1021/acsnano.5b05831 McCreary A, 2016, J MATER RES, V31, P931, DOI 10.1557/jmr.2016.47 Na W, 2019, 2D MATER, V6, DOI 10.1088/2053-1583/aae61c Nocera ER, 2014, NUCL PHYS B, V887, P276, DOI 10.1016/j.nuclphysb.2014.08.008 Park J, 2009, ULTRAMICROSCOPY, V109, P1183, DOI 10.1016/j.ultramic.2009.04.005 Rafferty B, 1998, PHYS REV B, V58, P10326, DOI 10.1103/PhysRevB.58.10326 Rafferty B, 2000, J ELECTRON MICROSC, V49, P517, DOI 10.1093/oxfordjournals.jmicro.a023838 Reed BW, 2002, ULTRAMICROSCOPY, V93, P25, DOI 10.1016/S0304-3991(02)00146-8 Rojo J., 2018, 13 C QUARK CONF HARD, V9 Schaffer B, 2009, MICRON, V40, P269, DOI 10.1016/j.micron.2008.07.004 Schamm S, 2003, ULTRAMICROSCOPY, V96, P559, DOI 10.1016/S0304-3991(03)00116-5 Shi HL, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.155304 Splendiani A, 2010, NANO LETT, V10, P1271, DOI 10.1021/nl903868w Stoger-Pollach M, 2008, MICRON, V39, P1092, DOI 10.1016/j.micron.2008.01.023 TENAILLEAU H, 1992, J MICROSC-OXFORD, V166, P297, DOI 10.1111/j.1365-2818.1992.tb01529.x Terauchi M, 1999, J MICROSC-OXFORD, V194, P203 Tinoco M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-52119-3 van Benthem K, 2001, J APPL PHYS, V90, P6156, DOI 10.1063/1.1415766 van Heijst SE, 2021, ANN PHYS-BERLIN, V533, DOI 10.1002/andp.202000499 Xia J, 2017, FLATCHEM, V4, P1, DOI 10.1016/j.flatc.2017.06.007 Young S., 2015, P WORKSH MACH LEARN Zhang Y, 2019, NATURE, V570, P484, DOI 10.1038/s41586-019-1319-8 Zhao WJ, 2013, ACS NANO, V7, P791, DOI 10.1021/nn305275h Zhu BR, 2015, SCI REP-UK, V5, DOI 10.1038/srep09218 Ziatdinov M, 2017, ACS NANO, V11, P12742, DOI 10.1021/acsnano.7b07504 NR 66 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAR PY 2021 VL 222 AR 113202 DI 10.1016/j.ultramic.2021.113202 PG 17 WC Microscopy SC Microscopy GA QK0MZ UT WOS:000620077200001 PM 33453606 OA Green Published, Other Gold DA 2021-04-21 ER PT J AU Lestandi, L AF Lestandi, Lucas TI Numerical Study of Low Rank Approximation Methods for Mechanics Data and Its Analysis SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Low rank approximation; Tensor decomposition; HOSVD; ST-HOSVD; Tensor train; QTT; HT; Hierarchical; Canonical decomposition; RPOD; POD; SVD AB This paper proposes a comparison of the numerical aspect and efficiency of several low rank approximation techniques for multidimensional data, namely CPD, HOSVD, TT-SVD, RPOD, QTT-SVD and HT. This approach is different from the numerous papers that compare the theoretical aspects of these methods or propose efficient implementation of a single technique. Here, after a brief presentation of the studied methods, they are tested in practical conditions in order to draw hindsight at which one should be preferred. Synthetic data provides sufficient evidence for dismissing CPD, T-HOSVD and RPOD. Then, three examples from mechanics provide data for realistic application of TT-SVD and ST-HOSVD. The obtained low rank approximation provides different levels of compression and accuracy depending on how separable the data is. In all cases, the data layout has significant influence on the analysis of modes and computing time while remaining similarly efficient at compressing information. Both methods provide satisfactory compression, from 0.1% to 20% of the original size within a few percent error in L-2 norm. ST-HOSVD provides an orthonormal basis while TT-SVD doesn't. QTT is performing well only when one dimension is very large. A final experiment is applied to an order 7 tensor with (4 x 8 x 8 x 64 x 64 x 64 x 64) entries (32 GB) from complex multi-physics experiment. In that case, only HT provides actual compression (50%) due to the low separability of this data. However, it is better suited for higher order d. Finally, these numerical tests have been performed with pydecomp , an open source python library developed by the author. C1 [Lestandi, Lucas] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore. [Lestandi, Lucas] ASTAR, IHPC, Engn Mech Dept, Singapore, Singapore. RP Lestandi, L (corresponding author), Nanyang Technol Univ, Sch Phys & Math Sci, Singapore, Singapore.; Lestandi, L (corresponding author), ASTAR, IHPC, Engn Mech Dept, Singapore, Singapore. EM Lucas_Lestandi@ihpc.a-star.edu.sg FU NTUNanyang Technological University [MOE2018-T2-1-05]; Science and Engineering Research Council, A*STAR, SingaporeAgency for Science Technology & Research (ASTAR) [A19E1a0097] FX Financial support was provided by Grant MOE2018-T2-1-05 in the context of the author's research fellowship at NTU in the team of Pr. Wang Li-Lian. Financial support was provided by the Science and Engineering Research Council, A*STAR, Singapore (Grant No. A19E1a0097) in the context of the author's new position as a Scientist at A*STAR, IHPC, Engineering Mechanics Department, Singapore. CR Alimi J.M., 2012, INT C HPC NETW STOR Allier P-E., 2015, ADV MODEL SIMULAT EN, V2, P17, DOI [10.1186/s40323-015-0038-4, DOI 10.1186/S40323-015-0038-4] Austin W, 2016, INT PARALL DISTRIB P, P912, DOI 10.1109/IPDPS.2016.67 Azaiez M., 2016, ADV MODEL SIMULAT EN, V3, P1 Azaiez M, 2019, CISM COURSES LECT, V592, P187, DOI 10.1007/978-3-030-17012-7_5 Bader, 2017, MATLAB TENSOR TOOLBO Ballani J., 2012, FAST EVALUATION NEAR Ballani J, 2015, SIAM-ASA J UNCERTAIN, V3, P852, DOI 10.1137/140960980 Ballani J, 2013, LINEAR ALGEBRA APPL, V438, P639, DOI 10.1016/j.laa.2011.08.010 Bergmann M., 2004, OPTIMISATION AERODYN Bigoni D, 2016, SIAM J SCI COMPUT, V38, pA2405, DOI 10.1137/15M1036919 Carlberg K, 2013, J COMPUT PHYS, V242, P623, DOI 10.1016/j.jcp.2013.02.028 CARROLL JD, 1970, PSYCHOMETRIKA, V35, P283, DOI 10.1007/BF02310791 Cazemier W, 1998, PHYS FLUIDS, V10, P1685, DOI 10.1063/1.869686 Chinesta F, 2014, SPRINGERBR APPL SCI, P1, DOI 10.1007/978-3-319-02865-1 Chinesta F., 2014, FUND APPL INT CTR ME, V554, P24 Cichocki A, 2014, ARXIV PREPRINT ARXIV, P1 Daulbaev T., 2019, REDUCED ORDER MODELI De Lathauwer L, 2000, SIAM J MATRIX ANAL A, V21, P1253, DOI 10.1137/S0895479896305696 De Lathauwer L, 2000, SIAM J MATRIX ANAL A, V21, P1324, DOI 10.1137/S0895479898346995 DEANE AE, 1991, PHYS FLUIDS A-FLUID, V3, P2337, DOI 10.1063/1.857881 Demchik V., 2019, OUT OF CORE SINGULAR, P1 Dunton AM, 2020, J COMPUT PHYS, V423, DOI 10.1016/j.jcp.2020.109704 Eckart C, 1936, PSYCHOMETRIKA, V1, P211, DOI 10.1007/BF02288367 Fahl M, 2001, TRUST REGION METHODS Falco A., 2015, GEOMETRIC STRUCTURES, P1 Gorodetsky A., 2016, THESIS MIT Gorodetsky A, 2019, COMPUT METHOD APPL M, V347, P59, DOI 10.1016/j.cma.2018.12.015 Grasedyck L., 2011, COMPUT METHODS APPL, V11, P291, DOI [DOI 10.2478/CMAM-2011-0016, 10.2478/cmam-2011-0016] Grasedyck L., 2013, GAMM MITT, V36, P53, DOI DOI 10.1002/GAMM.201310004 Grasedyck L, 2010, SIAM J MATRIX ANAL A, V31, P2029, DOI 10.1137/090764189 Hackbusch W., 2012, TENSOR SPACES NUMERI, DOI [10.1007/978-3-642-28027-6, DOI 10.1007/978-3-642-28027-6] Harshman R.A., 1970, MULTIMODAL FACTOR AN, V16, P1 Hitchcock F., 1927, THE J, V7, P39, DOI [DOI 10.1002/SAPML9287139, 10.1002/sapm19287139, DOI 10.1002/SAPM19287139] Hotelling H, 1933, J EDUC PSYCHOL, V24, P417, DOI 10.1037/h0071325 Iollo A, 2000, THEOR COMP FLUID DYN, V13, P377, DOI 10.1007/s001620050119 Ito K, 1998, J COMPUT PHYS, V143, P403, DOI 10.1006/jcph.1998.5943 Khoromskij BN, 2011, CONSTR APPROX, V34, P257, DOI 10.1007/s00365-011-9131-1 Kolda TG, 2009, SIAM REV, V51, P455, DOI 10.1137/07070111X Kosambi DD., 1943, STAT FUNCTION SPACES, P115 Kressner D., 2013, HTUCKER MATLAB TOOLB, P1 Kressner D, 2011, SIAM J MATRIX ANAL A, V32, P1288, DOI 10.1137/100799010 Lee K, 2020, J COMPUT PHYS, V404, DOI 10.1016/j.jcp.2019.108973 Lestandi L., 2018, LOW RANK APPROXIMATI Lestandi L, 2018, J MATH STUDY, V51, P150, DOI 10.4208/jms.v51n2.18.03 Lestandi L, 2018, COMPUT FLUIDS, V166, P86, DOI 10.1016/j.compfluid.2018.01.038 Loeve M., 1977, PROBABILITY THEORY, V9 Lu LX, 2018, ACTA MATER, V144, P801, DOI 10.1016/j.actamat.2017.11.033 Lumley J., 1981, P T TURBULENCE, V1, P215, DOI [10.1016/B978-0-12-493240-1.50017-X, DOI 10.1016/B978-0-12-493240-1.50017-X] Nouy A, 2015, LOW RANK TENSOR METH, P1 Novikov A., 2018, TENSOR TRAIN DECOMPO Oseledets I., 2009, TENSOR TREE DECOMPOS Oseledets IV, 2013, CONSTR APPROX, V37, P1, DOI 10.1007/s00365-012-9175-x Oseledets IV, 2011, SIAM J SCI COMPUT, V33, P2295, DOI 10.1137/090752286 Oseledets IV, 2010, SIAM J MATRIX ANAL A, V31, P2130, DOI 10.1137/090757861 Oseledets I.V., 2018, TTPY Pearson K, 1901, PHILOS MAG, V2, P559, DOI 10.1080/14786440109462720 Philippe B., 2014, TECHNIQUES LING NIEU Quesada C, 2016, INT J NUMER METH ENG, V108, P1230, DOI 10.1002/nme.5252 Rabani E., 2001, P 10 SIAM C PAR PROC, V572, P1 Saad Y., 1992, NUMERICAL METHODS LA Sengupta Tapan K., 2018, Advanced Modeling and Simulation in Engineering Sciences, V5, DOI 10.1186/s40323-018-0119-2 SIROVICH L, 1987, Q APPL MATH, V45, P561, DOI 10.1090/qam/910462 Stabile G, 2018, COMPUT FLUIDS, V173, P273, DOI 10.1016/j.compfluid.2018.01.035 TUCKER LR, 1966, PSYCHOMETRIKA, V31, P279, DOI 10.1007/BF02289464 Vannieuwenhoven N, 2012, SIAM J SCI COMPUT, V34, pA1027, DOI 10.1137/110836067 Wu LF, 2017, SIAM J SCI COMPUT, V39, pS248, DOI 10.1137/16M1082214 NR 67 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 EI 1573-7691 J9 J SCI COMPUT JI J. Sci. Comput. PD FEB 24 PY 2021 VL 87 IS 1 AR 14 DI 10.1007/s10915-021-01421-2 PG 43 WC Mathematics, Applied SC Mathematics GA QP2QV UT WOS:000623684100002 DA 2021-04-21 ER PT J AU Martinez, A Nieves, C Rua, A AF Martinez, Alexuan Nieves, Christian Rua, Armando TI Implementing Raspberry Pi 3 and Python in the Physics Laboratory SO PHYSICS TEACHER LA English DT Article AB Many physics projects recently designed for high school teachers use Arduino as the main tool for managing sensors and data acquisition. This is a low-cost integrated development environment programmed with a simplified version of the C++ language. In comparison, the Raspberry Pi 3 platform, which also allows for the design of physics projects, can expose students to the use of the most trending language in the field: Python. With this in mind, we have developed a project to measure the acceleration of objects due to gravity near the Earth's surface using a Raspberry Pi 3 computer and Python as the programming language. It utilizes an infrared sensor connected to the Raspberry Pi 3, a monitor with an HDMI connection, a mouse, and a keyboard. The experiment yields results with a percentage difference of 2.8% on average for an estimated value of the gravitational acceleration of 9.8 m/s(2). C1 [Martinez, Alexuan; Nieves, Christian; Rua, Armando] Univ Puerto Rico, Mayaguez, PR 00682 USA. RP Martinez, A (corresponding author), Univ Puerto Rico, Mayaguez, PR 00682 USA. FU UPRM College of Arts and Sciences; PR-LSAMP, NSF [HRD-2008186] FX The authors are pleased to acknowledge support for this work by the UPRM College of Arts and Sciences and PR-LSAMP, NSF Award No. HRD-2008186. CR Braun N., 2017, Journal of Physics: Conference Series, V898, DOI 10.1088/1742-6596/898/7/072020 Broberg D, 2018, COMPUT PHYS COMMUN, V226, P165, DOI 10.1016/j.cpc.2018.01.004 Carvalho PS, 2016, PHYS TEACH, V54, P244, DOI 10.1119/1.4944370 Galeriu C, 2013, PHYS TEACH, V51, P156, DOI 10.1119/1.4792011 Hahn MD, 2019, PHYS TEACH, V57, P114, DOI 10.1119/1.5088475 Hernandez D, 2015, J PHYS CONF SER, V582, DOI 10.1088/1742-6596/582/1/012007 McCaughey M, 2017, PHYS TEACH, V55, P274, DOI 10.1119/1.4981032 Mumford Stuart J., 2015, Computational Science and Discovery, V8, DOI 10.1088/1749-4699/8/1/014009 Price-Whelan AM, 2018, ASTRON J, V156, DOI 10.3847/1538-3881/aabc4f Wicaksono M. F., 2020, IOP Conference Series: Materials Science and Engineering, V879, DOI 10.1088/1757-899X/879/1/012022 NR 10 TC 0 Z9 0 U1 2 U2 2 PU AMER ASSN PHYSICS TEACHERS PI COLLEGE PK PA 5110 ROANOKE PLACE SUITE 101, COLLEGE PK, MD 20740 USA SN 0031-921X EI 1943-4928 J9 PHYS TEACH JI Phys. Teach. PD FEB PY 2021 VL 59 IS 2 BP 134 EP 135 DI 10.1119/10.0003472 PG 2 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA QK1JR UT WOS:000620136400023 DA 2021-04-21 ER PT J AU George, LT Kale, R Wadadekar, Y AF George, Lijo T. Kale, Ruta Wadadekar, Yogesh TI An upper limit calculator (UL-CALC) for undetected extended sources with radio interferometers: radio halo upper limits SO EXPERIMENTAL ASTRONOMY LA English DT Article; Early Access DE Galaxies:clusters:general; Galaxies: clusters: intracluster medium; Radiation mechanisms: non-thermal; Radio continuum:general; Methods:data analysis; Software: data analysis AB Radio halos are diffuse, extended sources of radio emission detected primarily in massive, merging galaxy clusters. In smaller and/or relaxed clusters, where no halos are detected, one can instead place upper limits to a possible radio emission. Detections and upper limits are both crucial to constrain theoretical models for the generation of radio halos. The upper limits are model dependent for radio interferometers and thus the process of obtaining these is tedious to perform manually. In this paper, we present a Python based tool to automate this process of estimating the upper limits. The tool allows users to create radio halos with defined parameters like physical size, redshift and brightness model. A family of radio halo models with a range of flux densities, decided based on the rms noise of the image, is then injected into the parent visibility file and imaged. The halo injected image and the original image are then compared to check for the radio halo detection using a threshold on the detected excess flux density. Injections separated by finer differences in the flux densities are carried out once the coarse range where the upper limit is likely to be located has been identified. The code recommends an upper limit and provides a range of images for manual inspection. The user may then decide on the upper limit. We discuss the advantages and limitations of this tool. A wider usage of this tool in the context of the ongoing and upcoming all sky surveys with the LOFAR and SKA is proposed with the aim of constraining the physics of radio halo formation. The tool is publicly available at . C1 [George, Lijo T.; Kale, Ruta; Wadadekar, Yogesh] Tata Inst Fundamental Res, Natl Ctr Radio Astrophys, Post Bag 3, Pune 411007, Maharashtra, India. RP George, LT (corresponding author), Tata Inst Fundamental Res, Natl Ctr Radio Astrophys, Post Bag 3, Pune 411007, Maharashtra, India. EM ltg@ncra.tifr.res.in FU Department of Atomic Energy, Government of IndiaDepartment of Atomic Energy (DAE) [12-RD-TFR-5.02-0700]; DST-INSPIRE Faculty Award of the Government of India FX We acknowledge the support of the Department of Atomic Energy, Government of India, under project no. 12-R&D-TFR-5.02-0700. We thank the staff of the GMRT that made these observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. RK acknowledges support from the DST-INSPIRE Faculty Award of the Government of India. This research made use of Astropy,3 a community-developed core Python package for Astronomy [1, 23]. This research made use of Astroquery, an astropy affiliated package that contains a collection of tools to access online Astronomical data [11]. CR Ade PAR, 2016, ASTRON ASTROPHYS, V594, DOI 10.1051/0004-6361/201525830 Bonafede A, 2017, MON NOT R ASTRON SOC, V470, P3465, DOI 10.1093/mnras/stx1475 Bonafede A., 2015, ADV ASTROPHYSICS SQU, P95 Brunetti G, 2007, ASTROPHYS J, V670, pL5, DOI 10.1086/524037 Brunetti G, 2016, MON NOT R ASTRON SOC, V458, P2584, DOI 10.1093/mnras/stw496 Condon JJ, 1998, ASTRON J, V115, P1693, DOI 10.1086/300337 Deo DK, 2017, EXP ASTRON, V44, P165, DOI 10.1007/s10686-017-9557-y Feretti L, 2001, ASTRON ASTROPHYS, V373, P106, DOI 10.1051/0004-6361:20010581 Feretti L, 2012, ASTRON ASTROPHYS REV, V20, DOI 10.1007/s00159-012-0054-z Ginsburg A, 2019, ASTRON J, V157, DOI 10.3847/1538-3881/aafc33 Giovannini G, 1999, NEW ASTRON, V4, P141, DOI 10.1016/S1384-1076(99)00018-4 Intema HT, 2009, ASTRON ASTROPHYS, V501, P1185, DOI 10.1051/0004-6361/200811094 Intema H.T, 2014, ARXIV14024889 Johnston-Hollitt M., 2017, ARXIV170604930 Johnston-Hollitt M., 2015, ADV ASTROPHYSICS SQU, P92 Kale R, 2015, ASTRON ASTROPHYS, V579, DOI 10.1051/0004-6361/201525695 Kale R, 2013, ASTRON ASTROPHYS, V557, DOI 10.1051/0004-6361/201321515 McMullin J. P., 2007, CASA ARCHITECTURE AP, P127 Murgia M, 2009, ASTRON ASTROPHYS, V499, P679, DOI 10.1051/0004-6361/200911659 Nayana AJ, 2017, MON NOT R ASTRON SOC, V467, P155, DOI 10.1093/mnras/stx044 Price-Whelan AM, 2018, ASTRON J, V156, DOI 10.3847/1538-3881/aabc4f Shimwell TW, 2017, ASTRON ASTROPHYS, V598, DOI 10.1051/0004-6361/201629313 Thompson AR, 2017, ASTRON ASTROPHYS LIB, P1, DOI 10.1007/978-3-319-44431-4 van Weeren RJ, 2019, SPACE SCI REV, V215, DOI 10.1007/s11214-019-0584-z Venturi T, 2008, ASTRON ASTROPHYS, V484, P327, DOI 10.1051/0004-6361:200809622 Venturi T, 2007, ASTRON ASTROPHYS, V463, P937, DOI 10.1051/0004-6361:20065961 NR 26 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. DI 10.1007/s10686-020-09692-7 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA QA6ZJ UT WOS:000613591200002 DA 2021-04-21 ER PT J AU Grattarola, D Alippi, C AF Grattarola, Daniele Alippi, Cesare TI Graph Neural Networks in TensorFlow and Keras with Spektral SO IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE LA English DT Article AB Graph neural networks have enabled the application of deep learning to problems that can be described by graphs, which are found throughout the different fields of science, from physics to biology, natural language processing, telecommunications or medicine. In this paper we present Spektral, an open-source Python library for building graph neural networks with TensorFlow and the Keras application programming interface. Spektral implements a large set of methods for deep learning on graphs, including message-passing and pooling operators, as well as utilities for processing graphs and loading popular benchmark datasets. The purpose of this library is to provide the essential building blocks for creating graph neural networks, focusing on the guiding principles of user-fr iendliness and quick prototyping on which Keras is based. Spektral is, therefore, suitable for absolute beginners and expert deep learning practitioners alike. In this work, we present an overview of Spektral's features and report the performance of the methods implemented by the library in scenarios of node classification, graph classification, and graph regression. C1 [Grattarola, Daniele; Alippi, Cesare] Univ Svizzera Italiana, Lugano, Switzerland. [Alippi, Cesare] Politecn Milan, Milan, Italy. RP Grattarola, D (corresponding author), Univ Svizzera Italiana, Lugano, Switzerland. EM daniele.grattarola@usi.ch CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Allamanis M., 2017, ARXIV171100740 Battaglia P., 2016, ADV NEURAL INFORM PR, P4502 Battaglia P.W., 2018, ARXIV180601261 Berg R. v. d., 2017, ARXIV1706 Bianchi F.M., 2019, ARXIV190101343 Bianchi F. M., 2020, P 37 INT C MACH LEAR Cangea C., 2018, ARXIV181101287 Chollet F., 2015, KERAS De Cao N., 2018, ARXIV180809920 Defferrard M., 2016, ADV NEURAL INFORM PR, P3844 Do K, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P750, DOI 10.1145/3292500.3330958 Du Jian, 2017, ARXIV171010370 Farrell S., 2018, NOVEL DEEP LEARNING Fernandes P., 2018, ARXIV181101824 Fey M., 2019, ARXIV190302428 Gainza P, 2020, NAT METHODS, V17, P184, DOI 10.1038/s41592-019-0666-6 Gao H, 2019, GRAPH U NETS Gilmer J., 2017, ARXIV170401212 Hamilton W., 2017, ADV NEURAL INF PROCE, P1024 Hamrick J.B., 2018, ARXIV180601203 Ivanov S., 2019, UNDERSTANDING ISOMOR Keras, 2019, WHY USE KERAS Kersting K., 2016, BENCHMARK DATA SETS Kipf T., 2018, ARXIV180204687 Kipf T. N., 2016, INT C LEARN REPR ICL Klicpera J., 2019, IINT C LEARN REPR IC Klicpera J., 2020, ARXIV200303123 Lee J., 2019, SELF ATTENTION GRAPH Li Y., 2015, ARXIV151105493 Li Y., 2017, ARXIV170701926 Ramakrishnan R, 2014, SCI DATA, V1, DOI 10.1038/sdata.2014.22 Sanchez-Gonzalez A., 2018, ARXIV180601242 Santoro A., 2017, ADV NEURAL INFORM PR, V30, P4967 Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605 Schlichtkrull Michael, 2018, The Semantic Web. 15th International Conference, ESWC 2018. Proceedings: LNCS 10843, P593, DOI 10.1007/978-3-319-93417-4_38 Sen P, 2008, AI MAG, V29, P93, DOI 10.1609/aimag.v29i3.2157 Shang JY, 2019, THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, P1126 Shchur Oleksandr, 2018, ARXIV181105868 Simonovsky Martin, 2017, P IEEE C COMP VIS PA Stark C, 2006, NUCLEIC ACIDS RES, V34, pD535, DOI 10.1093/nar/gkj109 Thekumparampil Kiran K, 2018, ARXIV180303735 Velickovc P., 2017, ARXIV171010903 Wang M., 2019, ARXIV190901315 Wang Y., 2018, ARXIV180107829 Xie T, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.145301 Xu K., 2019, INT C LEARN REPR ICL Ying R., 2018, ARXIV180608804 Ying R, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P974, DOI 10.1145/3219819.3219890 You J, 2018, ARXIV180208773 Zambaldi V., 2018, ARXIV180601830 Zhang M., 2018, P AAAI C ART INT Zitnik M, 2017, BIOINFORMATICS, V33, pI190, DOI 10.1093/bioinformatics/btx252 NR 53 TC 0 Z9 0 U1 4 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1556-603X EI 1556-6048 J9 IEEE COMPUT INTELL M JI IEEE Comput. Intell. Mag. PD FEB PY 2021 VL 16 IS 1 BP 99 EP 106 DI 10.1109/MCI.2020.3039072 PG 8 WC Computer Science, Artificial Intelligence SC Computer Science GA PS2ZO UT WOS:000607796100011 OA Bronze DA 2021-04-21 ER PT J AU Kuhbach, M Bajaj, P Zhao, H Celik, MH Jagle, EA Gault, B AF Kuehbach, Markus Bajaj, Priyanshu Zhao, Huan Celik, Murat H. Jaegle, Eric A. Gault, Baptiste TI On strong-scaling and open-source tools for analyzing atom probe tomography data SO NPJ COMPUTATIONAL MATERIALS LA English DT Article AB The development of strong-scaling computational tools for high-throughput methods with an open-source code and transparent metadata standards has successfully transformed many computational materials science communities. While such tools are mature already in the condensed-matter physics community, the situation is still very different for many experimentalists. Atom probe tomography (APT) is one example. This microscopy and microanalysis technique has matured into a versatile nano-analytical characterization tool with applications that range from materials science to geology and possibly beyond. Here, data science tools are required for extracting chemo-structural spatial correlations from the reconstructed point cloud. For APT and other high-end analysis techniques, post-processing is mostly executed with proprietary software tools, which are opaque in their execution and have often limited performance. Software development by members of the scientific community has improved the situation but compared to the sophistication in the field of computational materials science several gaps remain. This is particularly the case for open-source tools that support scientific computing hardware, tools which enable high-throughput workflows, and open well-documented metadata standards to align experimental research better with the fair data stewardship principles. To this end, we introduce paraprobe, an open-source tool for scientific computing and high-throughput studying of point cloud data, here exemplified with APT. We show how to quantify uncertainties while applying several computational geometry, spatial statistics, and clustering tasks for post-processing APT datasets as large as two billion ions. These tools work well in concert with Python and HDF5 to enable several orders of magnitude performance gain, automation, and reproducibility. C1 [Kuehbach, Markus; Bajaj, Priyanshu; Zhao, Huan; Jaegle, Eric A.; Gault, Baptiste] Max Planck Inst Eisenforsch GmbH MPIE, Dusseldorf, Germany. [Bajaj, Priyanshu] M4p Mat Solut GmbH, Magdeburg, Germany. [Celik, Murat H.] Julich Supercomp Ctr JSC, Inst Adv Simulat IAS, Julich, Germany. [Jaegle, Eric A.] Univ Bundeswehr Munchen, Neubiberg, Germany. [Gault, Baptiste] Imperial Coll London, Royal Sch Mines, Dept Mat, London, England. RP Kuhbach, M (corresponding author), Max Planck Inst Eisenforsch GmbH MPIE, Dusseldorf, Germany. EM m.kuehbach@mpie.de OI Gault, Baptiste/0000-0002-4934-0458; Zhao, Huan/0000-0001-8840-084X FU Max-Planck-Society's Research Network on Big-Data-Driven Materials Science; German Research FoundationGerman Research Foundation (DFG) [RO 2342/8-1] FX M.K. gratefully acknowledges the funding and computing time grants through BiGmax, the Max-Planck-Society's Research Network on Big-Data-Driven Materials Science and the funding from the German Research Foundation through project RO 2342/8-1. The authors appreciate computer administration advice from Berthold Beckschafer and Achim Kuhl. The work catalyzed from scientific discussions with Andrew Breen, Baptiste Gault, Leigh Stephenson, Jan Janssen, and Franz Roters on how to professionalize tools for APT. CR Amdahl G. M, 1967, AFIPS C P, P483, DOI DOI 10.1145/1465482.1465560 ASTM International, 2015, ISOASTM5290015 Balasubramanian L., 2012, INT J COMPUT APPL, V42, P35, DOI DOI 10.5120/5819-8132 Barnes JP, 2018, SCRIPTA MATER, V148, P91, DOI 10.1016/j.scriptamat.2017.05.012 Bokeh, 2020, BOK PYTH LIB INT VIS Boll T, 2007, ULTRAMICROSCOPY, V107, P796, DOI 10.1016/j.ultramic.2007.02.011 Breen A, 2013, ULTRAMICROSCOPY, V132, P92, DOI 10.1016/j.ultramic.2013.02.014 Brinkhoff T, 1996, PROC INT CONF DATA, P258, DOI 10.1109/ICDE.1996.492114 Cameron ME, 2004, MATH VISUAL, P3 Cecen A, 2018, ACTA MATER, V158, P53, DOI 10.1016/j.actamat.2018.07.056 Ceguerra AV, 2013, CURR OPIN SOLID ST M, V17, P224, DOI 10.1016/j.cossms.2013.09.006 Chandra Robit, 2001, PARALLEL PROGRAMMING Chang YH, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-08752-7 Cojocaru-Miredin O, 2018, SCRIPTA MATER, V148, P106, DOI 10.1016/j.scriptamat.2017.03.034 Cressie NAC., 1991, STAT SPATIAL DATA Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/nmat3568, 10.1038/NMAT3568] Day AC., 2019, MICROSC MICROANAL, V25, P338, DOI [10.1017/S1431927619002423, DOI 10.1017/S1431927619002423] De Geuser F, 2011, MICROSC RES TECHNIQ, V74, P257, DOI 10.1002/jemt.20899 De Geuser F, 2020, ACTA MATER, V188, P406, DOI 10.1016/j.actamat.2020.02.023 Draxl C, 2020, HDB MAT MODELING EDELSBRUNNER H, 1994, ACM T GRAPHIC, V13, P43, DOI 10.1145/174462.156635 Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226 Felfer P, 2015, ULTRAMICROSCOPY, V150, P30, DOI 10.1016/j.ultramic.2014.11.015 Felfer P, 2016, ULTRAMICROSCOPY, V169, P62, DOI 10.1016/j.ultramic.2016.07.008 Felfer P, 2015, ULTRAMICROSCOPY, V159, P438, DOI 10.1016/j.ultramic.2015.06.002 Felfer P, 2013, ULTRAMICROSCOPY, V132, P100, DOI 10.1016/j.ultramic.2013.03.004 Gault B, 2011, ULTRAMICROSCOPY, V111, P448, DOI 10.1016/j.ultramic.2010.11.016 Gault B., 2012, ATOM PROBE MICROSCOP Geiser BP, 2007, MICROSC MICROANAL, V13, P437, DOI 10.1017/S1431927607070948 Ghamarian I, 2019, ULTRAMICROSCOPY, V200, P28, DOI 10.1016/j.ultramic.2019.01.011 Giddings AD, 2018, SCRIPTA MATER, V148, P82, DOI 10.1016/j.scriptamat.2017.09.004 Gin S, 2017, GEOCHIM COSMOCHIM AC, V202, P57, DOI 10.1016/j.gca.2016.12.029 Gotz M., 2015, P WORKSH MACH LEARN, P1 Gwalani H, 2019, MODEL SIMUL MATER SC, V27, DOI 10.1088/1361-651X/ab4b3d Haley D, 2015, ULTRAMICROSCOPY, V159, P338, DOI 10.1016/j.ultramic.2015.03.005 Haley D, 2009, PHILOS MAG, V89, P925, DOI 10.1080/14786430902821610 Haley D, 2020, 3DEPICT VISUALISATIO Haley D, 2020, APTTOOLS Hellman OC, 2000, MICROSC MICROANAL, V6, P437, DOI 10.1007/s100050010051 Hennessy J. L., 2012, COMPUTER ARCHITECTUR Herbig M, 2018, SCRIPTA MATER, V148, P98, DOI 10.1016/j.scriptamat.2017.03.017 Himanen L, 2019, ADV SCI, V6, DOI 10.1002/advs.201900808 Hono K, 1999, ACTA MATER, V47, P3127, DOI 10.1016/S1359-6454(99)00175-5 Hudson D, 2011, ULTRAMICROSCOPY, V111, P480, DOI 10.1016/j.ultramic.2010.11.007 Hyde JM, 2000, P MRS FALL M 2000 S, V650, P6, DOI DOI 0.1557/PROC-650-R6.6 Jagle EA, 2014, MICROSC MICROANAL, V20, P1662, DOI 10.1017/S1431927614013294 Janssen J, 2019, COMP MATER SCI, V163, P24, DOI 10.1016/j.commatsci.2018.07.043 Katnagallu S, 2018, MATER CHARACT, V146, P307, DOI 10.1016/j.matchar.2018.02.040 Keutgen J., 2020, MICROSC MICROANAL, P1 Kirchmayer A, 2020, ADV ENG MATER, V22, DOI 10.1002/adem.202000149 Kontis P, 2018, SCRIPTA MATER, V145, P76, DOI 10.1016/j.scriptamat.2017.10.005 Kuhbach M, 2020, MODEL SIMUL MATER SC, V28, DOI 10.1088/1361-651X/ab7f8c Kuhbach M, 2019, MICROSC MICROANAL, V25, P320, DOI 10.1017/S1431927618016252 Kuhbach M, 2020, OPEN STRONG SCALING Kuhbach M, 2020, **DROPPED REF** Kuzmina M, 2015, SCIENCE, V349, P1080, DOI 10.1126/science.aab2633 Larson D.J., 2013, LOCAL ELECTRODE ATOM Lefebvre W., 2016, ATOM PROBE TOMOGRAPH Li T, 2018, NAT CATAL, V1, P300, DOI 10.1038/s41929-018-0043-3 Lu H, 2018, INT PARALL DISTRIB P, P54, DOI 10.1109/IPDPS.2018.00016 Marquis E. A., 2002, MICROSTRUCTURAL EVOL McCarroll IE, 2020, MATER TODAY ADV, V7, DOI 10.1016/j.mtadv.2020.100090 Miller M.K., 1996, ATOM PROBE FIELD ION Montoya JH, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0017-z Moody MP, 2008, MICROSC RES TECHNIQ, V71, P542, DOI 10.1002/jemt.20582 Moody MP, 2009, ULTRAMICROSCOPY, V109, P815, DOI 10.1016/j.ultramic.2009.03.016 Morozov D, 2016, SC '16: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, P728, DOI 10.1109/SC.2016.61 Okabe A., 2000, SPATIAL TESSELLATION Patwary MMA, 2016, INT PARALL DISTRIB P, P494, DOI 10.1109/IPDPS.2016.57 Perea DE, 2016, SCI REP-UK, V6, DOI 10.1038/srep22321 Philippe T, 2010, ULTRAMICROSCOPY, V110, P862, DOI 10.1016/j.ultramic.2010.03.004 Piazolo S, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10490 Pizzi G, 2016, COMP MATER SCI, V111, P218, DOI 10.1016/j.commatsci.2015.09.013 Prabhat, 2014, HIGH PERFORMANCE PAR, V1 Reinhard DA., 2019, MICROSC MICROANAL, V25, P302, DOI [10.1017/S1431927619002241, DOI 10.1017/S1431927619002241] Ringer SP, 2020, ATOM PROBE WORKBENCH Robson JD, 2004, ACTA MATER, V52, P4669, DOI 10.1016/j.actamat.2004.06.024 Rusitzka KAK, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-36110-y Saxey DW, 2018, SCRIPTA MATER, V148, P115, DOI 10.1016/j.scriptamat.2017.11.014 Saxey DW, 2011, ULTRAMICROSCOPY, V111, P473, DOI 10.1016/j.ultramic.2010.11.021 Schreiber DK, 2018, ULTRAMICROSCOPY, V194, P89, DOI 10.1016/j.ultramic.2018.07.010 Seal Sudip, 2008, 2008 37th International Conference on Parallel Processing (ICPP), P338, DOI 10.1109/ICPP.2008.73 Seal SK, 2014, PROCEEDINGS OF 2014 IEEE INTERNATIONAL PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), P1180, DOI 10.1109/IPDPSW.2014.133 Sepehri-Amin H, 2017, ACTA MATER, V126, P1, DOI 10.1016/j.actamat.2016.12.050 Snir M., 1998, MPI THE COMPLETE REF, V1 Stephenson LT, 2007, MICROSC MICROANAL, V13, P448, DOI 10.1017/S1431927607070900 Sudbrack CK, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.212101 The CGAL Project, 2018, CGAL USER REFERENCE, V4 Ulfig RM., 2017, MICROSC MICROANAL, V23, P40, DOI [10.1017/S1431927617000885, DOI 10.1017/S1431927617000885] Valley JW, 2014, NAT GEOSCI, V7, P219, DOI [10.1038/ngeo2075, 10.1038/NGEO2075] Voyles PM, 2002, NATURE, V416, P826, DOI 10.1038/416826a Wei Y, 2020, MACHINE LEARNING ENH White LF, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15597 Wilkinson MD, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.18 Yao L, 2010, PHIL MAG LETT, V90, P121, DOI 10.1080/09500830903472997 Zelenty J, 2017, MICROSC MICROANAL, V23, P269, DOI 10.1017/S1431927617000320 Zhao H, 2018, ACTA MATER, V156, P318, DOI 10.1016/j.actamat.2018.07.003 Zhao H, 2018, SCRIPTA MATER, V154, P106, DOI 10.1016/j.scriptamat.2018.05.024 NR 98 TC 0 Z9 0 U1 0 U2 0 PU NATURE RESEARCH PI BERLIN PA HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY EI 2057-3960 J9 NPJ COMPUT MATER JI npj Comput. Mater. PD JAN 29 PY 2021 VL 7 IS 1 AR 21 DI 10.1038/s41524-020-00486-1 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA QE7QY UT WOS:000616403300005 OA DOAJ Gold DA 2021-04-21 ER PT J AU Bishnoi, S Ravinder, R Grover, HS Kodamana, H Krishnan, NMA AF Bishnoi, Suresh Ravinder, R. Grover, Hargun Singh Kodamana, Hariprasad Krishnan, N. M. Anoop TI Scalable Gaussian processes for predicting the optical, physical, thermal, and mechanical properties of inorganic glasses with large datasets SO MATERIALS ADVANCES LA English DT Article ID DESIGN; DISSOLUTION; MODEL AB Among machine learning approaches, Gaussian process regression (GPR) is an extremely useful technique to predict composition-property relationships in glasses. The GPR's main advantage over other machine learning methods is its inherent ability to provide the standard deviation of the predictions. However, the method remains restricted to small datasets due to the substantial computational cost associated with it. Herein, using a scalable GPR algorithm, namely, kernel interpolation for scalable structured Gaussian processes (KISS-GP) along with massively scalable GP (MSGP), we develop composition-property models for inorganic glasses. The models are based on a large dataset with more than 100 000 glass compositions, 37 components, and nine crucial properties: density, Young's, shear, bulk moduli, thermal expansion coefficient, Vickers' hardness, refractive index, glass transition temperature, and liquidus temperature. We show that the models developed here are superior to the state-of-the-art machine learning models. We also demonstrate that the GPR models can reasonably capture the underlying composition-dependent physics, even in the regions where there are very few training data. Finally, to accelerate glass design, the models developed here are shared publicly as part of a package, namely, Python for Glass Genomics (PyGGi, see: http://pyggi.iitd.ac.in). C1 [Bishnoi, Suresh; Ravinder, R.; Grover, Hargun Singh; Krishnan, N. M. Anoop] Indian Inst Technol Delhi, Dept Civil Engn, New Delhi 110016, India. [Kodamana, Hariprasad] Indian Inst Technol Delhi, Dept Chem Engn, New Delhi 110016, India. [Krishnan, N. M. Anoop] Indian Inst Technol Delhi, Dept Mat Sci & Engn, New Delhi 110016, India. RP Krishnan, NMA (corresponding author), Indian Inst Technol Delhi, Dept Civil Engn, New Delhi 110016, India.; Kodamana, H (corresponding author), Indian Inst Technol Delhi, Dept Chem Engn, New Delhi 110016, India.; Krishnan, NMA (corresponding author), Indian Inst Technol Delhi, Dept Mat Sci & Engn, New Delhi 110016, India. EM kadamana@iitd.ac.in; krishnan@iitd.ac.in RI Mana, Anoop Krishnan Naduvath/AAI-6494-2020 OI Mana, Anoop Krishnan Naduvath/0000-0003-1500-4947 FU Department of Science and Technology, India, under the INSPIRE faculty schemeDepartment of Science & Technology (India)Department of Science & Technology (DOST), Philippines [DST/INSPIRE/04/2016/002774]; DST SERB Early Career Award [ECR/2018/002228] FX NMAK acknowledges the financial support for this research provided by the Department of Science and Technology, India, under the INSPIRE faculty scheme (DST/INSPIRE/04/2016/002774) and DST SERB Early Career Award (ECR/2018/002228). The authors thank the IIT Delhi HPC facility for providing the computational and storage resources. CR Alcobaca E, 2020, ACTA MATER, V188, P92, DOI 10.1016/j.actamat.2020.01.047 Bassman L, 2018, NPJ COMPUT MATER, V4, DOI 10.1038/s41524-018-0129-0 Bishnoi S, 2019, J NON-CRYST SOLIDS, V524, DOI 10.1016/j.jnoncrysol.2019.119643 Brauer DS, 2007, J NON-CRYST SOLIDS, V353, P263, DOI 10.1016/j.jnoncrysol.2006.12.005 Cassar DR, 2018, ACTA MATER, V159, P249, DOI 10.1016/j.actamat.2018.08.022 Gardner J., 2018, ADV NEURAL INFORM PR, P7576 Gopakumar AM, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-21936-3 Gu GX, 2018, EXTREME MECH LETT, V18, P19, DOI 10.1016/j.eml.2017.10.001 Han TH, 2020, ACTA BIOMATER, V107, P286, DOI 10.1016/j.actbio.2020.02.037 Hauseux P, 2018, APPL MATH MODEL, V62, P86, DOI 10.1016/j.apm.2018.04.021 Hu YJ, 2020, NPJ COMPUT MATER, V6, DOI 10.1038/s41524-020-0291-z Kasimuthumaniyan S, 2020, J NON-CRYST SOLIDS, V534, DOI 10.1016/j.jnoncrysol.2020.119955 Krishnan NMA, 2018, J NON-CRYST SOLIDS, V487, P37, DOI 10.1016/j.jnoncrysol.2018.02.023 Lillington JNP, 2020, J NON-CRYST SOLIDS, V546, DOI 10.1016/j.jnoncrysol.2020.120276 Liu H, 2019, NPJ MAT DEGRAD, V3, DOI 10.1038/s41529-019-0094-1 Lu X., 2020, SOLIDS, P120490 Lu XN, 2019, J PHYS CHEM B, V123, P1412, DOI 10.1021/acs.jpcb.8b11108 Makishima A., 1973, Journal of Non-Crystalline Solids, V12, P35, DOI 10.1016/0022-3093(73)90053-7 Mauro JC, 2016, CHEM MATER, V28, P4267, DOI 10.1021/acs.chemmater.6b01054 Montazerian M, 2020, INT MATER REV, V65, P297, DOI 10.1080/09506608.2019.1694779 Pleiss G., 2018, ARXIV180306058 Rappel H, 2019, EUR J MECH A-SOLID, V75, P169, DOI 10.1016/j.euromechsol.2019.01.001 Rappel H, 2019, PROBABILIST ENG MECH, V55, P28, DOI 10.1016/j.probengmech.2018.08.004 Rappel H, 2018, MECH TIME-DEPEND MAT, V22, P221, DOI 10.1007/s11043-017-9361-0 Rasmussen CE, 2004, LECT NOTES ARTIF INT, V3176, P63, DOI 10.1007/978-3-540-28650-9_4 Ravinder R, 2020, MATER HORIZ, V7, P1819, DOI 10.1039/d0mh00162g SILVERMAN BW, 1985, J R STAT SOC B, V47, P1 Smedskjaer MM, 2011, J PHYS CHEM B, V115, P12930, DOI 10.1021/jp208796b Snelson E, 2006, P ADV NEURAL INF PRO, P1257 Stevensson B, 2018, PHYS CHEM CHEM PHYS, V20, P8192, DOI 10.1039/c7cp08593a Tewari A., 2020, DATA CENTRIC ENG, V1, pe8 Varshneya A., 2013, FUNDAMENTALS INORGAN, V2nd Wang MY, 2018, J NON-CRYST SOLIDS, V498, P294, DOI 10.1016/j.jnoncrysol.2018.04.063 Wilkinson Collin J., 2019, Journal of Non-Crystalline Solids: X, V2, P5, DOI 10.1016/j.nocx.2019.100019 Wilson A, 2015, INT C MACH LEARN, P1775 Wilson A. G., 2005, ARXIV151101870 Yang K, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-45344-3 Yu YT, 2018, J NON-CRYST SOLIDS, V489, P16, DOI 10.1016/j.jnoncrysol.2018.03.015 NR 38 TC 1 Z9 1 U1 0 U2 0 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND EI 2633-5409 J9 MATER ADV JI Mater. Adv. PD JAN 7 PY 2021 VL 2 IS 1 BP 477 EP 487 DI 10.1039/d0ma00764a PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA PY5ML UT WOS:000612088000032 OA DOAJ Gold DA 2021-04-21 ER PT J AU Bessagnet, B Menut, L Beauchamp, M AF Bessagnet, Bertrand Menut, Laurent Beauchamp, Maxime TI An N-dimensional Fortran interpolation programme (NterGeo.v2020a) for geophysics sciences - application to a back-trajectory programme (Backplumes.v2020r1) using CHIMERE or WRF outputs SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID MODEL; TRANSPORT; URBAN AB An interpolation programme coded in Fortran for irregular N-dimensional cases is presented and freely available. The need for interpolation procedures over irregular meshes or matrixes with interdependent input data dimensions is frequent in geophysical models. Also, these models often embed look-up tables of physics or chemistry modules. Fortran is a fast and powerful language and is highly portable. It is easy to interface models written in Fortran with each other. Our programme does not need any libraries; it is written in standard Fortran and tested with two usual compilers. The programme is fast and competitive compared to current Python libraries. A normalization option parameter is provided when considering different types of units on each dimension. Some tests and examples are provided and available in the code package. Moreover, a geophysical application embedding this interpolation programme is provided and discussed; it consists in determining back trajectories using chemistry-transport or mesoscale meteorological model outputs, respectively, from the widely used CHIMERE and Weather Research and Forecasting (WRF) models. C1 [Bessagnet, Bertrand; Menut, Laurent] Sorbonne Univ, PSL Univ, CNRS, LMD IPSL,Ecole Polytech,Inst Polytech Paris,ENS, F-91128 Palaiseau, France. [Bessagnet, Bertrand] Citepa, Tech Reference Ctr Air Pollut & Climate Change, 42 Rue Paradis, F-75010 Paris, France. [Beauchamp, Maxime] Lab STICC UMR CNRS, IMT Atlantique, 655 Ave TechnopOle, F-29280 Plouzane, France. RP Bessagnet, B (corresponding author), Sorbonne Univ, PSL Univ, CNRS, LMD IPSL,Ecole Polytech,Inst Polytech Paris,ENS, F-91128 Palaiseau, France.; Bessagnet, B (corresponding author), Citepa, Tech Reference Ctr Air Pollut & Climate Change, 42 Rue Paradis, F-75010 Paris, France. EM bertrand.bessagnet@lmd.polytechnique.fr RI Bessagnet, Bertrand/AAB-9241-2019; MENUT, Laurent/O-2296-2016 OI Bessagnet, Bertrand/0000-0003-2062-4681; MENUT, Laurent/0000-0001-9776-0812 FU DGA (French Directorate General of Armaments) [2018 60 0074] FX This research was funded by the DGA (French Directorate General of Armaments; grant no. 2018 60 0074) in the framework of the NETDESA project. CR Donner LJ, 2011, J CLIMATE, V24, P3484, DOI 10.1175/2011JCLI3955.1 Flamant C, 2018, ATMOS CHEM PHYS, V18, P12363, DOI 10.5194/acp-18-12363-2018 HARDY RL, 1971, J GEOPHYS RES, V76, P1905, DOI 10.1029/JB076i008p01905 HARDY RL, 1990, COMPUT MATH APPL, V19, P163, DOI 10.1016/0898-1221(90)90272-L HOFSTRA N, 2008, J GEOPHYS RES-ATMOS, V113, DOI DOI 10.1029/2008JD010100 Hong SY, 2006, MON WEATHER REV, V134, P2318, DOI 10.1175/MWR3199.1 Kouatchou J., 2018, NASA MODELING GURU B Lin JC, 2003, J GEOPHYS RES-ATMOS, V108, DOI 10.1029/2002JD003161 Mailler S, 2016, ATMOS CHEM PHYS, V16, P1219, DOI 10.5194/acp-16-1219-2016 Mailler S, 2017, GEOSCI MODEL DEV, V10, P2397, DOI 10.5194/gmd-10-2397-2017 Menut L, 2015, ATMOS CHEM PHYS, V15, P7897, DOI 10.5194/acp-15-7897-2015 Menut L., 2020, BACKPLUMES PROGRAM V Nehrkorn T, 2010, METEOROL ATMOS PHYS, V107, P51, DOI 10.1007/s00703-010-0068-x Nenes A, 1998, AQUAT GEOCHEM, V4, P123, DOI 10.1023/A:1009604003981 Nenes A, 1999, ATMOS ENVIRON, V33, P1553, DOI 10.1016/S1352-2310(98)00352-5 Pielke R.A., 1984, MESOSCALE METEOROLOG Pisso I, 2019, GEOSCI MODEL DEV, V12, P4955, DOI 10.5194/gmd-12-4955-2019 Rap A, 2009, J ATMOS SCI, V66, P105, DOI 10.1175/2008JAS2626.1 Scipy C., 2014, INTERPOLATE UNSTRUCT Shepard D, 1968, P517, DOI [10.1145/800186.810616, DOI 10.1145/800186.810616] Skamarock W. C., 2008, 1125 NCAR Stein AF, 2015, B AM METEOROL SOC, V96, P2059, DOI 10.1175/BAMS-D-14-00110.1 Stull R. B., 1988, INTRO BOUNDARY LAYER Sun T, 2019, GEOSCI MODEL DEV, V12, P2781, DOI 10.5194/gmd-12-2781-2019 TROEN I, 1986, BOUND-LAY METEOROL, V37, P129, DOI 10.1007/BF00122760 Wessel P, 2019, GEOCHEM GEOPHY GEOSY, V20, P5556, DOI 10.1029/2019GC008515 Zender CS, 2008, ENVIRON MODELL SOFTW, V23, P1338, DOI 10.1016/j.envsoft.2008.03.004 NR 27 TC 0 Z9 0 U1 0 U2 0 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD JAN 7 PY 2021 VL 14 IS 1 BP 91 EP 106 DI 10.5194/gmd-14-91-2021 PG 16 WC Geosciences, Multidisciplinary SC Geology GA PS0VM UT WOS:000607650100002 OA DOAJ Gold DA 2021-04-21 ER PT J AU Mandanici, A Sara, SA Fiumara, G Mandaglio, G AF Mandanici, Andrea Sara, Salvatore Alessandro Fiumara, Giacomo Mandaglio, Giuseppe TI Studying Physics, Getting to Know Python: RC Circuit, Simple Experiments, Coding, and Data Analysis With Raspberry Pi SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article AB Raspberry Pi (RPi) is a well-known single-board computer natively equipped with a Linux-based operating system, Raspbian, and a powerful programming language, Python. In this article, we propose an integrated project on physics and computer science exploiting RPi and Python: a set of lab activities, coding, and discussion related to the study of charging and discharging phases of a capacitor in an RC circuit. In our simple experiments, entirely computer-controlled, the RPi and Python scripts are used to: (i) apply a known constant voltage to the circuit at a desired time; (ii) measure the voltage on selected circuit elements as a function of time; (iii) evaluate and analyze experimental data. This approach is based on inexpensive hardware and open source software. It allows a hands-on experience with electric circuits and with dedicated examples of Python coding. The codes involve Python modules such as Numpy, Scipy, and Matplotlib that prove to be easy to use and efficient for our goals, supporting the choice of Python language for further study or research tasks. C1 [Mandanici, Andrea; Sara, Salvatore Alessandro; Fiumara, Giacomo; Mandaglio, Giuseppe] Univ Messina, Dept MIFT, I-98166 Messina, Italy. RP Mandanici, A (corresponding author), Univ Messina, Dept MIFT, I-98166 Messina, Italy. EM andrea.mandanici@unime.it; alessandro.sara93@gmail.com; giacomo.fiumara@unime.it; giuseppe.mandaglio@unime.it RI Mandanici, Andrea/K-4349-2015 OI Mandanici, Andrea/0000-0002-3238-4948 CR Colbry D, 2020, AUTHOREA, DOI [10.22541/ au.159309337.74459966, DOI 10.22541/AU.159309337.74459966] Galeriu C, 2015, PHYS TEACH, V53, P285, DOI 10.1119/1.4917435 Mada Sanjaya W. S., 2018, Journal of Physics: Conference Series, V1090, DOI 10.1088/1742-6596/1090/1/012015 Malthe-Sorenssen A, 2015, ELEMENTARY MECH USIN, DOI [10.1007/ 978-3-319-19596-4, DOI 10.1007/978-3-319-19596-4] Mandanici Andrea, 2020, Physics Education, V55, DOI 10.1088/1361-6552/ab73d2 Mandanici A, 2018, EUR J PHYS, V39, DOI 10.1088/1361-6404/aad16a Pereira N. S. A., 2016, Physics Education, V51, DOI 10.1088/0031-9120/51/6/065007 Pine D. J, 2019, INTRO PYTHON SCI ENG, DOI [10.1201/9780429506413, DOI 10.1201/9780429506413] Robinson Ian, 2018, Physics Education, V53, DOI 10.1088/1361-6552/aaacb2 Sherwood B. A., 2015, MATTER INTERACTIONS Singh P., 2015, Physics Education, V50, P317, DOI 10.1088/0031-9120/50/3/317 NR 11 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD JAN PY 2021 VL 23 IS 1 BP 93 EP 96 DI 10.1109/MCSE.2020.3037002 PG 4 WC Computer Science, Interdisciplinary Applications SC Computer Science GA QO8XG UT WOS:000623419900011 DA 2021-04-21 ER PT J AU Giese, F Konstandin, T Schmitz, K van de Vis, J AF Giese, Felix Konstandin, Thomas Schmitz, Kai van de Vis, Jorinde TI Model-independent energy budget for LISA SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE cosmological phase transitions; gravitational waves / sources; particle physics cosmology connection AB We provide an easy method to obtain the kinetic energy fraction in gravitational waves, generated during a cosmological first-order phase transition, as a function of only the wall velocity and quantities that can be determined from the particle physics model at the nucleation temperature. This generalizes recent work that achieved this goal for detonations. Here we present the corresponding results for deflagrations and hybrids. Unlike for detonations, the sound speed in the symmetric phase also enters the analysis. We perform a detailed comparison between our model-independent approach and other approaches in the literature. We provide a Python code snippet to determine the kinetic energy fraction K as a function of the wall velocity, the two speeds of sound and the strength parameter of the phase transition. We also assess how realistic sizable deviations in speed of sound are close to the phase transition temperature in a specific model. C1 [Giese, Felix; Konstandin, Thomas; van de Vis, Jorinde] DESY, Notkestr 85, D-22607 Hamburg, Germany. [Schmitz, Kai] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland. RP Giese, F (corresponding author), DESY, Notkestr 85, D-22607 Hamburg, Germany. EM felix.giese@desy.de; thomas.konstandin@desy.de; kai.schmitz@cern.ch; jorinde.van.de.vis@desy.de FU Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy - EXC 2121 "Quantum Universe" [390833306]; European UnionEuropean Commission [796961] FX This project has been supported by the Deutsche Forschungsgemeinschaft under Germany's Excellence Strategy - EXC 2121 "Quantum Universe" - 390833306 (F. G., T. K. and J. v.d.V) and the European Union's Horizon 2020 Research and Innovation Programme under grant agreement number 796961, "AxiBAU" (K. S.). CR Azatov A., ARXIV201002590 Baker J., ARXIV190706482 Bodeker D, 2017, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2017/05/025 Caprini C, 2020, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2020/03/024 Caprini C, 2018, CLASSICAL QUANT GRAV, V35, DOI 10.1088/1361-6382/aac608 Caprini C, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/04/001 Christensen N, 2019, REP PROG PHYS, V82, DOI 10.1088/1361-6633/aae6b5 D'Onofrio M, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.025003 Delaunay C, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/04/029 Ellis J, 2020, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2020/11/020 Ellis J, 2020, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2020/07/050 Ellis J, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/06/024 Ellis J, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/04/003 Espinosa JR, 2012, NUCL PHYS B, V854, P592, DOI 10.1016/j.nuclphysb.2011.09.010 Espinosa JR, 2010, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2010/06/028 Giese F, 2020, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2020/07/057 Guada V, 2020, COMPUT PHYS COMMUN, V256, DOI 10.1016/j.cpc.2020.107480 Guada V, 2019, PHYS REV D, V99, DOI 10.1103/PhysRevD.99.056020 Guo HK, 2021, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2021/01/001 Hindmarsh M, 2020, PHYS REV D, V101, DOI 10.1103/PhysRevD.101.089902 Hindmarsh M, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/12/062 Hindmarsh M, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.071301 Hindmarsh M, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.103520 Hindmarsh M, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.123009 Hindmarsh M, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.041301 Hoche S., ARXIV200710343 Jinno R., ARXIV201000971 KAMIONKOWSKI M, 1994, PHYS REV D, V49, P2837, DOI 10.1103/PhysRevD.49.2837 Kozaczuk J, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2015)135 KURKISUONIO H, 1995, PHYS REV D, V51, P5431, DOI 10.1103/PhysRevD.51.5431 Kurup G, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.015036 Landau L., 1989, FLUID MECH Leitao L, 2015, NUCL PHYS B, V891, P159, DOI 10.1016/j.nuclphysb.2014.12.008 LISA collaboration, ARXIV170200786 Maggiore M., 2000, Physics Reports, V331, P283, DOI 10.1016/S0370-1573(99)00102-7 Schmitz K, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12091477 Weir DJ, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2017.0126 NR 37 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD JAN PY 2021 IS 1 AR 072 DI 10.1088/1475-7516/2021/01/072 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA QK9CC UT WOS:000620675000072 OA Green Published DA 2021-04-21 ER PT J AU Haghighat, E Juanes, R AF Haghighat, Ehsan Juanes, Ruben TI SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE SciANN; Deep neural networks; Scientific computations; PINN; vPINN AB In this paper, we introduce SciANN, a Python package for scientific computing and physics-informed deep learning using artificial neural networks. SciANN uses the widely used deep-learning packages TensorFlow and Keras to build deep neural networks and optimization models, thus inheriting many of Keras's functionalities, such as batch optimization and model reuse for transfer learning. SciANN is designed to abstract neural network construction for scientific computations and solution and discovery of partial differential equations (PDE) using the physics-informed neural networks (PINN) architecture, therefore providing the flexibility to set up complex functional forms. We illustrate, in a series of examples, how the framework can be used for curve fitting on discrete data, and for solution and discovery of PDEs in strong and weak forms. We summarize the features currently available in SciANN, and also outline ongoing and future developments. (C) 2020 Elsevier B.V. All rights reserved. C1 [Haghighat, Ehsan; Juanes, Ruben] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Haghighat, E (corresponding author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM ehsanh@mit.edu OI Haghighat, Ehsan/0000-0003-2659-0507; /0000-0002-7370-2332 FU KFUPM-MIT, United States, collaborative agreement 'Multiscale Reservoir Science' FX This work was funded by the KFUPM-MIT, United States, collaborative agreement `Multiscale Reservoir Science'. CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Baydin A., 2018, J MACHINE LEARNING R, V18, P1 Berg J, 2018, NEUROCOMPUTING, V317, P28, DOI 10.1016/j.neucom.2018.06.056 Bergen KJ, 2019, SCIENCE, V363, P1299, DOI 10.1126/science.aau0323 Bergstra J., 2010, P PYTH SCI COMP C SC, V4 Bishop CM., 2006, PATTERN RECOGN Bojarski M., 2016, ARXIV160407316 Brenner MP, 2019, PHYS REV FLUIDS, V4, DOI 10.1103/PhysRevFluids.4.100501 Brunton SL, 2020, ANNU REV FLUID MECH, V52, P477, DOI 10.1146/annurev-fluid-010719-060214 Chen T., 2015, ARXIV151201274 Chollet F., 2017, DEEP LEARNING PYTHON COMSOL, 2020, COMSOL MULT US GUID Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274 Dafermos CM, 2000, HYPERBOLIC CONSERVAT Dana S., 2020, ARXIV200311372 Felfernig A, 2011, RECOMMENDER SYSTEMS HANDBOOK, P187, DOI 10.1007/978-0-387-85820-3_6 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947 Haghighat E., 2020, ARXIV200302751 HORNIK K, 1991, NEURAL NETWORKS, V4, P251, DOI 10.1016/0893-6080(91)90009-T HORNIK K, 1989, NEURAL NETWORKS, V2, P359, DOI 10.1016/0893-6080(89)90020-8 Kharazmi E., 2019, ARXIV191200873, P1 Kong QK, 2019, SEISMOL RES LETT, V90, P3, DOI 10.1785/0220180259 Krizhevsky Alex, 2012, ADV NEURAL INFORM PR, P1097, DOI DOI 10.1145/3065386 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Miotto R, 2018, BRIEF BIOINFORM, V19, P1236, DOI 10.1093/bib/bbx044 Raissi M, 2019, J COMPUT PHYS, V378, P686, DOI 10.1016/j.jcp.2018.10.045 Raissi M, 2020, SCIENCE, V367, P1026, DOI 10.1126/science.aaw4741 Raissi M, 2018, J MACH LEARN RES, V19 Ross ZE, 2019, SCIENCE, V364, P767, DOI 10.1126/science.aaw6888 Rudy S, 2019, SIAM J APPL DYN SYST, V18, P643, DOI 10.1137/18M1191944 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Simo J., 1998, INTERD APPL, V7 Tartakovsky A.M., 2018, ARXIV180803398 Weinan E, 2018, COMMUN MATH STAT, V6, P1, DOI 10.1007/s40304-018-0127-z Xu K., 2020, ARXIV200400265, P1 Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029 Zienkiewicz O. C., 1969, International Journal for Numerical Methods in Engineering, V1, P75, DOI 10.1002/nme.1620010107 NR 38 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 EI 1879-2138 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD JAN 1 PY 2021 VL 373 AR 113552 DI 10.1016/j.cma.2020.113552 PG 17 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA PH2ZF UT WOS:000600286800014 OA Bronze DA 2021-04-21 ER PT J AU Ilten, P AF Ilten, Philip TI CIMBA: Fast Monte Carlo generation using cubic interpolation SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Interpolation; Monte Carlo; Event generators; Phase space and event simulation AB Monte Carlo generation of high energy particle collisions is a critical tool for both theoretical and experimental particle physics, connecting perturbative calculations to phenomenological models, and theory predictions to full detector simulation. The generation of minimum bias events can be particularly computationally expensive, where non-perturbative effects play an important role and specific processes and fiducial regions can no longer be well defined. In particular scenarios, particle guns can be used to quickly sample kinematics for single particles produced in minimum bias events. CIMBA (Cubic Interpolation for Minimum Bias Approximation) provides a comprehensive package to smoothly sample predefined kinematic grids, from any general purpose Monte Carlo generator, for all particles produced in minimum bias events. These grids are provided for a number of beam configurations including those of the Large Hadron Collider. Program summary Program title: CIMBA (Cubic Interpolation for Minimum Bias Approximation) CPC Library link to program files: http://dx.doi.org/10.17632/49m44md4ph.1 Licensing provisions: GPL version 2 or later Programming language: Python, C++ Nature of problem: generation of simulated events in high energy particle physics is quickly becoming a bottleneck in analysis development for collaborations on the Large Hadron Collider (LHC). With the expected long-term continuation of the high luminosity LHC, this problem must be solved in the near future. Significant progress has been made in designing new ways to perform detector simulation, including parametric detector models and machine learning techniques, e.g. calorimeter shower evolution with generative adversarial networks. Consequently, the efficiency of generating physics events using general purpose Monte Carlo event generators, rather than just detector simulation, needs to be improved. Solution method: in many cases, single particle generation from pre-sampled phase-space distributions can be used as a fast alternative to full event generation. Phase-space distributions sampled in particle pseudorapidity and transverse momentum are sampled from large, once-off, minimum bias samples generated with PYTHIA 8. A novel smooth sampling of these distributions is performed using piecewise cubic Hermite interpolating polynomials. Distributions are created for all generated particles, as well as particles produced directly from hadronisation. Interpolation grid libraries are provided for a number of common collider configurations, and code is provided which can produce custom interpolation grid libraries. Restrictions: Single particle generation (C) 2020 Elsevier B.V. All rights reserved. C1 [Ilten, Philip] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. RP Ilten, P (corresponding author), Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. EM philten@cern.ch OI Ilten, Philip/0000-0001-5534-1732 FU Birmingham Fellowship FX We thank Stephen Farry, Jonathan Plews, Yotam Soreq, and Nigel Watson for providing useful feedback and testing. PI is supported by a Birmingham Fellowship. CR Aaij R, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.061801 Bellm J, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-4018-8 Belyaev I, 2011, J PHYS CONF SER, V331, DOI 10.1088/1742-6596/331/3/032047 Bothmann E., 2019, ARXIV190509127 Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Buckley A, 2011, PHYS REP, V504, P145, DOI 10.1016/j.physrep.2011.03.005 Faessler A, 2000, PHYS REV C, V61, DOI 10.1103/PhysRevC.61.035206 FRITSCH FN, 1980, SIAM J NUMER ANAL, V17, P238, DOI 10.1137/0717021 Herbison-Evans D., 1995, SOLVING QUARTICS CUB, P3, DOI [10.1016/B978-0-12-543457-7.50009-7, DOI 10.1016/B978-0-12-543457-7.50009-7] Horn R.A., 2012, MATRIX ANAL Ilten P, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2018)004 Ilten P, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.251803 Press W., 2002, NUMERICAL RECIPES C Runge C., 1901, Z MATH PHYS, V46, P20 Shmakov S. L., 2011, INT J PURE APPL MATH, V71, P251 Sjostrand T, 2015, COMPUT PHYS COMMUN, V191, P159, DOI 10.1016/j.cpc.2015.01.024 Thompson J.R., 1990, NONPARAMETRIC FUNCTI, V21 Vidal X. Cid, 2019, ARXIV190408458 NR 18 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JAN PY 2021 VL 258 AR 107622 DI 10.1016/j.cpc.2020.107622 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA OO4OM UT WOS:000587360000046 DA 2021-04-21 ER PT J AU Richardson, AS Gordon, DF Swanekamp, SB Rittersdorf, IM Adamson, PE Grannis, OS Morgan, GT Ostenfeld, A Phlips, KL Sun, CG Tang, G Watkins, DJ AF Richardson, A. S. Gordon, D. F. Swanekamp, S. B. Rittersdorf, I. M. Adamson, P. E. Grannis, O. S. Morgan, G. T. Ostenfeld, A. Phlips, K. L. Sun, C. G. Tang, G. Watkins, D. J. TI TurboPy: A lightweight python framework for computational physics SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Framework; Physics; Computational physics; Python; Dynamic factory pattern; Resource sharing AB Computational physics problems often have a common set of aspects to them that any particular numerical code will have to address. Because these aspects are common to many problems, having a framework already designed and ready to use will not only speed the development of new codes, but also enhance compatibility between codes. Some of the most common aspects of computational physics problems are: a grid, a clock which tracks the flow of the simulation, and a set of models describing the dynamics of various quantities on the grid. Having a framework that could deal with these basic aspects of the simulation in a common way could provide great value to computational scientists by solving various numerical and class design issues that routinely arise. This paper describes the newly developed computational framework that we have built for rapidly prototyping new physics codes. This framework, called turboPy, is a lightweight physics modeling framework based on the design of the particle-in-cell code turboWAVE. It implements a class (called Simulation) which drives the simulation and manages communication between physics modules, a class (called PhysicsModule) which handles the details of the dynamics of the various parts of the problem, and some additional classes such as a Grid class and a Diagnostic class to handle various ancillary issues that commonly arise. Program summary Program Title: TurboPy CPC Library link to program files: http:fidx.dm.org/10.17632/rznn6s5myw. 1 Developer's repository link: https: igithub.com/NRL-Plasma-Physics-Division/turbopy Licensing provisions: CC0 1.0 Programming language: Python Nature of problem: Many computation physics problems have a common set of aspects to them that are often addressed in a custom way in every different code, which leads to lengthy and redundant development and testing, as well as introducing roadblocks to interoperability. Solution method: Implement a set of python classes as a lightweight framework that deals with these common problems, so that development time on new computational physics codes is reduced, and interoperability and reusability are increased. References: A.S. Richardson et al., TurboPy: A lightweight computational physics framework. NRL-Plasma-Physics-Divisioniturbopy (v2020.08.05). doi: 10.5281/zenodo.3973693 Published by Elsevier B.V. C1 [Richardson, A. S.; Gordon, D. F.; Swanekamp, S. B.; Rittersdorf, I. M.; Adamson, P. E.] US Naval Res Lab, Plasma Phys Div, Washington, DC 20375 USA. [Grannis, O. S.; Morgan, G. T.; Ostenfeld, A.; Phlips, K. L.; Sun, C. G.; Tang, G.; Watkins, D. J.] Syntek Technol, Fairfax, VA USA. RP Richardson, AS (corresponding author), US Naval Res Lab, Plasma Phys Div, Washington, DC 20375 USA. EM steve.richardson@nrl.navy.mil FU U.S. Naval Research Laboratory base program FX This work was supported by the U.S. Naval Research Laboratory base program. CR Freeman E., 2004, HEAD 1 DESIGN PATTER Gamma E., 1994, ADDISON WESLEY PROFE Gordon DF, 2000, IEEE T PLASMA SCI, V28, P1224, DOI 10.1109/27.893300 Jackson J.D., 1998, CLASSICAL ELECTRODYN Oliphant T.E., 2006, A GUIDE TO NUMPY, VVolume 1 PrestonWerner T., TOML TOMS OBVIOUS MI van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Wilson G, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001745 NR 8 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JAN PY 2021 VL 258 AR 107607 DI 10.1016/j.cpc.2020.107607 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA OO4OM UT WOS:000587360000037 DA 2021-04-21 ER PT J AU Hosseinzadeh, G Dauphin, F Villar, VA Berger, E Jones, DO Challis, P Chornock, R Drout, MR Foley, RJ Kirshner, RP Lunnan, R Margutti, R Milisavljevic, D Pan, YC Rest, A Scolnic, DM Magnier, E Metcalfe, N Wainscoat, R Waters, C AF Hosseinzadeh, Griffin Dauphin, Frederick Villar, V. Ashley Berger, Edo Jones, David O. Challis, Peter Chornock, Ryan Drout, Maria R. Foley, Ryan J. Kirshner, Robert P. Lunnan, Ragnhild Margutti, Raffaella Milisavljevic, Dan Pan, Yen-Chen Rest, Armin Scolnic, Daniel M. Magnier, Eugene Metcalfe, Nigel Wainscoat, Richard Waters, Christopher TI Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot SO ASTROPHYSICAL JOURNAL LA English DT Article DE Supernovae; Astrostatistics; Light curve classification ID ACTIVE GALACTIC NUCLEI; IA SUPERNOVAE; GALAXIES; SPECTROSCOPY; REDSHIFTS; IDENTIFICATION; TELESCOPE; CLUSTERS; CATALOG AB The classification of supernovae (SNe) and its impact on our understanding of explosion physics and progenitors have traditionally been based on the presence or absence of certain spectral features. However, current and upcoming wide-field time-domain surveys have increased the transient discovery rate far beyond our capacity to obtain even a single spectrum of each new event. We must therefore rely heavily on photometric classification-connecting SN light curves back to their spectroscopically defined classes. Here, we present Superphot, an open-source Python implementation of the machine-learning classification algorithm of Villar et al., and apply it to 2315 previously unclassified transients from the Pan-STARRS1 Medium Deep Survey for which we obtained spectroscopic host-galaxy redshifts. Our classifier achieves an overall accuracy of 82%, with completenesses and purities of >80% for the best classes (SNe Ia and superluminous SNe). For the worst performing SN class (SNe Ibc), the completeness and purity fall to 37% and 21%, respectively. Our classifier provides 1257 newly classified SNe Ia, 521 SNe II, 298 SNe Ibc, 181 SNe IIn, and 58 SLSNe. These are among the largest uniformly observed samples of SNe available in the literature and will enable a wide range of statistical studies of each class. C1 [Hosseinzadeh, Griffin; Dauphin, Frederick; Villar, V. Ashley; Berger, Edo; Challis, Peter; Kirshner, Robert P.] Ctr Astrophys Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138 USA. [Dauphin, Frederick] Carnegie Mellon Univ, Dept Phys, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. [Dauphin, Frederick; Rest, Armin] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Villar, V. Ashley] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Jones, David O.; Foley, Ryan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Chornock, Ryan; Margutti, Raffaella] Northwestern Univ, Ctr Interdisciplinary Explorat & Res Astrophys, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Chornock, Ryan; Margutti, Raffaella] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Drout, Maria R.] Univ Toronto, David A Dunlap Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Drout, Maria R.] Observ Carnegie Inst Sci, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Kirshner, Robert P.] Gordon & Betty Moore Fdn, 1661 Page Mill Rd, Palo Alto, CA 94304 USA. [Lunnan, Ragnhild] Stockholm Univ, Dept Astron, Oskar Klein Ctr, Albanova Univ Ctr, SE-10691 Stockholm, Sweden. [Milisavljevic, Dan] Purdue Univ, Dept Phys & Astron, 525 Northwestern Ave, W Lafayette, IN 47907 USA. [Pan, Yen-Chen] Natl Cent Univ, Grad Inst Astron, 300 Jhongda Rd, Taoyuan 32001, Taiwan. [Rest, Armin] Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA. [Scolnic, Daniel M.] Duke Univ, Dept Phys, Campus Box 90305, Durham, NC 27708 USA. [Magnier, Eugene; Wainscoat, Richard] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Metcalfe, Nigel] Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. [Waters, Christopher] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08540 USA. RP Hosseinzadeh, G (corresponding author), Ctr Astrophys Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138 USA. EM griffin.hosseinzadeh@cfa.harvard.edu OI Lunnan, Ragnhild/0000-0001-9454-4639; Metcalfe, Nigel/0000-0001-9034-4402; Kirshner, Robert/0000-0002-1966-3942; Chornock, Ryan/0000-0002-7706-5668; Foley, Ryan/0000-0002-2445-5275; Scolnic, Daniel/0000-0002-4934-5849 FU NSFNational Science Foundation (NSF) [PHY-1914448, AST-2037297]; NASANational Aeronautics & Space Administration (NASA) [NAS 5-26555, NNX15AE50G]; Harvard Data Science Initiative; LSSTC Data Science Fellowship Program - LSSTC, NSF [1829740]; Brinson Foundation; Moore FoundationGordon and Betty Moore Foundation; SAO REU program; National Science Foundation REUNational Science Foundation (NSF); Department of Defense ASSURE programs under NSF [AST-1852268]; Smithsonian InstitutionSmithsonian Institution; Ford Foundation through a Dissertation Fellowship; Simons Foundation through a Simons Junior Fellowship [718240]; Gordon and Betty Moore Foundation postdoctoral fellowship at the University of California, Santa Cruz; Space Telescope Science InstituteSpace Telescope Science Institute; Gordon & Betty Moore FoundationGordon and Betty Moore Foundation; Heising-Simons Foundation; Alfred P. Sloan FoundationAlfred P. Sloan Foundation; David and Lucile Packard FoundationThe David & Lucile Packard Foundation; Marie Sklodowska-Curie Individual Fellowship within the Horizon 2020 European Union (EU) Framework Programme for Research and Innovation [H2020-MSCA-IF-2017-794467]; Max-Planck SocietyMax Planck SocietyFoundation CELLEX; Max Planck Institute for Extraterrestrial Physics; National Aeronautics and Space AdministrationNational Aeronautics & Space Administration (NASA) [NNX08AR22G]; NASA Science Mission DirectorateNational Aeronautics & Space Administration (NASA); National Science FoundationNational Science Foundation (NSF) [AST-1238877]; University of Maryland, Eotvos Lorand University (ELTE), Los Alamos National Laboratory; Gordon and Betty Moore FoundationGordon and Betty Moore Foundation FX We thank Jessica Mink and Brian Hsu for assisting with the host-galaxy redshifts. We also thank the authors of the "Scientific Python Cookiecutter" tutorial for advice on how to document, package, and release the Superphot package. The Berger TimeDomain Group is supported in part by NSF grant AST-1714498 and NASA grant NNX15AE50G. We acknowledge partial funding support from the Harvard Data Science Initiative. G.H. thanks the LSSTC Data Science Fellowship Program, which is funded by LSSTC, NSF Cybertraining grant #1829740, the Brinson Foundation, and the Moore Foundation; his participation in the program has benefited this work. F.D. thanks the SAO REU program, funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF grant No. AST-1852268 and by the Smithsonian Institution. V.A.V. acknowledges support by the Ford Foundation through a Dissertation Fellowship and the Simons Foundation through a Simons Junior Fellowship (#718240). D.O.J. is supported by a Gordon and Betty Moore Foundation postdoctoral fellowship at the University of California, Santa Cruz. The UCSC team is supported in part by NASA grants 14-WPS14-0048, NNG16PJ34C, NNG17PX03C; NSF grants AST-1518052 and AST-1815935; NASA through grant No. AR-14296 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555; the Gordon & Betty Moore Foundation; the Heising-Simons Foundation; and by fellowships from the Alfred P. Sloan Foundation and the David and Lucile Packard Foundation to R.J.F. R.L. is supported by a Marie Sklodowska-Curie Individual Fellowship within the Horizon 2020 European Union (EU) Framework Programme for Research and Innovation (H2020-MSCA-IF-2017-794467). D. M. acknowledges NSF support from grants PHY-1914448 and AST-2037297.; The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg, and the Max Planck Institute for Extraterrestrial Physics, Garching, Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Center for Astrophysics | Harvard & Smithsonian, Las Cumbres Observatory, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation grant No. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. CR Ade PAR, 2014, ASTRON ASTROPHYS, V571, DOI 10.1051/0004-6361/201321591 Ahumada R, 2020, ASTROPHYS J SUPPL S, V249, DOI 10.3847/1538-4365/ab929e ALGEO J, 1977, AM SPEECH, V52, P47, DOI 10.2307/454719 Baldeschi A, 2020, ASTROPHYS J, V902, DOI 10.3847/1538-4357/abb1c0 Balestra I, 2010, ASTRON ASTROPHYS, V512, DOI 10.1051/0004-6361/200913626 Bayes M, 1763, PHILOS T, V53, P370, DOI DOI 10.1098/RSTL.1763.0053 Bellm EC, 2019, PUBL ASTRON SOC PAC, V131, DOI 10.1088/1538-3873/aaecbe Bianco FB, 2014, ASTROPHYS J SUPPL S, V213, DOI 10.1088/0067-0049/213/2/19 Boone K, 2019, ASTRON J, V158, DOI 10.3847/1538-3881/ab5182 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Bronder TJ, 2008, ASTRON ASTROPHYS, V477, P716, DOI 10.1051/0004-6361:20077655 Cannon R, 2006, MON NOT R ASTRON SOC, V372, P425, DOI 10.1111/j.1365-2966.2006.10875.x Cappellaro E., 2012, CBET, V3274, P1 Chambers K.C., 2016, ARXIV161205560 Charnock T, 2017, ASTROPHYS J LETT, V837, DOI 10.3847/2041-8213/aa603d Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Chornock R, 2014, ASTROPHYS J, V780, DOI 10.1088/0004-637X/780/1/44 Colless M., 2003, ARXIVASTROPH0306581 Cowie LL, 2010, ASTROPHYS J, V711, P928, DOI 10.1088/0004-637X/711/2/928 da Costa-Luis C. O., 2019, J OPEN SOURCE SOFTWA, V4, P1277, DOI DOI 10.21105/joss.01277 DRESSLER A, 1992, ASTROPHYS J SUPPL S, V78, P1, DOI 10.1086/191620 Drinkwater MJ, 2010, MON NOT R ASTRON SOC, V401, P1429, DOI 10.1111/j.1365-2966.2009.15754.x Drout MR, 2014, ASTROPHYS J, V794, DOI 10.1088/0004-637X/794/1/23 ELIAS JH, 1985, ASTROPHYS J, V296, P379, DOI 10.1086/163456 Finkelstein SL, 2009, ASTROPHYS J LETT, V703, pL162, DOI 10.1088/0004-637X/703/2/L162 Fitzpatrick EL, 1999, PUBL ASTRON SOC PAC, V111, P63, DOI 10.1086/316293 Foley RJ, 2013, ASTROPHYS J, V778, DOI 10.1088/0004-637X/778/2/167 Fremling U. C., 2019, ARXIV191012973 Gal-Yam A., 2016, HDB SUPERNOVAE Gal-Yam A, 2019, ANNU REV ASTRON ASTR, V57, P305, DOI 10.1146/annurev-astro-081817-051819 Gal-Yam A, 2012, SCIENCE, V337, P927, DOI 10.1126/science.1203601 Garcet O, 2007, ASTRON ASTROPHYS, V474, P473, DOI 10.1051/0004-6361:20077778 Gelman A., 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136 Gezari S, 2012, NATURE, V485, P217, DOI 10.1038/nature10990 Gomez S, 2020, ASTROPHYS J, V904, DOI 10.3847/1538-4357/abbf49 Graham ML, 2018, ASTRON J, V155, DOI 10.3847/1538-3881/aa99d4 Graur O, 2017, ASTROPHYS J, V837, DOI 10.3847/1538-4357/aa5eb8 Graur O, 2017, ASTROPHYS J, V837, DOI 10.3847/1538-4357/aa5eb7 Hasinger G, 2018, ASTROPHYS J, V858, DOI 10.3847/1538-4357/aabacf HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.2307/2334940 Hewett PC, 2010, MON NOT R ASTRON SOC, V405, P2302, DOI 10.1111/j.1365-2966.2010.16648.x Holoien TWS, 2019, MON NOT R ASTRON SOC, V484, P1899, DOI 10.1093/mnras/stz073 Hosseinzadeh G., 2020, ZENODO, DOI [10.5281/zenodo.374789, DOI 10.5281/ZENODO.374789] Howell DA, 2006, NATURE, V443, P308, DOI 10.1038/nature05103 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Im MS, 2001, ASTRON J, V122, P750, DOI 10.1086/322081 Ishida EEO, 2019, MON NOT R ASTRON SOC, V483, P2, DOI 10.1093/mnras/sty3015 Ivezic Z, 2019, ASTROPHYS J, V873, DOI 10.3847/1538-4357/ab042c Jha S, 2007, ASTROPHYS J, V659, P122, DOI 10.1086/512054 Jones DH, 2009, MON NOT R ASTRON SOC, V399, P683, DOI 10.1111/j.1365-2966.2009.15338.x Jones DO, 2018, ASTROPHYS J, V857, DOI 10.3847/1538-4357/aab6b1 Jones DO, 2017, ASTROPHYS J, V843, DOI 10.3847/1538-4357/aa767b Karhunen K, 2014, MON NOT R ASTRON SOC, V441, P1802, DOI 10.1093/mnras/stu688 Kessler R, 2009, PUBL ASTRON SOC PAC, V121, P1028, DOI 10.1086/605984 Kimura A, 2017, IEEE INT CON DIS, P354, DOI 10.1109/ICDCSW.2017.47 Kumar R., 2019, J OPEN SOURCE SOFT, V4, P1143, DOI [10.21105/joss.01143, DOI 10.21105/joss.01143] Kurtz MJ, 1998, PUBL ASTRON SOC PAC, V110, P934, DOI 10.1086/316207 Lamareille F, 2009, ASTRON ASTROPHYS, V495, P53, DOI 10.1051/0004-6361:200810397 Le Fevre O, 2005, ASTRON ASTROPHYS, V439, P845, DOI 10.1051/0004-6361:20041960 Lemaitre G, 2017, J MACH LEARN RES, V18 Lidman C, 2020, MON NOT R ASTRON SOC, V496, P19, DOI 10.1093/mnras/staa1341 Lilly SJ, 2007, ASTROPHYS J SUPPL S, V172, P70, DOI 10.1086/516589 Louppe G., 2015, THESIS Lunnan R, 2018, ASTROPHYS J, V852, DOI 10.3847/1538-4357/aa9f1a Lunnan R, 2014, ASTROPHYS J, V787, DOI 10.1088/0004-637X/787/2/138 Magnier EA, 2020, ASTROPHYS J SUPPL S, V251, DOI 10.3847/1538-4365/abb82c Magnier EA, 2020, ASTROPHYS J SUPPL S, V251, DOI 10.3847/1538-4365/abb829 Magnier EA, 2020, ASTROPHYS J SUPPL S, V251, DOI 10.3847/1538-4365/abb82a Masters DC, 2019, ASTROPHYS J, V877, DOI 10.3847/1538-4357/ab184d METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114 Minkowski R., 1941, PASP, V53, P224 Moller A, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/12/008 Muthukrishna D, 2019, PUBL ASTRON SOC PAC, V131, DOI 10.1088/1538-3873/ab1609 Narayan G, 2011, ASTROPHYS J LETT, V731, DOI 10.1088/2041-8205/731/1/L11 Newman JA, 2013, ASTROPHYS J SUPPL S, V208, DOI 10.1088/0067-0049/208/1/5 Norris RP, 2006, ASTRON J, V132, P2409, DOI 10.1086/508275 Oliphant T.E., 2006, A GUIDE TO NUMPY, VVolume 1 Owen FN, 2009, ASTROPHYS J SUPPL S, V182, P625, DOI 10.1088/0067-0049/182/2/625 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Price-Whelan AM, 2018, ASTRON J, V156, DOI 10.3847/1538-3881/aabc4f Quimby RM, 2011, NATURE, V474, P487, DOI 10.1038/nature10095 Quimby RM, 2018, ASTROPHYS J, V855, DOI 10.3847/1538-4357/aaac2f Quimby RM, 2013, ASTROPHYS J LETT, V768, DOI 10.1088/2041-8205/768/1/L20 Rest A, 2005, ASTROPHYS J, V634, P1103, DOI 10.1086/497060 Rest A, 2014, ASTROPHYS J, V795, DOI 10.1088/0004-637X/795/1/44 Richards JW, 2012, MON NOT R ASTRON SOC, V419, P1121, DOI 10.1111/j.1365-2966.2011.19768.x Riess AG, 2004, ASTROPHYS J, V600, pL163, DOI 10.1086/378311 Riess AG, 2004, ASTROPHYS J, V607, P665, DOI 10.1086/383612 Ross NP, 2008, MON NOT R ASTRON SOC, V387, P1323, DOI 10.1111/j.1365-2966.2008.13332.x Rovilos E, 2011, ASTRON ASTROPHYS, V529, DOI 10.1051/0004-6361/201015763 Sako M, 2011, ASTROPHYS J, V738, DOI 10.1088/0004-637X/738/2/162 Salvatier J, 2016, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.55 Sanders NE, 2015, ASTROPHYS J, V799, DOI 10.1088/0004-637X/799/2/208 Sanders NE, 2013, ASTROPHYS J, V769, DOI 10.1088/0004-637X/769/1/39 Scarlata C, 2009, ASTROPHYS J LETT, V704, pL98, DOI 10.1088/0004-637X/704/2/L98 Schlafly EF, 2011, ASTROPHYS J, V737, DOI 10.1088/0004-637X/737/2/103 SCHLEGEL EM, 1990, MON NOT R ASTRON SOC, V244, P269 Smith AG, 2012, MON NOT R ASTRON SOC, V422, P25, DOI 10.1111/j.1365-2966.2012.20400.x Spearman C, 1904, AM J PSYCHOL, V15, P72, DOI 10.2307/1412159 Sravan N, 2020, ASTROPHYS J, V893, DOI 10.3847/1538-4357/ab8128 Stalin CS, 2010, MON NOT R ASTRON SOC, V401, P294, DOI 10.1111/j.1365-2966.2009.15636.x Stritzinger MD, 2018, ASTRON ASTROPHYS, V609, DOI 10.1051/0004-6361/201730842 Szokoly GP, 2004, ASTROPHYS J SUPPL S, V155, P271, DOI 10.1086/424707 Taddia F, 2018, ASTRON ASTROPHYS, V609, DOI 10.1051/0004-6361/201730844 Taddia F, 2015, ASTRON ASTROPHYS, V574, DOI 10.1051/0004-6361/201423915 Tajer M, 2007, ASTRON ASTROPHYS, V467, P73, DOI 10.1051/0004-6361:20066667 Theano Development Team, 2016, ARXIV160502688 THEAN TONRY J, 1979, ASTRON J, V84, P1511, DOI 10.1086/112569 Trump JR, 2009, ASTROPHYS J, V696, P1195, DOI 10.1088/0004-637X/696/2/1195 UOMOTO A, 1985, ASTRON ASTROPHYS, V149, pL7 Valenti S, 2016, MON NOT R ASTRON SOC, V459, P3939, DOI 10.1093/mnras/stw870 Villar VA, 2019, ASTROPHYS J, V884, DOI 10.3847/1538-4357/ab418c Villar VA, 2020, ASTROPHYS J, V905, DOI 10.3847/1538-4357/abc6fd Virtanen P, 2020, NAT METHODS, V17, P261, DOI 10.1038/s41592-019-0686-2 Waters CZ, 2020, ASTROPHYS J SUPPL S, V251, DOI 10.3847/1538-4365/abb82b Wen ZL, 2015, ASTROPHYS J, V807, DOI 10.1088/0004-637X/807/2/178 Wheeler J. C., 1986, GALAXY DISTANCES DEV WHEELER JC, 1985, ASTROPHYS J, V294, pL17, DOI 10.1086/184500 NR 119 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC PY 2020 VL 905 IS 2 AR 93 DI 10.3847/1538-4357/abc42b PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA PG5SZ UT WOS:000599795900001 DA 2021-04-21 ER PT J AU Honeywell, S Quackenbush, S Reina, L Reuschle, C AF Honeywell, Steve Quackenbush, Seth Reina, Laura Reuschle, Christian TI NLOX, a one-loop provider for Standard Model processes SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE NLO QCD and EW automation; One-loop provider; Higher-order calculations ID ELECTROWEAK RADIATIVE-CORRECTIONS; HEAVY-QUARK PRODUCTION; MONTE-CARLO TOOLS; PAIR PRODUCTION; QCD CORRECTIONS; BOSON PRODUCTION; AMPLITUDES; RENORMALIZATION; INTERFACE; UNITARITY AB NLOX is a computer program for calculations in high-energy particle physics. It provides fully renormalized scattering matrix elements in the Standard Model of particle physics, up to one-loop accuracy for all possible coupling-power combinations in the strong and electroweak couplings, and for processes with up to six external particles. Program summary Program Title: NLOX Program Files doi: http://dx.doi.org/10.17632/y7jth5hznv.1 Licensing provisions: CC BY NC 3.0 Programming language: C++. Fortran interface available, and Fortran compiler required for dependencies. Nature of problem: The computation of higher-order terms in the coupling expansion of Standard Model scattering amplitudes is required for precision studies in collider experiments. Techniques for computing the first corrections are well-known, and are now suited to automation. We wish to provide code that calculates virtual (one-loop) quantum chromodynamics and electroweak corrections for desired amplitudes using a package that automates the production of this code. Solution method: We use Python scripts and a computer algebra system, FORM, to reduce virtual amplitudes to C++ code and data based on Feynman rules of the Standard Model. The scripts perform a tensor decomposition of the one loop integral to reduce the amplitude to dependence on tensor integral coefficients. These coefficients are called at runtime by the provided library TRed, which performs tensor reduction into base (scalar) coefficients at runtime. The scripts identify repeated structures to be calculated once in the produced code for efficiency. The tensor reduction code is designed such that needed tensor coefficients need to be computed only once per evaluation of the desired amplitude, and are built recursively from other needed coefficients. Additional comments including restrictions and unusual features: The code-producing scripts are not provided in this release, only fixed libraries such as TRed and required interface code for pre-generated processes. Some processes are provided with this release, with others available upon request. (C) 2020 Elsevier B.V. All rights reserved. C1 [Honeywell, Steve; Quackenbush, Seth; Reina, Laura; Reuschle, Christian] Florida State Univ, Phys Dept, Tallahassee, FL 32306 USA. [Reuschle, Christian] Lund Univ, Dept Astron & Theoret Phys, SE-22362 Lund, Sweden. RP Reuschle, C (corresponding author), Lund Univ, Dept Astron & Theoret Phys, SE-22362 Lund, Sweden. EM sjh07@hep.fsu.edu; squackenbush@hep.fsu.edu; reina@hep.fsu.edu; creuschle@hep.fsu.edu RI Reuschle, Christian/AAB-1841-2020 OI Reuschle, Christian/0000-0002-4732-3400 FU U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-SC0010102]; European Union's Horizon 2020 research and innovative programme [668679]; National Science FoundationNational Science Foundation (NSF) [NSF PHY-1748958, NSF PHY-1607611] FX We would like to thank T. Schutzmeier for the initial working design of NLOX, and D. Wackeroth for sharing her expertise and knowledge of QCD and EW one-loop calculations. This work has been supported by the U.S. Department of Energy under grant DE-SC0010102. C.R. acknowledges current support by the European Union's Horizon 2020 research and innovative programme, under grant agreement No. 668679. S.H., L.R., and C.R. are grateful for the hospitality of the Kavli Institute for Theoretical Physics (KITP) during the workshop on LHC Run II and the Precision Frontier where part of this work was being developed. Their research at the KITP was supported in part by the National Science Foundation under grant NSF PHY-1748958. L. R. would like to also thank the Aspen Center for Physics for the hospitality offered while parts of this work were being completed. The work performed at the Aspen Center for Physics is supported in part by the National Science Foundation under grant NSF PHY-1607611. CR Actis S, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2013)037 Actis S, 2017, COMPUT PHYS COMMUN, V214, P140, DOI 10.1016/j.cpc.2017.01.004 Alioli S, 2014, COMPUT PHYS COMMUN, V185, P560, DOI 10.1016/j.cpc.2013.10.020 Alioli S, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2010)043 ALTARELLI G, 1979, NUCL PHYS B, V157, P461, DOI 10.1016/0550-3213(79)90116-0 Alwall J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)079 Andersen J.R., 2017, 10 HOUCH WORKSH PHYS Andersen J.R., 2014, ARXIV14051067 Arnold K, 2009, COMPUT PHYS COMMUN, V180, P1661, DOI 10.1016/j.cpc.2009.03.006 Badger S, 2013, COMPUT PHYS COMMUN, V184, P1981, DOI 10.1016/j.cpc.2013.03.018 Baglio J., 2014, ARXIV14043940 Baglio J., 2011, ARXIV11074038 BANERJEE P, 2002, PHYS REV D, V65 Baur U, 1998, PHYS REV D, V57, P199, DOI 10.1103/PhysRevD.57.199 Becker S, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.074009 Becker S, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2012)090 Becker S, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2010)013 BEENAKKER W, 1994, NUCL PHYS B, V411, P343, DOI 10.1016/0550-3213(94)90454-5 BEENAKKER W, 1991, NUCL PHYS B, V351, P507, DOI 10.1016/S0550-3213(05)80032-X BEENAKKER W, 1989, PHYS REV D, V40, P54, DOI 10.1103/PhysRevD.40.54 Bellm J., 2017, ARXIV170506919 Bellm J, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-4018-8 Berger CF, 2008, PHYS REV D, V78, DOI 10.1103/PhysRevD.78.036003 BERN Z, 1995, NUCL PHYS B, V435, P59, DOI 10.1016/0550-3213(94)00488-Z BERN Z, 1994, NUCL PHYS B, V425, P217, DOI 10.1016/0550-3213(94)90179-1 Bernreuther W., 2007, PHYS LETT B, V644, P386 Bernreuther W, 2006, PHYS REV D, V74, DOI 10.1103/PhysRevD.74.113005 Bernreuther W, 2008, PHYS REV D, V78, DOI 10.1103/PhysRevD.78.017503 Bevilacqua G, 2013, COMPUT PHYS COMMUN, V184, P986, DOI 10.1016/j.cpc.2012.10.033 Biedermann B, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-5054-8 Biedermann B, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2017)033 Binoth T, 2010, COMPUT PHYS COMMUN, V181, P1612, DOI 10.1016/j.cpc.2010.05.016 Bredenstein A, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/08/108 Britto R, 2005, NUCL PHYS B, V725, P275, DOI 10.1016/j.nuclphysb.2005.07.014 Campbell J, 2004, PHYS REV D, V69, DOI 10.1103/PhysRevD.69.074021 Campbell J.M., 2015, MCFM V 8 0 Campbell JM, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.093009 Campbell JM, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2012)052 Carrazza S, 2016, COMPUT PHYS COMMUN, V209, P134, DOI 10.1016/j.cpc.2016.07.033 Carter J, 2011, COMPUT PHYS COMMUN, V182, P1566, DOI 10.1016/j.cpc.2011.03.026 Cascioli F, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.111601 Chiesa M, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2017)181 Chiesa M, 2016, J PHYS G NUCL PARTIC, V43, DOI 10.1088/0954-3899/43/1/013002 COLLINS J, 1978, PHYS REV D, V18, P242, DOI 10.1103/PhysRevD.18.242 Cullen G, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-014-3001-5 Cullen G, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1889-1 Dawson S, 1999, PHYS REV D, V59, DOI 10.1103/PhysRevD.59.054012 Denner A, 2004, NUCL PHYS B, V680, P85, DOI 10.1016/j.nuclphysb.2003.12.028 Denner A, 2012, NUCL PHYS B, V854, P504, DOI 10.1016/j.nuclphysb.2011.09.001 Denner A, 2003, PHYS LETT B, V575, P290, DOI 10.1016/j.physletb.2003.09.069 DENNER A, 1993, FORTSCHR PHYS, V41, P307, DOI 10.1002/prop.2190410402 Denner A, 2006, NUCL PHYS B, V734, P62, DOI 10.1016/j.nuclphysb.2005.11.007 Denner A, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2017)053 Denner A, 2017, COMPUT PHYS COMMUN, V212, P220, DOI 10.1016/j.cpc.2016.10.013 Dittmaier S, 1998, PHYS LETT B, V441, P383, DOI 10.1016/S0370-2693(98)01192-7 Dittmaier S, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.073007 Ellis RK, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/02/002 Ellis RK, 2009, NUCL PHYS B, V822, P270, DOI 10.1016/j.nuclphysb.2009.07.023 ELLIS RK, 1986, NUCL PHYS B, V269, P445, DOI 10.1016/0550-3213(86)90232-4 ELLIS RK, 2008, J HIGH ENERGY PHYS Figueroa D, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.093002 Figueroa D., 2018, POS LL2018, V2018, DOI 10.22323/1.303. 0082. Frederix R, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2018)031 Frixione S, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2015)184 Garzelli MV, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2012)056 Garzelli MV, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.074022 Giele WT, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/04/049 Gleisberg T, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/02/007 Gong W, 2009, PHYS REV D, V79, DOI 10.1103/PhysRevD.79.033005 Greiner N, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2018)079 Gutschow C, 2018, EUR PHYS J C, V78, DOI 10.1140/epjc/s10052-018-5804-2 Hahn T, 1999, COMPUT PHYS COMMUN, V118, P153, DOI 10.1016/S0010-4655(98)00173-8 Hirschi V, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2011)044 Hollik W, 2008, PHYS REV D, V77, DOI 10.1103/PhysRevD.77.014008 HOLLIK WFL, 1990, FORTSCHR PHYS, V38, P165, DOI 10.1002/prop.2190380302 Honeywell S., 2017, THESIS Kallweit S, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2017)120 Kallweit S, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2016)021 Kallweit S, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2015)012 Kardos A, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.054015 Kreimer D., 1993, ARXIVHEPPH9401354 Kuehn JH, 2007, EUR PHYS J C, V51, P37, DOI 10.1140/epjc/s10052-007-0275-x Kuhn JH, 2006, EUR PHYS J C, V45, P139, DOI 10.1140/epjc/s2005-02423-6 Kuipers J, 2013, COMPUT PHYS COMMUN, V184, P1453, DOI 10.1016/j.cpc.2012.12.028 Lazopoulos A, 2008, PHYS LETT B, V666, P62, DOI 10.1016/j.physletb.2008.06.073 Maltoni F, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2016)113 Moretti S, 2008, PHYS LETT B, V660, P607, DOI 10.1016/j.physletb.2007.10.039 Moretti S, 2006, NUCL PHYS B, V759, P50, DOI 10.1016/j.nuclphysb.2006.09.028 NAGY Z, 2003, J HIGH ENERGY PHYS Nagy Z, 2006, PHYS REV D, V74, DOI 10.1103/PhysRevD.74.093006 NASON P, 1990, NUCL PHYS B, V335, P260 NASON P, 1988, NUCL PHYS B, V303, P607, DOI 10.1016/0550-3213(88)90422-1 NOGUEIRA P, 1993, J COMPUT PHYS, V105, P279, DOI 10.1006/jcph.1993.1074 Ossola G, 2007, NUCL PHYS B, V763, P147, DOI 10.1016/j.nuclphysb.2006.11.012 PASSARINO G, 1979, NUCL PHYS B, V160, P151, DOI 10.1016/0550-3213(79)90234-7 Reina L., 2012, POS LL2012 Reina L, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2012)119 Reuschle C, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.105020 Riemann TDT, 2009, PHYS REV D, V80, DOI 10.1103/PhysRevD.80.036003 Schonherr M, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2018)076 SIRLIN A, 1980, PHYS REV D, V22, P971, DOI 10.1103/PhysRevD.22.971 THOOFT G, 1974, ANN I H POINCARE A, V20, P69 van Hameren A, 2011, COMPUT PHYS COMMUN, V182, P2427, DOI 10.1016/j.cpc.2011.06.011 van Hameren A, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/09/106 van Hameren A, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/07/088 Vermaseren J A M, 2000, ARXIVMATHPH0010025 Weinzierl S, 2006, EUR PHYS J C, V45, P745, DOI 10.1140/epjc/s2005-02467-6 You Y, 2003, PHYS LETT B, V571, P85, DOI 10.1016/j.physletb.2003.07.064 NR 108 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD DEC PY 2020 VL 257 AR 107284 DI 10.1016/j.cpc.2020.107284 PG 17 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA OD3WI UT WOS:000579783600005 DA 2021-04-21 ER PT J AU Schuler, M Golez, D Murakami, Y Bittner, N Herrmann, A Strand, HUR Werner, P Eckstein, M AF Schuler, Michael Golez, Denis Murakami, Yuta Bittner, Nikolaj Herrmann, Andreas Strand, Hugo U. R. Werner, Philipp Eckstein, Martin TI NESSi: The Non-Equilibrium Systems Simulation package SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Numerical simulations; Nonequilibrium dynamics of quantum many-body problems; Keldysh formalism; Kadanoff-Baym equations ID MEAN-FIELD THEORY; ANDERSON MODEL; FERMIONS AB The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump-probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green's functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. We present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green's functions on the L-shaped Kadanoff-Baym contour. NESSi contains the library libcntr which implements tools for basic operations on these nonequilibrium Green's functions, for constructing Feynman diagrams, and for the solution of integral and integro-differential equations involving contour Green's functions. The library employs a discretization of the Kadanoff-Baym contour into time N points and a high-order implementation of integration routines. The total integrated error scales up to O(N-7), which is important since the numerical effort increases at least cubically with the simulation time. A distributed-memory parallelization over reciprocal space allows large-scale simulations of lattice systems. We provide a collection of example programs ranging from dynamics in simple two-level systems to problems relevant in contemporary condensed matter physics, including Hubbard clusters and Hubbard or Holstein lattice models. The libcntr library is the basis of a follow-up software package for nonequilibrium dynamical mean-field theory calculations based on strong-coupling perturbative impurity solvers. Program summary Program Title: NESSi CPC Library link to program files: http://dx.doi.org/10.17632/973crf9hgd.1 Licensing provisions: MPL v2.0 Programming language: C++, python External routines/libraries: cmake, eigen3, hdf5 (optional), mpi (optional), omp (optional) Nature of problem: Solves equations of motion of time-dependent Green's functions on the Kadanoff-Baym contour. Solution method: Higher-order solution methods of integral and integro-differential equations on the Kadanoff-Baym contour. (c) 2020 Published by Elsevier B.V. C1 [Schuler, Michael; Golez, Denis; Murakami, Yuta; Bittner, Nikolaj; Herrmann, Andreas; Werner, Philipp] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Schuler, Michael] SLAC, Stanford Inst Mat & Energy Sci, Stanford, CA 94025 USA. [Schuler, Michael] Stanford Univ, Stanford, CA 94025 USA. [Golez, Denis; Strand, Hugo U. R.] Flatiron Inst, Ctr Computat Quantum Phys, 162 Fifth Ave, New York, NY 10010 USA. [Murakami, Yuta] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Strand, Hugo U. R.] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden. [Eckstein, Martin] Univ Erlangen Nurnberg, Dept Phys, D-91058 Erlangen, Germany. RP Eckstein, M (corresponding author), Univ Erlangen Nurnberg, Dept Phys, D-91058 Erlangen, Germany. EM martin.eckstein@fau.de RI Golez, Denis/AAK-7279-2021; Werner, Philipp/C-7247-2009 OI Strand, Hugo/0000-0002-7263-4403; Schuler, Michael/0000-0001-7322-6367 FU Swiss National Science FoundationSwiss National Science Foundation (SNSF)European Commission [PP0022-118866, 200021-140648, 200021-165539]; NCCR MARVEL; European Research CouncilEuropean Research Council (ERC)European Commission [278023, 716648, 724103]; Alexander von Humboldt Foundation, GermanyAlexander von Humboldt Foundation FX We thank Marcus Kollar, Naoto Tsuji, Jiajun Li, and Nagamalleswararao Dasari, for important feedback while using the library, and for collaborations on early stages of the library. The development of this library has been supported by the Swiss National Science Foundation through SNF Professorship PP0022-118866 (ME,PW), Grants 200021-140648 and 200021-165539 (DG), and NCCR MARVEL (MS,YM), as well as the European Research Council through ERC Starting Grant Nos. 278023 (AH,HS,PW) and 716648 (ME), and ERC Consolidator Grant No. 724103 (MS,NB,PW,YM). MS thanks the Alexander von Humboldt Foundation, Germany for its support with a Feodor Lynen scholarship. The Flatiro Institute as a division of the Simons Foundation. CR Abrikosov A, 1975, METHODS QUANTUM FIEL Alvermann A, 2011, J COMPUT PHYS, V230, P5930, DOI 10.1016/j.jcp.2011.04.006 [Anonymous], 2019, MODERN C NATIVE HEAD Aoki H, 2014, REV MOD PHYS, V86, P779, DOI 10.1103/RevModPhys.86.779 Aryasetiawan F, 1998, REP PROG PHYS, V61, P237, DOI 10.1088/0034-4885/61/3/002 Balzer K, 2012, NONEQUILIBRIUM GREEN Brunner H., 1986, NUMERICAL SOLUTION V Daley AJ, 2004, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2004/04/P04005 Eckstein M, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.115115 Georges A, 1996, REV MOD PHYS, V68, P13, DOI 10.1103/RevModPhys.68.13 Giamarchi T, 2003, QUANTUM PHYS ONE DIM, V121 Golez D, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.035121 Gubernatis J. E, 2016, QUANTUM MONTE CARLO Hedin L, 1999, J PHYS-CONDENS MAT, V11, pR489, DOI 10.1088/0953-8984/11/42/201 Ido K, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.245106 Kadanoff L., 1962, QUANTUM STAT MECH Kamenev A., 2011, FIELD THEORY NONEQUI KEITER H, 1971, J APPL PHYS, V42, P1460, DOI 10.1063/1.1660293 KELDYSH LV, 1965, SOV PHYS JETP-USSR, V20, P1018 Kemper AF, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.075126 LUTTINGER JM, 1951, PHYS REV, V84, P814, DOI 10.1103/PhysRev.84.814 Mahan Gerald D., 1990, MANY PARTICLE PHYS METZNER W, 1989, PHYS REV LETT, V62, P324, DOI 10.1103/PhysRevLett.62.324 Murakami Y, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.094509 Murakami Y, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.045128 Peierls R, 1933, Z PHYS, V80, P763, DOI 10.1007/BF01342591 Press W. H., 2007, NUMERICAL RECIPES AR PRUSCHKE T, 1989, Z PHYS B CON MAT, V74, P439, DOI 10.1007/BF01311391 Schlunzen N, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.165139 Schlunzen N, 2016, CONTRIB PLASM PHYS, V56, P5, DOI 10.1002/ctpp.201610003 Schuler M, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.054303 Sentef MA, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.144506 Stan A, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3127247 Stefanucci G., 2013, NONEQUILIBRIUM MANY STEINBERG J, 1972, NUMER MATH, V19, P212, DOI 10.1007/BF01404691 Tsuji N, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.165115 von Friesen MP, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.176404 von Friesen MP, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.155108 White SR, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.076401 NR 39 TC 4 Z9 4 U1 5 U2 5 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD DEC PY 2020 VL 257 AR 107484 DI 10.1016/j.cpc.2020.107484 PG 48 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA OD3WI UT WOS:000579783600004 DA 2021-04-21 ER PT J AU Reuber, GS Simons, FJ AF Reuber, Georg S. Simons, Frederik J. TI Multi-physics adjoint modeling of Earth structure: combining gravimetric, seismic, and geodynamic inversions SO GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS LA English DT Article DE Gravitational potential; Wave equation; Stokes equation; Adjoint-state method; Multi-physics inversion ID WAVE-FORM INVERSION; MANTLE-CIRCULATION MODELS; STOCHASTIC NEWTON MCMC; GRAVITY-ANOMALIES; DATA ASSIMILATION; FLOW; CONVECTION; REFLECTION; SENSITIVITY; KERNELS AB We discuss the resolving power of three geophysical imaging and inversion techniques, and their combination, for the reconstruction of material parameters in the Earth's subsurface. The governing equations are those of Newton and Poisson for gravitational problems, the acoustic wave equation under Hookean elasticity for seismology, and the geodynamics equations of Stokes for incompressible steady-state flow in the mantle. The observables are the gravitational potential, the seismic displacement, and the surface velocity, all measured at the surface. The inversion parameters of interest are the mass density, the acoustic wave speed, and the viscosity. These systems of partial differential equations and their adjoints were implemented in a single Python code using the finite-element library FeNICS. To investigate the shape of the cost functions, we present a grid search in the parameter space for three end-member geological settings: a falling block, a subduction zone, and a mantle plume. The performance of a gradient-based inversion for each single observable separately, and in combination, is presented. We furthermore investigate the performance of a shape-optimizing inverse method, when the material is known, and an inversion that inverts for the material parameters of an anomaly with known shape. C1 [Reuber, Georg S.] Johannes Gutenberg Univ Mainz, Inst Geosci, D-55128 Mainz, Germany. [Reuber, Georg S.] Max Planck Grad Ctr, Mainz, Germany. [Reuber, Georg S.] Johannes Gutenberg Univ Mainz, Mainz Inst Multiscale Modelling M3ODEL, D-55128 Mainz, Germany. [Simons, Frederik J.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Simons, Frederik J.] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA. RP Reuber, GS (corresponding author), Johannes Gutenberg Univ Mainz, Inst Geosci, D-55128 Mainz, Germany.; Reuber, GS (corresponding author), Max Planck Grad Ctr, Mainz, Germany.; Reuber, GS (corresponding author), Johannes Gutenberg Univ Mainz, Mainz Inst Multiscale Modelling M3ODEL, D-55128 Mainz, Germany. EM reuber@uni-mainz.de RI Simons, Frederik J/A-3427-2008 OI Simons, Frederik J/0000-0003-2021-6645 FU Projekt DEAL FX Open Access funding enabled and organized by Projekt DEAL. CR Aghasi A, 2011, SIAM J IMAGING SCI, V4, P618, DOI 10.1137/100800208 Akcelik V., 2002, P IEEE ACM SC2002 C, DOI [10.1109/SC.2002.10002, DOI 10.1109/SC.2002.10002] Aki K, 1980, QUANTITATIVE SEISMOL Alnaes M. S., 2015, ARCH NUMER SOFTW, V3, P9, DOI [10.11588/ans.2015.100.20553, DOI 10.11588/ANS.2015.100.20553] Askan A, 2007, B SEISMOL SOC AM, V97, P1990, DOI 10.1785/0120070079 Askan A, 2010, CR MECANIQUE, V338, P364, DOI 10.1016/j.crme.2010.07.002 Aster RC, 2019, PARAMETER ESTIMATION AND INVERSE PROBLEMS, 3RD EDITION Balay S., 2019, TECHNICAL REPORT Berkel P, 2010, MATH GEOSCI, V42, P795, DOI 10.1007/s11004-010-9297-2 Blakely R.J., 1995, POTENTIAL THEORY GRA Brown JR, 2017, FDN SEISMOLOGY BRING Bunge HP, 2003, GEOPHYS J INT, V152, P280, DOI 10.1046/j.1365-246X.2003.01823.x Bunge HP, 2002, PHILOS T R SOC A, V360, P2545, DOI 10.1098/rsta.2002.1080 BUNKS C, 1995, GEOPHYSICS, V60, P1457, DOI 10.1190/1.1443880 Burger M, 2001, INVERSE PROBL, V17, P1327, DOI 10.1088/0266-5611/17/5/307 Chao BF, 2005, J GEODYN, V39, P223, DOI 10.1016/j.jog.2004.11.001 Claerbout JF., 1992, EARTH SOUNDINGS ANAL Colli L, 2018, GONDWANA RES, V53, P252, DOI 10.1016/j.gr.2017.04.027 Conrad CP, 2013, NATURE, V498, P479, DOI 10.1038/nature12203 Conrad CP, 1997, GEOPHYS J INT, V129, P95, DOI 10.1111/j.1365-246X.1997.tb00939.x Crestel B, 2019, INVERSE PROBL, V35, DOI 10.1088/1361-6420/aaf129 Dahlen F., 1998, THEORETICAL GLOBAL S de Hoop MV, 2009, INVERSE PROBL, V25, DOI 10.1088/0266-5611/25/2/025005 Domenzain D., 2018, 88 ANN INT M SEG, P4763, DOI [10.1190/segam2018-2997794.1, DOI 10.1190/SEGAM2018-2997794.1] DORMAN LM, 1970, J GEOPHYS RES, V75, P3357, DOI 10.1029/JB075i017p03357 Dorn O, 2015, HDB MATH METHODS IMA Elkins-Tanton LT, 2007, J GEOPHYS RES-SOL EA, V112, DOI 10.1029/2005JB004072 Elkins-Tanton LT, 2005, GEOL SOC AM SPEC PAP, V388, DOI 10.1130/2005.2388(27) Fichtner A, 2006, PHYS EARTH PLANET IN, V157, P105, DOI 10.1016/j.pepi.2006.03.018 Fichtner A, 2006, PHYS EARTH PLANET IN, V157, P86, DOI 10.1016/j.pepi.2006.03.016 Fichtner A, 2018, J GEOPHYS RES-SOL EA, V123, P2984, DOI 10.1002/2017JB015249 Fichtner A, 2011, GEOPHYS J INT, V185, P775, DOI 10.1111/j.1365-246X.2011.04966.x Fischer D, 2012, INVERSE PROBL, V28, DOI 10.1088/0266-5611/28/6/065012 Forte AM, 2001, NATURE, V410, P1049, DOI 10.1038/35074000 Freeden W, 2015, HDB GEOMATHEMATICS, P3 Freeden W, 2018, GEM INT J GEOMATHEMA, V9, P199, DOI 10.1007/s13137-018-0103-5 GAUTHIER O, 1986, GEOPHYSICS, V51, P1387, DOI 10.1190/1.1442188 Geng Y, 2020, COMMUN MATH PHYS, V28, P228, DOI [10.4208/cicp.OA-2018-0087, DOI 10.4208/CICP.OA-2018-0087] Gerya T. V., 2019, INTRO NUMERICAL GEOD Ghelichkhan S, 2016, GEM INT J GEOMATHEMA, V7, P1, DOI 10.1007/s13137-016-0080-5 Glatzmaier GA, 2014, INTRO MODELING CONVE Gouveia WP, 1998, J GEOPHYS RES-SOL EA, V103, P2759, DOI 10.1029/97JB02933 Harig C, 2010, GEOCHEM GEOPHY GEOSY, V11, DOI 10.1029/2010GC003038 Hofmann-Wellenhof B., 2006, PHYS GEODESY Horbach A, 2014, GEM INT J GEOMATHEMA, V5, P163, DOI 10.1007/s13137-014-0061-5 Kellogg O. D., 1967, FDN POTENTIAL THEORY Kennett BLN, 2008, GEOPHYSICAL CONTINUA Laurain A, 2018, STRUCT MULTIDISCIP O, V58, P1311, DOI 10.1007/s00158-018-1950-2 Lewis KW, 2012, GEOPHYS RES LETT, V39, DOI 10.1029/2012GL052708 Lithgow-Bertelloni C, 1998, REV GEOPHYS, V36, P27, DOI 10.1029/97RG02282 Liu Q, 2008, GEOPHYS J INT, V174, P265, DOI 10.1111/j.1365-246X.2008.03798.x Liu QY, 2006, B SEISMOL SOC AM, V96, P2383, DOI 10.1785/0120060041 Logg A, 2012, AUTOMATED SOLUTION D Ma Y, 2012, GEOPHYSICS, V77, pR189, DOI [10.1190/GEO2011-0395.1, 10.1190/geo2011-0395.1] MALEVSKY AV, 1992, GEOPHYS ASTRO FLUID, V65, P149, DOI 10.1080/03091929208225244 Malvern L.E., 1969, INTRO MECH CONTINUOU MARTIN D, 1989, J PETROL, V30, P1471, DOI 10.1093/petrology/30.6.1471 MARTIN D, 1988, NATURE, V332, P534, DOI 10.1038/332534a0 Martin J, 2012, SIAM J SCI COMPUT, V34, pA1460, DOI 10.1137/110845598 Mead JL, 2020, J INVERSE ILL-POSE P, V28, P105, DOI 10.1515/jiip-2019-0068 MELOSH HJ, 1980, GEOPHYS J ROY ASTR S, V60, P333, DOI 10.1111/j.1365-246X.1980.tb04812.x Michel V, 2005, INVERSE PROBL, V21, P997, DOI 10.1088/0266-5611/21/3/013 Michel V, 2008, INVERSE PROBL, V24, DOI 10.1088/0266-5611/24/4/045019 Michel V, 2015, HDB GEOMATHEMATICS, P2087 Michel V, 2017, INVERSE PROBL, V33, DOI 10.1088/1361-6420/aa9909 Michel V, 2016, J INVERSE ILL-POSE P, V24, P687, DOI 10.1515/jiip-2015-0026 MORA P, 1989, GEOPHYSICS, V54, P1575, DOI 10.1190/1.1442625 MORA P, 1988, GEOPHYSICS, V53, P750, DOI 10.1190/1.1442510 MORGAN WJ, 1971, NATURE, V230, P42, DOI 10.1038/230042a0 MORGAN WJ, 1965, J GEOPHYS RES, V70, P6175, DOI 10.1029/JZ070i024p06175 Nolet G, 2008, BREVIARY OF SEISMIC TOMOGRAPHY: IMAGING THE INTERIOR OF THE EARTH AND SUN, P1, DOI 10.1017/CBO9780511984709 Nolet G, 2015, HDB GEOMATHEMATICS, P1887 OLDENBURG DW, 1974, GEOPHYSICS, V39, P526, DOI 10.1190/1.1440444 Pan WY, 2020, GEOPHYS J INT, V221, P1292, DOI 10.1093/gji/ggaa089 PARKER RL, 1973, GEOPHYS J ROY ASTR S, V31, P447, DOI 10.1111/j.1365-246X.1973.tb06513.x PARMENTIER EM, 1976, J GEOPHYS RES, V81, P1839, DOI 10.1029/JB081i011p01839 PELTIER WR, 1985, ANNU REV FLUID MECH, V17, P561 Peng DP, 1999, J COMPUT PHYS, V155, P410, DOI 10.1006/jcph.1999.6345 Petra N, 2014, SIAM J SCI COMPUT, V36, pA1525, DOI 10.1137/130934805 Petra N, 2012, J GLACIOL, V58, P889, DOI 10.3189/2012JoG11J182 Plattner A., 2020, LEAD EDGE, V39, P332, DOI [10.1190/tle39050332.1, DOI 10.1190/TLE39050332.1] Plessix RE, 2006, GEOPHYS J INT, V167, P495, DOI 10.1111/j.1365-246X.2006.02978.x Ranalli G., 1995, RHEOLOGY EARTH Ratnaswamy V, 2015, GEOPHYS J INT, V202, P768, DOI 10.1093/gji/ggv166 Reuber GS, 2020, GEOPHYS J INT, V223, P851, DOI 10.1093/gji/ggaa344 Reuber GS, 2018, FRONT EARTH SC-SWITZ, V6, DOI 10.3389/feart.2018.00117 Robbins AR, 2018, J APPL GEOPHYS, V151, P66, DOI 10.1016/j.jappgeo.2018.01.027 Scherzer O, 2000, J MATH IMAGING VIS, V12, P43, DOI 10.1023/A:1008344608808 Schubert G, 2001, MANTLE CONVECTION EA Schuster G T., 2017, SEISMIC INVERSION Sheriff R. E., 1995, EXPLORATION SEISMOLO SLEEP NH, 1975, GEOPHYS J ROY ASTR S, V42, P827, DOI 10.1111/j.1365-246X.1975.tb06454.x SLEEP NH, 1990, J GEOPHYS RES-SOLID, V95, P6715, DOI 10.1029/JB095iB05p06715 Stefanov P, 2019, ACTA MATH SIN, V35, P1085, DOI 10.1007/s10114-019-8338-0 Stern RJ, 2002, REV GEOPHYS, V40, DOI 10.1029/2001RG000108 Symes WW, 2009, INVERSE PROBL, V25, DOI 10.1088/0266-5611/25/12/123008 TARANTOLA A, 1988, PURE APPL GEOPHYS, V128, P365, DOI 10.1007/BF01772605 TARANTOLA A, 1984, GEOPHYS PROSPECT, V32, P998, DOI 10.1111/j.1365-2478.1984.tb00751.x TARANTOLA A, 1986, GEOPHYSICS, V51, P1893, DOI 10.1190/1.1442046 TARANTOLA A, 1984, GEOPHYSICS, V49, P1259, DOI 10.1190/1.1441754 Tikhonov A.N., 1977, SOLUTION ILL POSED P Tomlinson KY, 2001, GEOL S AM S, P341 Troltzsch F., 2010, OPTIMAL CONTROL PART Tromp J, 2005, GEOPHYS J INT, V160, P195, DOI 10.1111/J.1365-246X.2004.02453.X Tromp J., 2020, NAT REV EARTH ENV, V1, P40, DOI [10.1038/s43017-019-0003-8, DOI 10.1038/S43017-019-0003-8] VANDENBERG AP, 1993, GEOPHYS J INT, V115, P62 Villa U., 2019, ARXIV190903948 Virieux J, 2009, GEOPHYSICS, V74, pWCC1, DOI 10.1190/1.3238367 WILSON JT, 1973, TECTONOPHYSICS, V19, P149, DOI 10.1016/0040-1951(73)90037-1 WOODWARD MJ, 1992, GEOPHYSICS, V57, P15, DOI 10.1190/1.1443179 XU PL, 1992, GEOPHYS J INT, V110, P321, DOI 10.1111/j.1365-246X.1992.tb00877.x XU PL, 1992, GEOPHYS J INT, V111, P170, DOI 10.1111/j.1365-246X.1992.tb00563.x Yilmaz O., 2001, SEISMIC DATA ANAL Yuan YO, 2014, GEOPHYSICS, V79, pWA79, DOI 10.1190/GEO2013-0383.1 Zienkiewicz OC, 1977, FINITE ELEMENT METHO NR 115 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1869-2672 EI 1869-2680 J9 GEM INT J GEOMATHEMA JI GEM Int. J. Geomathematics PD NOV 10 PY 2020 VL 11 IS 1 AR 30 DI 10.1007/s13137-020-00166-8 PG 38 WC Mathematics, Interdisciplinary Applications SC Mathematics GA OP9HC UT WOS:000588400200001 OA Other Gold DA 2021-04-21 ER PT J AU Ryu, T Krolik, J Piran, T AF Ryu, Taeho Krolik, Julian Piran, Tsvi TI Measuring Stellar and Black Hole Masses of Tidal Disruption Events SO ASTROPHYSICAL JOURNAL LA English DT Article DE Black hole physics; Supermassive black holes; Gravitation; Stellar physics; Tidal disruption; Galaxy nuclei ID CANDIDATE; RICH AB The flare produced when a star is tidally disrupted by a supermassive black hole holds potential as a diagnostic of both the black hole mass and the star mass. We propose a new method to realize this potential based upon a physical model of optical/UV light production in which shocks near the apocenters of debris orbits dissipate orbital energy, which is then radiated from that region. Measurement of the optical/UV luminosity and color temperature at the peak of the flare leads directly to the two masses. The black hole mass depends mostly on the temperature observed at peak luminosity, while the mass of the disrupted star depends mostly on the peak luminosity. We introduce TDEmass, a method to infer the black hole and stellar masses given these two input quantities. Using TDEmass, we find, for 21 well-measured events, black hole masses between 5 x 10(5) and 10(7) M-circle dot and disrupted stars with initial masses between 0.6 and 13 M-circle dot. An open-source python-based tool for TDEmass is available at https://github.com/taehoryu/TDEmass.git.. C1 [Ryu, Taeho; Krolik, Julian] Johns Hopkins Univ, Phys & Astron Dept, Baltimore, MD 21218 USA. [Piran, Tsvi] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. RP Ryu, T (corresponding author), Johns Hopkins Univ, Phys & Astron Dept, Baltimore, MD 21218 USA. OI Piran, Tsvi/0000-0002-7964-5420 FU ERCEuropean Research Council (ERC)European Commission; NSFNational Science Foundation (NSF) [AST-1715032] FX We thank Iair Arcavi and Nicholas Stone for helpful comments. We are grateful to the anonymous referee for some useful comments. This research was partially supported by an advanced ERC grant TReX and by NSF grant AST-1715032. CR Arcavi I, 2014, ASTROPHYS J, V793, DOI 10.1088/0004-637X/793/1/38 Baldassare VF, 2020, ASTROPHYS J LETT, V898, DOI 10.3847/2041-8213/aba0c1 Blagorodnova N, 2019, ASTROPHYS J, V873, DOI 10.3847/1538-4357/ab04b0 Blagorodnova N, 2017, ASTROPHYS J, V844, DOI 10.3847/1538-4357/aa7579 Chornock R, 2014, ASTROPHYS J, V780, DOI 10.1088/0004-637X/780/1/44 Dai LX, 2015, ASTROPHYS J LETT, V812, DOI 10.1088/2041-8205/812/2/L39 Ferrarese L, 2005, SPACE SCI REV, V116, P523, DOI 10.1007/s11214-005-3947-6 French KD, 2016, ASTROPHYS J LETT, V818, DOI 10.3847/2041-8205/818/1/L21 Gafton E, 2019, MON NOT R ASTRON SOC, V487, P4790, DOI 10.1093/mnras/stz1530 Gezari S, 2012, NATURE, V485, P217, DOI 10.1038/nature10990 Goicovic FG, 2019, MON NOT R ASTRON SOC, V487, P981, DOI 10.1093/mnras/stz1368 Graur O, 2018, ASTROPHYS J, V853, DOI 10.3847/1538-4357/aaa3fd Gultekin K, 2009, ASTROPHYS J, V698, P198, DOI 10.1088/0004-637X/698/1/198 Guillochon J, 2013, ASTROPHYS J, V767, DOI 10.1088/0004-637X/767/1/25 Haring N, 2004, ASTROPHYS J, V604, pL89, DOI 10.1086/383567 Hinkle JT, 2021, MON NOT R ASTRON SOC, V500, P1673, DOI 10.1093/mnras/staa3170 Hinkle JT, 2020, ASTROPHYS J LETT, V894, DOI 10.3847/2041-8213/ab89a2 Holoien TWS, 2016, MON NOT R ASTRON SOC, V455, P2918, DOI 10.1093/mnras/stv2486 Holoien TWS, 2014, MON NOT R ASTRON SOC, V445, P3263, DOI 10.1093/mnras/stu1922 Holoien TWS, 2019, ASTROPHYS J, V880, DOI 10.3847/1538-4357/ab2ae1 Holoien TWS, 2020, ASTROPHYS J, V898, DOI 10.3847/1538-4357/ab9f3d Holoien TWS, 2019, ASTROPHYS J, V883, DOI 10.3847/1538-4357/ab3c66 Hung T, 2017, ASTROPHYS J, V842, DOI 10.3847/1538-4357/aa7337 Jiang YF, 2016, ASTROPHYS J, V830, DOI 10.3847/0004-637X/830/2/125 Kormendy J, 2013, ANNU REV ASTRON ASTR, V51, P511, DOI 10.1146/annurev-astro-082708-101811 Krolik J., 2020, ARXIV200103234 Krolik J, 2016, ASTROPHYS J, V827, DOI 10.3847/0004-637X/827/2/127 Law-Smith J, 2019, ASTROPHYS J LETT, V882, DOI 10.3847/2041-8213/ab379a Law-Smith J, 2017, ASTROPHYS J, V850, DOI 10.3847/1538-4357/aa94c7 Leloudas G, 2019, ASTROPHYS J, V887, DOI 10.3847/1538-4357/ab5792 Liu FK, 2017, MON NOT R ASTRON SOC, V472, pL99, DOI 10.1093/mnrasl/slx147 McConnell NJ, 2013, ASTROPHYS J, V764, DOI 10.1088/0004-637X/764/2/184 Miller JM, 2015, NATURE, V526, P542, DOI 10.1038/nature15708 Mockler B, 2019, ASTROPHYS J, V872, DOI 10.3847/1538-4357/ab010f Nicholl M, 2020, MON NOT R ASTRON SOC, V499, P482, DOI 10.1093/mnras/staa2824 Nicholl M, 2019, MON NOT R ASTRON SOC, V488, P1878, DOI 10.1093/mnras/stz1837 Noble SC, 2009, ASTROPHYS J, V692, P411, DOI 10.1088/0004-637X/692/1/411 Paxton B, 2011, ASTROPHYS J SUPPL S, V192, DOI 10.1088/0067-0049/192/1/3 PHINNEY ES, 1989, IAU SYMP, P543 Piran T, 2015, ASTROPHYS J, V806, DOI 10.1088/0004-637X/806/2/164 Ryu T., 2020, APJ Shiokawa H, 2015, ASTROPHYS J, V804, DOI 10.1088/0004-637X/804/2/85 Tejeda E, 2017, MON NOT R ASTRON SOC, V469, P4483, DOI 10.1093/mnras/stx1089 van Velzen S., 2019, ATEL, V12568, P1 van Velzen S., 2020, ARXIV200101409 Wen SX, 2020, ASTROPHYS J, V897, DOI 10.3847/1538-4357/ab9817 Wevers T, 2019, MON NOT R ASTRON SOC, V488, P4816, DOI 10.1093/mnras/stz1976 Wevers T, 2017, MON NOT R ASTRON SOC, V471, P1694, DOI 10.1093/mnras/stx1703 Xiao T, 2011, ASTROPHYS J, V739, DOI 10.1088/0004-637X/739/1/28 Zhou Z. Q., 2020, ARXIV200202267 NR 50 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV PY 2020 VL 904 IS 1 AR 73 DI 10.3847/1538-4357/abbf4d PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA OU8TP UT WOS:000591796800001 DA 2021-04-21 ER PT J AU Fontes, D Romao, JC AF Fontes, Duarte Romao, Jorge C. TI FeynMaster: A plethora of Feynman tools SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE FeynCalc; QGRAF; FeynRules; Feynman rules; Feynman diagrams; Loop calculations; Renormalization ID LOOP CALCULATIONS; GENERATION; AMPLITUDES; DIAGRAMS; PHYSICS; LEVEL AB FeynMaster is a multi-tasking software for particle physics studies. By making use of already existing programs (FeynRules, QGRAF, FeynCalc), FeynMaster automatically generates Feynman rules, generates and draws Feynman diagrams, generates amplitudes, performs both loop and algebraic calculations, and fully renormalizes models. In parallel with this automatic character, FeynMaster allows the user to manipulate the generated results in Mathematica notebooks in a flexible and consistent way. It can be downloaded in https://porthos.tecnico.ulisboa.pt/FeynMaster/. Program summary Program Title: FeynMaster Program Files doi: http://dx.doi.org/10.17632/f6yrbk4cm3.1 Licensing provisions: CC0 1.0 Programming language: Python, Wolfram Mathematica Nature of problem: Although different softwares exist that separately handle Feynman rules, Feynman diagrams, loop calculations and renormalization, there seems to be missing a single software to address all those topics in a flexible and consistent way. Indeed, despite the undisputed quality of some of the existing softwares, they usually do not combine an automatic character with the possibility of manipulating the final analytical expressions in a practical way. And although interfaces between different softwares exist, they tend not to be free of constraints, since the notation changes between softwares and a conversion is not totally automatic. Solution method: Using both Python and Wolfram Mathematica to combine FeynRules [1, 2], QGRAF [3] and FeynCalc [4, 5], FeynMaster performs all the above listed tasks, and at the same time allows the user to handle the final results in Mathematica notebooks. Additional comments including restrictions and unusual features: Besides computing the results automatically, FeynMaster generates notebooks that allow the user to act upon them. It also includes a thorough interaction with numerical calculations, as it converts the expressions to LoopTools [6]. Algebraic computations only guaranteed up to 2 particles in both the initial and final states. Complex problems may require much computational time. The drawing of Feynman diagrams is only guaranteed to properly work with the diagrams up to 1-loop; moreover, diagrams with more than two particles in the initial or final states, as well as some reducible diagrams, are also not warranted. Due to some problems in LATEX breqn package, some lines in PDF outputs may go out of the screen. C1 [Fontes, Duarte] Univ Lisbon, Inst Super Tecn, Dept Fis, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal. Univ Lisbon, Inst Super Tecn, CFTP, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal. RP Fontes, D (corresponding author), Univ Lisbon, Inst Super Tecn, Dept Fis, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal. EM duartefontes@tecnico.ulisboa.pt; jorge.romao@tecnico.ulisboa.pt RI romao, jorge/C-5991-2009 OI romao, jorge/0000-0002-9683-4055 FU project CFTP-FCT Unit 777 through POCTI Portugal (FEDER) [UID/FIS/00777/2013, UID/FIS/00777/2019]; project CFTP-FCT Unit 777 through COMPETE Portugal [UID/FIS/00777/2013, UID/FIS/00777/2019]; project CFTP-FCT Unit 777 through QREN Portugal [UID/FIS/00777/2013, UID/FIS/00777/2019]; project CFTP-FCT Unit 777 through EU [UID/FIS/00777/2013, UID/FIS/00777/2019]; POCTI Portugal (FEDER) [PTDC/FIS-PAR/29436/2017]; COMPETE Portugal [PTDC/FIS-PAR/29436/2017]; QREN Portugal [PTDC/FIS-PAR/29436/2017]; EUEuropean Commission [PTDC/FIS-PAR/29436/2017]; Portuguese Fundacao para a Ciencia e TecnologiaPortuguese Foundation for Science and TechnologyEuropean Commission [SFRH/BD/135698/2018] FX Both authors are very grateful to Antonio P. Lacerda, who kicked off the entire program. We also thank Vladyslav Shtabovenko, Paulo Nogueira and Augusto Barroso for useful discussions concerning FeynCalc, QGRAF and renormalization, respectively; Maximilian Loschner for bringing the feynmf package to our attention; Miguel P. Bento and Patrick Blackstone for testing the program; Darius Jurciukonis for a careful reading of the manuscript; Joao P. Silva for the suggestion of the name `FeynMaster', as well as for a careful reading of the manuscript. D.F. is also grateful to Isabel Fonseca for many useful suggestions concerning Python and to Sofia Gomes for a suggestion regarding the printing of the Feynman rules. Both authors are supported by projects CFTP-FCT Unit 777 (UID/FIS/00777/2013 and UID/FIS/00777/2019), and PTDC/FIS-PAR/29436/2017, which are partially funded through POCTI Portugal (FEDER), COMPETE Portugal, QREN Portugal and EU. D.F. is also supported by the Portuguese Fundacao para a Ciencia e Tecnologia under the project SFRH/BD/135698/2018. CR AKYEAMPONG DA, 1973, NUOVO CIMENTO A, VA 17, P578, DOI 10.1007/BF02786835 Alloul A, 2014, COMPUT PHYS COMMUN, V185, P2250, DOI 10.1016/j.cpc.2014.04.012 Alwall J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)079 BARROSO A, 1991, PHYS LETT B, V261, P123, DOI 10.1016/0370-2693(91)91336-T Belanger G, 2006, PHYS REP, V430, P117, DOI 10.1016/j.physrep.2006.02.001 CHANOWITZ M, 1979, NUCL PHYS B, V159, P225, DOI 10.1016/0550-3213(79)90333-X Christensen ND, 2009, COMPUT PHYS COMMUN, V180, P1614, DOI 10.1016/j.cpc.2009.02.018 Cullen G, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-014-3001-5 Cullen G, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1889-1 Degrande C, 2015, COMPUT PHYS COMMUN, V197, P239, DOI 10.1016/j.cpc.2015.08.015 DENNER A, 1993, FORTSCHR PHYS, V41, P307, DOI 10.1002/prop.2190410402 Denner A, 2006, NUCL PHYS B, V734, P62, DOI 10.1016/j.nuclphysb.2005.11.007 Hahn T, 1999, COMPUT PHYS COMMUN, V118, P153, DOI 10.1016/S0010-4655(98)00173-8 Hahn T, 2001, COMPUT PHYS COMMUN, V140, P418, DOI 10.1016/S0010-4655(01)00290-9 Harlander R, 1999, PROG PART NUCL PHYS, V43, P167, DOI 10.1016/S0146-6410(99)00095-2 Jegerlehner F, 2001, EUR PHYS J C, V18, P673, DOI 10.1007/s100520100573 Kreimer D., HEPPH9401354 KUBLBECK J, 1990, COMPUT PHYS COMMUN, V60, P165, DOI 10.1016/0010-4655(90)90001-H Kuipers J, 2013, COMPUT PHYS COMMUN, V184, P1453, DOI 10.1016/j.cpc.2012.12.028 Lorca A, 2006, COMPUT PHYS COMMUN, V174, P71, DOI 10.1016/j.cpc.2005.09.003 MERTIG R, 1991, COMPUT PHYS COMMUN, V64, P345, DOI 10.1016/0010-4655(91)90130-D NOGUEIRA P, 1993, J COMPUT PHYS, V105, P279, DOI 10.1006/jcph.1993.1074 OHL T, 1995, COMPUT PHYS COMMUN, V90, P340, DOI 10.1016/0010-4655(95)90137-S Pukhov A., HEPPH9908288 COMPHEP Romao J.C., 2019, ADV QUANTUM FIELD TH Romao JC, 2012, INT J MOD PHYS A, V27, DOI 10.1142/S0217751X12300256 Semenov A, 1998, COMPUT PHYS COMMUN, V115, P124, DOI 10.1016/S0010-4655(98)00143-X Semenov A.V., HEPPH9608488 LANHEP Shtabovenko V, 2016, COMPUT PHYS COMMUN, V207, P432, DOI 10.1016/j.cpc.2016.06.008 Tanabashi M, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.030001 Tentyukov M, 2000, COMPUT PHYS COMMUN, V132, P124, DOI 10.1016/S0010-4655(00)00147-8 Wang JX, 2004, NUCL INSTRUM METH A, V534, P241, DOI 10.1016/j.nima.2004.07.094 Zerf N., ARXIV191106345 NR 33 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV PY 2020 VL 256 AR 107311 DI 10.1016/j.cpc.2020.107311 PG 20 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA OS6DF UT WOS:000590251400003 DA 2021-04-21 ER PT J AU Nascimento, RG Fricke, K Viana, FAC AF Nascimento, Renato G. Fricke, Kajetan Viana, Felipe A. C. TI A tutorial on solving ordinary differential equations using Python and hybrid physics-informed neural network SO ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE LA English DT Article DE Physics-informed neural network; Scientific machine learning; Uncertainty quantification; Hybrid model python implementation AB We present a tutorial on how to directly implement integration of ordinary differential equations through recurrent neural networks using Python. In order to simplify the implementation, we leveraged modern machine learning frameworks such as TensorFlow and Keras. Besides, offering implementation of basic models (such as multilayer perceptrons and recurrent neural networks) and optimization methods, these frameworks offer powerful automatic differentiation. With all that, the main advantage of our approach is that one can implement hybrid models combining physics-informed and data-driven kernels, where data-driven kernels are used to reduce the gap between predictions and observations. Alternatively, we can also perform model parameter identification. In order to illustrate our approach, we used two case studies. The first one consisted of performing fatigue crack growth integration through Euler's forward method using a hybrid model combining a data-driven stress intensity range model with a physics-based crack length increment model. The second case study consisted of performing model parameter identification of a dynamic two-degree-of-freedom system through Runge-Kutta integration. The examples presented here as well as source codes are all open-source under the GitHub repository https://github.com/PML- UCF/pinn_code_tutorial. C1 [Nascimento, Renato G.; Fricke, Kajetan; Viana, Felipe A. C.] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. RP Viana, FAC (corresponding author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. EM viana@ucf.edu OI Viana, Felipe/0000-0002-2196-7603 CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Altan A, 2020, MECH SYST SIGNAL PR, V138, DOI 10.1016/j.ymssp.2019.106548 Altan Aytac, 2018, 2018 6 INT C CONTR E, P1 Baydin AG, 2018, J MACH LEARN RES, V18 Butcher JC, 1996, APPL NUMER MATH, V22, P113, DOI 10.1016/S0168-9274(96)00048-7 Chen T. Q., 2018, ADV NEURAL INFORM PR, P6572 Cheng Y, 2018, ENG APPL ARTIF INTEL, V74, P303, DOI 10.1016/j.engappai.2018.07.003 Cho K., 2014, ARXIV 14061078, P1724 Chollet F., 2015, KERAS Collins J., 1993, FAILURE MAT MECH DES CONNOR JT, 1994, IEEE T NEURAL NETWOR, V5, P240, DOI 10.1109/72.279188 Dourado A, 2020, J COMPUT INF SCI ENG, V20, DOI 10.1115/1.4047173 Dowling N., 2012, MECH BEHAV MAT ENG M Elsken T, 2019, J MACH LEARN RES, V20 Goodfellow I, 2016, DEEP LEARNING Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI 10.1162/neco.1997.9.8.1735 Kandasamy K., 2018, P ADV NEUR INF PROC, P2016 Karpatne A, 2017, IEEE T KNOWL DATA EN, V29, P2318, DOI 10.1109/TKDE.2017.2720168 Liu C., 2018, EUR C COMP VIS ECCV Nascimento RG, 2020, AIAA J, V58, P5459, DOI 10.2514/1.J059250 Pan SW, 2020, SIAM J APPL DYN SYST, V19, P480, DOI 10.1137/19M1267246 Pang G., 2020, NONLINEAR SYSTEMS CO, P323, DOI [10.1007/978-3- 030- 44992-6_14, DOI 10.1007/978-3-030-44992-6_14.] Paris P., 1963, T ASME J BASIC ENG, V85, P528, DOI DOI 10.1115/1.3656900 Press WH, 2007, NUMERICAL RECIPES AR Raissi M, 2019, J COMPUT PHYS, V378, P686, DOI 10.1016/j.jcp.2018.10.045 Raissi M, 2018, J COMPUT PHYS, V357, P125, DOI 10.1016/j.jcp.2017.11.039 Sak H, 2014, INTERSPEECH, P338 Shen CQ, 2018, ENG APPL ARTIF INTEL, V76, P170, DOI 10.1016/j.engappai.2018.09.010 Singh Shubhendu Kumar, 2019, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), P34, DOI 10.1109/ICMLA.2019.00015 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Sutskever I., 2011, P1017 TensorFlow Contributors, 2020, CREAT OP Viana F.A.C., 2019, PHYS INFORMED NEURAL, DOI [10.5281/zenodo.3356877, DOI 10.5281/ZENODO.3356877] Yucesan Y.A., 2020, INT J PROGNOST HLTH, V11, P27 NR 35 TC 0 Z9 0 U1 17 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0952-1976 EI 1873-6769 J9 ENG APPL ARTIF INTEL JI Eng. Appl. Artif. Intell. PD NOV PY 2020 VL 96 AR 103996 DI 10.1016/j.engappai.2020.103996 PG 11 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Automation & Control Systems; Computer Science; Engineering GA OH6ND UT WOS:000582708400036 DA 2021-04-21 ER PT J AU Romero, J Bisson, M Fatica, M Bernaschi, M AF Romero, Joshua Bisson, Mauro Fatica, Massimiliano Bernaschi, Massimo TI High performance implementations of the 2D Ising model on GPUs SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE 6,5 software including parallel algorithms; 23 statistical physics and thermodynamics; Ising model; GPU programming ID MONTE-CARLO SIMULATIONS AB We present and make available novel implementations of the two-dimensional Ising model that is used as a benchmark to show the computational capabilities of modern Graphic Processing Units (GPUs). The rich programming environment now available on GPUs and flexible hardware capabilities allowed us to quickly experiment with several implementation ideas: a simple stencil-based algorithm, recasting the stencil operations into matrix multiplies to take advantage of Tensor Cores available on NVIDIA GPUs, and a highly optimized multi-spin coding approach. Using the managed memory API available in CUDA allows for simple and efficient distribution of these implementations across a multi-GPU NVIDIA DGX-2 server. We show that even a basic GPU implementation can outperform current results published on TPUs (Yang et al., 2019) and that the optimized multi-GPU implementation can simulate very large lattices faster than custom FPGA solutions (Ortega-Zamorano et al., 2016). Program summary Program title: cuIsing (optimized). CPC Library link to program files: http://dx.doi.org/10.17632/xrb9xtkbcp.1 Licensing provisions: MIT license. Programming languages: CUDA C, Python. Nature of problem: Two dimensional Ising model for spin systems. Solution method: Checkerboard Metropolis algorithm. (c) 2020 Elsevier B.V. All rights reserved. C1 [Romero, Joshua] NVIDIA Corp, Santa Clara, CA 95050 USA. Natl Res Council Italy, Ist Applicaz Calcolo, I-00185 Rome, Italy. RP Romero, J (corresponding author), NVIDIA Corp, Santa Clara, CA 95050 USA. EM joshr@nvidia.com OI Romero, Joshua/0000-0003-1358-5565 CR Baity-Jesi M, 2014, COMPUT PHYS COMMUN, V185, P550, DOI 10.1016/j.cpc.2013.10.019 Bernaschi M., 2012, COMPUT PHYS COMM, V183 BINDER K, 1981, PHYS REV LETT, V47, P693, DOI 10.1103/PhysRevLett.47.693 Block B, 2010, COMPUT PHYS COMMUN, V181, P1549, DOI 10.1016/j.cpc.2010.05.005 Ising E, 1925, Z PHYS, V31, P253, DOI 10.1007/BF02980577 JACOBS L, 1981, J COMPUT PHYS, V41, P203, DOI 10.1016/0021-9991(81)90089-9 Lam S.K., 2015, P 2 WORKSH LLVM COMP, P1, DOI [DOI 10.1145/2833157.2833162DOI:10.1145/2833157.2833162, 10.1145/2833157.2833162] METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114 Okuta R., 2017, 31 ANN C NEUR INF PR Onsager L, 1944, PHYS REV, V65, P117, DOI 10.1103/PhysRev.65.117 Ortega-Zamorano F, 2016, IEEE T PARALL DISTR, V27, P2618, DOI 10.1109/TPDS.2015.2505725 Preis T, 2009, J COMPUT PHYS, V228, P4468, DOI 10.1016/j.jcp.2009.03.018 Weigel M, 2012, J COMPUT PHYS, V231, P3064, DOI 10.1016/j.jcp.2011.12.008 WOLFF U, 1989, PHYS REV LETT, V62, P361, DOI 10.1103/PhysRevLett.62.361 Yang K, 2019, PROCEEDINGS OF SC19: THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, DOI 10.1145/3295500.3356149 NR 15 TC 0 Z9 0 U1 2 U2 5 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV PY 2020 VL 256 AR 107473 DI 10.1016/j.cpc.2020.107473 PG 9 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA NH2BZ UT WOS:000564482200006 DA 2021-04-21 ER PT J AU Valiulin, VE Mikheyenkov, AV Chtchelkatchev, NM Kugel, KI AF Valiulin, V. E. Mikheyenkov, A., V Chtchelkatchev, N. M. Kugel, K., I TI Quantum entanglement, local indicators, and the effect of external fields in the Kugel-Khomskii model SO PHYSICAL REVIEW B LA English DT Article ID ELEMENTARY EXCITATIONS; PYTHON FRAMEWORK; ORBITAL PHYSICS; DYNAMICS; QUTIP AB Using the exact diagonalization technique, we determine the energy spectrum and wave functions for finite chains described by the two-spin (Kugel-Khomskii) model with different types of intersubsystem exchange terms. The obtained solutions provide the possibility to address the problem of quantum entanglement inherent in this class of models. We put the main emphasis on the calculations of the concurrence treated as an adequate numerical measure of the entanglement. We also analyze the behavior of two-site correlation functions considered a local indicator of entanglement. We construct the phase diagrams of the models involving the regions of nonzero entanglement. The pronounced effect of external fields, conjugated to both spin variables in the regions with entanglement, could both enhance and weaken the entanglement depending on the parameters of the models. C1 [Valiulin, V. E.; Mikheyenkov, A., V; Chtchelkatchev, N. M.] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia. [Valiulin, V. E.; Mikheyenkov, A., V; Chtchelkatchev, N. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 108840, Russia. [Kugel, K., I] Russian Acad Sci, Inst Theoret & Appl Electrodynam, Moscow 125412, Russia. [Kugel, K., I] Natl Res Univ, Higher Sch Econ, Moscow 101000, Russia. RP Valiulin, VE (corresponding author), Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia.; Valiulin, VE (corresponding author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 108840, Russia. EM valiulin@phystech.edu RI Valiulin, Valeriy E./U-8031-2019 OI Valiulin, Valeriy E./0000-0001-6643-6526 FU Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-02-00509, 20-02-00015]; Russian Science FoundationRussian Science Foundation (RSF) [20-62-46047, 18-12-00438] FX This work was supported by the Russian Foundation for Basic Research, Projects No. 19-02-00509 and No. 20-02-00015. K.I.K. acknowledges the support from the Russian Science Foundation, Project No. 20-62-46047. The work K.I.K. was partially performed during his stay at the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Ekaterinburg 620990, Russia. N.M.C. acknowledges the support from the Russian Science Foundation, Project No. 18-12-00438. The computations were carried out on MVS-10P at the Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS). This work has been carried out also using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-Science Facilities at NRC "Kurchatov Institute", [57]. CR Ashkin J, 1943, PHYS REV, V64, P178, DOI 10.1103/PhysRev.64.178 Baldini E, 2020, NAT PHYS, V16, P541, DOI 10.1038/s41567-020-0823-y Beenakker C. W. J., 2006, P INT SCH PHYS E, VCLXII, P307 Belemuk AM, 2018, NEW J PHYS, V20, DOI 10.1088/1367-2630/aacbba Belemuk AM, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.094435 Benckiser E, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/5/053027 Bengtsson I., 2006, GEOMETRY QUANTUM STA Brzezicki W, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.117204 Brzezicki W, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.064407 Brzezicki W, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.134415 Chen MC, 2020, PHYS REV LETT, V124, DOI 10.1103/PhysRevLett.124.080502 Chen Y, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.195113 Chtchelkatchev NM, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.161320 Cuffaro ME, 2013, PHILOS SCI, V80, P1125, DOI 10.1086/673733 Eriksson E, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.224424 Fumagalli R, 2020, PHYS REV B, V101, DOI 10.1103/PhysRevB.101.205117 Gale EPG, 2020, PHYS REV A, V101, DOI 10.1103/PhysRevA.101.052328 Georgescu I, 2020, NAT REV PHYS, V2, P278, DOI 10.1038/s42254-020-0189-1 Gotfryd D., 2020, PHYS REV RES, V2 Grimsmo AL, 2020, PHYS REV X, V10, DOI 10.1103/PhysRevX.10.011058 Gross C, 2017, SCIENCE, V357, P995, DOI 10.1126/science.aal3837 Horodecki R, 2009, REV MOD PHYS, V81, P865, DOI 10.1103/RevModPhys.81.865 Hyllus P, 2005, PHYS REV A, V72, DOI 10.1103/PhysRevA.72.012321 Ishihara S, 2005, NEW J PHYS, V7, DOI 10.1088/1367-2630/7/1/119 Jackeli G, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.017205 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Josefsson M, 2020, PHYS REV B, V101, DOI 10.1103/PhysRevB.101.081408 Jozsa R, 2003, P ROY SOC A-MATH PHY, V459, P2011, DOI 10.1098/rspa.2002.1097 Juraschek DM, 2020, PHYS REV LETT, V124, DOI 10.1103/PhysRevLett.124.117401 Kovaleva NN, 2013, J PHYS-CONDENS MAT, V25, DOI 10.1088/0953-8984/25/15/155602 Kugel K. I., 1982, Soviet Physics - Uspekhi, V25, P231, DOI 10.1070/PU1982v025n04ABEH004537 Kugel K. I., 1980, SOV J LOW TEMP PHYS, V6, P99 Luscher A, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.195102 McArdle S, 2020, REV MOD PHYS, V92, DOI 10.1103/RevModPhys.92.015003 Medvedeva D, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.235149 Meier QN, 2020, PHYS REV B, V102, DOI 10.1103/PhysRevB.102.014102 Mishra KC, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.035127 Oles AM, 2012, J PHYS-CONDENS MAT, V24, DOI 10.1088/0953-8984/24/31/313201 Roggero A, 2020, PHYS REV D, V101, DOI 10.1103/PhysRevD.101.074038 Saitoh E, 2001, NATURE, V410, P180, DOI 10.1038/35065547 Schiffer S, 2019, PHYS REV A, V100, DOI 10.1103/PhysRevA.100.063619 Streltsov SV, 2017, PHYS-USP+, V60, P1121, DOI 10.3367/UFNe.2017.08.038196 Tanaka A, 2019, PHYS REV B, V99, DOI 10.1103/PhysRevB.99.205133 Tanaka Y, 2004, NEW J PHYS, V6, DOI 10.1088/1367-2630/6/1/161 Tokura Y, 2000, SCIENCE, V288, P462, DOI 10.1126/science.288.5465.462 Vahulin VE, 2019, JETP LETT+, V109, P546, DOI 10.1134/S0021364019080125 van den Brink J, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.217202 van den Brink J, 1998, PHYS REV B, V58, P10276, DOI 10.1103/PhysRevB.58.10276 Vidal G, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.227902 Wang Y, 2019, PHYS REV B, V100, DOI 10.1103/PhysRevB.100.155133 Wu B.-H., 2020, PHYS REV RES, V2 You WL, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.054423 You WL, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.094412 Zanaty E, 2018, APPL MATH INF SCI, V12, P265, DOI [10.18576/amis/120127, DOI 10.18576/AMIS/120127] NR 55 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD OCT 19 PY 2020 VL 102 IS 15 AR 155125 DI 10.1103/PhysRevB.102.155125 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA OC7JY UT WOS:000579334000002 DA 2021-04-21 ER PT J AU Conroy, KE Kochoska, A Hey, D Pablo, H Hambleton, KM Jones, D Giammarco, J Abdul-Masih, M Prsa, A AF Conroy, Kyle E. Kochoska, Angela Hey, Daniel Pablo, Herbert Hambleton, Kelly M. Jones, David Giammarco, Joseph Abdul-Masih, Michael Prsa, Andrej TI Physics of Eclipsing Binaries. V. General Framework for Solving the Inverse Problem SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article ID LIGHT; STARS AB PHOEBE 2 is a Python package for modeling the observables of eclipsing star systems, but until now it has focused entirely on the forward model-that is, generating a synthetic model given fixed values of a large number of parameters describing the system and the observations. The inverse problem, obtaining orbital and stellar parameters given observational data, is more complicated and computationally expensive as it requires generating a large set of forward models to determine which set of parameters and uncertainties best represents the available observational data. The process of determining the best solution and also of obtaining reliable and robust uncertainties on those parameters often requires the use of multiple algorithms, including both optimizers and samplers. Furthermore, the forward model of PHOEBE has been designed to be as physically robust as possible, but it is computationally expensive compared to other codes. It is useful, therefore, to use whichever code is most efficient given the reasonable assumptions for a specific system, but learning the intricacies of multiple codes presents a barrier to doing this in practice. Here we present release 2.3 of PHOEBE (publicly available from), which introduces a general framework for defining and handling distributions on parameters and utilizing multiple different estimation, optimization, and sampling algorithms. The presented framework supports multiple forward models, including the robust model built into PHOEBE itself. C1 [Conroy, Kyle E.; Kochoska, Angela; Hambleton, Kelly M.; Prsa, Andrej] Villanova Univ, Dept Astrophys & Planetary Sci, 800 East Lancaster Ave, Villanova, PA 19085 USA. [Hey, Daniel] Univ Sydney, Sch Phys, Sydney Inst Astron SIfA, Sydney, NSW 2006, Australia. [Hey, Daniel] Aarhus Univ, Stellar Astrophys Ctr, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Pablo, Herbert] Amer Assoc Variable Star Observers, 49 Bay State Rd, Cambridge, MA 02138 USA. [Jones, David] Inst Astrofis Canarias, E-38205 Tenerife, Spain. [Jones, David] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Giammarco, Joseph] Eastern Univ, Dept Astron & Phys, 1300 Eagle Rd, St Davids, PA 19087 USA. [Abdul-Masih, Michael] Katholieke Univ Leuven, Inst Astron, Celestijnenlaan 200 D, B-3001 Leuven, Belgium. RP Conroy, KE (corresponding author), Villanova Univ, Dept Astrophys & Planetary Sci, 800 East Lancaster Ave, Villanova, PA 19085 USA. EM kyle.conroy@villanova.edu RI Jones, David/G-8109-2014 OI Jones, David/0000-0003-3947-5946; Prsa, Andrej/0000-0002-1913-0281; Abdul-Masih, Michael/0000-0001-6566-7568; Conroy, Kyle/0000-0002-5442-8550; Hey, Daniel/0000-0003-3244-5357 FU NSF AAG grantsNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS) [1517474, 1909109]; NASANational Aeronautics & Space Administration (NASA) [17-ADAP17-68]; State Research Agency (AEI) of the Spanish Ministry of Science, Innovation and Universities (MCIU); European Regional Development Fund (FEDER)European Commission [AYA2017-83383-P]; Spanish Ministry of Science, Innovation and Universities [P/308614]; General Budgets of the Autonomous Community of the Canary Islands by the Ministry of Economy, Industry, Trade and Knowledge [P/308614]; NASA ADAP grant [18-ADAP18-228]; Australian Government Research Training ProgramAustralian Government; FWO-Odysseus program [G0F8H6N] FX The development of PHOEBE is possible through the NSF AAG grants 1517474 and 1909109 and NASA 17-ADAP17-68, which we gratefully acknowledge.; D.J. acknowledges support from the State Research Agency (AEI) of the Spanish Ministry of Science, Innovation and Universities (MCIU) and the European Regional Development Fund (FEDER) under grant AYA2017-83383-P. D.J. also acknowledges support under grant P/308614 financed by funds transferred from the Spanish Ministry of Science, Innovation and Universities, charged to the General State Budgets and with funds transferred from the General Budgets of the Autonomous Community of the Canary Islands by the Ministry of Economy, Industry, Trade and Knowledge.; K.H. gratefully acknowledges support from NASA ADAP grant 18-ADAP18-228.; D.R.H. gratefully acknowledges the support of the Australian Government Research Training Program.; M.A. acknowledges support from the FWO-Odysseus program under project G0F8H6N. CR Foreman-Mackey D., 2016, J OPEN SOURCE SOFTWA, V24, P1, DOI [10.21105/joss.00024, DOI 10.21105/joss.00024] Foreman-Mackey D., 2019, JOSS, V4, P1864, DOI 10.21105/joss.01864 Foreman-Mackey D, 2017, ASTRON J, V154, DOI 10.3847/1538-3881/aa9332 Foreman-Mackey D, 2013, PUBL ASTRON SOC PAC, V125, P306, DOI 10.1086/670067 Gao FC, 2012, COMPUT OPTIM APPL, V51, P259, DOI 10.1007/s10589-010-9329-3 Goodman J, 2010, COMM APP MATH COM SC, V5, P65, DOI 10.2140/camcos.2010.5.65 Harmanec P, 2002, ASTRON ASTROPHYS, V387, P580, DOI 10.1051/0004-6361:20020453 Hogg D.W., 2010, ARXIV10084686 Horvat M, 2018, ASTROPHYS J SUPPL S, V237, DOI 10.3847/1538-4365/aacd0f Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jenkins J. M., 2017, KSCI19081002 STSCI Jones D, 2020, ASTROPHYS J SUPPL S, V247, DOI 10.3847/1538-4365/ab7927 Maxted PFL, 2016, ASTRON ASTROPHYS, V591, DOI 10.1051/0004-6361/201628579 Mowlavi N, 2017, ASTRON ASTROPHYS, V606, DOI 10.1051/0004-6361/201730613 Oliphant Travis E., 2006, A GUIDE TO NUMPY, V1 Pra A., 2005, APJ, V628, P426, DOI DOI 10.1086/430591 Pra A., 2018, MODELING ANAL ECLIPS Pra A., 2019, 1908018 ASCL Price-Whelan A.M., 2017, JOSS, V2, P357, DOI [10.21105/joss.00357, DOI 10.21105/JOSS.00357] Prsa A, 2008, ASTROPHYS J, V687, P542, DOI 10.1086/591783 Prsa A, 2016, ASTROPHYS J SUPPL S, V227, DOI 10.3847/1538-4365/227/2/29 Robitaille TP, 2013, ASTRON ASTROPHYS, V558, DOI 10.1051/0004-6361/201322068 SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136 Shenar T, 2018, ASTRON ASTROPHYS, V616, DOI 10.1051/0004-6361/201833006 Southworth J, 2007, ASTRON ASTROPHYS, V467, P1215, DOI 10.1051/0004-6361:20077184 Southworth J, 2004, MON NOT R ASTRON SOC, V351, P1277, DOI 10.1111/j.1365-2966.2004.07871.x Southworth J, 2011, MON NOT R ASTRON SOC, V417, P2166, DOI 10.1111/j.1365-2966.2011.19399.x Southworth J, 2009, ASTROPHYS J, V707, P167, DOI 10.1088/0004-637X/707/1/167 Speagle JS, 2020, MON NOT R ASTRON SOC, V493, P3132, DOI 10.1093/mnras/staa278 Torres G, 2010, ASTRON ASTROPHYS REV, V18, P67, DOI 10.1007/s00159-009-0025-1 UNDERHILL AB, 1994, ASTROPHYS J, V432, P770, DOI 10.1086/174615 Virtanen P, 2020, NAT METHODS, V17, P261, DOI 10.1038/s41592-019-0686-2 Wilson RE, 2008, ASTROPHYS J, V672, P575, DOI 10.1086/523634 Wilson RE, 2014, ASTROPHYS J, V780, DOI 10.1088/0004-637X/780/2/151 WILSON RE, 1971, ASTROPHYS J, V166, P605, DOI 10.1086/150986 WILSON RE, 1979, ASTROPHYS J, V234, P1054, DOI 10.1086/157588 NR 36 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD OCT PY 2020 VL 250 IS 2 AR 34 DI 10.3847/1538-4365/abb4e2 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA NY7FO UT WOS:000576550600001 DA 2021-04-21 ER PT J AU Cid-Fuentes, JA Alvarez, P Amela, R Ishii, K Morizawa, RK Badia, RM AF Alvarez Cid-Fuentes, Javier Alvarez, Pol Amela, Ramon Ishii, Kuninori Morizawa, Rafael K. Badia, Rosa M. TI Efficient development of high performance data analytics in Python SO FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE LA English DT Article ID BIG DATA; COMPLEXITY AB Our society is generating an increasing amount of data at an unprecedented scale, variety, and speed. This also applies to numerous research areas, such as genomics, high energy physics, and astronomy, for which large-scale data processing has become crucial. However, there is still a gap between the traditional scientific computing ecosystem and big data analytics tools and frameworks. On the one hand, high performance computing (HPC) programming models lack productivity, and do not provide means for processing large amounts of data in a simple manner. On the other hand, existing big data processing tools have performance issues in HPC environments, and are not general-purpose. In this paper, we propose and evaluate PyCOMPSs, a task-based programming model for Python, as an excellent solution for distributed big data processing in HPC infrastructures. Among other useful features, PyCOMPSs offers a highly productive general-purpose programming model, is infrastructure-agnostic, and provides transparent data management with support for distributed storage systems. We show how two machine learning algorithms (Cascade SVM and K-means) can be developed with PyCOMPSs, and evaluate PyCOMPSs' productivity based on these algorithms. Additionally, we evaluate PyCOMPSs performance on an HPC cluster using up to 1,536 cores and 320 million input vectors. Our results show that PyCOMPSs achieves similar performance and scalability to MPI in HPC infrastructures, while providing a much more productive interface that allows the easy development of data analytics algorithms. (C) 2019 The Authors. Published by Elsevier B.V. C1 [Alvarez Cid-Fuentes, Javier; Alvarez, Pol; Amela, Ramon; Badia, Rosa M.] Barcelona Supercomp Ctr BSC, Barcelona, Spain. [Ishii, Kuninori; Morizawa, Rafael K.] Fujitsu Ltd, Tokyo, Japan. [Badia, Rosa M.] CSIC, Artificial Intelligence Res Inst IIIA, Madrid, Spain. RP Cid-Fuentes, JA (corresponding author), Barcelona Supercomp Ctr BSC, Barcelona, Spain. EM javier.alvarez@bsc.es OI Alvarez Cid-Fuentes, Javier/0000-0001-7153-4649 FU European UnionEuropean Commission [H2020-MSCA-COFUND-2016-754433]; Spanish GovernmentSpanish GovernmentEuropean Commission [SEV2015-0493]; Spanish Ministry of Science and InnovationSpanish Government [TIN2015-65316-P]; Generalitat de Catalunya, SpainGeneralitat de Catalunya [2014-SGR-1051]; Fujitsu; BSC (Script Language Platform) FX This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement H2020-MSCA-COFUND-2016-754433. This work has been supported by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya, Spain (contract 2014-SGR-1051). The research leading to these results has also received funding from the collaboration between Fujitsu and BSC (Script Language Platform). CR Ahrens JP, 2011, COMPUT SCI ENG, V13, P14, DOI 10.1109/MCSE.2011.77 Amancio DR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094137 Amela R., 2017, P 7 WORKSH PYTH HIGH Boehm Barry, 2000, SOFTWARE COST ESTIMA BROOKS FP, 1987, COMPUTER, V20, P10 Brumfiel G, 2011, NATURE, V469, P282, DOI 10.1038/469282a Chen CLP, 2014, INFORM SCIENCES, V275, P314, DOI 10.1016/j.ins.2014.01.015 Chen M, 2014, MOBILE NETW APPL, V19, P171, DOI 10.1007/s11036-013-0489-0 Conejero J, 2018, INT J HIGH PERFORM C, V32, P45, DOI 10.1177/1094342017701278 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Dagum L, 1998, IEEE COMPUT SCI ENG, V5, P46, DOI 10.1109/99.660313 Dalcin LD, 2011, ADV WATER RESOUR, V34, P1124, DOI 10.1016/j.advwatres.2011.04.013 Dean J, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE '04), P137 Dubey R, 2016, INT J ADV MANUF TECH, V84, P631, DOI 10.1007/s00170-015-7674-1 Glock P., 2015, THESIS Gotz M., 2015, P WORKSH MACH LEARN Graf H.P., 2004, ADV NEURAL INF PROCE, V17, P521 Gropp W, 1996, PARALLEL COMPUT, V22, P789, DOI 10.1016/0167-8191(96)00024-5 Hsieh CJ, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P245, DOI 10.1145/3097983.3098080 Inoubli W, 2018, FUTURE GENER COMP SY, V86, P546, DOI 10.1016/j.future.2018.04.032 Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011 Kitchin R, 2014, GEOJOURNAL, V79, P1, DOI 10.1007/s10708-013-9516-8 LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/tit.1982.1056489 Marozzo F, 2015, CONCURR COMP-PRACT E, V27, P5214, DOI 10.1002/cpe.3563 Marti Jonathan, 2013, 2013 IEEE Ninth World Congress on Services (SERVICES), P349, DOI 10.1109/SERVICES.2013.59 Marx V, 2013, NATURE, V496, P253, DOI 10.1038/496253a McCabe T. J., 1976, IEEE Transactions on Software Engineering, VSE-2, P308, DOI 10.1109/TSE.1976.233837 McKinney W., 2012, PYTHON DATA ANAL DAT Millman KJ, 2011, COMPUT SCI ENG, V13, P9, DOI 10.1109/MCSE.2011.36 Misale C, 2018, FUTURE GENER COMP SY, V87, P392, DOI 10.1016/j.future.2018.05.030 NEJMEH BA, 1988, COMMUN ACM, V31, P188, DOI 10.1145/42372.42379 Nguyen V., 2007, 22 ANN FOR COCOMO SY Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 PILLET V, 1995, TRANSPUT OCCAM ENG S, V44, P17 Raghupathi W, 2014, HEALTH INF SCI SYST, V2, DOI 10.1186/2047-2501-2-3 Reed DA, 2015, COMMUN ACM, V58, P56, DOI 10.1145/2699414 Reyes-Ortiz JL, 2015, PROCEDIA COMPUT SCI, V53, P121, DOI 10.1016/j.procs.2015.07.286 SHEPPERD M, 1988, SOFTWARE ENG J, V3, P30, DOI 10.1049/sej.1988.0003 Shvachko K., 2010, SYMPOSIUM, P1, DOI DOI 10.1109/MSST.2010.5496972 Szalay AS, 2011, COMPUT SCI ENG, V13, P34, DOI 10.1109/MCSE.2011.74 Tejedor E, 2017, INT J HIGH PERFORM C, V31, P66, DOI 10.1177/1094342015594678 Totoni E., 2017, P INT C SUP Tous R, 2015, PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, P299, DOI 10.1109/BigData.2015.7363768 Turner V., 2014, DIGITAL UNIVERSE OPP Witten I.H, 2016, DATA MINING PRACTICA Wozniak JM, 2013, IEEE ACM INT SYMP, P95, DOI 10.1109/CCGrid.2013.99 Zaharia Matei, 2012, P 9 USENIX C NETW SS, P2, DOI DOI 10.1111/J.1095-8649.2005.00662.X Zhang K., 2012, INT C ART INT STAT, V22, P1425 NR 48 TC 0 Z9 0 U1 0 U2 9 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-739X EI 1872-7115 J9 FUTURE GENER COMP SY JI Futur. Gener. Comp. Syst. PD OCT PY 2020 VL 111 BP 570 EP 581 DI 10.1016/j.future.2019.09.051 PG 12 WC Computer Science, Theory & Methods SC Computer Science GA LZ3VB UT WOS:000541155100041 OA Other Gold, Green Published DA 2021-04-21 ER PT J AU Canton, L Fontana, A AF Canton, Luciano Fontana, Andrea TI Nuclear physics applied to the production of innovative radiopharmaceuticals SO EUROPEAN PHYSICAL JOURNAL PLUS LA English DT Article ID CODE AB In this work, we review the theory of nuclear reactions induced by charged particles at cyclotrons and we show in a pedagogical way how to perform a reaction yield calculation in a realistic irradiation case. The topic is currently of great interest in the field of radioisotope production for medical applications, in which an international effort is underway to find efficient production routes of novel radiopharmaceuticals that could be used in theranostics or for multimodal imaging: Particular interest is devoted to the reaction channels that allow the production of a given isotope with high yield and high purity. In part I, the nuclear reaction theory is reviewed, with a discussion on the main reaction mechanisms that are important for the calculation of the cross sections: direct reactions, compound nucleus formation and decay and pre-equilibrium emission. The role of modern nuclear reaction codes, such as Talys, for the calculation of nuclear cross sections is also shown with examples. In part II, a tutorial demonstrates how calculate the production yield of the isotope Mn-52g starting from the Talys cross section for the specific reaction Cr-52(p,n)Mn-52g: This is a real and up-to-date research case motivated by the search of a beta(+) emitting radioisotope with paramagnetic properties that could be used for a combined PET-MRI imaging. In the exercise, all the steps to calculate the yield and activities of the reaction are shown in great detail and the result is compared with the reference values. The calculation is performed both in Excel and in Python, and the input files are provided as supplementary material. C1 [Canton, Luciano] INFN, Sez Padova, Padua, Italy. [Fontana, Andrea] INFN, Sez Pavia, Pavia, Italy. RP Canton, L (corresponding author), INFN, Sez Padova, Padua, Italy. EM luciano.canton@pd.infn.it RI Canton, Luciano/G-3180-2015 OI Canton, Luciano/0000-0002-8922-7660; Fontana, Andrea/0000-0003-4718-5711 CR Amos K, 2003, NUCL PHYS A, V728, P65, DOI 10.1016/j.nuclphysa.2003.08.019 ARRONAX, 2018, RAD YIELD CALC CLINE CK, 1971, NUCL PHYS A, VA172, P225, DOI 10.1016/0375-9474(71)90713-5 Gadioli E., 1992, PREEQUILIBRIUM NUCL Goriely S, 2008, ASTRON ASTROPHYS, V487, P767, DOI 10.1051/0004-6361:20078825 HAUSER W, 1952, PHYS REV, V87, P366, DOI 10.1103/PhysRev.87.366 Hilaire S, 2003, ANN PHYS-NEW YORK, V306, P209, DOI 10.1016/S0003-4916(03)00076-9 Hilarie S., 2014, JOINT ICTP IAEA WORK IAEA, 2015, MED PORT MED RAD PRO IAEA, DEC PORT 2017 IAEA, 2016, CRP THER RAD LAB NEW, P2016 Iliadis C., 2015, NUCL PHYS STARS Karahancer S, 2019, AIRFIELD AND HIGHWAY PAVEMENTS 2019: TESTING AND CHARACTERIZATION OF PAVEMENT MATERIALS, P127 Koning AJ, 2012, NUCL DATA SHEETS, V113, P2841, DOI 10.1016/j.nds.2012.11.002 Koning AJ, 2008, INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY, VOL 1, PROCEEDINGS, P211, DOI 10.1051/ndata:07767 Leo W.R., 1994, TECHNIQUES NUCL PART LINDER B, 1959, PHYS REV, V114, P322, DOI 10.1103/PhysRev.114.322 MOLDAUER PA, 1976, PHYS REV C, V14, P764, DOI 10.1103/PhysRevC.14.764 Newman M., 2012, COMPUTATIONAL PHYS Otuka N, 2015, RADIOCHIM ACTA, V103, P1, DOI 10.1515/ract-2013-2234 Pupillo G, 2019, J RADIOANAL NUCL CH, V322, P1711, DOI 10.1007/s10967-019-06844-8 Satchler G.R., 1983, DIRECT NUCL REACTION Syed M, 2020, QAIM MED RADIONUCLID VERBAARSCHOT JJM, 1985, PHYS REP, V129, P367, DOI 10.1016/0370-1573(85)90070-5 WEST HI, 1987, PHYS REV C, V35, P2067, DOI 10.1103/PhysRevC.35.2067 WESTIN GD, 1971, PHYS REV C, V4, P363, DOI 10.1103/PhysRevC.4.363 NR 26 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2190-5444 J9 EUR PHYS J PLUS JI Eur. Phys. J. Plus PD SEP 29 PY 2020 VL 135 IS 9 AR 770 DI 10.1140/epjp/s13360-020-00730-z PG 21 WC Physics, Multidisciplinary SC Physics GA NY1NN UT WOS:000576165200002 DA 2021-04-21 ER PT J AU Mushtaq, A Noreen, A Olaussen, K AF Mushtaq, Asif Noreen, Amna Olaussen, Kare TI Numerical Solutions of Quantum Mechanical Eigenvalue Problems SO FRONTIERS IN PHYSICS LA English DT Article DE numpy array; FFT (fast fourier transform); quantum mechanics; python classes; eigenvalue problems; sparse SciPy routines; Schrodinger equations AB A large class of problems in quantum physics involve solution of the time independent Schrodinger equation in one or more space dimensions. These are boundary value problems, which in many cases only have solutions for specific (quantized) values of the total energy. In this article we describe a Python package that "automagically" transforms an analytically formulated Quantum Mechanical eigenvalue problem to a numerical form which can be handled by existing (or novel) numerical solvers. We illustrate some uses of this package. The problem is specified in terms of a small set of parameters and selectors (all provided with default values) that are easy to modify, and should be straightforward to interpret. From this the numerical details required by the solver is generated by the package, and the selected numerical solver is executed. In all cases the spatial continuum is replaced by a finite rectangular lattice. We compare common stensil discretizations of the Laplace operator with formulations involving Fast Fourier (and related trigonometric) Transforms. The numerical solutions are based on the NumPy and SciPy packages for Python 3, in particular routines from thescipy.linalg,scipy.sparse.linalg, andscipy.fftpacklibraries. These, like most Python resources, are freely available for Linux, MacOS, and MSWindows. We demonstrate that some interesting problems, like the lowest eigenvalues of anharmonic oscillators, can be solved quite accurately in up to three space dimensions on a modern laptop-with some patience in the 3-dimensional case. We demonstrate that a reduction in the lattice distance, for a fixed the spatial volume, does not necessarily lead to more accurate results: A smaller lattice length increases the spectral width of the lattice Laplace operator, which in turn leads to an enhanced amplification of the numerical noise generated by round-off errors. C1 [Mushtaq, Asif] Nord Univ, Seksjon Matemat, Bodo, Norway. [Noreen, Amna] Nordland Fylkeskommune, Bodin Videregaende Skole, Bodo, Norway. [Olaussen, Kare] MJAU, Trondheim, Norway. RP Mushtaq, A (corresponding author), Nord Univ, Seksjon Matemat, Bodo, Norway. EM asif.mushtaq@nord.no FU Mathematics Teaching and Learning Research Group within The department of mathematics, Bodo, Nord University FX AM would like to thank Mathematics Teaching and Learning Research Group within The department of mathematics, Bodo, Nord University for partial support. CR BENDER CM, 1971, PHYS REV LETT, V27, P461, DOI 10.1103/PhysRevLett.27.461 BENDER CM, 1973, PHYS REV D, V7, P1620, DOI 10.1103/PhysRevD.7.1620 BENDER CM, 1968, PHYS REV LETT, V21, P406, DOI 10.1103/PhysRevLett.21.406 BENDER CM, 1969, PHYS REV, V184, P1231, DOI 10.1103/PhysRev.184.1231 BENDER CM, 1977, PHYS REV D, V16, P1740, DOI 10.1103/PhysRevD.16.1740 Dirac P.A.M., 1925, Proceedings of the Royal Society of London, V109, P642, DOI 10.1098/rspa.1925.0150 Heisenberg W, 1925, Z PHYS, V33, P879, DOI 10.1007/BF01328377 JANKE W, 1995, PHYS REV LETT, V75, P2787, DOI 10.1103/PhysRevLett.75.2787 Jones E., 2014, SCIPY OPEN SOURCE SC Mushtaq A, 2020, PYTHON PACKAGE NUMER, DOI [10.6084/m9.figshare.127655, DOI 10.6084/M9.FIGSHARE.127655] Mushtaq A, 2011, COMPUT PHYS COMMUN, V182, P1810, DOI 10.1016/j.cpc.2010.12.046 Noreen A, 2015, P INT MULTICONFERENC, P206 Noreen A, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.040402 Noreen A, 2012, COMPUT PHYS COMMUN, V183, P2291, DOI 10.1016/j.cpc.2012.05.015 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Pauli W, 1926, Z PHYS, V36, P336, DOI 10.1007/BF01450175 Schrodinger E, 1926, PHYS REV, V28, P1049, DOI 10.1103/PhysRev.28.1049 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Zinn-Justin J, 2004, ANN PHYS-NEW YORK, V313, P269, DOI 10.1016/j.aop.2004.04.003 NR 19 TC 0 Z9 0 U1 0 U2 0 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 2296-424X J9 FRONT PHYS-LAUSANNE JI Front. Physics PD SEP 28 PY 2020 VL 8 AR 390 DI 10.3389/fphy.2020.00390 PG 10 WC Physics, Multidisciplinary SC Physics GA NY9SJ UT WOS:000576724300001 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Harris, CR Millman, KJ van der Walt, SJ Gommers, R Virtanen, P Cournapeau, D Wieser, E Taylor, J Berg, S Smith, NJ Kern, R Picus, M Hoyer, S van Kerkwijk, MH Brett, M Haldane, A del Rio, JF Wiebe, M Peterson, P Gerard-Marchant, P Sheppard, K Reddy, T Weckesser, W Abbasi, H Gohlke, C Oliphant, TE AF Harris, Charles R. Millman, K. Jarrod van der Walt, Stefan J. Gommers, Ralf Virtanen, Pauli Cournapeau, David Wieser, Eric Taylor, Julian Berg, Sebastian Smith, Nathaniel J. Kern, Robert Picus, Matti Hoyer, Stephan van Kerkwijk, Marten H. Brett, Matthew Haldane, Allan del Rio, Jaime Fernandez Wiebe, Mark Peterson, Pearu Gerard-Marchant, Pierre Sheppard, Kevin Reddy, Tyler Weckesser, Warren Abbasi, Hameer Gohlke, Christoph Oliphant, Travis E. TI Array programming with NumPy SO NATURE LA English DT Review ID PYTHON; SCIENTISTS AB Array programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves(1)and in the first imaging of a black hole(2). Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis. NumPy is the primary array programming library for Python; here its fundamental concepts are reviewed and its evolution into a flexible interoperability layer between increasingly specialized computational libraries is discussed. C1 [Millman, K. Jarrod; van der Walt, Stefan J.; Brett, Matthew] Univ Calif Berkeley, Brain Imaging Ctr, Berkeley, CA 94720 USA. [Millman, K. Jarrod] Univ Calif Berkeley, Div Biostat, Berkeley, CA 94720 USA. [Millman, K. Jarrod; van der Walt, Stefan J.; Berg, Sebastian; Picus, Matti; Weckesser, Warren] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA. [van der Walt, Stefan J.] Stellenbosch Univ, Appl Math, Stellenbosch, South Africa. [Gommers, Ralf; Abbasi, Hameer; Oliphant, Travis E.] Quansight, Austin, TX USA. [Virtanen, Pauli] Univ Jyvaskyla, Dept Phys, Jyvaskyla, Finland. [Virtanen, Pauli] Univ Jyvaskyla, Nanosci Ctr, Jyvaskyla, Finland. [Cournapeau, David] Mercari JP, Tokyo, Japan. [Wieser, Eric] Univ Cambridge, Dept Engn, Cambridge, England. [Kern, Robert] Enthought, Austin, TX USA. [Hoyer, Stephan] Google Res, Mountain View, CA USA. [van Kerkwijk, Marten H.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Brett, Matthew] Univ Birmingham, Sch Psychol, Birmingham, W Midlands, England. [Haldane, Allan] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [del Rio, Jaime Fernandez] Google, Zurich, Switzerland. [Wiebe, Mark] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada. [Peterson, Pearu] Tallinn Univ Technol, Inst Cybernet, Dept Mech & Appl Math, Tallinn, Estonia. [Gerard-Marchant, Pierre] Univ Georgia, Dept Biol & Agr Engn, Athens, GA 30602 USA. [Gerard-Marchant, Pierre] France IX Serv, Paris, France. [Sheppard, Kevin] Univ Oxford, Dept Econ, Oxford, England. [Reddy, Tyler] Los Alamos Natl Lab, CCS 7, Los Alamos, NM USA. [Gohlke, Christoph] Univ Calif Irvine, Biomed Engn Dept, Lab Fluorescence Dynam, Irvine, CA USA. RP Millman, KJ; van der Walt, SJ (corresponding author), Univ Calif Berkeley, Brain Imaging Ctr, Berkeley, CA 94720 USA.; Millman, KJ (corresponding author), Univ Calif Berkeley, Div Biostat, Berkeley, CA 94720 USA.; Millman, KJ; van der Walt, SJ (corresponding author), Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA.; van der Walt, SJ (corresponding author), Stellenbosch Univ, Appl Math, Stellenbosch, South Africa.; Gommers, R (corresponding author), Quansight, Austin, TX USA. EM millman@berkeley.edu; stefanv@berkeley.edu; ralf.gommers@gmail.com RI Virtanen, Pauli/D-9518-2012 OI Virtanen, Pauli/0000-0001-9957-1257; van der Walt, Stefan/0000-0001-9276-1891; Millman, Kenneth/0000-0002-5263-5070 CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Abbott BP, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.061102 [Anonymous], 2020, REP RAS A AW COMM 20 [Anonymous], 2015, J OPER OCEANOGR, V8, ps80, DOI [10.1080/1755876X.2015.1022329, DOI 10.1088/1749-4699/8/1/014009] Ascher D., 2001, OPEN SOURCE PROJECT Barrett K. A., 1995, UCRLMA118543 LAWR LI, V1 Behnel S, 2011, COMPUT SCI ENG, V13, P31, DOI 10.1109/MCSE.2010.118 Bezanson J, 2017, SIAM REV, V59, P65, DOI 10.1137/141000671 Chael AA, 2016, ASTROPHYS J, V829, DOI 10.3847/0004-637X/829/1/11 Chen T., 2015, MXNET FLEXIBLE EFFIC Chiu Y. H., 1995, UCRLMA118543 LAWR LI, V4 Chiu Y. H., 1995, UCRLMA118543 LAWR LI, V3 Cock PJA, 2009, BIOINFORMATICS, V25, P1422, DOI 10.1093/bioinformatics/btp163 Dongarra J, 2008, IEEE ANN HIST COMPUT, V30, P30, DOI 10.1109/MAHC.2008.29 Dubois P. F., 1996, Computers in Physics, V10, P262 Dubois P. F., 1995, UCRLMA118543 LAWR LI, V2 Dubois PF, 2007, COMPUT SCI ENG, V9, P7, DOI 10.1109/MCSE.2007.51 Entschev P, 2019, EUROPYTHON 2019 Greenfield P., 2003, PYCON DC 2003 Guelton Serge, 2015, Computational Science and Discovery, V8, DOI 10.1088/1749-4680/8/1/014001 Hagberg A, 2008, 7 PYTH SCI C SCIPY20, V7, P11, DOI DOI 10.1016/J.JELECTROCARD.2010.09.003 Hamman J., 2018, EGU GEN ASSEMBLY C Hannay JE, 2009, 2009 ICSE WORKSHOP ON SOFTWARE ENGINEERING FOR COMPUTATIONAL SCIENCE AND ENGINEERING, P1, DOI 10.1109/SECSE.2009.5069155 Harrington J., 2008, P 7 PYTH SCI C, P33 Harrington J., 2009, P 8 PYTH SCI C, P84 Hoyer S., 2017, J OPEN RES SOFTWARE, V5, P10, DOI [10.5334/jors.148, DOI 10.5334/J0RS.148] Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Ihaka R., 1996, J COMPUT GRAPH STAT, V5, P299, DOI DOI 10.1080/10618600.1996.10474713 Iverson K. E., 1962, P MAY 1 3 1962 SPRIN, P345, DOI DOI 10.1145/1460833.1460872 Jenness T, 2018, PROC SPIE, V10707, DOI 10.1117/12.2312157 Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 Lam S.K., 2015, P 2 WORKSH LLVM COMP, P1, DOI [DOI 10.1145/2833157.2833162DOI:10.1145/2833157.2833162, 10.1145/2833157.2833162] Lattner C, 2004, INT SYM CODE GENER, P75, DOI 10.1109/CGO.2004.1281665 MATSAKIS ND, 2014, P 2014 ACM SIGADA AN, V34, P103, DOI DOI 10.1145/2692956.2663188 Millman J., 2010, P56, DOI DOI 10.1016/S0168-0102(02)00204-3 Millman K. J., 2014, IMPLEMENTING REPROD, P149 Millman KJ, 2007, COMPUT SCI ENG, V9, P52, DOI 10.1109/MCSE.2007.46 Millman KJ, 2018, FRONT NEUROSCI-SWITZ, V12, DOI 10.3389/fnins.2018.00727 Millman KJ, 2011, COMPUT SCI ENG, V13, P9, DOI 10.1109/MCSE.2011.36 Munro D. H., 1995, Computers in Physics, V9, P609 Oliphant T.E., 2006, A GUIDE TO NUMPY, VVolume 1 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Paszke A., 2019, ADV NEURAL INFORM PR, V32, P8024 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Perez F, 2011, COMPUT SCI ENG, V13, P13, DOI 10.1109/MCSE.2010.119 Price-Whelan AM, 2018, ASTRON J, V156, DOI 10.3847/1538-3881/aac387 Robitaille TP, 2013, ASTRON ASTROPHYS, V558, DOI 10.1051/0004-6361/201322068 van der Walt S., 2008, P 7 PYTH SCI C, P27 van der Walt S, 2014, PEERJ, V2, DOI 10.7717/peerj.453 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Virtanen P, 2020, NAT METHODS, V17, P261, DOI 10.1038/s41592-019-0686-2 Wang Q., 2013, P INT C HIGH PERF CO, DOI DOI 10.1145/2503210.2503219 Wilson G, 2006, COMPUT SCI ENG, V8, P66, DOI 10.1109/MCSE.2006.122 Xianyi Z., 2012, 2012 IEEE 18 INT C P, P684, DOI DOI 10.1109/ICPADS.2012.97 Yang T.-Y., 1997, P TOOLS US 97 INT C, P112 NR 56 TC 203 Z9 201 U1 19 U2 25 PU NATURE RESEARCH PI BERLIN PA HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD SEP 17 PY 2020 VL 585 IS 7825 BP 357 EP 362 DI 10.1038/s41586-020-2649-2 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA NR0WV UT WOS:000571285200009 PM 32939066 OA Green Published, Other Gold DA 2021-04-21 ER PT J AU Liu, GR AF Liu, G. R. TI A Neural Element Method SO INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS LA English DT Article DE Artificial intelligence; artificial neural network; neural element; physic-law-based method; computational mechanics; computational method ID INVERSE IDENTIFICATION; ELASTIC-WAVES; MATERIAL CONSTANTS; TISSUE AB Methods of artificial neural networks (ANNs) have been applied to solve various science and engineering problems. TrumpetNets and TubeNets were recently proposed by the author for creating two-way deepnets using the standard finite element method (FEM) and smoothed FEM (S-FEM) as trainers. The significance of these specially configured ANNs is that the solutions to inverse problems have been, for the first time, analytically derived in explicit formulae. This paper presents a novel neural element method (NEM) with a focus on mechanics problems. The key idea is to use artificial neurons to form elemental units called neural-pulse-units (NPUs), using which the shape functions can then be constructed, and used in the standard weak and weakened-weak (W2) formulations to establish discrete stiffness matrices, similar to the standard FEM and S-FEM. Theory, formulation and codes in Python are presented in detail. Numerical examples are then used to demonstrate this novel NEM. For the first time, we have made a clear connection in theory, formulations and coding, between ANN methods and physical-law-based computational methods. We believe that this novel NEM fundamentally changes the way of approaching mechanics problems, and opens a window of opportunity for a range of applications. It offers a new direction of research on unconventional computational methods. It may also have an impact on how the well-established weak and W2 formulations can be introduced to machine learning processes, for example, creating well-behaved loss functions with preferable convexity. C1 [Liu, G. R.] Univ Cincinnati, Dept Aerosp Engn & Engn Mech, Cincinnati, OH 45221 USA. RP Liu, GR (corresponding author), Univ Cincinnati, Dept Aerosp Engn & Engn Mech, Cincinnati, OH 45221 USA. CR Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274 Dai KY, 2007, FINITE ELEM ANAL DES, V43, P847, DOI 10.1016/j.finel.2007.05.009 Deng B, 2009, INVERSE PROBL SCI EN, V17, P1073, DOI 10.1080/17415970903063151 Han X, 2003, NEUROCOMPUTING, V51, P341, DOI 10.1016/S0925-2312(02)00578-7 Han X, 2002, INVERSE PROBL ENG, V10, P309, DOI 10.1080/10682760290024436 Hoang KC, 2013, INVERSE PROBL SCI EN, V21, P1310, DOI 10.1080/17415977.2012.757315 Jiang C, 2008, EXP MECH, V48, P539, DOI 10.1007/s11340-007-9081-5 Liu GR, 2008, COMPUT METHOD APPL M, V197, P3898, DOI 10.1016/j.cma.2008.03.012 Liu GR, 2007, INT J NUMER METH ENG, V71, P902, DOI 10.1002/nme.1968 Liu GR, 2007, COMPUT MECH, V39, P859, DOI 10.1007/s00466-006-0075-4 Liu GR, 2019, INT J COMP METH-SING, V16, DOI 10.1142/S0219876219500452 Liu G.R., 2003, FINITE ELEMENT METHO Liu G. R., 2019, INT J COMPUT METHODS Liu G R, 2010, SMOOTHED FINITE ELEM Liu G.R., 2003, SMOOTHED PARTICLE HY Liu G. R., 2020, LECT NOTES COMPUTATI Liu G.R., 2003, COMPUTATIONAL INVERS Liu G.R., 2009, MESHFREE METHODS MOV Liu GR, 2005, COMPUT METHOD APPL M, V194, P3090, DOI 10.1016/j.cma.2004.08.003 Liu GR, 2002, J SOUND VIB, V254, P823, DOI 10.1006/jsvi.2001.4126 Liu GR, 2002, J SOUND VIB, V252, P239, DOI 10.1006/jsvi.2001.3814 Liu GR, 2001, COMPUT METHOD APPL M, V191, P989, DOI 10.1016/S0045-7825(01)00314-0 Liu GR, 2001, J COMPOS MATER, V35, P954, DOI 10.1106/86AQ-JY72-5VKT-K1NV Liu GR, 2001, COMPOS SCI TECHNOL, V61, P1401, DOI 10.1016/S0266-3538(01)00033-1 Liu GR, 2002, COMPUT METHOD APPL M, V191, P3543, DOI 10.1016/S0045-7825(02)00292-X Matsugu M, 2003, NEURAL NETWORKS, V16, P555, DOI 10.1016/S0893-6080(03)00115-1 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Yang ZL, 2003, INVERSE PROBL ENG, V11, P243, DOI 10.1080/1068276031000135890 NR 28 TC 0 Z9 0 U1 4 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0219-8762 EI 1793-6969 J9 INT J COMP METH-SING JI Int. J. Comput. Methods PD SEP PY 2020 VL 17 IS 7 AR 2050021 DI 10.1142/S0219876220500218 PG 30 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA NE9YF UT WOS:000562959100015 DA 2021-04-21 ER PT J AU Al Atoum, B Biagi, SF Gonzalez-Diaz, D Jones, BJP McDonald, AD AF Al Atoum, B. Biagi, S. F. Gonzalez-Diaz, D. Jones, B. J. P. McDonald, A. D. TI Electron transport in gaseous detectors with a Python-based Monte Carlo simulation code SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Detector design and simulation; Gases and fluids; Electron scattering ID DIFFUSION; COEFFICIENTS; MIXTURES; XENON; DRIFT AB Understanding electron drift and diffusion in gases and gas mixtures is a topic of central importance for the development of modern particle detection instrumentation. The industry-standard MagBoltz code has become an invaluable tool during its 20 years of development, providing capability to solve for electron transport ('swarm') properties based on a growing encyclopedia of built-in collision cross sections. We have made a refactorization of this code from FORTRAN into Cython, and studied a range of gas mixtures of interest in high energy and nuclear physics. The results from the new open source PyBoltz package match the outputs from the original MagBoltz code, with comparable simulation speed. An extension to the capabilities of the original code is demonstrated, in implementation of a new Modified Effective Range Theory interface. We hope that the versatility afforded by the new Python code-base will encourage continued use and development of the MagBoltz tools by the particle physics community. (C) 2020 Elsevier B.V. All rights reserved. C1 [Al Atoum, B.; Jones, B. J. P.; McDonald, A. D.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Biagi, S. F.] Univ Liverpool, Phys Dept, Liverpool L69 7ZE, Merseyside, England. [Gonzalez-Diaz, D.] Univ Santiago de Compostela, Inst Galego Fis Altas Enerxias, Campus Sur,Rua Xose Maria Suarez Nunez S-N, E-15782 Santiago De Compostela, Spain. RP Al Atoum, B (corresponding author), Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. EM bashar.atoum@mavs.uta.edu RI ; Gonzalez Diaz, Diego/K-7265-2014 OI Jones, Benjamin/0000-0003-3400-8986; Gonzalez Diaz, Diego/0000-0002-6809-5996 FU Department of Energy, USAUnited States Department of Energy (DOE) [DE-SC0019054, DE-SC0019223]; Ramon y Cajal program (Spain)Spanish Government [RYC-2015-18820] FX We would like to thank Roxanne Guenette and the Harvard FAS Research Computing center for the use of the Odyssey cluster, and members of the NEXT collaboration including Neus Lopez March and Ryan Felkai for illuminating conversations. The UTA group acknowledges support from the Department of Energy, USA under Early Career Award number DE-SC0019054, and by Department of Energy, USA Award DE-SC0019223. DGD acknowledges the Ramon y Cajal program (Spain) under contract number RYC-2015-18820. CR Al Atoum B., PYBOLTZ AMENDOLIA SR, 1986, NUCL INSTRUM METH A, V244, P516, DOI 10.1016/0168-9002(86)91077-6 Azevedo CDR, 2016, J INSTRUM, V11, DOI 10.1088/1748-0221/11/02/C02007 Azevedo CDR, 2015, PHYS LETT B, V741, P272, DOI 10.1016/j.physletb.2014.12.054 Behnel S, 2011, COMPUT SCI ENG, V13, P31, DOI 10.1109/MCSE.2010.118 BIAGI SF, 1989, NUCL INSTRUM METH A, V283, P716, DOI 10.1016/0168-9002(89)91446-0 BIAGI SF, 1988, NUCL INSTRUM METH A, V273, P533, DOI 10.1016/0168-9002(88)90050-2 Biagi SF, 1999, NUCL INSTRUM METH A, V421, P234, DOI 10.1016/S0168-9002(98)01233-9 Brockmann R., 1994, DEV TIME PROJECTION Burns J, 2017, J INSTRUM, V12, DOI 10.1088/1748-0221/12/10/T10006 Capitelli M, 2000, J THERMOPHYS HEAT TR, V14, P259, DOI 10.2514/2.6517 CHANIN LM, 1962, PHYS REV, V128, P219, DOI 10.1103/PhysRev.128.219 CROMPTON RW, 1967, J APPL PHYS, V38, P4093, DOI 10.1063/1.1709082 DANIEL TN, 1970, J PHYS PT B ATOM M P, V3, P363, DOI 10.1088/0022-3700/3/3/007 Felkai R, 2018, NUCL INSTRUM METH A, V905, P82, DOI 10.1016/j.nima.2018.07.013 Fernandes A.F.M., 2019, ARXIV190603984 FRASER GW, 1986, NUCL INSTRUM METH A, V247, P544, DOI 10.1016/0168-9002(86)90417-1 Gonzalez-Diaz D, 2018, NUCL INSTRUM METH A, V878, P200, DOI 10.1016/j.nima.2017.09.024 Henriques CAO, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2019)027 Henriques CAO, 2017, PHYS LETT B, V773, P663, DOI 10.1016/j.physletb.2017.09.017 HUNTER SR, 1988, PHYS REV A, V38, P5539, DOI 10.1103/PhysRevA.38.5539 Jeon B.-H., 1998, IEEJ T FUNDAM MAT, V118, P874 Jones B.J.P., AL ATOUM ARGON XENON Jones B.J.P., 2016, XEPA PROJECT XENON P Kurokawa M, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.062717 Lima IB, 2012, NUCL INSTRUM METH A, V670, P55, DOI 10.1016/j.nima.2011.12.060 Lopez-March N., LIDINE 2019 MANCH UK Martin-Albo J, 2017, J PHYS CONF SER, V888, DOI 10.1088/1742-6596/888/1/012154 MARX JN, 1978, PHYS TODAY, V31, P46, DOI 10.1063/1.2994775 McDonald AD, 2019, J INSTRUM, V14, DOI 10.1088/1748-0221/14/08/P08009 Okhrimovskyy A, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.037402 OMALLY TF, 1963, PHYS REV, V130, P1020, DOI 10.1103/PhysRev.130.1020 PACK JL, 1992, J APPL PHYS, V71, P5363, DOI 10.1063/1.350555 Raju G G, 2005, GASEOUS ELECT THEORY Riegler W, 2003, NUCL INSTRUM METH A, V500, P144, DOI 10.1016/S0168-9002(03)00337-1 Ruiz-Choliz E, 2015, NUCL INSTRUM METH A, V799, P137, DOI 10.1016/j.nima.2015.07.062 Sahin O, 2018, J INSTRUM, V13, DOI 10.1088/1748-0221/13/10/P10032 Sahin O, 2010, J INSTRUM, V5, DOI 10.1088/1748-0221/5/05/P05002 Sauli F., 2014, GASEOUS RAD DETECTOR Schindler H., GARFIELD Simon A, 2018, J INSTRUM, V13, DOI 10.1088/1748-0221/13/07/P07013 SKULLERUD HR, 1968, J PHYS D APPL PHYS, V1, P1567, DOI 10.1088/0022-3727/1/11/423 Veenho R, 2009, J INSTRUM, V4, DOI 10.1088/1748-0221/4/12/P12017 Yousfi M, 2009, IEEE T PLASMA SCI, V37, P764, DOI 10.1109/TPS.2009.2017538 NR 44 TC 0 Z9 0 U1 1 U2 8 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD SEP PY 2020 VL 254 AR 107357 DI 10.1016/j.cpc.2020.107357 PG 9 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA LZ5GA UT WOS:000541251200026 DA 2021-04-21 ER PT J AU Carrazza, S Cruz-Martinez, JM AF Carrazza, Stefano Cruz-Martinez, Juan M. TI VegasFlow: Accelerating Monte Carlo simulation across multiple hardware platforms SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Monte Carlo; Graphs; Integration; Machine learning; Hardware acceleration AB We present VegasFlow, a new software for fast evaluation of high dimensional integrals based on Monte Carlo integration techniques designed for platforms with hardware accelerators. The growing complexity of calculations and simulations in many areas of science have been accompanied by advances in the computational tools which have helped their developments. VegasFlow enables developers to delegate all complicated aspects of hardware or platform implementation to the library so they can focus on the problem at hand. This software is inspired on the Vegas algorithm, ubiquitous in the particle physics community as the driver of cross section integration, and based on Google's powerful TensorFlow library. We benchmark the performance of this library on many different consumer and professional grade GPUs and CPUs. Program summary Program Title: VegasFlow CPC Library link to program files: http://dx.doi.org/10.17632/rpgcbzzhdt.1 Developer's repository link: https://github.com/N3PDF/vegasflow Licensing provisions: GPLv3 Programming language: Python Nature of problem: The solution of high dimensional integrals requires the implementation of Monte Carlo algorithms such as Vegas. Monte Carlo algorithms are known to require long computation times. Solution method: Implementation of the Vegas algorithm using the dataflow graph infrastructure provided by the TensorFlow framework. Extension of the algorithm to take advantage of multi-threading CPU and multi-GPU setups. (C) 2020 Elsevier B.V. All rights reserved. C1 [Carrazza, Stefano] Univ Milan, TIF Lab, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. INFN, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. RP Carrazza, S (corresponding author), Univ Milan, TIF Lab, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. EM stefano.carrazza@unimi.it RI ; Carrazza, Stefano/D-8412-2017 OI Cruz-Martinez, Juan M/0000-0002-8061-1965; Carrazza, Stefano/0000-0002-0079-6753 FU European Research Council under the European UnionEuropean Research Council (ERC) [740006]; UNIMI, Italy FX We thank Stefano Forte for a careful reading of the manuscript. We thank Durham University's IPPP for the access to the P100 and V100 32 GB GPUs used in order to benchmark this code. We also acknowledge the NVIDIA Corporation for the donation of a Titan V GPU used for this research. This project is supported by the European Research Council under the European Unions Horizon 2020 research and innovation Programme (grant agreement number 740006) and by the UNIMI, Italy Linea2A project "New hardware for HEP". CR Alwall J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)079 Bothmann E., ARXIV200105478 Brucherseifer M, 2014, PHYS LETT B, V736, P58, DOI 10.1016/j.physletb.2014.06.075 Buckley A., 2019, 19 INT WORKSH ADV CO Campbell J, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2019)034 Campbell JM, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3461-2 Gao C., ARXIV200105486 Gao C., ARXIV200110028 Gehrmann T., 2017, POS RADCOR, V2018, DOI 10.22323/1.290.0074 Genz, 1984, P INT C TOOLS METH L, P81 Gleisberg T, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/02/007 Lepage G. P., 1980, VEGAS ADAPTIVE MULTI LEPAGE GP, 1978, J COMPUT PHYS, V27, P192 Martin Abadi, 2015, TENSORFLOW LARGE SCA Muller T., CORR Nickolls John, 2008, ACM Queue, V6, DOI 10.1145/1365490.1365500 NR 16 TC 0 Z9 0 U1 1 U2 6 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD SEP PY 2020 VL 254 AR 107376 DI 10.1016/j.cpc.2020.107376 PG 5 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA LZ5GA UT WOS:000541251200029 DA 2021-04-21 ER PT J AU Reinarz, A Charrier, DE Bader, M Bovard, L Dumbser, M Duru, K Fambri, F Gabriel, AA Gallard, JM Koppel, S Krenz, L Rannabauer, L Rezzolla, L Samfass, P Tavelli, M Weinzierl, T AF Reinarz, Anne Charrier, Dominic E. Bader, Michael Bovard, Luke Dumbser, Michael Duru, Kenneth Fambri, Francesco Gabriel, Alice-Agnes Gallard, Jean-Matthieu Koeppel, Sven Krenz, Lukas Rannabauer, Leonhard Rezzolla, Luciano Samfass, Philipp Tavelli, Maurizio Weinzierl, Tobias TI ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problems SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Hyperbolic; PDE; ADER-DG; Finite volumes; AMR; MPI; TBB; MPI plus X ID FINITE-ELEMENT-METHOD; DISCONTINUOUS GALERKIN METHOD; DIFFUSE INTERFACE METHOD; CONSERVATION-LAWS; HIGH-ORDER; VOLUME SCHEMES; EQUATIONS; ENERGY AB ExaHyPE ("An Exascale Hyperbolic PDE Engine") is a software engine for solving systems of first-order hyperbolic partial differential equations (PDEs). Hyperbolic PDEs are typically derived from the conservation laws of physics and are useful in a wide range of application areas. Applications powered by ExaHyPE can be run on a student's laptop, but are also able to exploit thousands of processor cores on state-of-the-art supercomputers. The engine is able to dynamically increase the accuracy of the simulation using adaptive mesh refinement where required. Due to the robustness and shock capturing abilities of ExaHyPE's numerical methods, users of the engine can simulate linear and non-linear hyperbolic PDEs with very high accuracy. Users can tailor the engine to their particular PDE by specifying evolved quantities, fluxes, and source terms. A complete simulation code for a new hyperbolic PDE can often be realised within a few hours - a task that, traditionally, can take weeks, months, often years for researchers starting from scratch. In this paper, we showcase ExaHyPE's workflow and capabilities through real-world scenarios from our two main application areas: seismology and astrophysics. Program summary Program title: ExaHyPE-Engine Program Files doi: http://dx.doi.org/10.17632/6sz8hnpz.1 Licensing provisions: BSD 3-clause Programming languages: C++, Python, Fortran Nature of Problem: The ExaHyPE PDE engine offers robust algorithms to solve linear and non-linear hyperbolic systems of PDEs written in first order form. The systems may contain both conservative and non-conservative terms. Solution method: ExaHyPE employs the discontinuous Galerkin (DG) method combined with explicit one-step ADER (arbitrary high-order derivative) time-stepping. An a-posteriori limiting approach is applied to the ADER-DG solution, whereby spurious solutions are discarded and recomputed with a robust, patch-based finite volume scheme. ExaHyPE uses dynamical adaptive mesh refinement to enhance the accuracy of the solution around shock waves, complex geometries, and interesting features. (C) 2020 The Authors. Published by Elsevier B.V. C1 [Reinarz, Anne; Bader, Michael; Gallard, Jean-Matthieu; Krenz, Lukas; Rannabauer, Leonhard; Samfass, Philipp] Tech Univ Munich, Dept Informat, Boltzmannstr 3, D-85748 Garching, Germany. [Charrier, Dominic E.; Weinzierl, Tobias] Univ Durham, Dept Comp Sci, South Rd, Durham DH1 3LE, England. [Dumbser, Michael; Fambri, Francesco; Tavelli, Maurizio] Univ Trento, Lab Appl Math, Via Messiano 77, I-38123 Trento, Italy. [Bovard, Luke; Koeppel, Sven; Rezzolla, Luciano] Goethe Univ, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany. [Duru, Kenneth] Australian Natl Univ, Math Sci Inst, Canberra, ACT, Australia. [Fambri, Francesco] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany. [Duru, Kenneth; Gabriel, Alice-Agnes] Ludwig Maximilians Univ Munchen, Dept Earth & Environm Sci, Theresienstr 41, D-80333 Munich, Germany. RP Reinarz, A (corresponding author), Tech Univ Munich, Dept Informat, Boltzmannstr 3, D-85748 Garching, Germany. EM reinarz@in.tum.de RI Fambri, Francesco/A-7455-2018; Dumbser, Michael/F-2740-2010; Gabriel, Alice-Agnes/AAC-4066-2020 OI Fambri, Francesco/0000-0002-6070-8372; Gabriel, Alice-Agnes/0000-0003-0112-8412; Dumbser, Michael/0000-0002-8201-8372; Duru, Kenneth/0000-0002-5260-7942; Reinarz, Anne/0000-0003-1787-7637; Koppel, Sven/0000-0003-2303-7765 FU European UnionEuropean Commission [671698, 823844]; Leibniz Supercomputing Centre, Germany [pr48ma, pr63qo] FX This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 671698, www.exahype.eu.; The ExaHyPE team acknowledges additional support by the European Union's Horizon 2020 research and innovation program (ChEESE, grant no. 823844).; The authors gratefully acknowledge the support by the Leibniz Supercomputing Centre, Germany (www.lrz.de), which also provided the computing resources on SuperMUC (Grant No. pr48ma and Grant No. pr63qo) CR ABGRALL R, 1994, J COMPUT PHYS, V114, P45, DOI 10.1006/jcph.1994.1148 BAER MR, 1986, INT J MULTIPHAS FLOW, V12, P861, DOI 10.1016/0301-9322(86)90033-9 Bishop NT, 2016, LIVING REV RELATIV, V19, DOI 10.1007/s41114-016-0001-9 Charrier D., 2020, SIAM J SCI COMPUTING Charrier DE, 2019, INT J HIGH PERFORM C, V33, P973, DOI 10.1177/1094342019842645 Charrier DE, 2018, LECT NOTES COMPUT SC, V10778, P3, DOI 10.1007/978-3-319-78054-2_1 Clain S, 2011, J COMPUT PHYS, V230, P4028, DOI 10.1016/j.jcp.2011.02.026 COCKBURN B, 1991, ESAIM-MATH MODEL NUM, V25, P337, DOI 10.1051/m2an/1991250303371 Cockburn B, 1998, J COMPUT PHYS, V141, P199, DOI 10.1006/jcph.1998.5892 COCKBURN B, 1989, MATH COMPUT, V52, P411, DOI 10.2307/2008474 COCKBURN B, 1990, MATH COMPUT, V54, P545, DOI 10.2307/2008501 COCKBURN B, 1989, J COMPUT PHYS, V84, P90, DOI 10.1016/0021-9991(89)90183-6 Day SM, 2001, B SEISMOL SOC AM, V91, P520, DOI 10.1785/0120000103 Diot S, 2013, INT J NUMER METH FL, V73, P362, DOI 10.1002/fld.3804 Dumbser M, 2008, J COMPUT PHYS, V227, P3971, DOI 10.1016/j.jcp.2007.12.005 Dumbser M, 2018, AXIOMS, V7, DOI 10.3390/axioms7030063 Dumbser M, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.084053 Dumbser M, 2016, J COMPUT PHYS, V304, P275, DOI 10.1016/j.jcp.2015.10.014 Dumbser M, 2014, J COMPUT PHYS, V278, P47, DOI 10.1016/j.jcp.2014.08.009 Dumbser M, 2014, COMPUT METHOD APPL M, V268, P359, DOI 10.1016/j.cma.2013.09.022 Dumbser M, 2013, COMPUT METHOD APPL M, V257, P47, DOI 10.1016/j.cma.2013.01.006 Dumbser M, 2011, COMPUT METHOD APPL M, V200, P1204, DOI 10.1016/j.cma.2010.10.011 Duru K., 2017, ARXIV180206380 Duru K., STABLE DISCONTINUOUS Duru K, 2019, COMPUT METHOD APPL M, V350, P898, DOI 10.1016/j.cma.2019.02.036 Eckhardt W., 2009, 8 INT C PPAM 2009 1, P567, DOI [10.1007/978-3-642-14390-8_59, DOI 10.1007/978-3-642-14390-8_59] Fambri F, 2018, MON NOT R ASTRON SOC, V477, P4543, DOI 10.1093/mnras/sty734 Fambri F., COMPUT PHYS COMMUN, V219 Gaburro E, 2018, COMPUT FLUIDS, V175, P180, DOI 10.1016/j.compfluid.2018.08.013 Gassner G, 2008, J SCI COMPUT, V34, P260, DOI 10.1007/s10915-007-9169-1 Gassner G, 2011, J COMPUT PHYS, V230, P4232, DOI 10.1016/j.jcp.2010.10.024 Hartmann R, 2002, J COMPUT PHYS, V183, P508, DOI 10.1006/jcph.2002.7206 Heinecke A, 2016, SC '16: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, P981, DOI 10.1109/SC.2016.83 Koppel S, 2018, J PHYS CONF SER, V1031, DOI 10.1088/1742-6596/1031/1/012017 Kolgan VP, 2011, J COMPUT PHYS, V230, P2384, DOI 10.1016/j.jcp.2010.12.033 Krenz Lukas, 2020, LECT NOTES COMPUTER, P2020 Loubere R, 2014, COMMUN COMPUT PHYS, V16, P718, DOI 10.4208/cicp.181113.140314a MICHEL FC, 1972, ASTROPHYS SPACE SCI, V15, P153, DOI 10.1007/BF00649949 Moran J., 2003, DOVER BOOKS AERONAUT Muller A., 2010, 5 EUR C COMP FLUID D Persson P.-O., 44 AIAA AER SCI M EX, P112 Qiu JX, 2005, SIAM J SCI COMPUT, V26, P907, DOI 10.1137/S1064827503425298 Qiu JX, 2004, J COMPUT PHYS, V193, P115, DOI 10.1016/j.jcp.2003.07.026 Radice D, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.024010 Rannabauer L., 2018, ADJ P ENV Rannabauer L, 2018, COMPUT FLUIDS, V173, P299, DOI 10.1016/j.compfluid.2018.01.031 Reed W., TRIANGULAR MESH METH Reinders James, 2007, INTEL THREADING BUIL Reps B, 2017, ACM T MATH SOFTWARE, V44, DOI 10.1145/3054946 Rezzolla L, 2013, RELATIVISTIC HYDRODY RUGGIERI A, 2016, COMPUTATIONAL ASTROP, V3, DOI DOI 10.3389/FMOLL.2016.00063 Schreiber M., 2018, HIPEAC 2018 3 COSH W Tavelli M, 2019, J COMPUT PHYS, V386, P158, DOI 10.1016/j.jcp.2019.02.004 Tavelli M, 2016, J COMPUT PHYS, V319, P294, DOI 10.1016/j.jcp.2016.05.009 Titarev VA, 2002, J SCI COMPUT, V17, P609, DOI 10.1023/A:1015126814947 Toro EF, 2001, GODUNOV METHODS: THEORY AND APPLICATIONS, P907 Ulrich T, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09125-w Uphoff C, 2017, SC'17: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, DOI 10.1145/3126908.3126948 Van Leer B, 1997, J COMPUT PHYS, V135, P229, DOI 10.1006/jcph.1997.5704 Weinzierl M, 2018, ACM T MATH SOFTWARE, V44, DOI 10.1145/3165280 Weinzierl T, 2016, PARALLEL COMPUT, V52, P42, DOI 10.1016/j.parco.2015.12.007 Weinzierl T., 2020, ACM T MATH SOFTWARE Weinzierl T, 2019, ACM T MATH SOFTWARE, V45, DOI 10.1145/3319797 Weinzierl T, 2011, SIAM J SCI COMPUT, V33, P2732, DOI 10.1137/100799071 Wollherr S, 2019, J GEOPHYS RES-SOL EA, V124, P6666, DOI 10.1029/2018JB016355 Zanotti O, 2015, COMPUT FLUIDS, V118, P204, DOI 10.1016/j.compfluid.2015.06.020 NR 66 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD SEP PY 2020 VL 254 AR 107251 DI 10.1016/j.cpc.2020.107251 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA LZ5GA UT WOS:000541251200009 OA Green Published, Green Accepted, Other Gold DA 2021-04-21 ER PT J AU Ott, J Pritchard, M Best, N Linstead, E Curcic, M Baldi, P AF Ott, Jordan Pritchard, Mike Best, Natalie Linstead, Erik Curcic, Milan Baldi, Pierre TI A Fortran-Keras Deep Learning Bridge for Scientific Computing SO SCIENTIFIC PROGRAMMING LA English DT Article ID NEURAL-NETWORKS; PARAMETERIZATION; MODEL; FRAMEWORK; DROPOUT AB Implementing artificial neural networks is commonly achieved via high-level programming languages such as Python and easy-to-use deep learning libraries such as Keras. These software libraries come preloaded with a variety of network architectures, provide autodifferentiation, and support GPUs for fast and efficient computation. As a result, a deep learning practitioner will favor training a neural network model in Python, where these tools are readily available. However, many large-scale scientific computation projects are written in Fortran, making it difficult to integrate with modern deep learning methods. To alleviate this problem, we introduce a software library, the Fortran-Keras Bridge (FKB). This two-way bridge connects environments where deep learning resources are plentiful with those where they are scarce. The paper describes several unique features offered by FKB, such as customizable layers, loss functions, and network ensembles. The paper concludes with a case study that applies FKB to address open questions about the robustness of an experimental approach to global climate simulation, in which subgrid physics are outsourced to deep neural network emulators. In this context, FKB enables a hyperparameter search of one hundred plus candidate models of subgrid cloud and radiation physics, initially implemented in Keras, to be transferred and used in Fortran. Such a process allows the model's emergent behavior to be assessed, i.e., when fit imperfections are coupled to explicit planetary-scale fluid dynamics. The results reveal a previously unrecognized strong relationship between offline validation error and online performance, in which the choice of the optimizer proves unexpectedly critical. This in turn reveals many new neural network architectures that produce considerable improvements in climate model stability including some with reduced error, for an especially challenging training dataset. C1 [Ott, Jordan; Baldi, Pierre] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA. [Pritchard, Mike] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Best, Natalie; Linstead, Erik] Chapman Univ, Fowler Sch Engn, Orange, CA USA. [Curcic, Milan] Univ Miami, Dept Ocean Sci, Coral Gables, FL 33124 USA. RP Baldi, P (corresponding author), Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA. EM jott1@uci.edu; mspritch@uci.edu; best120@mail.chapman.edu; linstead@chapman.edu; m.curcic@umiami.edu; pfbaldi@ics.uci.edu FU NSF NRTNational Science Foundation (NSF)NSF - Office of the Director (OD) [1633631]; NSFNational Science Foundation (NSF) [OAC-1835863, AGS-1734164]; National Science FoundationNational Science Foundation (NSF) [ACI-1548562, TG-ATM190002] FX Th work of JO and PB is supported by NSF NRT (Grant 1633631). MP acknowledges NSF funding from OAC-1835863 and AGS-1734164. This research also used HPC resources of the Extreme Science and Engineering Discovery Environment (XSEDE), which was supported by the National Science Foundation under Grant no. ACI-1548562 [67] and allocation number TG-ATM190002. CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Adam Paszke, 2017, AUTOMATIC DIFFERENTI Agostinelli F, 2019, NAT MACH INTELL, V1, P356, DOI 10.1038/s42256-019-0070-z [Anonymous], 2019, KAGGLE STATE DATA SC [Anonymous], FORTRAN Archambeau F., 2004, INT J FINITE VOLUMES, V1, P1 Baldi P, 2014, ARTIF INTELL, V210, P78, DOI 10.1016/j.artint.2014.02.004 Bar-Sinai Y, 2019, P NATL ACAD SCI USA, V116, P15344, DOI 10.1073/pnas.1814058116 Bergstra J., 2013, P 12 PYTH SCI C, P13, DOI DOI 10.1088/1749-4699/8/1/014008 Bernal J., 2015, 8037 NAT I STAND TEC, DOI [10.6028/NIST.IR.8037, DOI 10.6028/NIST.IR.8037] Bernal J, 2015, J RES NATL INST STAN, V120, DOI 10.6028/jres.120.009 Beucler T., 2020, ENFORCING ANAL CONST Borgesson L., 1996, DEV GEOTECHNICAL ENG, V79, P565 Brenowitz ND, 2018, GEOPHYS RES LETT, V45, P6289, DOI 10.1029/2018GL078510 Brenowitz N. D., 2020, INTERPRETING STABILI Brierley P., FORTRAN90 MLP BACKPR BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211 Chollet F., 2018, DEEP LEARNING PYTHON Chollet F., 2015, KERAS Curcic Milan, 2018, ACM SIGPLAN Fortran Forum, V38, P4, DOI 10.1145/3323057.3323059 Donelan MA, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007787 Ferrari A., 2005, TECH REP, DOI [10.2172/877507, DOI 10.2172/877507] Fischer J., 2008, NEK5000 WEB PAGE Gagne DJ, 2020, J ADV MODEL EARTH SY, V12, DOI 10.1029/2019MS001896 Gentine P, 2018, GEOPHYS RES LETT, V45, P5742, DOI 10.1029/2018GL078202 Golaz JC, 2019, J ADV MODEL EARTH SY, V11, P2089, DOI 10.1029/2018MS001603 Grabowski WW, 2001, J ATMOS SCI, V58, P978, DOI 10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2 Held IM, 2019, J ADV MODEL EARTH SY, V11, P3691, DOI 10.1029/2019MS001829 Hertel L., 2020, SOFTWAREX Hurrell JW, 2013, B AM METEOROL SOC, V94, P1339, DOI 10.1175/BAMS-D-12-00121.1 Jiang GQ, 2018, GEOPHYS RES LETT, V45, P3706, DOI 10.1002/2018GL077004 John Gagne D., 2019, P AGUS FALL M SAN FR John Gagne D., 2020, P 100 AM METH SOC AN Khairoutdinov M, 2005, J ATMOS SCI, V62, P2136, DOI 10.1175/JAS3453.1 Khairoutdinov M, 2008, J CLIMATE, V21, P413, DOI 10.1175/2007JCLI1630.1 Komatitsch D., 2012, SPECFEM3D CARTESIAN Krizhevsky Alex, 2012, ADV NEURAL INFORM PR, P1097, DOI DOI 10.1145/3065386 LaHaye N, 2019, IEEE J-STARS, V12, P3056, DOI 10.1109/JSTARS.2019.2920234 Lary DJ, 2004, ATMOS CHEM PHYS, V4, P143, DOI 10.5194/acp-4-143-2004 Ling J, 2016, J FLUID MECH, V807, P155, DOI 10.1017/jfm.2016.615 Madenci E., 2015, FINITE ELEMENT METHO Murray Y. D., 2007, TECH REP Nissen S, 2003, IMPLEMENTATION FAST Ott J, 2018, INT C PROGRAM COMPRE, P336, DOI 10.1145/3196321.3196359 Ott J, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0198-z Ott J, 2018, IEEE WORK CONF MIN S, P376, DOI 10.1145/3196398.3196402 Powers JG, 2017, B AM METEOROL SOC, V98, P1717, DOI 10.1175/BAMS-D-15-00308.1 Pritchard MS, 2014, J ADV MODEL EARTH SY, V6, P723, DOI 10.1002/2014MS000340 Raissi M, 2019, J COMPUT PHYS, V378, P686, DOI 10.1016/j.jcp.2018.10.045 Rasp S., 2019, ONLINE LEARNING WAY Rasp S, 2018, P NATL ACAD SCI USA, V115, P9684, DOI 10.1073/pnas.1810286115 Rudy SH, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1602614 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961 Snoek J., 2012, ADV NEURAL INFORM PR, P2951, DOI DOI 10.1094/PDIS-11-11-0999-PDN Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Szegedy C., 2015, BATCH NORMALIZATION Thayer-Calder K, 2009, J ATMOS SCI, V66, P3297, DOI 10.1175/2009JAS3081.1 Tompson J, 2014, ACM T GRAPHIC, V33, DOI 10.1145/2629500 Towns J, 2014, COMPUT SCI ENG, V16, P62, DOI 10.1109/MCSE.2014.80 Urban G, 2018, GASTROENTEROLOGY, V155, P1069, DOI 10.1053/j.gastro.2018.06.037 Valiev M, 2010, COMPUT PHYS COMMUN, V181, P1477, DOI 10.1016/j.cpc.2010.04.018 Vega-Carrillo HR, 2006, RADIAT PROT DOSIM, V118, P251, DOI 10.1093/rpd/nci354 Wallcraft AJ, 2007, PROCEEDINGS OF THE HPCMP USERS GROUP CONFERENCE 2007, P259 Zhu XX, 2017, IEEE GEOSC REM SEN M, V5, P8, DOI 10.1109/MGRS.2017.2762307 NR 65 TC 0 Z9 0 U1 2 U2 2 PU HINDAWI LTD PI LONDON PA ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND SN 1058-9244 EI 1875-919X J9 SCI PROGRAMMING-NETH JI Sci. Program. PD AUG 28 PY 2020 VL 2020 AR 8888811 DI 10.1155/2020/8888811 PG 13 WC Computer Science, Software Engineering SC Computer Science GA NQ5HK UT WOS:000570897500001 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Lin, GL Lin, YH AF Lin, Guey-Lin Lin, Yen-Hsun TI Analysis on the black hole formations inside old neutron stars by isospin-violating dark matter with self-interaction SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; dark matter detectors; neutron stars ID CAPTURE; MILKY AB Fermionic dark matter (DM) with attractive self-interaction is possible to form black holes (BH) inside the Gyr-old neutron stars (NS). Therefore by observing such NS corresponding to their adjacent DM environments can place bounds on DM properties, eg. DMbaryon cross section sigma(xb), DM mass m(x), dark coupling alpha(x) and mediator mass m(phi). In case of isospin violation, DM couples to neutron and proton in different strengths. Even NS is composed of protons roughly one to two percent of the total baryons, the contribution from protons to the DM capture rate could be drastically changed in the presence of isospin violation. We demonstrate that this effect can be important in certain cases. On the other hand, DM-forming BH inside the star is subject to many criteria and the underlying dynamics is rich with interesting features. We also systematically review the relevant physics based on the virial equation. Moreover, an accompanied python package dm2nsbh to realize the mechanism is also released on the github for other relevant research. C1 [Lin, Guey-Lin] Natl Chiao Tung Univ, Inst Phys, Hsinchu 300, Taiwan. [Lin, Yen-Hsun] Acad Sinica, Inst Phys, Taipei 115, Taiwan. RP Lin, GL (corresponding author), Natl Chiao Tung Univ, Inst Phys, Hsinchu 300, Taiwan. EM glin@cc.nctu.edu.tw; yenhsun@gate.sinica.edu.tw OI Lin, Yen-Hsun/0000-0001-7911-7591 FU Academia Sinica, TaiwanAcademia Sinica - Taiwan; Ministry of Science and Technology, TaiwanMinistry of Science and Technology, Taiwan [107-2119-M-009-017-MY3] FX YHL thanks the authors of ref. [41] for providing the data plot of proton capture rate as well as the kind support by the Academia Sinica, Taiwan. GLL is supported by the Ministry of Science and Technology, Taiwan under Grant No. 107-2119-M-009-017-MY3. YHL thanks Gang Guo and Meng-Ru Wu for useful discussions. CR Aad G, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3517-3 Aalbers J, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/11/017 Aartsen MG, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-4689-9 Abdallah J, 2015, PHYS DARK UNIVERSE, V9-10, P8, DOI 10.1016/j.dark.2015.08.001 Acevedo JF, 2020, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2020/03/038 Ackermann M, 2017, ASTROPHYS J, V840, DOI 10.3847/1538-4357/aa6cab Aguilar M, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.211101 Akerib DS, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.021303 Ambrosi G, 2017, NATURE, V552, P63, DOI 10.1038/nature24475 Amole C, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.251301 Aprile E, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.111302 Aprile E, 2017, PHYS REV LETT, V119, DOI 10.1103/PhysRevLett.119.181301 Baryakhtar M, 2017, PHYS REV LETT, V119, DOI 10.1103/PhysRevLett.119.131801 Bell NF, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/09/018 Bell NF, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.123507 Bertoni B, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.123505 Bohmer CG, 2007, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2007/06/025 Boylan-Kolchin M, 2012, MON NOT R ASTRON SOC, V422, P1203, DOI 10.1111/j.1365-2966.2012.20695.x Boylan-Kolchin M, 2011, MON NOT R ASTRON SOC, V415, pL40, DOI 10.1111/j.1745-3933.2011.01074.x Bramante J, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.063002 Bramante J, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.015010 Buckley MR, 2010, PHYS REV D, V81, DOI 10.1103/PhysRevD.81.083522 Bullock JS, 2017, ANNU REV ASTRON ASTR, V55, P343, DOI 10.1146/annurev-astro-091916-055313 Busoni G, 2013, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2013/07/010 Catena R, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/12/016 Chen CS, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2018)069 Chen CS, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2018)074 Chen CS, 2016, PHYS DARK UNIVERSE, V14, P35, DOI 10.1016/j.dark.2016.09.001 Chen CS, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/01/013 Chen CS, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/10/049 Chen J, 2015, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2015/12/021 Choi K, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.141301 COLPI M, 1986, PHYS REV LETT, V57, P2485, DOI 10.1103/PhysRevLett.57.2485 Dasgupta B, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/08/018 Davoudiasl H, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.115019 de Lavallaz A, 2010, PHYS REV D, V81, DOI 10.1103/PhysRevD.81.123521 Eby J, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2016)028 Elbert OD, 2018, ASTROPHYS J, V853, DOI 10.3847/1538-4357/aa9710 Elbert OD, 2015, MON NOT R ASTRON SOC, V453, P29, DOI 10.1093/mnras/stv1470 Ellis J, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.123007 Ellis J, 2018, PHYS LETT B, V781, P607, DOI 10.1016/j.physletb.2018.04.048 Feng JL, 2011, PHYS LETT B, V703, P124, DOI 10.1016/j.physletb.2011.07.083 Fornengo N, 2017, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2017/12/012 Gaidau C, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/06/022 Garani R, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/05/035 Garani R, 2017, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2017/05/007 GOULD A, 1987, ASTROPHYS J, V321, P560, DOI 10.1086/165652 GOULD A, 1988, ASTROPHYS J, V328, P919, DOI 10.1086/166347 GOULD A, 1987, ASTROPHYS J, V321, P571, DOI 10.1086/165653 Gresham MI, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.096001 Gresham MI, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.036003 Gresham MI, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.096012 Guver T, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/05/013 Hamaguchi K, 2019, PHYS LETT B, V795, P484, DOI 10.1016/j.physletb.2019.06.060 IceCube collaboration, 2017, EUR PHYS J C, V77, P214 IceCube PINGU collaboration, ARXIV14012046 Joglekar A., ARXIV191113293 Jungman G, 1996, PHYS REP, V267, P195, DOI 10.1016/0370-1573(95)00058-5 Kamada A, 2017, PHYS REV LETT, V119, DOI 10.1103/PhysRevLett.119.111102 Kaplan DE, 2009, PHYS REV D, V79, DOI 10.1103/PhysRevD.79.115016 Kaplinghat M, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.035009 Kong K, 2015, PHYS LETT B, V743, P256, DOI 10.1016/j.physletb.2015.02.057 Kouvaris C, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.063526 Kouvaris C, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.043512 Kouvaris C, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.191301 Kouvaris C, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.083512 Kouvaris C, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.063531 Kouvaris C, 2008, PHYS REV D, V77, DOI 10.1103/PhysRevD.77.023006 Leung SC, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.107301 Lin GL, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.033002 LUX collaboration, 2017, PHYS REV LETT, V118, P251302 McDermott SD, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.023519 Oman KA, 2015, MON NOT R ASTRON SOC, V452, P3650, DOI 10.1093/mnras/stv1504 Petraki K, 2013, INT J MOD PHYS A, V28, DOI 10.1142/S0217751X13300287 Raj N, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.043006 Randall SW, 2008, ASTROPHYS J, V679, P1173, DOI 10.1086/587859 Robertson A, 2018, MON NOT R ASTRON SOC, V476, pL20, DOI 10.1093/mnrasl/sly024 Tolos L, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.123002 Tulin S, 2018, PHYS REP, V730, P1, DOI 10.1016/j.physrep.2017.11.004 Tulin S, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.115007 Walker MG, 2011, ASTROPHYS J, V742, DOI 10.1088/0004-637X/742/1/20 Wise MB, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.039907 Wise MB, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.055030 Zheng H, 2015, ASTROPHYS J, V800, DOI 10.1088/0004-637X/800/2/141 Zurek KM, 2014, PHYS REP, V537, P91, DOI 10.1016/j.physrep.2013.12.001 NR 85 TC 2 Z9 2 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD AUG PY 2020 IS 8 AR 022 DI 10.1088/1475-7516/2020/08/022 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA OS4PK UT WOS:000590146600006 DA 2021-04-21 ER PT J AU Kermode, JR AF Kermode, James R. TI f90wrap: an automated tool for constructing deep Python interfaces to modern Fortran codes SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE Fortran; Python; f2py; interoperability; interfacing; wrapping codes ID EXCHANGE AB f90wrap is a tool to automatically generate Python extension modules which interface to Fortran libraries that makes use of derived types. It builds on the capabilities of the popular f2py utility by generating a simpler Fortran 90 interface to the original Fortran code which is then suitable for wrapping with f2py, together with a higher-level Pythonic wrapper that makes the existance of an additional layer transparent to the final user. f90wrap has been used to wrap a number of large software packages of relevance to the condensed matter physics community, including the QUIP molecular dynamics code and the CASTEP density functional theory code. C1 [Kermode, James R.] Univ Warwick, Sch Engn, Warwick Ctr Predict Modelling, Coventry CV4 7AL, W Midlands, England. RP Kermode, JR (corresponding author), Univ Warwick, Sch Engn, Warwick Ctr Predict Modelling, Coventry CV4 7AL, W Midlands, England. EM J.R.Kermode@warwick.ac.uk RI Kermode, James R/O-6631-2014 OI Kermode, James R/0000-0001-6755-6271 FU CASTEP Developers Group; EPSRCUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/P002188/1, EP/L014742/1, EP/J022055/1, EP/R043612/1] FX I would like to thank the many contributors and users of the f90wrap GitHub repository, as well as support and encouragement from mentors and early users: Sandro De Vita, Gabor Csanyi and Noam Bernstein. In particular, Tamas Stenzcel has made significant recent contributions to f90wrap while working on the QUIP use case. The CasPyTep application has benefited from support and encouragement from the CASTEP Developers Group, in particular Phil Hasnip and Matt Probert. Greg Corbett carried out the initial work on this use case, and Sebastian Potthoff added MPI support to CasPyTep and optimised the performance of the nudged elastic band algorithm. I acknowledge useful discussions with members of the UK Car Parrinello Consortium, in particular David Bowler and Chris Skylaris in addition to those listed above. This work was in part supported by the EPSRC under grants EP/P002188/1, EP/L014742/1, EP/J022055/1 and EP/R043612/1. CR Abrahams D., 2003, C/C++ Users Journal, V21, P29 Aldegunde M, 2016, J COMPUT PHYS, V311, P173, DOI 10.1016/j.jcp.2016.01.034 ARCHER team 2019, 2019, ARCH APPL US BADER RFW, 1985, ACCOUNTS CHEM RES, V18, P9, DOI 10.1021/ar00109a003 Bartok AP, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.136403 Beazley DM, 2003, FUTURE GENER COMP SY, V19, P599, DOI 10.1016/S0167-739X(02)00171-1 Bernstein N, 2009, REP PROG PHYS, V72, DOI 10.1088/0034-4885/72/2/026501 Bezanson J, 2017, SIAM REV, V59, P65, DOI 10.1137/141000671 Clark SJ, 2005, Z KRISTALLOGR, V220, P567, DOI 10.1524/zkri.220.5.567.65075 Corbett G, 2015, RUTHERFORD APPLETON Csanyi G, 2007, IOP COMPUT PHYS NEWS Ghiringhelli LM, 2017, NPJ COMPUT MATER, V3, DOI 10.1038/s41524-017-0048-5 Henkelman G, 2020, ORIGINAL VERSION BAD Larsen AH, 2017, J PHYS-CONDENS MAT, V29, DOI 10.1088/1361-648X/aa680e Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones E., 2001, SCIPY OPEN SOURCE SC Kermode J, 2020, MODIFIED VERSION BAD Kermode J, 2020, SOURCE CODE F90WRAP Kermode J R, 2006, LIBATOMS QUIP GAP Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 Lejaeghere K, 2016, SCIENCE, V351, DOI 10.1126/science.aad3000 libAtoms/QUIP collaboration, 2006, SOURC COD QUIP Lu Y, 2019, J CHEM THEORY COMPUT, V15, P1317, DOI 10.1021/acs.jctc.8b01036 Mortensen JJ, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.035109 Murray-Rust P, 2011, J CHEMINFORMATICS, V3, DOI 10.1186/1758-2946-3-44 Oliphant T.E., 2006, A GUIDE TO NUMPY Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Ousterhout JK, 1998, COMPUTER, V31, P23, DOI 10.1109/2.660187 Packwood D, 2016, J CHEM PHYS, V144, DOI 10.1063/1.4947024 Peterson P, 2009, INT J COMPUT SCI ENG, V4, P296, DOI 10.1504/IJCSE.2009.029165 Pletzer A, 2008, COMPUT SCI ENG, V10, P86, DOI 10.1109/MCSE.2008.94 Tang W, 2009, J PHYS-CONDENS MAT, V21, DOI 10.1088/0953-8984/21/8/084204 Togo A., 2018, ARXIV180801590 Togo A, 2015, SCRIPTA MATER, V108, P1, DOI 10.1016/j.scriptamat.2015.07.021 NR 34 TC 1 Z9 1 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 15 PY 2020 VL 32 IS 30 AR 305901 DI 10.1088/1361-648X/ab82d2 PG 6 WC Physics, Condensed Matter SC Physics GA LM5VE UT WOS:000532316300001 PM 32209737 OA Other Gold, Green Published DA 2021-04-21 ER PT J AU van den Oord, G Jansson, F Pelupessy, I Chertova, M Gronqvist, JH Siebesma, P Crommelin, D AF van den Oord, Gijs Jansson, Fredrik Pelupessy, Inti Chertova, Maria Gronqvist, Johanna H. Siebesma, Pier Crommelin, Daan TI A Python interface to the Dutch Atmospheric Large-Eddy Simulation SO SOFTWAREX LA English DT Article DE Large-eddy simulation; Atmospheric sciences AB We present a Python interface for the Dutch Atmospheric Large Eddy Simulation (DALES), an existing Fortran code for high-resolution, turbulence-resolving simulation of atmospheric physics. The interface is based on an infrastructure for remote and parallel function calls and makes it possible to use and control the DALES weather simulations from a Python context. The interface is designed within the OMUSE framework, and allows the user to set up and control the simulation, apply perturbations and forcings, collect and analyse data in real time without exposing the user to the details of setting up and running the parallel Fortran DALES code. Another significant possibility is coupling the DALES simulation to other models, for example larger scale numerical weather prediction (NWP) models that can supply realistic lateral boundary conditions. Finally, the Python interface to DALES can serve as an educational tool for exploring weather dynamics, which we demonstrate with an example Jupyter notebook. (C) 2020 Netherlands eScience Center. Published by Elsevier B.V. C1 [van den Oord, Gijs; Pelupessy, Inti; Chertova, Maria] Netherlands eSci Ctr, Sci Pk 140, NL-1098 XG Amsterdam, Netherlands. [Jansson, Fredrik; Crommelin, Daan] Ctr Wiskunde & Informat, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands. [Gronqvist, Johanna H.] Abo Akad Univ, Fac Sci & Engn, Phys, Porthansgatan 3, Turku 20500, Finland. [Siebesma, Pier] Delft Univ Appl Sci, Ctr Civil Engn & Geosci, Stevinweg 1, NL-2628 CN Delft, Netherlands. [Siebesma, Pier] Koninklijk Nederlands Meteorol Inst, Utrechtseweg 297, NL-3731 GA De Bilt, Netherlands. [Crommelin, Daan] Univ Amsterdam, Korteweg de Vries Inst Math, Sci Pk 105-107, NL-1098 XG Amsterdam, Netherlands. RP van den Oord, G (corresponding author), Netherlands eSci Ctr, Sci Pk 140, NL-1098 XG Amsterdam, Netherlands. EM g.vandenoord@esciencecenter.nl FU Netherlands eScience Center (NLeSC) [027.015, G03] FX This work was supported by the Netherlands eScience Center (NLeSC) under grant no. 027.015.G03. CR Behnel S, 2011, COMPUT SCI ENG, V13, P31, DOI 10.1109/MCSE.2010.118 Carver G, 2018, GMD UNPUB Dubois P. F., 1996, Computers in Physics, V10, P262 Grabowski WW, 2001, J ATMOS SCI, V58, P978, DOI 10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2 Heus T, 2010, GEOSCI MODEL DEV, V3, P415, DOI 10.5194/gmd-3-415-2010 Heus T, 2019, OVERVIEW ALL NAMOPTI Jansson F, 2019, J ADV MODEL EARTH SY, V11, P2958, DOI 10.1029/2018MS001600 Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 Kurtzer GM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177459 Larson J, 2005, INT J HIGH PERFORM C, V19, P277, DOI 10.1177/1094342005056115 Monteiro JM, 2018, GEOSCI MODEL DEV, V11, P3781, DOI 10.5194/gmd-11-3781-2018 Pelupessy I, 2019, LECT NOTES COMPUT SC, V11539, P379, DOI 10.1007/978-3-030-22747-0_29 Pelupessy I, 2017, GEOSCI MODEL DEV, V10, P3167, DOI 10.5194/gmd-10-3167-2017 Peterson P, 2009, INT J COMPUT SCI ENG, V4, P296, DOI 10.1504/IJCSE.2009.029165 Rose B. E. J., 2018, J OPEN SOURCE SOFTWA, V3, P659, DOI [10. 21105/joss. 00659, DOI 10.21105/JOSS.00659] SCHMIDT H, 1989, J FLUID MECH, V200, P511, DOI 10.1017/S0022112089000753 Valcke S, 2013, GEOSCI MODEL DEV, V6, P373, DOI 10.5194/gmd-6-373-2013 Zwart SFP, 2013, COMPUT PHYS COMMUN, V184, P456, DOI 10.1016/j.cpc.2012.09.024 NR 18 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2352-7110 J9 SOFTWAREX JI SoftwareX PD JUL-DEC PY 2020 VL 12 AR 100608 DI 10.1016/j.softx.2020.100608 PG 6 WC Computer Science, Software Engineering SC Computer Science GA PH8TA UT WOS:000600676600070 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Butenko, K Bahls, C Schroder, M Kohling, R van Rienenid, U AF Butenko, Konstantin Bahls, Christian Schroeder, Max Koehling, Ruediger van Rienenid, Ursula TI OSS-DBS: Open-source simulation platform for deep brain stimulation with a comprehensive automated modeling SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID PARKINSONS-DISEASE; FINITE-ELEMENT; TISSUE; VOLUME AB In this study, we propose a new open-source simulation platform that comprises computer-aided design and computer-aided engineering tools for highly automated evaluation of electric field distribution and neural activation during Deep Brain Stimulation (DBS). It will be shown how a Volume Conductor Model (VCM) is constructed and examined using Python-controlled algorithms for generation, discretization and adaptive mesh refinement of the computational domain, as well as for incorporation of heterogeneous and anisotropic properties of the tissue and allocation of neuron models. The utilization of the platform is facilitated by a collection of predefined input setups and quick visualization routines. The accuracy of a VCM, created and optimized by the platform, was estimated by comparison with a commercial software. The results demonstrate no significant deviation between the models in the electric potential distribution. A qualitative estimation of different physics for the VCM shows an agreement with previous computational studies. The proposed computational platform is suitable for an accurate estimation of electric fields during DBS in scientific modeling studies. In future, we intend to acquire SDA and EMA approval. Successful incorporation of open-source software, controlled by in-house developed algorithms, provides a highly automated solution. The platform allows for optimization and uncertainty quantification (UQ) studies, while employment of the open-source software facilitates accessibility and reproducibility of simulations. C1 [Butenko, Konstantin; Bahls, Christian; van Rienenid, Ursula] Univ Rostock, Inst Gen Elect Engn, Rostock, Germany. [Schroeder, Max] Univ Rostock, Inst Commun Engn, Rostock, Germany. [Koehling, Ruediger] Rostock Univ, Oscar Langendorff Inst Physiol, Med Ctr, Rostock, Germany. [Koehling, Ruediger] Univ Rostock, Interdisciplinary Fac, Rostock, Germany. [van Rienenid, Ursula] Univ Rostock, Dept Life Light & Matter, Rostock, Germany. RP Butenko, K (corresponding author), Univ Rostock, Inst Gen Elect Engn, Rostock, Germany. EM konstantin.butenko@uni-rostock.de RI Kohling, Rudiger/K-8647-2013 OI Kohling, Rudiger/0000-0003-3330-4898; Schroder, Max/0000-0003-1522-494X; van Rienen, Ursula/0000-0003-1042-2058; Bahls, Christian/0000-0003-0511-0017 FU Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)German Research Foundation (DFG) [SFB 1270/1 - 299150580] FX This work and the authors are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - SFB 1270/1 - 299150580. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Ahrens J, 2005, PARAVIEW END USER TO, V717 Alnaes M. S., 2015, ARCH NUMER SOFTW, V3, P9, DOI [10.11588/ans.2015.100.20553, DOI 10.11588/ANS.2015.100.20553] Athawale TM, 2018, COMPUTER METHODS BIO, V7, P438 Bohme A, 2016, IEEE ENG MED BIO, P5821, DOI 10.1109/EMBC.2016.7592051 Butenko K, 2019, IEEE ENG MED BIO, P2136, DOI 10.1109/EMBC.2019.8857910 Butson CR, 2007, NEUROIMAGE, V34, P661, DOI 10.1016/j.neuroimage.2006.09.034 Butson CR, 2005, CLIN NEUROPHYSIOL, V116, P2490, DOI 10.1016/j.clinph.2005.06.023 Carnevale NT, 2006, NEURON BOOK Felter W, 2015, INT SYM PERFORM ANAL, P171, DOI 10.1109/ISPASS.2015.7095802 Gabriel S, 1996, PHYS MED BIOL, V41, P2271, DOI 10.1088/0031-9155/41/11/003 Grant PF, 2010, IEEE T BIO-MED ENG, V57, P2386, DOI 10.1109/TBME.2010.2055054 Horn A, 2015, NEUROIMAGE, V107, P127, DOI 10.1016/j.neuroimage.2014.12.002 Howell B, 2017, BRAIN STIMUL, V10, P46, DOI 10.1016/j.brs.2016.09.001 Johnson MD, 2008, NEUROTHERAPEUTICS, V5, P294, DOI 10.1016/j.nurt.2008.01.010 Kom M, 2009, MED BIOL ENG COMPUT, V47, P21, DOI [10.1007/s11517-008-0411-2, DOI 10.1007/S11517-008-0411-2] Krack P, 2019, MOVEMENT DISORD, V34, P1795, DOI 10.1002/mds.27860 Kuhn AA, 2008, J NEUROSCI, V28, P6165, DOI 10.1523/JNEUROSCI.0282-08.2008 MCADAMS ET, 1994, MED BIOL ENG COMPUT, V32, P126, DOI 10.1007/BF02518908 McIntyre CC, 2002, J NEUROPHYSIOL, V87, P995, DOI 10.1152/jn.00353.2001 Muller J, 2020, NEUROIMAGE-CLIN, V25, DOI 10.1016/j.nicl.2019.102135 Papp EA, 2014, NEUROIMAGE, V97, P374, DOI 10.1016/j.neuroimage.2014.04.001 Peterson EJ, 2011, J NEURAL ENG, V8, DOI 10.1088/1741-2560/8/4/046030 PLONSEY R, 1967, B MATH BIOPHYS, V29, P657, DOI 10.1007/BF02476917 Quinn EJ, 2015, MOVEMENT DISORD, V30, P1750, DOI 10.1002/mds.26376 Ribes A, 2007, P INT COMP SOFTW APP, P553 Rincon D, 2018, ADV ELECTROMAGN, V7, P46, DOI 10.7716/aem.v7i3.720 Rohlfing T, 2008, PROC SPIE, V6914, DOI 10.1117/12.770441 Schmidt C, 2018, IEEE T BIO-MED ENG, V65, P1828, DOI 10.1109/TBME.2017.2758324 Schmidt C, 2018, IEEE T NEUR SYS REH, V26, P281, DOI 10.1109/TNSRE.2016.2608925 Schmidt C, 2013, IEEE T BIO-MED ENG, V60, P1378, DOI 10.1109/TBME.2012.2235835 Schmidt C, 2012, IEEE T BIO-MED ENG, V59, P1583, DOI 10.1109/TBME.2012.2189885 Schoberl J., 1997, Computing and Visualization in Science, V1, P41, DOI 10.1007/s007910050004 Silberstein P, 2003, BRAIN, V126, P2597, DOI 10.1093/brain/awg267 Van Rienen U., 2001, NUMERICAL METHODS CO, P17 Vermaas M, 2020, NEUROINFORMATICS, V18, P569, DOI 10.1007/s12021-020-09458-8 NR 35 TC 2 Z9 2 U1 1 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUL PY 2020 VL 16 IS 7 AR e1008023 DI 10.1371/journal.pcbi.1008023 PG 18 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA MY0AE UT WOS:000558078100038 PM 32628719 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Lucsanyi, D Prod'homme, T AF Lucsanyi, David Prod'homme, Thibaut TI Simulating Charge Deposition by Cosmic Rays Inside Astronomical Imaging Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT Conference on Radiation and its Effects on Components and Systems (RADECS) CY SEP 16-20, 2019 CL Montpellier, FRANCE DE Cosmic rays; Charge coupled devices; Protons; Detectors; Radiation effects; Monte Carlo methods; Silicon; Charge-coupled device (CCD); charge deposition; cosmic ray (CR) imaging; Gaia; galactic CRs (GCRs); Geant4 (G4); Monte Carlo methods; PLATO ID GEANT4 PHYSICS PROCESSES; ENERGY ELECTROMAGNETIC MODELS AB In the context of space astronomy missions, accurate and fast modeling of spurious images generated by solar and galactic cosmic rays (GCRs) in imaging detectors is critical in order to assess and mitigate their detrimental effects. Currently, it is only possible to accurately reproduce the CR images including energy loss straggling, with the use of complex Monte Carlo particle transport codes. However, these codes are difficult to use and cannot be easily included in instrument simulation pipelines. Presented here is CosmiX, a novel, open-source, and Python-based CR model, overcoming the above-mentioned limitations, yet still capable of accurately reproducing the CR images, paving the way for semianalytical Monte Carlo modeling of the CR tracks. These are demonstrated by using CosmiX to reproduce irradiation test data of a PLATO charge-coupled device (CCD) and in-orbit CR data of Gaia CCD detectors. C1 [Lucsanyi, David; Prod'homme, Thibaut] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. RP Prod'homme, T (corresponding author), European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. EM thibaut.prodhomme@esa.int FU European Space Agency (ESA)European Space Agency FX This work was supported by the European Space Agency (ESA). CR Allison J, 2016, NUCL INSTRUM METH A, V835, P186, DOI 10.1016/j.nima.2016.06.125 Apostolakis J, 2015, J PHYS CONF SER, V664, DOI 10.1088/1742-6596/664/7/072021 Crowley C, 2016, ASTRON ASTROPHYS, V595, DOI 10.1051/0004-6361/201628990 de Bruijne JHJ, 2015, ASTRON ASTROPHYS, V576, DOI 10.1051/0004-6361/201424018 Fang JT, 2019, IEEE T NUCL SCI, V66, P444, DOI 10.1109/TNS.2018.2879593 Garcia L, 2018, PROC SPIE, V10709, DOI 10.1117/12.2314090 Geant4 Collaboration, 2018, GEANT4 DOC EL PHYS C Giardino G, 2019, PUBL ASTRON SOC PAC, V131, DOI 10.1088/1538-3873/ab2fd6 Kirsch C. T., 2018, THESIS Kohley R., 2015, GAIADETNESACRKO033 Kohley R, 2014, PROC SPIE, V9154, DOI 10.1117/12.2056420 Lucsanyi D, 2018, PROC SPIE, V10709, DOI 10.1117/12.2314047 Marcos-Arenal P, 2014, ASTRON ASTROPHYS, V566, DOI 10.1051/0004-6361/201323304 Meroli S, 2011, J INSTRUM, V6, DOI 10.1088/1748-0221/6/06/P06013 Niemi S.-M., 2015, EUCLID VISIBLE INSTR Pierron J, 2017, IEEE T NUCL SCI, V64, P2340, DOI 10.1109/TNS.2017.2662220 Prod'homme T, 2019, IEEE T NUCL SCI, V66, P134, DOI 10.1109/TNS.2018.2886029 Prod'homme T, 2018, PROC SPIE, V10709, DOI 10.1117/12.2314077 Puig L, 2018, EXP ASTRON, V46, P211, DOI 10.1007/s10686-018-9604-3 Raine M, 2014, NUCL INSTRUM METH B, V325, P97, DOI 10.1016/j.nimb.2014.01.014 Santin G, 2005, IEEE T NUCL SCI, V52, P2294, DOI 10.1109/TNS.2005.860749 Tylka AJ, 1997, IEEE T NUCL SCI, V44, P2150, DOI 10.1109/23.659030 Valentin A, 2012, NUCL INSTRUM METH B, V288, P66, DOI 10.1016/j.nimb.2012.07.028 Valentin A, 2012, NUCL INSTRUM METH B, V287, P124, DOI 10.1016/j.nimb.2012.06.007 van Dokkum PG, 2001, PUBL ASTRON SOC PAC, V113, P1420, DOI 10.1086/323894 NR 25 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD JUL PY 2020 VL 67 IS 7 BP 1623 EP 1628 DI 10.1109/TNS.2020.2986285 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA MN2IM UT WOS:000550669800052 DA 2021-04-21 ER PT J AU Bujila, R Omar, A Poludniowski, G AF Bujila, Robert Omar, Artur Poludniowski, Gavin TI A validation of SpekPy: A software toolkit for modelling X-ray tube spectra SO PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS LA English DT Article DE Radiology; X-ray; Production of X-rays; Radiation dosimetry ID MONTE-CARLO-SIMULATION; COMPUTATIONAL TOOL AB Purpose: To validate the SpekPy software toolkit that has been developed to estimate the spectra emitted from tungsten anode X-ray tubes. The model underlying the toolkit introduces improvements upon a well-known semi -empirical model of X-ray emission. Materials and methods: Using the same theoretical framework as the widely -used SpekCalc software, new elec- tron penetration data was simulated using the Monte Carlo (MC) method, alternative bremsstrahlung cross - sections were applied, L -line characteristic emissions were included, and improvements to numerical methods implemented. The SpekPy toolkit was developed with the Python programming language. The toolkit was va- lidated against other popular X-ray spectrum models (50 to 120 kVp), X-ray spectra estimated with MC (30 to 150 kVp) as well as reference half value layers (HVL) associated with numerous radiation qualities from standard laboratories (20 to 300 kVp). Results: T he toolkit can be used to estimate X-ray spectra that agree with other popular X-ray spectrum models for typical configurations in diagnostic radiology as well as with MC spectra over a wider range of conditions. The improvements over SpekCalc are most evident at lower incident electron energies for lightly and moderately filtered radiation qualities. Using the toolkit, estimations of the HVL over a large range of standard radiation qualities closely match reference values. Conclusions: A toolkit to estimate X-ray spectra has been developed and extensively validated for central -axis spectra. This toolkit can provide those working in Medical Physics and beyond with a powerful and user-friendly way of estimating spectra from X-ray tubes. C1 [Bujila, Robert; Omar, Artur; Poludniowski, Gavin] Karolinska Univ Hosp, Med Radiat Phys & Nucl Med, Stockholm, Sweden. [Bujila, Robert] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Omar, Artur; Poludniowski, Gavin] Karolinska Inst, Dept Oncol Pathol, Stockholm, Sweden. RP Bujila, R (corresponding author), Karolinska Univ Hosp, Med Radiat Phys & Nucl Med, Stockholm, Sweden. EM work.robert.bujila@gmail.com OI Omar, Artur/0000-0002-2643-7994 CR Ali ESM, 2008, MED PHYS, V35, P4149, DOI 10.1118/1.2966348 Ay MR, 2004, PHYS MED BIOL, V49, P4897, DOI 10.1088/0031-9155/49/21/004 Bazalova M, 2007, PHYS MED BIOL, V52, P5945, DOI 10.1088/0031-9155/52/19/015 Berger M.J., 2010, XCOM PHOTON CROSS SE BIRCH R, 1979, PHYS MED BIOL, V24, P505, DOI 10.1088/0031-9155/24/3/002 Birch RM, 1979, REPORT SERIES, V30 Boone JM, 1997, MED PHYS, V24, P1661, DOI 10.1118/1.597953 Carlson T., 2013, PHOTOELECTRON AUGER Cranley K, 1997, 78 IPEM Deslattes RD, 2003, REV MOD PHYS, V75, P35, DOI 10.1103/RevModPhys.75.35 ESTAR N, 2009, EST STOPP POW RANG T Hernandez AM, 2014, MED PHYS, V41, DOI 10.1118/1.4866216 Hernandez G, 2016, MED PHYS, V43, P4655, DOI 10.1118/1.4955120 ICRU, 2003, J ICRU ICRU, 2012, J ICRU, V12 ICRU, 2009, J ICRU, V9 ICRU, 2005, J ICRU, V5 Kawrakow I, 2000, PIRS701 NRC Landry G, 2013, FRONT PHYS, V1, DOI 10.3389/fphy.2013.00022 Ma CM, 1995, PIRS0509D NRC Oden J, 2018, PHYS MEDICA, V47, P42, DOI 10.1016/j.ejmp.2018.02.016 Omar A, 2018, RADIAT PHYS CHEM, V148, P73, DOI 10.1016/j.radphyschem.2018.02.009 PEAPLE LHJ, 1969, PHYS MED BIOL, V14, P73, DOI 10.1088/0031-9155/14/1/005 Perkins S.T, 1991, TABLES GRAPHS ATOMIC Persson M, 2016, MED PHYS, V43, P4398, DOI 10.1118/1.4954008 Poludniowski G, 2009, PHYS MED BIOL, V54, pN433, DOI 10.1088/0031-9155/54/19/N01 Poludniowski G., 2017, HDB XRAY IMAGING PHY, P185 Poludniowski GG, 2007, MED PHYS, V34, P2164, DOI 10.1118/1.2734725 Poludniowski GG, 2007, MED PHYS, V34, P2175, DOI 10.1118/1.2734726 Punnoose J, 2016, MED PHYS, V43, P4711, DOI 10.1118/1.4955438 Rogers D, 2009, NRC REPORT PIRS, V509, P12 Salvat F, 2006, PENELOPE 2008 CODE S, P7 SELTZER SM, 1985, NUCL INSTRUM METH B, V12, P95, DOI 10.1016/0168-583X(85)90707-4 Siewerdsen JH, 2004, MED PHYS, V31, P3057, DOI 10.1118/1.1758350 WAGGENER RG, 1972, RADIOLOGY, V105, P169, DOI 10.1148/105.1.169 NR 35 TC 5 Z9 5 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1120-1797 EI 1724-191X J9 PHYS MEDICA JI Phys. Medica PD JUL PY 2020 VL 75 BP 44 EP 54 DI 10.1016/j.ejmp.2020.04.026 PG 11 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA MD6AH UT WOS:000544053500007 PM 32512239 DA 2021-04-21 ER PT J AU Minganti, F Miranowicz, A Chhajlany, RW Arkhipov, II Nori, F AF Minganti, Fabrizio Miranowicz, Adam Chhajlany, Ravindra W. Arkhipov, Ievgen I. Nori, Franco TI Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories SO PHYSICAL REVIEW A LA English DT Article ID PYTHON FRAMEWORK; PHOTON; JUMPS; STATES; DYNAMICS; QUTIP AB Exceptional points (EPs) are degeneracies of classical and quantum open systems, which are studied in many areas of physics including optics, optoelectronics, plasmonics, and condensed matter physics. In the semiclassical regime, open systems can be described by phenomenological effective non-Hermitian Hamiltonians (NHHs) capturing the effects of gain and loss in terms of imaginary fields. The EPs that characterize the spectra of such Hamiltonians (HEPs) describe the time evolution of a system without quantum jumps. It is well known that a full quantum treatment describing more generic dynamics must crucially take into account such quantum jumps. In a recent paper [F. Minganti et al., Phys. Rev. A 100, 062131 (2019)], we generalized the notion of EPs to the spectra of Liouvillian superoperators governing open system dynamics described by Lindblad master equations. Intriguingly, we found that in situations where a classical-to-quantum correspondence exists, the two types of dynamics can yield different EPs. In a recent experimental work [M. Naghiloo et al., Nat. Phys. 15, 1232 (2019)], it was shown that one can engineer a non-Hermitian Hamiltonian in the quantum limit by postselecting on certain quantum jump trajectories. This raises an interesting question concerning the relation between Hamiltonian and Lindbladian EPs, and quantum trajectories. We discuss these connections by introducing a hybrid-Liouvillian superoperator, capable of describing the passage from an NHH (when one postselects only those trajectories without quantum jumps) to a true Liouvillian including quantum jumps (without postselection). Beyond its fundamental interest, our approach allows to intuitively relate the effects of postselection and finite-efficiency detectors. C1 [Minganti, Fabrizio; Miranowicz, Adam; Chhajlany, Ravindra W.; Nori, Franco] RIKEN Cluster Pioneering Res, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan. [Miranowicz, Adam; Chhajlany, Ravindra W.] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland. [Arkhipov, Ievgen I.] Palacky Univ, Joint Lab Opt, Olomouc 77146, Czech Republic. [Arkhipov, Ievgen I.] Palacky Univ, Fac Sci, CAS, Inst Phys, Olomouc 77146, Czech Republic. [Nori, Franco] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Minganti, F (corresponding author), RIKEN Cluster Pioneering Res, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan. EM fabrizio.minganti@riken.jp; adam@riken.jp; ravi@amu.edu.pl; ievgen.arkhipov@upol.cz; fnori@riken.jp RI ARKHIPOV, Ievgen I./A-9602-2017; Minganti, Fabrizio/AAX-4108-2020; Miranowicz, Adam/C-1481-2009; Nori, Franco/B-1222-2009 OI ARKHIPOV, Ievgen I./0000-0001-6547-8855; Minganti, Fabrizio/0000-0003-4850-1130; Chhajlany, Ravindra/0000-0003-1069-7924; Nori, Franco/0000-0003-3682-7432; Miranowicz, Adam/0000-0002-8222-9268 FU FY2018 JSPS Postdoctoral Fellowship for Research in Japan; Polish National Science Centre (NCN) under the Maestro Grant [DEC-2019/34/A/ST2/00081]; Grant Agency of the Czech RepublicGrant Agency of the Czech Republic [18-08874S]; Ministry of Education, Youth and Sports of the Czech RepublicMinistry of Education, Youth & Sports - Czech Republic [CZ.02.1.01/0.0/0.0/16_019/0000754]; NTT Research, Army Research Office (ARO) [W911NF-18-1-0358]; Japan Science and Technology Agency (JST) (CREST Grant) [JPMJCR1676]; Japan Society for the Promotion of Science (JSPS) (KAKENHI)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [JP20H00134]; Japan Society for the Promotion of Science (JSPS) (JSPS-RFBR Grant)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science [JPJSBP120194828]; Japan Society for the Promotion of Science (JSPS) (JSPS-FWO Grant)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science [VS.059.18N]; Foundational Questions Institute Fund (FQXi) of the Silicon Valley Community Foundation [FQXi-IAF19-06] FX The authors acknowledge a discussion with M. Schiro and comments from Jan Wiersig. F.M. was supported by the FY2018 JSPS Postdoctoral Fellowship for Research in Japan. A.M. and R.C. were supported by the Polish National Science Centre (NCN) under the Maestro Grant No. DEC-2019/34/A/ST2/00081. I.A. thanks the Grant Agency of the Czech Republic (Project No. 18-08874S) and the Project No. CZ.02.1.01/0.0/0.0/16_019/0000754 of the Ministry of Education, Youth and Sports of the Czech Republic. F.N. is supported in part by NTT Research, Army Research Office (ARO) (Grant No. W911NF-18-1-0358), Japan Science and Technology Agency (JST) (via the CREST Grant No. JPMJCR1676), Japan Society for the Promotion of Science (JSPS) (via the KAKENHI Grant No. JP20H00134, JSPS-RFBR Grant No. JPJSBP120194828, and JSPS-FWO Grant No. VS.059.18N), and Grant No. FQXi-IAF19-06 from the Foundational Questions Institute Fund (FQXi), a donor advised fund of the Silicon Valley Community Foundation. CR Albert V. V., 2017, THESIS Albert VV, 2014, PHYS REV A, V89, DOI 10.1103/PhysRevA.89.022118 Arkhipov II, 2020, PHYS REV A, V101, DOI 10.1103/PhysRevA.101.013812 Avila BJ, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-58582-7 Barnett S. M., 2009, QUANTUM INFORM Bartolo N, 2017, EUR PHYS J-SPEC TOP, V226, P2705, DOI 10.1140/epjst/e2016-60385-8 BASCHE T, 1995, NATURE, V373, P132, DOI 10.1038/373132a0 Bender CM, 1998, PHYS REV LETT, V80, P5243, DOI 10.1103/PhysRevLett.80.5243 BERGQUIST JC, 1986, PHYS REV LETT, V57, P1699, DOI 10.1103/PhysRevLett.57.1699 Breuer H.-P., 2007, THEORY OPEN QUANTUM Carmichael H. J., 2007, STAT METHODS QUANTUM CARMICHAEL HJ, 1993, PHYS REV LETT, V70, P2273, DOI 10.1103/PhysRevLett.70.2273 Carmichael HJ., 1999, STAT METHODS QUANTUM Chen C, 2019, NEW J PHYS, V21, DOI 10.1088/1367-2630/ab32ab Chen PY, 2018, NAT ELECTRON, V1, P297, DOI 10.1038/s41928-018-0072-6 Chen WJ, 2017, NATURE, V548, P192, DOI 10.1038/nature23281 Daley AJ, 2014, ADV PHYS, V63, P77, DOI 10.1080/00018732.2014.933502 DALIBARD J, 1992, PHYS REV LETT, V68, P580, DOI 10.1103/PhysRevLett.68.580 Deleglise S, 2008, NATURE, V455, P510, DOI 10.1038/nature07288 Gao T, 2015, NATURE, V526, P554, DOI 10.1038/nature15522 Gardiner C., 2004, QUANTUM NOISE HDB MA Garrahan JP, 2009, J PHYS A-MATH THEOR, V42, DOI 10.1088/1751-8113/42/7/075007 Gleyzes S, 2007, NATURE, V446, P297, DOI 10.1038/nature05589 Gneiting C., ARXIV200108929 Guerlin C, 2007, NATURE, V448, P889, DOI 10.1038/nature06057 Haroche S., 2006, EXPLORING QUANTUM AT Hatano N, 2019, MOL PHYS, V117, P2121, DOI 10.1080/00268976.2019.1593535 Hatridge M, 2013, SCIENCE, V339, P178, DOI 10.1126/science.1226897 Hodaei H, 2017, NATURE, V548, P187, DOI 10.1038/nature23280 Huang R., ARXIV200109492 Jelezko F, 2002, APPL PHYS LETT, V81, P2160, DOI 10.1063/1.1507838 Jin JS, 2018, PHYS REV B, V98, DOI 10.1103/PhysRevB.98.241108 Jing H, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.053604 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Kuo PC, 2020, PHYS REV A, V101, DOI 10.1103/PhysRevA.101.013814 Landa H, 2020, PHYS REV LETT, V124, DOI 10.1103/PhysRevLett.124.043601 Langbein W, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.023805 Lau HK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06477-7 Lidar D. A., ARXIV190200967 Liu ZP, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.110802 Macieszczak K, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.240404 Macieszczak K, 2016, PHYS REV A, V93, DOI 10.1103/PhysRevA.93.022103 Mathisen T, 2018, ENTROPY-SWITZ, V20, DOI 10.3390/e20010020 Milburn G.J., 2010, QUANTUM MEASUREMENT Minev ZK, 2019, NATURE, V570, P200, DOI 10.1038/s41586-019-1287-z Minganti F, 2019, PHYS REV A, V100, DOI 10.1103/PhysRevA.100.062131 Minganti F, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.042118 Miri MA, 2019, SCIENCE, V363, P42, DOI 10.1126/science.aar7709 MOLMER K, 1993, J OPT SOC AM B, V10, P524, DOI 10.1364/JOSAB.10.000524 Mortensen NA, 2018, OPTICA, V5, P1342, DOI 10.1364/OPTICA.5.001342 Naghiloo M, 2019, NAT PHYS, V15, P1232, DOI 10.1038/s41567-019-0652-z NAGOURNEY W, 1986, PHYS REV LETT, V56, P2797, DOI 10.1103/PhysRevLett.56.2797 Neumann P, 2010, SCIENCE, V329, P542, DOI 10.1126/science.1189075 Ofek N, 2016, NATURE, V536, P441, DOI 10.1038/nature18949 Ozdemir SK, 2019, NAT MATER, V18, P783, DOI 10.1038/s41563-019-0304-9 Paris MGA, 2012, EUR PHYS J-SPEC TOP, V203, P61, DOI 10.1140/epjst/e2012-01535-1 Peil S, 1999, PHYS REV LETT, V83, P1287, DOI 10.1103/PhysRevLett.83.1287 Peng B, 2014, SCIENCE, V346, P328, DOI 10.1126/science.1258004 Peng B, 2014, NAT PHYS, V10, P394, DOI [10.1038/NPHYS2927, 10.1038/nphys2927] Perina J, 2019, PHYS REV A, V100, DOI 10.1103/PhysRevA.100.053820 Prosen T, 2010, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2010/07/P07020 Ren J, 2017, OPT LETT, V42, P1556, DOI 10.1364/OL.42.001556 Robledo L, 2011, NATURE, V477, P574, DOI 10.1038/nature10401 Rose DC, 2016, PHYS REV E, V94, DOI 10.1103/PhysRevE.94.052132 Rota R, 2018, NEW J PHYS, V20, DOI 10.1088/1367-2630/aab703 Sarandy MS, 2005, PHYS REV A, V71, DOI 10.1103/PhysRevA.71.012331 SAUTER T, 1986, PHYS REV LETT, V57, P1696, DOI 10.1103/PhysRevLett.57.1696 Sayrin C, 2011, NATURE, V477, P73, DOI 10.1038/nature10376 Sun L, 2014, NATURE, V511, P444, DOI 10.1038/nature13436 van Caspel MT, 2019, SCIPOST PHYS, V6, DOI 10.21468/SciPostPhys.6.2.026 Vicentini F, 2018, PHYS REV A, V97, DOI 10.1103/PhysRevA.97.013853 Vijay R, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.110502 Wiersig J, 2020, PHYS REV A, V101, DOI 10.1103/PhysRevA.101.053846 Wiersig J, 2016, PHYS REV A, V93, DOI 10.1103/PhysRevA.93.033809 Wiersig J, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.203901 Wolff C, 2019, NANOPHOTONICS-BERLIN, V8, P1319, DOI 10.1515/nanoph-2019-0036 Yang, 2018, PARITY TIME SYMMETRY Zhang J, 2018, NAT PHOTONICS, V12, P479, DOI 10.1038/s41566-018-0213-5 Zhang MZ, 2019, PHYS REV LETT, V123, DOI 10.1103/PhysRevLett.123.180501 Zhang N, 2015, SCI REP-UK, V5, DOI 10.1038/srep11912 Zurek WH, 2003, REV MOD PHYS, V75, P715, DOI 10.1103/RevModPhys.75.715 NR 82 TC 6 Z9 6 U1 6 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD JUN 24 PY 2020 VL 101 IS 6 AR 062112 DI 10.1103/PhysRevA.101.062112 PG 14 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA MJ5OR UT WOS:000548140000007 DA 2021-04-21 ER PT J AU Philcox, OHE Spergel, DN Villaescusa-Navarro, F AF Philcox, Oliver H. E. Spergel, David N. Villaescusa-Navarro, Francisco TI Effective halo model: Creating a physical and accurate model of the matter power spectrum and cluster counts SO PHYSICAL REVIEW D LA English DT Article ID LARGE-SCALE STRUCTURE; COVARIANCE-MATRIX; NEUTRAL HYDROGEN; ANALYTIC MODEL; BIAS; SIMULATION; UNIVERSE; GALAXY AB We introduce a physically motivated model of the matter power spectrum, based on the halo model and perturbation theory. This model achieves 1% accuracy on all k-scales between k = 0.02h Mpc(-1) to k = 1h Mpc(-1). Our key ansatz is that the number density of halos depends on the nonlinear density contrast filtered on some unknown scale R. Using the effective field theory of large scale structure to evaluate the two-halo term, we obtain a model for the power spectrum with only two fitting parameters: R and the effective "sound speed," which encapsulates small-scale physics. This is tested with two suites of cosmological simulations across a broad range of cosmologies and found to be highly accurate. Due to its physical motivation, the statistics can be easily extended beyond the power spectrum; we additionally derive the one-loop covariance matrices of cluster counts and their combination with the matter power spectrum. This yields a significantly better fit to simulations than previous models, and includes a new model for supersample effects, which is rigorously tested with separate universe simulations. At low redshift, we find a significant (similar to 10%) exclusion covariance from accounting for the finite size of halos which has not previously been modeled. Such power spectrum and covariance models will enable joint analysis of upcoming large-scale structure surveys, gravitational lensing surveys, and cosmic microwave background maps on scales down to the nonlinear scale. We provide a publicly released Python code. C1 [Philcox, Oliver H. E.; Spergel, David N.; Villaescusa-Navarro, Francisco] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Spergel, David N.; Villaescusa-Navarro, Francisco] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA. RP Philcox, OHE (corresponding author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM ohep2@cantab.ac.uk RI Philcox, Oliver/ABE-4244-2020 OI Philcox, Oliver/0000-0002-3033-9932 FU WFIRST program [NNG26PJ30C, NNN12AA01C]; Simons Foundation FX We thank Jo Dunkley, Yin Li, Andrina Nicola, Fabian Schmidt, Marko Simonovic, and Matias Zaldarriaga for useful discussions. We additionally thank Colin Hill, Mikhail Ivanov, Leonardo Senatore, Emmanuel Schaan, Marcel Schmittfull, Uros Seljak, Masahiro Takada, and Ben Wandelt for comments on a draft of this paper. Furthermore, the authors acknowledge insightful and detailed feedback from the anonymous referee. O. H. E. P. and F. A. V.-N. acknowledge funding from the WFIRST program through grants No. NNG26PJ30C and No. NNN12AA01C. The Flatiron Institute is supported by the Simons Foundation. CR Ade PAR, 2014, ASTRON ASTROPHYS, V571, DOI 10.1051/0004-6361/201321591 Angulo R, 2015, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2015/09/029 Assassi V, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/08/056 Baldauf T, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/03/007 Baldauf T, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.123007 Baldauf T, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.043514 Baldauf T, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.083507 Baldauf T, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.083540 Baldauf T, 2011, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2011/10/031 Baumann D, 2012, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2012/07/051 Bernardeau F, 2002, PHYS REP, V367, P1, DOI 10.1016/S0370-1573(02)00135-7 Bhattacharya S, 2011, ASTROPHYS J, V732, DOI 10.1088/0004-637X/732/2/122 Blas D, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/07/052 Blas D, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/07/028 Carrasco JJM, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/07/056 Carrasco JJM, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/07/057 Carrasco JJM, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2012)082 Castorina E, 2017, MON NOT R ASTRON SOC, V471, P1788, DOI 10.1093/mnras/stx1599 Chen AY, 2020, PHYS REV D, V101, DOI 10.1103/PhysRevD.101.103522 Chiang CT, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/05/048 Chisari N.E., 2019, OPEN J ASTROPHYS, V2, P4, DOI DOI 10.21105/ASTRO.1905.06082 Chudaykin A, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/11/034 Cooray A, 2000, ASTROPHYS J, V535, pL9, DOI 10.1086/312696 Cooray A, 2002, PHYS REP, V372, P1, DOI 10.1016/S0370-1573(02)00276-4 Cooray A, 2001, ASTROPHYS J, V554, P56, DOI 10.1086/321376 Crocce M, 2010, MON NOT R ASTRON SOC, V403, P1353, DOI 10.1111/j.1365-2966.2009.16194.x Desjacques V, 2018, PHYS REP, V733, P1, DOI 10.1016/j.physrep.2017.12.002 Duffy AR, 2010, MON NOT R ASTRON SOC, V405, P2161, DOI 10.1111/j.1365-2966.2010.16613.x Fang WJ, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.023007 FELDMAN HA, 1994, ASTROPHYS J, V426, P23, DOI 10.1086/174036 Feng C, 2017, ASTROPHYS J, V846, DOI 10.3847/1538-4357/aa7ff1 Foreman S, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/04/033 Fujita T, 2020, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2020/01/009 Garrison LH, 2019, MON NOT R ASTRON SOC, V485, P3370, DOI 10.1093/mnras/stz634 Garrison LH, 2018, ASTROPHYS J SUPPL S, V236, DOI 10.3847/1538-4365/aabfd3 Ginzburg D, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.083528 Giocoli C, 2017, MON NOT R ASTRON SOC, V470, P3574, DOI 10.1093/mnras/stx1399 Hamann J, 2010, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2010/07/022 Hamaus N, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.041304 Hand N., 2019, NBODYKIT MASSIVELY P Hand N, 2017, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2017/10/009 Hill JC, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.063526 HUCHRA JP, 1982, ASTROPHYS J, V257, P423, DOI 10.1086/160000 Hurier G, 2017, ASTRON ASTROPHYS, V604, DOI 10.1051/0004-6361/201630041 Ivanov MM, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/07/053 Kainulainen K, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.063004 Komatsu E, 2002, MON NOT R ASTRON SOC, V336, P1256, DOI 10.1046/j.1365-8711.2002.05889.x Konstandin T, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/11/027 Lacasa F, 2018, ASTRON ASTROPHYS, V615, DOI 10.1051/0004-6361/201732343 Lacasa F, 2018, ASTRON ASTROPHYS, V611, DOI 10.1051/0004-6361/201630281 Lacasa F, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/08/005 Lawrence E., 2010, COSMICEMU COSMIC EMU Lazeyras T, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/02/018 Lesgourgues J, 2011, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2011/09/032 Lewandowski M, 2020, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2020/03/018 Lewis A, 2011, CAMB CODE ANISOTROPI Li Y, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.083519 Lima M, 2004, PHYS REV D, V70, DOI 10.1103/PhysRevD.70.043504 Ma CP, 2000, ASTROPHYS J, V543, P503, DOI 10.1086/317146 Massara E, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/12/053 McEwen JE, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/09/015 Mead AJ, 2016, MON NOT R ASTRON SOC, V459, P1468, DOI 10.1093/mnras/stw681 Mead AJ, 2015, MON NOT R ASTRON SOC, V454, P1958, DOI 10.1093/mnras/stv2036 Mirbabayi M, 2015, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2015/07/030 Mohammed I, 2017, MON NOT R ASTRON SOC, V466, P780, DOI 10.1093/mnras/stw3196 Mohammed I, 2014, MON NOT R ASTRON SOC, V445, P3382, DOI 10.1093/mnras/stu1972 Navarro JF, 1996, ASTROPHYS J, V462, P563, DOI 10.1086/177173 NEYMAN J, 1952, ASTROPHYS J, V116, P144, DOI 10.1086/145599 Nishimichi T, 2019, ASTROPHYS J, V884, DOI 10.3847/1538-4357/ab3719 Padmanabhan H, 2017, MON NOT R ASTRON SOC, V469, P2323, DOI 10.1093/mnras/stx979 Pajer E, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.083502 Peacock JA, 2000, MON NOT R ASTRON SOC, V318, P1144, DOI 10.1046/j.1365-8711.2000.03779.x Peebles PJE., 1980, LARGE SCALE STRUCTUR PRESS WH, 1974, ASTROPHYS J, V187, P425, DOI 10.1086/152650 Schaan E, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.123523 SCHERRER RJ, 1991, ASTROPHYS J, V381, P349, DOI 10.1086/170658 Schmidt F, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.063512 Schneider A, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/03/020 Seljak U, 2000, MON NOT R ASTRON SOC, V318, P203, DOI 10.1046/j.1365-8711.2000.03715.x Seljak U, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.123516 Senatore L., 2015, J COSMOL ASTROPART P, V05 Senatore L, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/05/019 Senatore L, 2015, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2015/11/007 Sheth RK, 1999, MON NOT R ASTRON SOC, V308, P119, DOI 10.1046/j.1365-8711.1999.02692.x Sheth RK, 2002, MON NOT R ASTRON SOC, V329, P61, DOI 10.1046/j.1365-8711.2002.04950.x Simonovic M, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/04/030 Smith RE, 2003, MON NOT R ASTRON SOC, V341, P1311, DOI 10.1046/j.1365-8711.2003.06503.x Smith RE, 2007, PHYS REV D, V75, DOI 10.1103/PhysRevD.75.063512 Smith RE, 2011, MON NOT R ASTRON SOC, V418, P729, DOI 10.1111/j.1365-2966.2011.19525.x Smith RE, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.043526 Smith RE, 2008, PHYS REV D, V78, DOI 10.1103/PhysRevD.78.023523 Springel V, 2005, MON NOT R ASTRON SOC, V364, P1105, DOI 10.1111/j.1365-2966.2005.09655.x Takada M, 2007, NEW J PHYS, V9, DOI 10.1088/1367-2630/9/12/446 Takada M, 2014, MON NOT R ASTRON SOC, V441, P2456, DOI 10.1093/mnras/stu759 Takada M, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.123504 Takahashi R, 2012, ASTROPHYS J, V761, DOI 10.1088/0004-637X/761/2/152 Thiele L, 2019, PHYS REV D, V99, DOI 10.1103/PhysRevD.99.103511 Tinker JL, 2010, ASTROPHYS J, V724, P878, DOI 10.1088/0004-637X/724/2/878 Valageas P, 2011, ASTRON ASTROPHYS, V532, DOI 10.1051/0004-6361/201116638 Valageas P, 2011, ASTRON ASTROPHYS, V527, DOI 10.1051/0004-6361/201015685 van den Bosch FC, 2013, MON NOT R ASTRON SOC, V430, P725, DOI 10.1093/mnras/sts006 VillaescusaNavarro F., ARXIV190905273 Voivodic R., ARXIV200306411 Wang J., ARXIV191109720 Warren MS, 2006, ASTROPHYS J, V646, P881, DOI 10.1086/504962 Werner KF, 2020, MON NOT R ASTRON SOC, V492, P1614, DOI 10.1093/mnras/stz3469 NR 106 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN 18 PY 2020 VL 101 IS 12 AR 123520 DI 10.1103/PhysRevD.101.123520 PG 41 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA LZ0HO UT WOS:000540912900005 DA 2021-04-21 ER PT J AU Davelaar, J Philippov, AA Bromberg, O Singh, CB AF Davelaar, Jordy Philippov, Alexander A. Bromberg, Omer Singh, Chandra B. TI Particle Acceleration in Kink-unstable Jets SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Plasma astrophysics; Plasma physics; Plasma jets; Jets; High energy astrophysics ID RELATIVISTIC JETS; ASTROPHYSICAL JETS; INSTABILITIES; SIMULATIONS; RECONNECTION; STABILITY; PYTHON AB Magnetized jets in gamma-ray bursts and active galactic nuclei are thought to be efficient accelerators of particles; however, the process responsible for the acceleration is still a matter of active debate. In this work, we study the kink instability in non-rotating force-free jets using first-principle particle-in-cell simulations. We obtain similar overall evolution of the instability as found in magnetohydrodynamics simulations. The instability first generates large-scale current sheets, which at later times break up into small-scale turbulence. Reconnection in these sheets proceeds in the strong guide field regime, which results in a formation of steep power laws in the particle spectra. Later evolution shows heating of the plasma, which is driven by small-amplitude turbulence induced by the kink instability. These two processes energize particles due to a combination of ideal and non-ideal electric fields. C1 [Davelaar, Jordy] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Davelaar, Jordy; Philippov, Alexander A.] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA. [Philippov, Alexander A.] Moscow Inst Phys & Technol, Inst Sky Per 9, Dolgoprudnyi 141700, Moscow Region, Russia. [Bromberg, Omer; Singh, Chandra B.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. RP Davelaar, J (corresponding author), Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands.; Davelaar, J (corresponding author), Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA. EM j.davelaar@astro.ru.nl RI ; Philippov, Alexander/I-3162-2017 OI Davelaar, Jordy/0000-0002-2685-2434; Philippov, Alexander/0000-0001-7801-0362 FU ERC Synergy Grant [610058]; ISFIsrael Science Foundation [1657/18]; ISF (I-CORE) [1829/12]; BSFUS-Israel Binational Science Foundation [2018312]; National Science FoundationNational Science Foundation (NSF) [AST-1910248]; Simons Foundation FX The authors thank A. Bhattacharjee, L. Comisso, H. Hakobyan, B. Ripperda, L. Sironi, A. Spitkovsky, and A. Tchekhovskoy for insightful comments over the course of this project. J.D. is funded by the ERC Synergy Grant 610058 (Goddi et al. 2017). The authors thank the anonymous referee for insightful comments. O.B. and C.S. were funded by an ISF grant 1657/18 and by an ISF (I-CORE) grant 1829/12. O.B. and S.P. were also supported by a BSF grant 2018312. S.P. acknowledges support by the National Science Foundation under grant No. AST-1910248. The Flatiron Institute is supported by the Simons Foundation. CR Alves EP, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.245101 Appl S, 2000, ASTRON ASTROPHYS, V355, P818 Begelman MC, 1998, ASTROPHYS J, V493, P291, DOI 10.1086/305119 Bodo G, 2013, MON NOT R ASTRON SOC, V434, P3030, DOI 10.1093/mnras/stt1225 Bromberg O, 2019, ASTROPHYS J, V884, DOI 10.3847/1538-4357/ab3fa5 Bromberg O, 2016, MON NOT R ASTRON SOC, V456, P1739, DOI 10.1093/mnras/stv2591 Cerutti B, 2014, ASTROPHYS J, V782, DOI 10.1088/0004-637X/782/2/104 Cerutti B, 2015, MON NOT R ASTRON SOC, V448, P606, DOI 10.1093/mnras/stv042 Childs H., 2005, IEEEP, V2005, P190 Comisso L, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.255101 Das U, 2019, MON NOT R ASTRON SOC, V482, P2107, DOI 10.1093/mnras/sty2675 Drake JF, 2006, NATURE, V443, P553, DOI 10.1038/nature05116 Drenkhahn G, 2002, ASTRON ASTROPHYS, V391, P1141, DOI 10.1051/0004-6361:20020839 Duck RC, 1997, PLASMA PHYS CONTR F, V39, P715, DOI 10.1088/0741-3335/39/5/004 Giannios D, 2006, AIP CONF PROC, V848, P530, DOI 10.1063/1.2348028 Goddi C, 2017, INT J MOD PHYS D, V26, DOI 10.1142/S0218271817300014 Guo F, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.155005 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones E., 2001, SCIPY OPEN SOURCE SC Loureiro NF, 2007, PHYS PLASMAS, V14, DOI 10.1063/1.2783986 Lyubarskii YE, 1999, MON NOT R ASTRON SOC, V308, P1006, DOI 10.1046/j.1365-8711.1999.02763.x McKinney JC, 2012, MON NOT R ASTRON SOC, V419, P573, DOI 10.1111/j.1365-2966.2011.19721.x McKinney JC, 2009, MON NOT R ASTRON SOC, V394, pL126, DOI 10.1111/j.1745-3933.2009.00625.x Millman KJ, 2011, COMPUT SCI ENG, V13, P9, DOI 10.1109/MCSE.2011.36 Mizuno Y, 2012, ASTROPHYS J, V757, DOI 10.1088/0004-637X/757/1/16 Mizuno Y, 2009, ASTROPHYS J, V700, P684, DOI 10.1088/0004-637X/700/1/684 O'Neill SM, 2012, MON NOT R ASTRON SOC, V422, P1436, DOI 10.1111/j.1365-2966.2012.20721.x Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Petropoulou M, 2018, MON NOT R ASTRON SOC, V481, P5687, DOI 10.1093/mnras/sty2702 Pudritz RE, 2012, SPACE SCI REV, V169, P27, DOI 10.1007/s11214-012-9895-z Ripperda B, 2017, MON NOT R ASTRON SOC, V471, P3465, DOI 10.1093/mnras/stx1875 ROSENBLU.MN, 1973, PHYS FLUIDS, V16, P1894, DOI 10.1063/1.1694231 Sironi L, 2014, ASTROPHYS J LETT, V783, DOI 10.1088/2041-8205/783/1/L21 Spitkovsky A, 2005, AIP CONF PROC, V801, P345 Tchekhovskoy A, 2016, MON NOT R ASTRON SOC, V461, pL46, DOI 10.1093/mnrasl/slw064 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Werner GR, 2016, ASTROPHYS J LETT, V816, DOI 10.3847/2041-8205/816/1/L8 Werner GR, 2017, ASTROPHYS J LETT, V843, DOI 10.3847/2041-8213/aa7892 Zenitani S, 2001, ASTROPHYS J, V562, pL63, DOI 10.1086/337972 Zhdankin V, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.055103 Zhdankin V, 2013, ASTROPHYS J, V771, DOI 10.1088/0004-637X/771/2/124 NR 41 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN PY 2020 VL 896 IS 2 AR L31 DI 10.3847/2041-8213/ab95a2 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA MH6UX UT WOS:000546862700001 DA 2021-04-21 ER PT J AU Liao, JQ Huang, JF Tian, L Kuang, LM Sun, CP AF Liao, Jie-Qiao Huang, Jin-Feng Tian, Lin Kuang, Le-Man Sun, Chang-Pu TI Generalized ultrastrong optomechanical-like coupling SO PHYSICAL REVIEW A LA English DT Article ID PYTHON FRAMEWORK; QUANTUM; CAVITY; DYNAMICS; NUMBER; QUTIP AB Ultrastrong optomechanical interaction is a significant element for the study of the fundamentals and applications of optomechanical physics, but its realization remains a big challenge in the field of optomechanics. In this work, we propose a reliable scheme to realize a generalized ultrastrong optomechanical-like coupling in a cross-Kerr-type coupled two-bosonic-mode system, in which one of the two bosonic modes is strongly driven. The generalized optomechanical-like interaction takes the form of a product of the excitation number operator of one mode and the rotated quadrature operator of the other mode. Here, both the coupling strength and the phase angle of the rotated quadrature operator are tunable via the driving field. The optomechanical-like coupling can be strongly enhanced to enter the ultrastrong-coupling regime, where the few-photon optomechanical effects such as photon blockade and macroscopic quantum superposition become accessible. The controllability of the quadrature phase angle provides a new degree of freedom for the manipulation of optomechanical systems and enables the implementation of geometric quantum operations. We also present some discussions on the experimental implementation of this scheme. This study will pave the way to the study of quantum physics and quantum technology at the few-photon level in optomechanical systems. C1 [Liao, Jie-Qiao; Huang, Jin-Feng; Kuang, Le-Man] Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Minist Educ,Dept Phys, Key Lab Matter Microstruct & Funct Hunan Prov, Changsha 410081, Peoples R China. [Liao, Jie-Qiao; Huang, Jin-Feng; Kuang, Le-Man] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China. [Tian, Lin] Univ Calif Merced, Sch Nat Sci, Merced, CA 95343 USA. [Sun, Chang-Pu] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China. [Sun, Chang-Pu] China Acad Engn Phys, Grad Sch, Beijing 100084, Peoples R China. RP Liao, JQ (corresponding author), Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Minist Educ,Dept Phys, Key Lab Matter Microstruct & Funct Hunan Prov, Changsha 410081, Peoples R China.; Liao, JQ (corresponding author), Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China. EM jqliao@hunnu.edu.cn FU NSFCNational Natural Science Foundation of China (NSFC) [11421063, 11534002, 11822501, 11774087, 11505055, 11935006, 11375060, 11434011, 11775075]; Natural Science Foundation of Hunan Province, ChinaNatural Science Foundation of Hunan Province [2017JJ1021]; Hunan Science and Technology Plan Project [2017XK2018]; Scientific Research Fund of Hunan Provincial Education DepartmentHunan Provincial Education Department [18A007]; National Science Foundation (USA)National Science Foundation (NSF) [1720501, 2006076]; National Basic Research Program of ChinaNational Basic Research Program of China [2014CB921403, 2016YFA0301201]; NSAF [U1530401] FX J.-Q.L. is supported in part by NSFC Grants No. 11822501, No. 11774087, and No. 11935006, Natural Science Foundation of Hunan Province, China Grant No. 2017JJ1021, and Hunan Science and Technology Plan Project Grant No. 2017XK2018. J.-F.H. is supported in part by the NSFC Grant No. 11505055, and Scientific Research Fund of Hunan Provincial Education Department Grant No. 18A007. L.T. is supported by the National Science Foundation (USA) under Awards No. 1720501 and No. 2006076. L.-M.K. is supported by the NSFC Grants No. 11935006, No. 11375060, No. 11434011, and No. 11775075. C.P.S. is supported by the National Basic Research Program of China Grants No. 2014CB921403 and No. 2016YFA0301201, the NSFC Grants No. 11421063 and No. 11534002, and the NSAF Grant No. U1530401. CR Aspelmeyer M, 2014, REV MOD PHYS, V86, P1391, DOI 10.1103/RevModPhys.86.1391 Aspelmeyer M, 2012, PHYS TODAY, V65, P29, DOI 10.1063/PT.3.1640 Barnett S.M., 1997, METHODS THEORETICAL BIALYNIC Z, 1968, PHYS REV, V173, P1207, DOI 10.1103/PhysRev.173.1207 Bose S, 1999, PHYS REV A, V59, P3204, DOI 10.1103/PhysRevA.59.3204 Bose S, 1997, PHYS REV A, V56, P4175, DOI 10.1103/PhysRevA.56.4175 Bourassa J, 2012, PHYS REV A, V86, DOI 10.1103/PhysRevA.86.013814 DEOLIVEIRA FAM, 1990, PHYS REV A, V41, P2645, DOI 10.1103/PhysRevA.41.2645 Ding SQ, 2017, PHYS REV LETT, V119, DOI 10.1103/PhysRevLett.119.193602 Gong ZR, 2009, PHYS REV A, V80, DOI 10.1103/PhysRevA.80.065801 Grangier P, 1998, NATURE, V396, P537, DOI 10.1038/25059 Heikkila TT, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.203603 Hoi IC, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.053601 Holland ET, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.180501 Hong T, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.023812 Hu D, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.013812 Hu Y, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.012329 IMOTO N, 1985, PHYS REV A, V32, P2287, DOI 10.1103/PhysRevA.32.2287 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Kang HS, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.093601 Karuza M, 2013, J OPTICS-UK, V15, DOI 10.1088/2040-8978/15/2/025704 Khosla KE, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/4/043025 Kimble HJ, 1998, PHYS SCRIPTA, VT76, P127, DOI 10.1238/Physica.Topical.076a00127 Kippenberg TJ, 2008, SCIENCE, V321, P1172, DOI 10.1126/science.1156032 Kok P, 2007, REV MOD PHYS, V79, P135, DOI 10.1103/RevModPhys.79.135 Kuang LM, 2007, PHYS REV A, V76, DOI 10.1103/PhysRevA.76.052324 Kuang LM, 2003, PHYS REV A, V68, DOI 10.1103/PhysRevA.68.043606 Lemonde MA, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11338 Li PB, 2016, SCI REP-UK, V6, DOI 10.1038/srep19065 Liao JQ, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.163602 Liao JQ, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/7/072001 Liao JQ, 2013, PHYS REV A, V87, DOI 10.1103/PhysRevA.87.043809 Liao JQ, 2012, PHYS REV A, V85, DOI 10.1103/PhysRevA.85.025803 Liu T, 2017, QUANTUM INF PROCESS, V16, DOI 10.1007/s11128-017-1664-1 Lu XY, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.093602 Ludwig M, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/9/095013 Majer J, 2007, NATURE, V449, P443, DOI 10.1038/nature06184 Mancini S, 1997, PHYS REV A, V55, P3042, DOI 10.1103/PhysRevA.55.3042 Marshall W, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.130401 Matsko AB, 2003, OPT LETT, V28, P96, DOI 10.1364/OL.28.000096 Maurer C, 2004, NEW J PHYS, V6, DOI 10.1088/1367-2630/6/1/094 MILBURN GJ, 1989, PHYS REV LETT, V62, P2124, DOI 10.1103/PhysRevLett.62.2124 Miranowicz A., 1990, Quantum Optics, V2, P253, DOI 10.1088/0954-8998/2/3/006 Nemoto K, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.250502 Nigg SE, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.240502 Nunnenkamp A, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.063602 Paternostro M, 2003, PHYS REV A, V67, DOI 10.1103/PhysRevA.67.023811 Pikovski I, 2012, NAT PHYS, V8, P393, DOI [10.1038/NPHYS2262, 10.1038/nphys2262] Pirkkalainen JM, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7981 Qian J, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.253601 Rabl P, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.063601 Rebic S, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.150503 Rimberg AJ, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/5/055008 Sankey JC, 2010, NAT PHYS, V6, P707, DOI 10.1038/NPHYS1707 Schmidt H, 1996, OPT LETT, V21, P1936, DOI 10.1364/OL.21.001936 Semiao FL, 2005, PHYS REV A, V72, DOI 10.1103/PhysRevA.72.064305 Sinclair GF, 2007, PHYS REV A, V76, DOI 10.1103/PhysRevA.76.033803 Sinclair GF, 2008, PHYS REV A, V77, DOI 10.1103/PhysRevA.77.033843 Tan SM, 1999, J OPT B-QUANTUM S O, V1, P424, DOI 10.1088/1464-4266/1/4/312 Thompson JD, 2008, NATURE, V452, P72, DOI 10.1038/nature06715 Vanner MR, 2011, P NATL ACAD SCI USA, V108, P16182, DOI 10.1073/pnas.1105098108 Vitali D, 2000, PHYS REV LETT, V85, P445, DOI 10.1103/PhysRevLett.85.445 Wang ZY, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15886 Xia KY, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.203602 Xu XW, 2013, PHYS REV A, V87, DOI 10.1103/PhysRevA.87.025803 Xuereb A, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.223601 Zhu SL, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.187902 NR 68 TC 2 Z9 2 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD JUN 1 PY 2020 VL 101 IS 6 AR 063802 DI 10.1103/PhysRevA.101.063802 PG 15 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA LT5UV UT WOS:000537136900021 DA 2021-04-21 ER PT J AU Huybrechts, D Minganti, F Nori, F Wouters, M Shammah, N AF Huybrechts, Dolf Minganti, Fabrizio Nori, Franco Wouters, Michiel Shammah, Nathan TI Validity of mean-field theory in a dissipative critical system: Liouvillian gap, PT-symmetric antigap, and permutational symmetry in the XYZ model SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM PHASE-TRANSITION; PYTHON FRAMEWORK; RADIATION; DYNAMICS; PHYSICS; CAVITY; SUPERFLUID; DRIVEN; ARRAYS; QUTIP AB We study the all-to-all connected XYZ (anisotropic-Heisenberg) spin model with local and collective dissipations, comparing the results of mean-field (MF) theory with the solution of the Lindblad master equation. Exploiting the weak PT symmetry of the model (referred to as Liouvillian PT symmetry), we efficiently calculate the Liouvillian gap, introducing the idea of an antigap, and we demonstrate the presence of a paramagnetic-to-ferromagnetic phase transition. Leveraging the permutational symmetry of the model [N. Shammah et al., Phys Rev. A 98, 063815 (2018)], we characterize criticality, finding exactly (up to numerical precision) the steady state for N up to N = 95 spins. We demonstrate that the MF theory correctly predicts the results in the thermodynamic limit in all regimes of parameters, and quantitatively describes the finite-size behavior in the small anisotropy regime. However, for an intermediate number of spins and for large anisotropy, we find a significant discrepancy between the results of the MF theory and those of the full quantum simulation. We also study other more experimentally accessible witnesses of the transition, which can be used for finite-size studies, namely, the bimodality coefficient and the angular-averaged susceptibility. In contrast to the bimodality coefficient, the angular-averaged susceptibility fails to capture the onset of the transition, in striking difference with respect to lower-dimensional studies. We also analyze the competition between local dissipative processes (which disentangle the spin system) and collective dissipative ones (generating entanglement). The nature of the phase transition is almost unaffected by the presence of these terms. Our results mark a stark difference with the common intuition that an all-to-all connected system should fall onto the mean-field solution also for intermediate number of spins. C1 [Huybrechts, Dolf; Wouters, Michiel] Univ Antwerp, Theory Quantum & Complex Syst, B-2610 Antwerp, Belgium. [Minganti, Fabrizio; Nori, Franco; Shammah, Nathan] RIKEN, Cluster Pioneering Res, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan. [Nori, Franco] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Shammah, Nathan] Univ Milan, Dipartimento Fis, Quantum Technol Lab, I-20133 Milan, Italy. [Shammah, Nathan] Unitary Fund, Berkeley, CA USA. RP Huybrechts, D (corresponding author), Univ Antwerp, Theory Quantum & Complex Syst, B-2610 Antwerp, Belgium. EM dolf.huybrechts@uantwerpen.be; fabrizio.minganti@riken.jp; fnori@riken.jp; michiel.wouters@uantwerpen.be; nathan.shammah@gmail.com RI Minganti, Fabrizio/AAX-4108-2020; Nori, Franco/B-1222-2009 OI Minganti, Fabrizio/0000-0003-4850-1130; Huybrechts, Dolf/0000-0002-5821-3493; Nori, Franco/0000-0003-3682-7432 FU FY2018 JSPS Postdoctoral Fellowship for Research in Japan; NTT Research, Army Research Office (ARO) [W911NF-18-1-0358]; Japan Science and Technology Agency (JST) (CREST Grant) [JPMJCR1676]; Japan Society for the Promotion of Science (JSPS) (KAKENHI Grant)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [JP20H00134]; Japan Society for the Promotion of Science (JSPS) (JSPS-RFBR Grant)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science [JPJSBP120194828]; Japan Society for the Promotion of Science (JSPS) (JSPS-FWO Grant)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science [VS.059.18N]; Foundational Questions Institute Fund (FQXi) [FQXi-IAF19-06]; Research Foundation-Flanders (FWO)FWO; Flemish Government department EWI; Silicon Valley Community Foundation; [UAntwerpen/DOCPRO/34878] FX The authors acknowledge useful discussions with A. Biella, G. Piccitto, R. Rota, M. Wauters, and W. Verstraelen. F.M. is supported by the FY2018 JSPS Postdoctoral Fellowship for Research in Japan. F.N. is supported in part by: NTT Research, Army Research Office (ARO) (Grant No. W911NF-18-1-0358), Japan Science and Technology Agency (JST) (via the CREST Grant No. JPMJCR1676), Japan Society for the Promotion of Science (JSPS) (via the KAKENHI Grant No. JP20H00134, JSPS-RFBR Grant No. JPJSBP120194828, and JSPS-FWO Grant No. VS.059.18N), and the Grant No. FQXi-IAF19-06 from the Foundational Questions Institute Fund (FQXi), a donor advised fund of the Silicon Valley Community Foundation. D.H. is supported by UAntwerpen/DOCPRO/34878. Part of the computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government department EWI. CR Albert VV, 2014, PHYS REV A, V89, DOI 10.1103/PhysRevA.89.022118 Altman E, 2015, PHYS REV X, V5, DOI 10.1103/PhysRevX.5.011017 Angelakis DG, 2007, PHYS REV A, V76, DOI 10.1103/PhysRevA.76.031805 Angerer A, 2018, NAT PHYS, V14, P1168, DOI 10.1038/s41567-018-0269-7 Angerer A, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1701626 Aspelmeyer M, 2014, REV MOD PHYS, V86, P1391, DOI 10.1103/RevModPhys.86.1391 Ballarini D, 2019, NANOPHOTONICS-BERLIN, V8, P641, DOI 10.1515/nanoph-2018-0188 Bartolo N, 2016, PHYS REV A, V94, DOI 10.1103/PhysRevA.94.033841 Baumann K, 2010, NATURE, V464, P1301, DOI 10.1038/nature09009 Baumgartner B, 2008, J PHYS A-MATH THEOR, V41, DOI 10.1088/1751-8113/41/39/395303 Benito M, 2016, PHYS REV A, V93, DOI 10.1103/PhysRevA.93.023846 Bermudez A, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.024431 Bernien H, 2017, NATURE, V551, P579, DOI 10.1038/nature24622 Biella A, 2018, PHYS REV B, V97, DOI 10.1103/PhysRevB.97.035103 Biella A, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.023839 BINDER K, 1981, PHYS REV LETT, V47, P693, DOI 10.1103/PhysRevLett.47.693 BINDER K, 1981, Z PHYS B CON MAT, V43, P119, DOI 10.1007/BF01293604 Biondi M, 2017, NEW J PHYS, V19, DOI 10.1088/1367-2630/aa99b2 Biondi M, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.043809 Birnbaum KM, 2005, NATURE, V436, P87, DOI 10.1038/nature03804 Bloch I, 2008, REV MOD PHYS, V80, P885, DOI 10.1103/RevModPhys.80.885 Bohnet JG, 2012, NATURE, V484, P78, DOI 10.1038/nature10920 BONIFACIO R, 1970, PHYS REV A-GEN PHYS, V2, P336, DOI 10.1103/PhysRevA.2.336 BONIFACIO R, 1975, PHYS REV A, V11, P1507, DOI 10.1103/PhysRevA.11.1507 BONIFACIO R, 1971, PHYS REV A-GEN PHYS, V4, P302, DOI 10.1103/PhysRevA.4.302 Bradac C, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01397-4 Braggio C., ARXIV190900999 Breuer H.-P., 2007, THEORY OPEN QUANTUM Briceno RA, 2020, PHYS REV D, V101, DOI 10.1103/PhysRevD.101.014509 Buca B., ARXIV191212185 Buca B, 2012, NEW J PHYS, V14, DOI 10.1088/1367-2630/14/7/073007 Buchhold M, 2013, PHYS REV A, V87, DOI 10.1103/PhysRevA.87.063622 Carmichael HJ, 2015, PHYS REV X, V5, DOI 10.1103/PhysRevX.5.031028 CARMICHAEL HJ, 1985, PHYS REV LETT, V55, P2790, DOI 10.1103/PhysRevLett.55.2790 Carmichael HJ., 1999, STAT METHODS QUANTUM Carusotto I, 2013, REV MOD PHYS, V85, DOI 10.1103/RevModPhys.85.299 Casteels W, 2017, PHYS REV A, V95, DOI 10.1103/PhysRevA.95.012128 Casteels W, 2016, PHYS REV A, V93, DOI 10.1103/PhysRevA.93.033824 Casteels W, 2018, PHYS REV A, V97, DOI 10.1103/PhysRevA.97.062107 Casteels W, 2017, PHYS REV A, V95, DOI 10.1103/PhysRevA.95.013812 Chan CK, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.051601 CHISSOM BS, 1970, AM STAT, V24, P19, DOI 10.2307/2681309 Chudnovsky EM, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.157201 Cirigliano V, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.221801 Cirio M, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.190403 Ciuti C, 2003, SEMICOND SCI TECH, V18, pS279, DOI 10.1088/0268-1242/18/10/301 Dalla Torre EG, 2016, PHYS REV A, V94, DOI 10.1103/PhysRevA.94.061802 Dalla Torre EG, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.184302 Defenu N, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.240403 Deveaud B., 2007, PHYS SEMICONDUCTOR M DICKE RH, 1954, PHYS REV, V93, P99, DOI 10.1103/PhysRev.93.99 Diehl S, 2008, NAT PHYS, V4, P878, DOI 10.1038/nphys1073 Diehl S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.015702 Dimer F, 2007, PHYS REV A, V75, DOI 10.1103/PhysRevA.75.013804 El-Ganainy R, 2018, NAT PHYS, V14, P11, DOI [10.1038/NPHYS4323, 10.1038/nphys4323] Fink JM, 2017, PHYS REV X, V7, DOI 10.1103/PhysRevX.7.011012 Fink T, 2018, NAT PHYS, V14, P365, DOI 10.1038/s41567-017-0020-9 Fitzpatrick M, 2017, PHYS REV X, V7, DOI 10.1103/PhysRevX.7.011016 Foss-Feig M, 2017, PHYS REV A, V95, DOI 10.1103/PhysRevA.95.043826 Garttner M, 2017, NAT PHYS, V13, P781, DOI [10.1038/NPHYS4119, 10.1038/nphys4119] Gegg M, 2016, NEW J PHYS, V18, DOI 10.1088/1367-2630/18/4/043037 Gelhausen J, 2017, PHYS REV A, V95, DOI 10.1103/PhysRevA.95.063824 Gil-Santos E, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.063605 Glaetzle AW, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.173002 Greentree AD, 2006, NAT PHYS, V2, P856, DOI 10.1038/nphys466 Greiner M, 2002, NATURE, V415, P39, DOI 10.1038/415039a Haroche S., 2006, EXPLORING QUANTUM AT Hartmann MJ, 2006, NAT PHYS, V2, P849, DOI 10.1038/nphys462 Hartmann MJ, 2008, LASER PHOTONICS REV, V2, P527, DOI 10.1002/lpor.200810046 Hartmann MJ, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.160501 HOPFIELD JJ, 1958, PHYS REV, V112, P1555, DOI 10.1103/PhysRev.112.1555 Houck AA, 2012, NAT PHYS, V8, P292, DOI [10.1038/NPHYS2251, 10.1038/nphys2251] Huybrechts D, 2019, PHYS REV A, V99, DOI 10.1103/PhysRevA.99.043841 Iemini F, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.035301 Iles-Smith J, 2014, PHYS REV A, V90, DOI 10.1103/PhysRevA.90.032114 Imamoglu A, 1997, PHYS REV LETT, V79, P1467, DOI 10.1103/PhysRevLett.79.1467 Jin JS, 2016, PHYS REV X, V6, DOI 10.1103/PhysRevX.6.031011 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Joshi C, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.063835 Kakuyanagi K, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.210503 Kasprzak J, 2006, NATURE, V443, P409, DOI 10.1038/nature05131 Kavokin A.V., 2007, MICROCAVITIES, V2nd ed. Kay A, 2008, EPL-EUROPHYS LETT, V84, DOI 10.1209/0295-5075/84/20001 Kessler EM, 2012, PHYS REV A, V86, DOI 10.1103/PhysRevA.86.012116 Khasseh R, 2019, PHYS REV LETT, V123, DOI 10.1103/PhysRevLett.123.184301 Kirton P, 2019, ADV QUANTUM TECHNOL, V2, P1800043 Kirton P, 2018, NEW J PHYS, V20, DOI 10.1088/1367-2630/aaa11d Kirton P, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.123602 Kowalewska-Kudlaszyk A, 2019, PHYS REV A, V100, DOI 10.1103/PhysRevA.100.053857 Kshetrimayum A, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01511-6 Lambert N, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.073602 Lambert N, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.224510 Lambert N, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.165308 Landa H, 2020, PHYS REV LETT, V124, DOI 10.1103/PhysRevLett.124.043601 Landau L. D., 2013, COURSE THEORETICAL P, V5 Lang C, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.243601 Lebreuilly J, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.033828 Lee TE, 2014, PHYS REV A, V90, DOI 10.1103/PhysRevA.90.052109 Lee TE, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.257204 Lee TE, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.031402 LEHMBERG RH, 1970, PHYS REV A-GEN PHYS, V2, P883, DOI 10.1103/PhysRevA.2.883 Maghrebi MF, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.014307 Marino J, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.070407 Markovic D, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.040505 Meiser D, 2010, PHYS REV A, V81, DOI 10.1103/PhysRevA.81.033847 Mendoza-Arenas JJ, 2016, PHYS REV A, V93, DOI 10.1103/PhysRevA.93.023821 METZNER W, 1991, PHYS REV B, V43, P8549, DOI 10.1103/PhysRevB.43.8549 Minganti F, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.042118 Miranowicz A, 2013, PHYS REV A, V87, DOI 10.1103/PhysRevA.87.023809 Miri MA, 2019, SCIENCE, V363, P42, DOI 10.1126/science.aar7709 Morrison S, 2008, PHYS REV A, V77, DOI 10.1103/PhysRevA.77.043810 Morrison S, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.040403 Muller M, 2012, ADV ATOM MOL OPT PHY, V61, P1, DOI 10.1016/B978-0-12-396482-3.00001-6 Nation PD, 2015, PHYS REV E, V91, DOI 10.1103/PhysRevE.91.013307 Nguyen TL, 2018, PHYS REV X, V8, DOI 10.1103/PhysRevX.8.011032 Niederle AE, 2016, PHYS REV A, V94, DOI 10.1103/PhysRevA.94.033607 NIU Q, 1989, PHYS REV B, V39, P2134, DOI 10.1103/PhysRevB.39.2134 Noe GT, 2012, NAT PHYS, V8, P219, DOI [10.1038/NPHYS2207, 10.1038/nphys2207] Novo L, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.012305 Olmos B, 2014, PHYS REV E, V90, DOI 10.1103/PhysRevE.90.042147 Overbeck VR, 2017, PHYS REV A, V95, DOI 10.1103/PhysRevA.95.042133 Ozdemir SK, 2019, NAT MATER, V18, P783, DOI 10.1038/s41563-019-0304-9 Pappalardi S, 2018, PHYS REV B, V98, DOI 10.1103/PhysRevB.98.134303 Pathria R., 2011, STAT MECH Prosen T, 2012, PHYS REV A, V86, DOI 10.1103/PhysRevA.86.044103 Prosen T, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.090404 Puri S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15785 Qian J, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.063407 Qian J, 2012, PHYS REV A, V85, DOI 10.1103/PhysRevA.85.065401 Raino G, 2018, NATURE, V563, P671, DOI 10.1038/s41586-018-0683-0 Ramos A, 2019, EUR PHYS J D, V73, DOI 10.1140/epjd/e2019-100180-4 Rodriguez SRK, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.247402 Roscher D, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.062117 Rota R, 2018, NEW J PHYS, V20, DOI 10.1088/1367-2630/aab703 Rota R, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.134431 Russomanno A, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.214307 Sachdev S, 2001, QUANTUM PHASE TRANSI Munoz CS, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.123604 Savona V, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.033826 Scheel S, 2018, EPL-EUROPHYS LETT, V122, DOI 10.1209/0295-5075/122/34001 Schmidt S, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.086403 Schoelkopf RJ, 2008, NATURE, V451, P664, DOI 10.1038/451664a Schutz S, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.083001 Shammah N, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.063815 Shammah N, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.023863 Sieberer LM, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.134310 Sieberer LM, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.195301 Tsomokos DI, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/11/113020 van Caspel M, 2018, PHYS REV A, V97, DOI 10.1103/PhysRevA.97.052106 Verstraelen W, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8091427 Verstraete F, 2009, NAT PHYS, V5, P633, DOI 10.1038/NPHYS1342 Vicentini F, 2018, PHYS REV A, V97, DOI 10.1103/PhysRevA.97.013853 Viteau M, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.053002 Weimer H, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.040402 Wilson RM, 2016, PHYS REV A, V94, DOI 10.1103/PhysRevA.94.033801 You JQ, 2011, NATURE, V474, P589, DOI 10.1038/nature10122 Zhang J, 2017, NATURE, V551, P601, DOI 10.1038/nature24654 NR 158 TC 8 Z9 8 U1 6 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 1 PY 2020 VL 101 IS 21 AR 214302 DI 10.1103/PhysRevB.101.214302 PG 21 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA LT5YH UT WOS:000537145900004 DA 2021-04-21 ER PT J AU Ustun, TS Hussain, SMS AF Ustun, Taha Selim Hussain, S. M. Suhail TI An Improved Security Scheme for IEC 61850 MMS Messages in Intelligent Substation Communication Networks SO JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY LA English DT Article DE Public key; Substations; Authentication; IEC Standards; Communication networks; Real-time systems; IEC 62351 standard; certificate authority; certificate-based authentication; cybersecurity; smart grid AB Advanced connectivity in substations brings along cybersecurity considerations. Especially, the use of standardized data objects and message structures stipulated by IEC 61850 makes them much more vulnerable to unauthorized access and manipulation. In order to tackle these vulnerabilities, different methods are investigated by researchers all over the world. An important aspect of such efforts is the real-time performance consideration since power systems are bound by the rules of physics and all control/communication tasks need to be completed in a certain time frame. Security schemes for substation communication have been proposed in the recent literature. However, they must be improved to ensure a full security solution. Recently published IEC 62351 standard aims to fill this gap. Node authentication is vital for substation communication networks based on IEC 61850 to mitigate a variety of attacks such as man-in-the-middle (MITM) attack. This short communication presents a node authentication mechanism based on transport layer security (TLS) with certificates to address this knowledge gap. It also investigates the real-time performance by implementing the proposed scheme with Python. C1 [Ustun, Taha Selim; Hussain, S. M. Suhail] AIST FREA, Fukushima Renewable Energy Inst, Fukushima, Japan. [Ustun, Taha Selim] Res Inst Energy Frontier, Tsukuba, Ibaraki, Japan. RP Ustun, TS (corresponding author), AIST FREA, Fukushima Renewable Energy Inst, Fukushima, Japan. EM selim.ustun@aist.go.jp; Suhail.hussain@aist.go.jp RI Hussain, S. M. Suhail/O-3552-2016 OI Hussain, S. M. Suhail/0000-0002-7779-8140 CR [Anonymous], 2007, 623511 IEC [Anonymous], 2013, 618505 IEC Barrett M.P, 2018, FRAMEWORK IMPROVING Farooq SM, 2019, IEEE ACCESS, V7, P32343, DOI 10.1109/ACCESS.2019.2902571 Farooq SM, 2018, ELECTRONICS-SWITZ, V7, DOI 10.3390/electronics7120370 Housley R., 2013, INTERNET X 509 PUBLI Hussain SMS, 2019, IEEE ACCESS, V7, P80980, DOI 10.1109/ACCESS.2019.2923728 Lee A., 2014, GUIDELINES SMART GRI Ustun TS, 2019, IEEE ACCESS, V7, P156044, DOI 10.1109/ACCESS.2019.2948117 Zhang J, 2019, J MOD POWER SYST CLE, V7, P948, DOI 10.1007/s40565-019-0498-5 NR 10 TC 0 Z9 0 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2196-5625 EI 2196-5420 J9 J MOD POWER SYST CLE JI J. Mod. Power Syst. Clean Energy PD MAY PY 2020 VL 8 IS 3 BP 591 EP 595 DI 10.35833/mpce.2019.000104 PG 5 WC Engineering, Electrical & Electronic SC Engineering GA OZ0PG UT WOS:000594638200021 OA DOAJ Gold DA 2021-04-21 ER PT J AU Abenza, ME AF Abenza, Miguel Escudero TI Precision early universe thermodynamics made simple: N-eff and neutrino decoupling in the Standard Model and beyond SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE cosmological neutrinos; cosmology of theories beyond the SM; particle physics - cosmology connection; physics of the early universe ID BIG-BANG NUCLEOSYNTHESIS; NONEQUILIBRIUM CORRECTIONS; MASSLESS NEUTRINOS; STERILE NEUTRINOS; DARK-MATTER; TEMPERATURE; SPECTRA; BOUNDS AB Precision measurements of the number of effective relativistic neutrino species and the primordial element abundances require accurate theoretical predictions for early Universe observables in the Standard Model and beyond. Given the complexity of accurately modelling the thermal history of the early Universe, in this work, we extend a previous method presented by the author in [1] to obtain simple, fast and accurate early Universe thermodynamics. The method is based upon the approximation that all relevant species can be described by thermal equilibrium distribution functions characterized by a temperature and a chemical potential. We apply the method to neutrino decoupling in the Standard Model and find Na-eff(SM) = 3.045 a result in excellent agreement with previous state-of-the-art calculations. We apply the method to study the thermal history of the Universe in the presence of a very light (1 eV < m(phi) < 1 MeV) and weakly coupled (lambda less than or similar to 10(-9)) neutrinophilic scalar. We find our results to be in excellent agreement with the solution to the exact Liouville equation. Finally, we release a code: NUDEC_BSM (available in both Mathematica and Python formats), with which neutrino decoupling can be accurately and efficiently solved in the Standard Model and beyond: https://github.com/MiguelEA/nudec_BSM. C1 [Abenza, Miguel Escudero] Kings Coll London, Theoret Particle Phys & Cosmol Grp, Dept Phys, London WC2R 2LS, England. RP Abenza, ME (corresponding author), Kings Coll London, Theoret Particle Phys & Cosmol Grp, Dept Phys, London WC2R 2LS, England. EM miguel.escudero@kcl.ac.uk OI Escudero, Miguel/0000-0002-4487-8742 FU European Research Council under the European Union's Horizon 2020 program (ERC Grant) [648680 DARKHORIZONS] FX I am grateful to Sam Witte, Chris McCabe, Sergio Pastor, Stefano Gariazzo and Pablo F. de Salas for their very helpful comments and suggestions over a draft version of this paper, and to Toni Pich for useful correspondence. This work is supported by the European Research Council under the European Union's Horizon 2020 program (ERC Grant Agreement No 648680 DARKHORIZONS). CR Abazajian K., ARXIV190704473 Aitken K, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.075009 Alvey J, 2020, EUR PHYS J C, V80, DOI 10.1140/epjc/s10052-020-7727-y Arbey A, 2020, COMPUT PHYS COMMUN, V248, DOI 10.1016/j.cpc.2019.106982 Balantekin AB, 2018, ANNU REV NUCL PART S, V68, P313, DOI 10.1146/annurev-nucl-101916-123044 Bennett JJ, 2020, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2020/03/003 Berlin A, 2019, PHYS REV D, V100, DOI 10.1103/PhysRevD.100.015038 Bernstein J., 1988, KINETIC THEORY EXPAN Binder T, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/11/043 Birrell J, 2015, NUCL PHYS B, V890, P481, DOI 10.1016/j.nuclphysb.2014.11.020 Boehm C, 2013, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2013/08/041 Bringmann T, 2007, J COSMOL ASTROPART P, DOI 10.1088/1745-7516/2007/04/016 Bringmann T, 2009, NEW J PHYS, V11, DOI 10.1088/1367-2630/11/10/105027 Brust C, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2013)058 Buen-Abad MA, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.023531 Cadamuro D, 2011, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2011/02/003 Chacko Z, 2004, PHYS REV D, V70, DOI 10.1103/PhysRevD.70.085008 Chacko Z, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.055033 CHIKASHIGE Y, 1981, PHYS LETT B, V98, P265, DOI 10.1016/0370-2693(81)90011-3 Cicoli M, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.043520 Consiglio R, 2018, COMPUT PHYS COMMUN, V233, P237, DOI 10.1016/j.cpc.2018.06.022 Cooke RJ, 2016, ASTROPHYS J, V830, DOI 10.3847/0004-637X/830/2/148 CORE collaboration, 2018, JCAP, V04 Cuoco A, 2005, PHYS REV D, V71, DOI 10.1103/PhysRevD.71.123501 de Salas PF, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.123534 de Salas PF, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/07/051 Diacoumis JAD, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/01/001 DICUS DA, 1982, PHYS REV D, V26, P2694, DOI 10.1103/PhysRevD.26.2694 DODELSON S, 1994, PHYS REV LETT, V72, P17, DOI 10.1103/PhysRevLett.72.17 DODELSON S, 1992, PHYS REV D, V46, P3372, DOI 10.1103/PhysRevD.46.3372 Dodelson S., 2003, MODERN COSMOLOGY Dolgov AD, 2000, NUCL PHYS B, V590, P562, DOI 10.1016/S0550-3213(00)00566-6 Dolgov AD, 1999, NUCL PHYS B, V548, P385, DOI 10.1016/S0550-3213(99)00127-3 Dolgov AD, 1999, NUCL PHYS B, V543, P269, DOI 10.1016/S0550-3213(98)00818-9 Dolgov AD, 2002, PHYS REP, V370, P333, DOI 10.1016/S0370-1573(02)00139-4 Dolgov AD, 2002, NUCL PHYS B, V632, P363, DOI 10.1016/S0550-3213(02)00274-2 Dolgov AD, 1997, NUCL PHYS B, V503, P426, DOI 10.1016/S0550-3213(97)00479-3 Dvorkin C, 2019, PHYS REV D, V99, DOI 10.1103/PhysRevD.99.115009 Edsjo J, 1997, PHYS REV D, V56, P1879, DOI 10.1103/PhysRevD.56.1879 Elor G, 2019, PHYS REV D, V99, DOI 10.1103/PhysRevD.99.035031 ENQVIST K, 1992, NUCL PHYS B, V374, P392, DOI 10.1016/0550-3213(92)90359-J Erler J, 2013, PROG PART NUCL PHYS, V71, P119, DOI 10.1016/j.ppnp.2013.03.004 Escudero M, 2020, EUR PHYS J C, V80, DOI 10.1140/epjc/s10052-020-7854-5 Escudero M, 2019, PHYS REV D, V100, DOI 10.1103/PhysRevD.100.103531 Escudero M, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2019)071 Escudero M, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/02/007 Esposito S, 2000, NUCL PHYS B, V590, P539, DOI 10.1016/S0550-3213(00)00554-X Esposito S, 2003, NUCL PHYS B, V658, P217, DOI 10.1016/S0550-3213(03)00151-2 FIELDS BD, 1993, PHYS REV D, V47, P4309, DOI 10.1103/PhysRevD.47.4309 Fixsen DJ, 2009, ASTROPHYS J, V707, P916, DOI 10.1088/0004-637X/707/2/916 Fornengo N, 1997, PHYS REV D, V56, P5123, DOI 10.1103/PhysRevD.56.5123 Fradette A, 2019, PHYS REV D, V99, DOI 10.1103/PhysRevD.99.075004 Froustey J, 2020, PHYS REV D, V101, DOI 10.1103/PhysRevD.101.043524 Gariazzo S, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/07/014 GELMINI GB, 1981, PHYS LETT B, V99, P411, DOI 10.1016/0370-2693(81)90559-1 GEORGI HM, 1981, NUCL PHYS B, V193, P297, DOI 10.1016/0550-3213(81)90336-9 GONDOLO P, 1991, NUCL PHYS B, V360, P145, DOI 10.1016/0550-3213(91)90438-4 Grohs E, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.083522 Grohs E.B., ARXIV190309187 Hall LJ, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2010)080 HANNESTAD S, 1995, PHYS REV D, V52, P1764, DOI 10.1103/PhysRevD.52.1764 Hannestad S, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.083006 Hasegawa T, 2019, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2019/12/012 HECKLER AF, 1994, PHYS REV D, V49, P611, DOI 10.1103/PhysRevD.49.611 Hu W.T., 1995, THESIS Ibe M, 2020, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2020)009 Iocco F, 2009, PHYS REP, V472, P1, DOI 10.1016/j.physrep.2009.02.002 Kane G, 2020, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2020/02/019 Kawasaki M, 2000, PHYS REV D, V62, DOI 10.1103/PhysRevD.62.023506 KAWASAKI M, 1993, NUCL PHYS B, V403, P671, DOI 10.1016/0550-3213(93)90366-W Kawasaki M, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.023502 Kolb EW., 1990, FRONT PHYS-BEIJING, V69, P1 Kreisch C.D., ARXIV190200534 Landau L.D., 1980, STAT PHYS 1, V5 MA CP, 1995, ASTROPHYS J, V455, P7, DOI 10.1086/176550 Mangano G, 2005, NUCL PHYS B, V729, P221, DOI 10.1016/j.nuclphysb.2005.09.041 Mangano G, 2002, PHYS LETT B, V534, P8, DOI 10.1016/S0370-2693(02)01622-2 NASA PICO collaboration, ARXIV190210541 NASA Nelson AE, 2019, PHYS REV D, V100, DOI 10.1103/PhysRevD.100.075002 PEEBLES PJE, 1968, ASTROPHYS J, V153, P1, DOI 10.1086/149628 Pisanti O, 2008, COMPUT PHYS COMMUN, V178, P956, DOI 10.1016/j.cpc.2008.02.015 Pitrou C, 2018, PHYS REP, V754, P1, DOI 10.1016/j.physrep.2018.04.005 Planck Collaboration, ARXIV180706209 PLANC Planck Collaboration, ARXIV180706205 PLANC Pospelov M, 2010, ANNU REV NUCL PART S, V60, P539, DOI 10.1146/annurev.nucl.012809.104521 Sabti N, 2020, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2020/01/004 Sarkar S, 1996, REP PROG PHYS, V59, P1493, DOI 10.1088/0034-4885/59/12/001 SCHECHTER J, 1982, PHYS REV D, V25, P774, DOI 10.1103/PhysRevD.25.774 Sehgal N., ARXIV190610134 Serpico PD, 2004, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2004/12/010 Shi XD, 1999, PHYS REV LETT, V82, P2832, DOI 10.1103/PhysRevLett.82.2832 Simons Observatory collaboration, 2019, JCAP, V2 SPT-3G collaboration, 2014, P SPIE INT SOC OPT E, V9153 STARKMAN GD, 1994, ASTROPHYS J, V434, P12, DOI 10.1086/174700 Tanabashi M, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.030001 Venumadhav T, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.043515 Vogel H, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/02/029 Weinberg S, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.241301 WEYMANN R, 1965, PHYS FLUIDS, V8, P2112, DOI 10.1063/1.1761165 Wilkinson RJ, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.103525 NR 100 TC 16 Z9 16 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAY PY 2020 IS 5 AR 048 DI 10.1088/1475-7516/2020/05/048 PG 49 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA LR0MS UT WOS:000535391600049 DA 2021-04-21 ER PT J AU Vavilala, VS AF Vavilala, Vaibhav S. TI Combining high-performance hardware, cloud computing, and deep learning frameworks to accelerate physical simulations: probing the Hopfield network SO EUROPEAN JOURNAL OF PHYSICS LA English DT Article DE Hopfield network; computational physics; graphics processing unit; cloud computing; high-performance computing; deep learning; python ID NEURAL-NETWORKS AB The synthesis of high-performance computing (particularly graphics processing units), cloud computing services (like Google Colab), and high-level deep learning frameworks (such as PyTorch) has powered the burgeoning field of artificial intelligence. While these technologies are popular in the computer science discipline, the physics community is less aware of how such innovations, freely available online, can improve research and education. In this tutorial, we take the Hopfield network as an example to show how the confluence of these fields can dramatically accelerate physics-based computer simulations and remove technical barriers in implementing such programs, thereby making physics experimentation and education faster and more accessible. To do so, we introduce the cloud, the GPU, and AI frameworks that can be easily repurposed for physics simulation. We then introduce the Hopfield network and explain how to produce large-scale simulations and visualizations for free in the cloud with very little code (fully self-contained in the text). Finally, we suggest programming exercises throughout the paper, geared towards advanced undergraduate students studying physics, biophysics, or computer science. C1 [Vavilala, Vaibhav S.] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA. RP Vavilala, VS (corresponding author), Columbia Univ, Dept Comp Sci, New York, NY 10027 USA. EM vsv2109@columbia.edu FU DJ Angus Foundation Summer Research Program; NSFNational Science Foundation (NSF) [DMR-1054020] FX The author thanks Professor Yogesh N Joglekar for helpful conversations, comments, and revisions. This work was supported by the DJ Angus Foundation Summer Research Program and NSF Grant No. DMR-1054020. CR Abadi M., 2016, ARXIV160304467 Akenine-Moller T., 2008, REAL TIME RENDERING Amit D. J., 1989, MODELING BRAIN FUNCT AMIT DJ, 1987, ANN PHYS-NEW YORK, V173, P30, DOI 10.1016/0003-4916(87)90092-3 Baldi P, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5308 Bar-Yam Y., 1997, DYNAMICS COMPLEX SYS Bharitkar S, 2000, IEEE T NEURAL NETWOR, V11, P879, DOI 10.1109/72.857769 Caballero MD, 2014, AM J PHYS, V82, P231, DOI 10.1119/1.4837437 Carneiro T, 2018, IEEE ACCESS, V6, P61677, DOI 10.1109/ACCESS.2018.2874767 Coates Adam, 2013, P 30 INT C MACH LEAR, P1337 Goodfellow I, 2016, DEEP LEARNING Gopalsamy K, 2007, NONLINEAR ANAL-REAL, V8, P375, DOI 10.1016/j.nonrwa.2005.11.010 Hertz J., 1991, INTRO THEORY NEURAL HOPFIELD JJ, 1982, P NATL ACAD SCI-BIOL, V79, P2554, DOI 10.1073/pnas.79.8.2554 Jouppi NP, 2018, IEEE MICRO, V38, P10, DOI 10.1109/MM.2018.032271057 Kavan L, 2011, ACM T GRAPHIC, V30, DOI 10.1145/1964921.1964988 Kazemi F, 2008, EL COMP ENG 2008 CCE, P001855 Kim B, 2019, COMPUT GRAPH FORUM, V38, P59, DOI 10.1111/cgf.13619 Li Y, 2004, SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, P999 Li Y, 2005, IEEE T CIRCUITS-I, V52, P200, DOI 10.1109/TCSI.2004.838146 MCCLELLAND JL, 1988, BEHAV RES METH INSTR, V20, P263, DOI 10.3758/BF03203842 MCELIECE RJ, 1987, IEEE T INFORM THEORY, V33, P461, DOI 10.1109/TIT.1987.1057328 Mehta P, 2019, PHYS REP, V810, P1, DOI 10.1016/j.physrep.2019.03.001 Okuta R., 2017, WORKSH MACH LEARN SY Paszke A., 2019, ADV NEURAL INFORM PR, V32, P8024 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Schutt KT, 2019, J CHEM THEORY COMPUT, V15, P448, DOI 10.1021/acs.jctc.8b00908 Singh MP, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.051912 Tariq S, 2008, SIGGRAPH 08 Tsuboshita Y, 2010, J PHYS SOC JPN, V79, DOI 10.1143/JPSJ.79.024002 Widodo W., 2018, IOP Conference Series: Materials Science and Engineering, V434, DOI 10.1088/1757-899X/434/1/012034 NR 31 TC 0 Z9 0 U1 1 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0143-0807 EI 1361-6404 J9 EUR J PHYS JI Eur. J. Phys. PD MAY PY 2020 VL 41 IS 3 AR 035802 DI 10.1088/1361-6404/ab7027 PG 15 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA KW7IS UT WOS:000521358100001 DA 2021-04-21 ER PT J AU van der Gucht, J Davelaar, J Hendriks, L Porth, O Olivares, H Mizuno, Y Fromm, CM Falcke, H AF van der Gucht, Jeffrey Davelaar, Jordy Hendriks, Luc Porth, Oliver Olivares, Hector Mizuno, Yosuke Fromm, Christian M. Falcke, Heino TI Deep Horizon: A machine learning network that recovers accreting black hole parameters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE accretion; accretion disks; black hole physics; radiative transfer; methods; data analysis ID STRONG GRAVITATIONAL LENSES; SCATTER-BROADENED IMAGE; GRMHD SIMULATIONS; CLASSIFICATION; FIELD; STAR; PYTHON; ARRAY; SHAPE; JETS AB Context. The Event Horizon Telescope recently observed the first shadow of a black hole. Images like this can potentially be used to test or constrain theories of gravity and deepen the understanding in plasma physics at event horizon scales, which requires accurate parameter estimations. Aims. In this work, we present Deep Horizon, two convolutional deep neural networks that recover the physical parameters from images of black hole shadows. We investigate the effects of a limited telescope resolution and observations at higher frequencies. Methods. We trained two convolutional deep neural networks on a large image library of simulated mock data. The first network is a Bayesian deep neural regression network and is used to recover the viewing angle i, and position angle, mass accretion rate & x1e40;, electron heating prescription R-high and the black hole mass M-BH. The second network is a classification network that recovers the black hole spin a. Results. We find that with the current resolution of the Event Horizon Telescope, it is only possible to accurately recover a limited number of parameters of a static image, namely the mass and mass accretion rate. Since potential future space-based observing missions will operate at frequencies above 230 GHz, we also investigated the applicability of our network at a frequency of 690 GHz. The expected resolution of space-based missions is higher than the current resolution of the Event Horizon Telescope, and we show that Deep Horizon can accurately recover the parameters of simulated observations with a comparable resolution to such missions. C1 [van der Gucht, Jeffrey; Davelaar, Jordy; Hendriks, Luc; Falcke, Heino] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Davelaar, Jordy] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA. [Porth, Oliver; Olivares, Hector; Mizuno, Yosuke; Fromm, Christian M.] Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany. [Porth, Oliver] Univ Amsterdam, Anton Pannekoek Inst, POB 94249, NL-1090 GE Amsterdam, Netherlands. [Fromm, Christian M.] Max Planck Inst Radio Astron, Huegel 69, D-53115 Bonn, Germany. RP Davelaar, J (corresponding author), Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands.; Davelaar, J (corresponding author), Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA. EM j.davelaar@astro.ru.nl RI Mizuno, Yosuke/D-5656-2017 OI Mizuno, Yosuke/0000-0002-8131-6730; Falcke, Heino/0000-0002-2526-6724; Davelaar, Jordy/0000-0002-2685-2434 FU ERC Synergy Grant "BlackHoleCam-Imaging the Event Horizon of Black Holes" [610058]; Simons Foundation FX The authors thank S. Caron, B. Stienen, C.F. Gammie, J. Lin, M. Johnson, and L. Rezzolla for valuable discussions and feedback during the project, and the two anonymous referees for their constructive comments on our manuscript. This work was funded by the ERC Synergy Grant "BlackHoleCam-Imaging the Event Horizon of Black Holes" (Grant 610058, Goddi et al. 2017). The Simons Foundation supports the Flatiron Institute. The GRMHD simulations were performed on the LOEWE cluster in CSC in Frankfurt, and the ray-tracing simulations on COMA in Nijmegen. This research has made use of NASA's Astrophysics Data System. The results and analyses presented in this manuscript were done with the use of the following software: python (Oliphant 2007; Millman & Aivazis 2011), scipy (Jones et al. 2001), numpy (van derWalt et al. 2011), and matplotlib (Hunter 2007). CR Akiyama K, 2019, ASTROPHYS J LETT, V875, DOI 10.3847/2041-8213/ab1141 Akiyama K, 2015, ASTROPHYS J, V807, DOI 10.1088/0004-637X/807/2/150 [Anonymous], 2019, ASTROPHYS J LETT, V875, pL1, DOI DOI 10.3847/2041-8213/AB0F43 [Anonymous], 2019, ASTROPHYS J LETT, V875, pL1, DOI DOI 10.3847/2041-8213/AB0C57 [Anonymous], 2019, ASTROPHYS J LETT, V875, pL1, DOI DOI 10.3847/2041-8213/AB0EC7 [Anonymous], 2019, ASTROPHYS J LETT, V875, pL1, DOI [10.3847/2041-8213/ab0c96, DOI 10.3847/2041-8213/AB0C96] [Anonymous], 2019, ASTROPHYS J LETT, V875, pL1, DOI DOI 10.3847/2041-8213/AB0E85 Ball NM, 2006, ASTROPHYS J, V650, P497, DOI 10.1086/507440 Bellinger EP, 2016, ASTROPHYS J, V830, DOI 10.3847/0004-637X/830/1/31 Bird S, 2010, ASTRON ASTROPHYS, V524, DOI 10.1051/0004-6361/201014876 BISNOVATYIKOGAN GS, 1976, ASTROPHYS SPACE SCI, V42, P401, DOI 10.1007/BF01225967 Bower GC, 2006, ASTROPHYS J, V648, pL127, DOI 10.1086/508019 Broderick A. E., 2020, APJ UNPUB Bronzwaer T, 2018, ASTRON ASTROPHYS, V613, DOI 10.1051/0004-6361/201732149 Cantiello M, 2018, ASTROPHYS J, V856, DOI 10.3847/1538-4357/aab043 Chael A. A., 2019, ASCL1904004 Chael A, 2019, MON NOT R ASTRON SOC, V486, P2873, DOI 10.1093/mnras/stz988 Chandra M, 2015, ASTROPHYS J, V810, DOI 10.1088/0004-637X/810/2/162 Chollet F., 2015, KERAS Davelaar J, 2018, ASTRON ASTROPHYS, V612, DOI 10.1051/0004-6361/201732025 Davelaar J, 2019, ASTRON ASTROPHYS, V632, DOI 10.1051/0004-6361/201936150 Dexter J, 2012, MON NOT R ASTRON SOC, V421, P1517, DOI 10.1111/j.1365-2966.2012.20409.x Fadely R, 2012, ASTROPHYS J, V760, DOI 10.1088/0004-637X/760/1/15 Falcke H, 2000, ASTROPHYS J, V528, pL13, DOI 10.1086/312423 Fan XL, 2019, SCI CHINA PHYS MECH, V62, DOI 10.1007/s11433-018-9321-7 Fish VL, 2020, ADV SPACE RES, V65, P821, DOI 10.1016/j.asr.2019.03.029 FISHBONE LG, 1976, ASTROPHYS J, V207, P962, DOI 10.1086/154565 Fromm CM, 2019, ASTRON ASTROPHYS, V629, DOI 10.1051/0004-6361/201834724 Gal Y., 2015, ARXIV150602158 Gal Y, 2016, THESIS Gal Y., 2015, ARXIV150602142 Gebhardt K, 2011, ASTROPHYS J, V729, DOI 10.1088/0004-637X/729/2/119 George D, 2018, PHYS LETT B, V778, P64, DOI 10.1016/j.physletb.2017.12.053 Goddi C, 2017, INT J MOD PHYS D, V26, DOI 10.1142/S0218271817300014 GOODMAN J, 1989, MON NOT R ASTRON SOC, V238, P995, DOI 10.1093/mnras/238.3.995 Gralla SE, 2019, PHYS REV D, V100, DOI 10.1103/PhysRevD.100.024018 Hastie T., 2001, SPRINGER SERIES STAT He K., 2015, DEEP RESIDUAL LEARNI Hendriks L, 2019, PUBL ASTRON SOC PAC, V131, DOI 10.1088/1538-3873/aaeeec Hezaveh YD, 2017, NATURE, V548, P555, DOI 10.1038/nature23463 Hon M, 2017, MON NOT R ASTRON SOC, V469, P4578, DOI 10.1093/mnras/stx1174 Howes GG, 2010, MON NOT R ASTRON SOC, V409, pL104, DOI 10.1111/j.1745-3933.2010.00958.x Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jacobs C, 2017, MON NOT R ASTRON SOC, V471, P167, DOI 10.1093/mnras/stx1492 Johannsen T, 2010, ASTROPHYS J, V718, P446, DOI 10.1088/0004-637X/718/1/446 Johnson MD, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aaz1310 Johnson MD, 2015, ASTROPHYS J, V805, DOI 10.1088/0004-637X/805/2/180 Jones E., 2001, SCIPY OPEN SOURCE SC Kendall A., 2017, ADV NEURAL INFORM PR, P5574 KERR RP, 1963, PHYS REV LETT, V11, P237, DOI 10.1103/PhysRevLett.11.237 Kim EJ, 2017, MON NOT R ASTRON SOC, V464, P4463, DOI 10.1093/mnras/stw2672 Kim EJ, 2015, MON NOT R ASTRON SOC, V453, P507, DOI 10.1093/mnras/stv1608 Kingma D.P., 2014, ARXIV 14126980, DOI DOI 10.1145/1830483.1830503 Kiureghian AD, 2009, STRUCT SAF, V31, P105, DOI 10.1016/j.strusafe.2008.06.020 Krizhevsky Alex, 2012, ADV NEURAL INFORM PR, P1097, DOI DOI 10.1145/3065386 Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791 Levasseur LP, 2017, ASTROPHYS J LETT, V850, DOI 10.3847/2041-8213/aa9704 Lukic V., 2017, IAU S, V325, P217 MACKAY DJC, 1992, NEURAL COMPUT, V4, P415, DOI 10.1162/neco.1992.4.3.415 Martin Abadi, 2015, TENSORFLOW LARGE SCA Millman KJ, 2011, COMPUT SCI ENG, V13, P9, DOI 10.1109/MCSE.2011.36 Mizuno Y, 2018, NAT ASTRON, V2, P585, DOI 10.1038/s41550-018-0449-5 Moscibrodzka M, 2017, MON NOT R ASTRON SOC, V468, P2214, DOI 10.1093/mnras/stx587 Moscibrodzka M, 2016, ASTRON ASTROPHYS, V586, DOI 10.1051/0004-6361/201526630 Nair V, 2010, ICML, V27, P807, DOI DOI 10.0RG/PAPERS/432.PDF NARAYAN R, 1989, MON NOT R ASTRON SOC, V238, P963, DOI 10.1093/mnras/238.3.963 Narayan R, 2003, PUBL ASTRON SOC JPN, V55, pL69, DOI 10.1093/pasj/55.6.L69 Narayan R, 2019, ASTROPHYS J LETT, V885, DOI 10.3847/2041-8213/ab518c Narayan R, 2012, MON NOT R ASTRON SOC, V426, P3241, DOI 10.1111/j.1365-2966.2012.22002.x ODEWAHN SC, 1992, ASTROPHYS SPACE SC L, V174, P215 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Olivares H, 2019, ASTRON ASTROPHYS, V629, DOI 10.1051/0004-6361/201935559 Palumbo D., 2018, AM ASTR SOC M, V231, P347 Petrillo CE, 2017, MON NOT R ASTRON SOC, V472, P1129, DOI 10.1093/mnras/stx2052 Porth Oliver, 2017, Computational Astrophysics and Cosmology, V4, DOI 10.1186/s40668-017-0020-2 Porth O, 2019, ASTROPHYS J SUPPL S, V243, DOI 10.3847/1538-4365/ab29fd Psaltis D, 2015, ASTROPHYS J, V814, DOI 10.1088/0004-637X/814/2/115 Ressler SM, 2015, MON NOT R ASTRON SOC, V454, P1848, DOI 10.1093/mnras/stv2084 Roelofs F, 2019, ASTRON ASTROPHYS, V625, DOI 10.1051/0004-6361/201732423 Rowan ME, 2017, ASTROPHYS J, V850, DOI 10.3847/1538-4357/aa9380 Ryan BR, 2018, ASTROPHYS J, V864, DOI 10.3847/1538-4357/aad73a Schwarkschid K, 1916, SITZBER K PREUSS AKA, P189 Sevilla-Noarbe I, 2015, ASTRON COMPUT, V11, P64, DOI 10.1016/j.ascom.2015.03.010 Shen H., 2019, ARXIV190301998 Simonyan K., 2014, arXiv: 1409.1556, DOI DOI 10.1109/CVPR.2015.7298594 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Suchkov AA, 2005, ASTRON J, V130, P2439, DOI 10.1086/497363 Szegedy C, 2015, PROC CVPR IEEE, P1, DOI 10.1109/CVPR.2015.7298594 Tchekhovskoy A, 2011, MON NOT R ASTRON SOC, V418, pL79, DOI 10.1111/j.1745-3933.2011.01147.x van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Vasconcellos EC, 2011, ASTRON J, V141, DOI 10.1088/0004-6256/141/6/189 Walker RC, 2018, ASTROPHYS J, V855, DOI 10.3847/1538-4357/aaafcc Walsh JL, 2013, ASTROPHYS J, V770, DOI 10.1088/0004-637X/770/2/86 Weir N, 1995, PUBL ASTRON SOC PAC, V107, P1243, DOI 10.1086/133683 Zeiler MD, 2014, LECT NOTES COMPUT SC, V8689, P818, DOI 10.1007/978-3-319-10590-1_53 NR 95 TC 2 Z9 2 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR 24 PY 2020 VL 636 AR A94 DI 10.1051/0004-6361/201937014 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA LJ4BM UT WOS:000530111800010 OA Bronze DA 2021-04-21 ER PT J AU Bobra, MG Mumford, SJ Hewett, RJ Christe, SD Reardon, K Savage, S Ireland, J Pereira, TMD Chen, B Perez-Suarez, D AF Bobra, Monica G. Mumford, Stuart J. Hewett, Russell J. Christe, Steven D. Reardon, Kevin Savage, Sabrina Ireland, Jack Pereira, Tiago M. D. Chen, Bin Perez-Suarez, David TI A Survey of Computational Tools in Solar Physics SO SOLAR PHYSICS LA English DT Article DE Instrumentation and data management AB The SunPy Project developed a 13-question survey to understand the software and hardware usage of the solar-physics community. Of the solar-physics community, 364 members across 35 countries responded to our survey. We found that 99 +/- 0.5 of respondents use software in their research and 66% use the Python scientific-software stack. Students are twice as likely as faculty, staff scientists, and researchers to use Python rather than Interactive Data Language (IDL). In this respect, the astrophysics and solar-physics communities differ widely: 78% of solar-physics faculty, staff scientists, and researchers in our sample uses IDL, compared with 44% of astrophysics faculty and scientists sampled by Momcheva and Tollerud (2015). 63 +/- 4 of respondents have not taken any computer-science courses at an undergraduate or graduate level. We also found that most respondents use consumer hardware to run software for solar-physics research. Although 82% of respondents work with data from space-based or ground-based missions, some of which (e.g. the Solar Dynamics Observatory and Daniel K. Inouye Solar Telescope) produce terabytes of data a day, 14% use a regional or national cluster, 5% use a commercial cloud provider, and 29% use exclusively a laptop or desktop. Finally, we found that 73 +/- 4 of respondents cite scientific software in their research, although only 42 +/- 3 do so routinely. C1 [Bobra, Monica G.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Mumford, Stuart J.] Univ Sheffield, Sch Math & Stat, SP2RC, Sheffield, SP, England. [Mumford, Stuart J.] Aperio Software Ltd, Headingley Enterprise & Arts Ctr, Bennett Rd, Leeds, W Yorkshire, England. [Hewett, Russell J.] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA. [Christe, Steven D.; Ireland, Jack] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Reardon, Kevin] Natl Solar Observ, Boulder, CO 80303 USA. [Savage, Sabrina] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Pereira, Tiago M. D.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Pereira, Tiago M. D.] Univ Oslo, Rosseland Ctr Solar Phys, Oslo, Norway. [Chen, Bin] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA. [Perez-Suarez, David] UCL, London, England. RP Mumford, SJ (corresponding author), Univ Sheffield, Sch Math & Stat, SP2RC, Sheffield, SP, England.; Mumford, SJ (corresponding author), Aperio Software Ltd, Headingley Enterprise & Arts Ctr, Bennett Rd, Leeds, W Yorkshire, England. EM stuart.mumford@sheffield.ac.uk RI Chen, Bin/W-4943-2017 OI Chen, Bin/0000-0002-0660-3350; Bobra, Monica/0000-0002-5662-9604; Savage, Sabrina/0000-0002-6172-0517; Perez-Suarez, David/0000-0003-0784-6909 CR [Anonymous], 2018, OPEN SOURCE SOFTWARE [Anonymous], 2020, PROGR IMPLEMENTATION Barnes WT, 2020, ASTROPHYS J, V890, DOI 10.3847/1538-4357/ab4f7a Bauer A.E., 2019, PETABYTES SCI Bobra M., 2020, SUNPY SURVEY SURVEY Buckheit J. B., 1995, WAVELAB REPRODUCIBLE Caswell Thomas A, 2020, MATPLOTLIB MATPLOTLI Claerbout J.F., 1992, TECH PROGRAM EXPANDE, P601 Eghbal N, 2016, ROADS BRIDGES UNSEEN Freeland SL, 1998, SOL PHYS, V182, P497, DOI 10.1023/A:1005038224881 Guo P., 2014, PYTHON IS NOW MOST P Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Millman J., 2010, P56, DOI DOI 10.1016/S0168-0102(02)00204-3 Momcheva I., 2015, SOFTWARE USE ASTRONO Mumford S.J., 2020, SUNPY Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Price-Whelan AM, 2018, ASTRON J, V156, DOI 10.3847/1538-3881/aabc4f Reback J., 2020, PANDAS DEV PANDAS PA, DOI 10.5281/zenodo.3509134 Rocklin M., 2015, P 14 PYTH SCI C, P126, DOI 10.25080/Majora-7b98e3ed-013 Ruede U, 2018, SIAM REV, V60, P707, DOI 10.1137/16M1096840 Taylor J.R., 1997, INTRO ERROR ANAL STU Tollerud E., 2019, B AM ASTRON SOC, P180 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 VanderPlas J., 2012, 2012 Conference on Intelligent Data Understanding (CIDU 2012), P47, DOI 10.1109/CIDU.2012.6382200 Virtanen P, 2020, NAT METHODS, V17, P261, DOI 10.1038/s41592-019-0686-2 Waskom M., 2020, MWASKOM SEABORN V0 1, DOI 10.5281/zenodo.592845 2019, REPRODUCIBILITY REPL NR 27 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD APR 20 PY 2020 VL 295 IS 4 AR 57 DI 10.1007/s11207-020-01622-2 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA LI2CV UT WOS:000529291400002 OA Green Published, Other Gold DA 2021-04-21 ER PT J AU Raaijmakers, G Greif, SK Riley, TE Hinderer, T Hebeler, K Schwenk, A Watts, AL Nissanke, S Guillot, S Lattimer, JM Ludlam, RM AF Raaijmakers, G. Greif, S. K. Riley, T. E. Hinderer, T. Hebeler, K. Schwenk, A. Watts, A. L. Nissanke, S. Guillot, S. Lattimer, J. M. Ludlam, R. M. TI Constraining the Dense Matter Equation of State with Joint Analysis of NICER and LIGO/Virgo Measurements SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE Neutron star cores; Gravitational waves; Millisecond pulsars; Rotation powered pulsars; Bayesian statistics; Nuclear physics; Nuclear astrophysics; X-ray astronomy ID NEUTRON-STAR; EFFICIENT; PYTHON AB The Neutron Star Interior Composition Explorer collaboration recently published a joint estimate of the mass and the radius of PSR J0030+0451, derived via X-ray pulse-profile modeling. Raaijmakers et al. explored the implications of this measurement for the dense matter equation of state (EOS) using two parameterizations of the high-density EOS: a piecewise-polytropic model, and a model based on the speed of sound in neutron stars (NSs). In this work we obtain further constraints on the EOS following this approach, but we also include information about the tidal deformability of NSs from the gravitational wave signal of the compact binary merger GW170817. We compare the constraints on the EOS to those set by the recent measurement of a 2.14 M pulsar, included as a likelihood function approximated by a Gaussian, and find a small increase in information gain. To show the flexibility of our method, we also explore the possibility that GW170817 was a NS-black hole merger, which yields weaker constraints on the EOS. C1 [Raaijmakers, G.; Hinderer, T.; Nissanke, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Raaijmakers, G.; Hinderer, T.; Guillot, S.] Univ Amsterdam, Inst High Energy Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Greif, S. K.; Hebeler, K.; Schwenk, A.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Greif, S. K.; Hebeler, K.; Schwenk, A.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Riley, T. E.; Watts, A. L.] Univ Amsterdam, Astron Inst Anton Pannekoek, Sci Pk 904, NL-1090 GE Amsterdam, Netherlands. [Hinderer, T.] Delta Inst Theoret Phys, Sci Pk 904, NL-1090 GL Amsterdam, Netherlands. [Schwenk, A.] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. [Nissanke, S.] Nikhef, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands. [Guillot, S.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Guillot, S.] Univ Toulouse, CNES, UPS OMP, F-31028 Toulouse, France. [Lattimer, J. M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ludlam, R. M.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. RP Raaijmakers, G (corresponding author), Univ Amsterdam, Astron Inst Anton Pannekoek, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands.; Raaijmakers, G (corresponding author), Univ Amsterdam, Inst High Energy Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. EM G.Raaijmakers@uva.nl OI Greif, Svenja/0000-0001-8641-2062; Schwenk, Achim/0000-0001-8027-4076 FU NASA through the NICER mission and the Astrophysics Explorers Program; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the VIDI; ERCEuropean Research Council (ERC)European Commission [639217]; NWO Exact and Natural Sciences; SURF Cooperative; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)German Research Foundation (DFG) [279384907-SFB 1245]; CNESCentre National D'etudes Spatiales; NASANational Aeronautics & Space Administration (NASA) [HST-HF2-51440.001]; NASA through the NICER mission [80NSSC17K0554]; U.S. DOEUnited States Department of Energy (DOE) [DE-FG02-87ER40317] FX We thank the anonymous referee for comments that helped to improve this work. This work was supported in part by NASA through the NICER mission and the Astrophysics Explorers Program. G.R., T.H., and S.N. are grateful for support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the VIDI and Projectruimte grants (PI Nissanke). T.E.R. and A.L.W. acknowledge support from ERC Starting grant No. 639217 CSINEUTRONSTAR (PI Watts). This work was sponsored by NWO Exact and Natural Sciences for the use of supercomputer facilities, and was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. S.K.G., K.H., and A.S. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-Project-ID 279384907-SFB 1245. S.G. acknowledges the support of the CNES. R.M.L. acknowledges the support of NASA through Hubble Fellowship Program grant HST-HF2-51440.001. J.M.L. acknowledges support by NASA through the NICER mission with Grant 80NSSC17K0554 and by the U.S. DOE through Grant DE-FG02-87ER40317. This research has made extensive use of NASA's Astrophysics Data System Bibliographic Services (ADS) and the arXiv. We thank Jocelyn Read, Wynn Ho, and Cole Miller for comments on a draft manuscript. CR Abbott BP, 2020, ASTROPHYS J LETT, V892, DOI 10.3847/2041-8213/ab75f5 Abbott BP, 2019, PHYS REV X, V9, DOI 10.1103/PhysRevX.9.031040 Abbott BP, 2019, PHYS REV X, V9, DOI 10.1103/PhysRevX.9.011001 Abbott BP, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.161101 Abbott BP, 2017, PHYS REV LETT, V119, DOI 10.1103/PhysRevLett.119.161101 Alsing J, 2018, MON NOT R ASTRON SOC, V478, P1377, DOI 10.1093/mnras/sty1065 Alvarez-Castillo D, 2016, EUR PHYS J A, V52, DOI 10.1140/epja/i2016-16069-2 Annala E, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.172703 Antoniadis J, 2013, SCIENCE, V340, DOI 10.1126/science.1233232 Arzoumanian Z, 2018, ASTROPHYS J SUPPL S, V235, DOI 10.3847/1538-4365/aab5b0 Ascenzi S, 2019, ASTROPHYS J, V877, DOI 10.3847/1538-4357/ab1b15 Bauswein A, 2017, ASTROPHYS J LETT, V850, DOI 10.3847/2041-8213/aa9994 BAYM G, 1971, ASTROPHYS J, V170, P299, DOI 10.1086/151216 Baym G, 2018, REP PROG PHYS, V81, DOI 10.1088/1361-6633/aaae14 Behnel S, 2011, COMPUT SCI ENG, V13, P31, DOI 10.1109/MCSE.2010.118 Buchner J, 2014, ASTRON ASTROPHYS, V564, DOI 10.1051/0004-6361/201322971 Capano CD, 2020, NAT ASTRON, V4, P625, DOI 10.1038/s41550-020-1014-6 Coughlin MW, 2019, PHYS REV D, V100, DOI 10.1103/PhysRevD.100.043011 Coughlin MW, 2018, MON NOT R ASTRON SOC, V480, P3871, DOI 10.1093/mnras/sty2174 Cromartie HT, 2020, NAT ASTRON, V4, P72, DOI 10.1038/s41550-019-0880-2 Dalcin L, 2008, J PARALLEL DISTR COM, V68, P655, DOI 10.1016/j.jpdc.2007.09.005 De S, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.091102 Demorest PB, 2010, NATURE, V467, P1081, DOI 10.1038/nature09466 Douchin F, 2001, ASTRON ASTROPHYS, V380, P151, DOI 10.1051/0004-6361:20011402 Essick R, 2020, PHYS REV D, V101, DOI 10.1103/PhysRevD.101.063007 Feroz F, 2008, MON NOT R ASTRON SOC, V384, P449, DOI 10.1111/j.1365-2966.2007.12353.x Feroz F, 2009, MON NOT R ASTRON SOC, V398, P1601, DOI 10.1111/j.1365-2966.2009.14548.x Feroz F., 2013, ARXIV13062144 Fonseca E, 2016, ASTROPHYS J, V832, DOI 10.3847/0004-637X/832/2/167 Forum MP, 1994, MPI MESS PASS INT ST Foucart F, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.081501 Fraga ES, 2014, ASTROPHYS J LETT, V781, DOI 10.1088/2041-8205/781/2/L25 Gao H, 2017, ASTROPHYS J LETT, V851, DOI 10.3847/2041-8213/aaa0c6 GarciaBellido J, 1996, PHYS REV D, V54, P6040, DOI 10.1103/PhysRevD.54.6040 Gough B., 2009, GNU SCI LIB REFERENC Greif SK, 2019, MON NOT R ASTRON SOC, V485, P5363, DOI 10.1093/mnras/stz654 Hebeler K, 2015, ANNU REV NUCL PART S, V65, P457, DOI 10.1146/annurev-nucl-102313-025446 Hebeler K, 2013, ASTROPHYS J, V773, DOI 10.1088/0004-637X/773/1/11 Hebeler K, 2010, PHYS REV C, V82, DOI 10.1103/PhysRevC.82.014314 Hinderer T, 2019, PHYS REV D, V100, DOI 10.1103/PhysRevD.100.063021 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones E., 2001, SCIPY OPEN SOURCE SC Kasliwal MM, 2017, SCIENCE, V358, P1559, DOI 10.1126/science.aap9455 KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572 Kastaun W, 2019, PHYS REV D, V100, DOI 10.1103/PhysRevD.100.103023 Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 Kulkarni S. R., 2005, ARXIVASTROPH0510256 KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694 Lattimer JM, 2016, PHYS REP, V621, P127, DOI 10.1016/j.physrep.2015.12.005 LATTIMER JM, 1976, ASTROPHYS J, V210, P549, DOI 10.1086/154860 Li LX, 1998, ASTROPHYS J, V507, pL59, DOI 10.1086/311680 Lindblom L, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.123019 Lindblom L, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.103011 Margalit B, 2019, ASTROPHYS J LETT, V880, DOI 10.3847/2041-8213/ab2ae2 Margalit B, 2017, ASTROPHYS J LETT, V850, DOI 10.3847/2041-8213/aa991c Metzger BD, 2010, MON NOT R ASTRON SOC, V406, P2650, DOI 10.1111/j.1365-2966.2010.16864.x Metzger BD, 2017, LIVING REV RELATIV, V20, DOI 10.1007/s41114-017-0006-z Miller MC, 2019, ASTROPHYS J LETT, V887, DOI 10.3847/2041-8213/ab50c5 Miller MC, 2020, ASTROPHYS J, V888, DOI 10.3847/1538-4357/ab4ef9 Most ER, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.261103 Oertel M, 2017, REV MOD PHYS, V89, DOI 10.1103/RevModPhys.89.015007 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Raaijmakers G, 2019, ASTROPHYS J LETT, V887, DOI 10.3847/2041-8213/ab451a Radice D, 2019, EUR PHYS J A, V55, DOI 10.1140/epja/i2019-12716-4 Rezzolla L, 2018, ASTROPHYS J LETT, V852, DOI 10.3847/2041-8213/aaa401 Riley TE, 2019, ASTROPHYS J LETT, V887, DOI 10.3847/2041-8213/ab481c Riley TE, 2018, MON NOT R ASTRON SOC, V478, P1093, DOI 10.1093/mnras/sty1051 Rosswog S, 1999, ASTRON ASTROPHYS, V341, P499 Ruiz M, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.021501 Shibata M, 2019, PHYS REV D, V100, DOI 10.1103/PhysRevD.100.023015 Shibata M, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.123012 Tews I, 2020, ASTROPHYS J, V892, DOI 10.3847/1538-4357/ab7232 Tews I, 2018, PHYS REV C, V98, DOI 10.1103/PhysRevC.98.045804 The LIGO Scientific Collaboration & The Virgo Collaboration, 2018, GWTC 1 PUBL DAT REL van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Watts AL, 2019, AIP CONF PROC, V2127, DOI 10.1063/1.5117798 Yang H, 2018, ASTROPHYS J, V856, DOI 10.3847/1538-4357/aab2b0 NR 78 TC 25 Z9 25 U1 3 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 10 PY 2020 VL 893 IS 1 AR L21 DI 10.3847/2041-8213/ab822f PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA LE7OV UT WOS:000526913600001 OA Green Accepted DA 2021-04-21 ER PT J AU Teodorescu, E Echim, MM AF Teodorescu, E. Echim, M. M. TI Open-Source Software Analysis Tool to Investigate Space Plasma Turbulence and Nonlinear DYNamics (ODYN) SO EARTH AND SPACE SCIENCE LA English DT Article DE open-source software data analysis tool based on Python; portfolio of methods to analyze turbulence and nonlinear dynamics; the software includes visualisation tools; the software can ingest and process large collections of spacecraft data; user-friendly parametrisation of analysis ID SOLAR-WIND; MULTIFRACTAL ANALYSIS; INTERMITTENCY; COMPLEXITY; ULYSSES; FLUCTUATIONS; INFORMATION; FRACTALS; SPECTRUM; DENSITY AB We have designed and built a versatile modularized software library-ODYN-that wraps a comprehensive set of advanced data analysis methods meant to facilitate the study of turbulence, nonlinear dynamics, and complexity in space plasmas. The Python programming language is used for the algorithmic implementation of models and methods devised to understand fundamental phenomena of space plasma physics like elements of spectral analysis, probability distribution functions and their moments, multifractal analysis, or information theory. ODYN is an open-source software analysis tool and freely available to any user interested in turbulence and nonlinear dynamics analysis and provides a tool to perform automatic analysis on large collections of space measurements, in situ or simulations, a feature that distinguishes ODYN from other similar software. A user-friendly configurator is provided, which allows customization of key parameters of the analysis methods, most useful for nonprogrammers. C1 [Teodorescu, E.; Echim, M. M.] Inst Space Sci, Magurele, Romania. [Echim, M. M.] Royal Belgian Inst Space Aeron BIRA IASB, Brussels, Belgium. RP Teodorescu, E (corresponding author), Inst Space Sci, Magurele, Romania. EM eliteo@spacescience.ro; marius.echim@oma.be RI ; Echim, Marius/F-1813-2010 OI Teodorescu, Eliza/0000-0002-5294-0075; Echim, Marius/0000-0001-7038-9494 FU European Community's Seventh Framework Programme (FP7/2007-2013)European Commission [313038/STORM]; Romanian Space Agency (ROSA) via Research Program for Space Technology Development and Innovation and Advanced Research (STAR Project) [122, 182/2017]; Romanian Ministry of Research through UEFISCDI PCCDI grant VESSConsiliul National al Cercetarii Stiintifice (CNCS)Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (UEFISCDI) [18/2018]; Romanian Ministry of Research through Program Nucleu; Belgian Solar Terrestrial Center of Excellence (STCE) FX This research was supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 313038/STORM; Romanian Space Agency (ROSA) via grants from the Research Program for Space Technology Development and Innovation and Advanced Research (STAR Project nos. 122 and 182/2017); and the Romanian Ministry of Research through UEFISCDI PCCDI grant VESS (contract no. 18/2018) and Program Nucleu. M. E. acknowledges support from the Belgian Solar Terrestrial Center of Excellence (STCE). The latest version of ODYN together with the data analyzed in this report and other test data sets is available at: http://www.spacescience.ro/projects/odyn/results.html.A comprehensive database specifically tailored for turbulence and nonlinear dynamics analysis is available at: http://www.storm-fp7.eu/index.php/targeted-databases. Satellite data downloaded from official archives of Cluster, Venus Express, and Ulysses can be processed in ODYN. E. T. would like to thank Profs. Tom Chang and Jay Johnson and Dr. Gabriel Voitcu for their patience in having lengthy and fruitful discussions on theoretical and technical aspects on the analysis methods implemented in ODYN. CR Alexandrova O, 2013, SPACE SCI REV, V178, P101, DOI 10.1007/s11214-013-0004-8 Barnes A., 1979, SOLAR SYSTEM PLASMA, V1, P257 BARTLETT MS, 1948, NATURE, V161, P686, DOI 10.1038/161686a0 BENZI R, 1993, PHYS REV E, V48, pR29, DOI 10.1103/PhysRevE.48.R29 Blum D, 2015, ELIFE, V4, DOI 10.7554/eLife.04024 Boldyrev S, 2012, ASTROPHYS J LETT, V758, DOI 10.1088/2041-8205/758/2/L44 Boyd T. J. M., 2003, PHYS PLASMAS, DOI [10.1017/CBO9780511755750, DOI 10.1017/CB09780511755750] Bruno R, 2003, J GEOPHYS RES-SPACE, V108, DOI 10.1029/2002JA009615 Bruno R, 2001, PLANET SPACE SCI, V49, P1201, DOI 10.1016/S0032-0633(01)00061-7 Bruno R., 2005, LIVING REV SOL PHYS, V2, P4, DOI [10.12942/lrsp-2005-4, DOI 10.12942/LRSP-2005-4] Burlaga L. F., 1991, J GEOPHYS RES-SPACE, V96, DOI [10.1029/91JA00087, DOI 10.1029/91JA00087] Chang T, 2004, PHYS PLASMAS, V11, P1287, DOI 10.1063/1.1667496 CHANG T, 1992, IEEE T PLASMA SCI, V20, P691, DOI 10.1109/27.199515 Chang T, 2010, NONLINEAR PROC GEOPH, V17, P545, DOI 10.5194/npg-17-545-2010 Chang T., 2015, INTRO SPACE PLASMA C, DOI [10.1017/CBO9780511980251, DOI 10.1017/CB09780511980251] Chang T, 2008, PHYS REV E, V77, DOI 10.1103/PhysRevE.77.045401 Chang T, 2008, AIP CONF PROC, V1039, P75, DOI 10.1063/1.2982488 Chen CHK, 2017, ASTROPHYS J, V842, DOI 10.3847/1538-4357/aa74e0 Chen CHK, 2014, ASTROPHYS J LETT, V789, DOI 10.1088/2041-8205/789/1/L8 CHHABRA A, 1989, PHYS REV LETT, V62, P1327, DOI 10.1103/PhysRevLett.62.1327 Consolini G, 2005, ASTROPHYS SPACE SC L, V321, P51 Consolini G, 2011, NONLINEAR PROC GEOPH, V18, P277, DOI 10.5194/npg-18-277-2011 Cover Thomas M., 2006, ELEMENTS INFORM THEO Darbellay GA, 1999, IEEE T INFORM THEORY, V45, P1315, DOI 10.1109/18.761290 de Wit TD, 1996, NONLINEAR PROC GEOPH, V3, P262, DOI 10.5194/npg-3-262-1996 Echim MM, 2007, NONLINEAR PROC GEOPH, V14, P525, DOI 10.5194/npg-14-525-2007 Escoubet CP, 1997, SPACE SCI REV, V79, P1 Frisch U., 1995, TURBULENCE LEGACY GOLDSTEIN BE, 1995, GEOPHYS RES LETT, V22, P3393, DOI 10.1029/95GL03183 GRASSBERGER P, 1983, PHYSICA D, V9, P189, DOI 10.1016/0167-2789(83)90298-1 HALSEY TC, 1986, PHYS REV A, V33, P1141, DOI 10.1103/PhysRevA.33.1141 HENTSCHEL HGE, 1983, PHYSICA D, V8, P435, DOI 10.1016/0167-2789(83)90235-X Hnat B, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.204502 Hnat B, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2001GL014587 Howes GG, 2008, J GEOPHYS RES-SPACE, V113, DOI 10.1029/2007JA012665 Howes GG, 2012, ASTROPHYS J LETT, V753, DOI 10.1088/2041-8205/753/1/L19 Huang SY, 2017, ASTROPHYS J LETT, V836, DOI 10.3847/2041-8213/836/1/L10 Iroshnikov P.S., 1964, SVA, V7, P566 Johnson JR, 2005, J GEOPHYS RES-SPACE, V110, DOI 10.1029/2004JA010638 Kiyani K, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.051122 Kiyani KH, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.075006 Kolmogoroff A, 1941, CR ACAD SCI URSS, V30, P301 KRAICHNAN RH, 1965, PHYS FLUIDS, V8, P1385, DOI 10.1063/1.1761412 Kugiumtzis D, 2000, PHYS REV E, V62, pR25, DOI 10.1103/PhysRevE.62.R25 Lamy H., 2008, D31001708 COSPAR, P1686 Lewis LM, 2018, ELIFE, V7, DOI 10.7554/eLife.30274 LI WT, 1990, J STAT PHYS, V60, P823, DOI 10.1007/BF01025996 Lin CY, 2012, CELL, V151, P56, DOI 10.1016/j.cell.2012.08.026 Lion S, 2016, ASTROPHYS J, V824, DOI 10.3847/0004-637X/824/1/47 Macek WM, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2007GL032263 Macek WM, 2009, J GEOPHYS RES-SPACE, V114, DOI 10.1029/2008JA013795 MANDELBROT BB, 1989, PURE APPL GEOPHYS, V131, P5, DOI 10.1007/BF00874478 MARSCH E, 1990, J GEOPHYS RES-SPACE, V95, P11945, DOI 10.1029/JA095iA08p11945 MARSCH E, 1994, ANN GEOPHYS-ATM HYDR, V12, P1127, DOI 10.1007/s00585-994-1127-8 Matthaeus WH, 2015, PHILOS T R SOC A, V373, DOI 10.1098/rsta.2014.0154 MATTHAEUS WH, 1991, J GEOPHYS RES, V96, P5421, DOI 10.1029/90JA02609 MENEVEAU C, 1987, PHYS REV LETT, V59, P1424, DOI 10.1103/PhysRevLett.59.1424 Morley S. K., 2011, P 9 PYTH SCI C SCIPY Munteanu C, 2016, ANN GEOPHYS-GERMANY, V34, P437, DOI 10.5194/angeo-34-437-2016 Ng CS, 2010, J GEOPHYS RES-SPACE, V115, DOI 10.1029/2009JA014377 Ott E., 1993, CHAOS DYNAMICAL SYST Pagel C, 2001, NONLINEAR PROC GEOPH, V8, P313, DOI 10.5194/npg-8-313-2001 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Roberts OW, 2017, ASTROPHYS J, V850, DOI 10.3847/1538-4357/aa93e5 Sorriso-Valvo L, 2001, PLANET SPACE SCI, V49, P1193, DOI 10.1016/S0032-0633(01)00060-5 Sorriso-Valvo L, 2017, ADV SPACE RES, V59, P1642, DOI 10.1016/j.asr.2016.12.024 SREENIVASAN KR, 1991, ANNU REV FLUID MECH, V23, P539 Stoneback RA, 2018, J GEOPHYS RES-SPACE, V123, P5271, DOI 10.1029/2018JA025297 Strehl A., 2003, Journal of Machine Learning Research, V3, P583, DOI 10.1162/153244303321897735 Svedhem H., 2007, PLANET SPACE SCI, V43, P185, DOI [10.1134/S0038094609030010, DOI 10.1134/S0038094609030010] Szczepaniak A, 2008, NONLINEAR PROC GEOPH, V15, P615, DOI 10.5194/npg-15-615-2008 Tam SWY, 2011, NONLINEAR PROC GEOPH, V18, P405, DOI 10.5194/npg-18-405-2011 Tam SWY, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.036414 Taylor GI, 1938, PROC R SOC LON SER-A, V164, P0476, DOI 10.1098/rspa.1938.0032 Teodorescu E, 2015, ASTROPHYS J LETT, V804, DOI 10.1088/2041-8205/804/2/L41 THEILER J, 1992, PHYSICA D, V58, P77, DOI 10.1016/0167-2789(92)90102-S TU CY, 1995, SPACE SCI REV, V73, P1, DOI 10.1007/BF00748891 VanderPlas J., 2012, 2012 Conference on Intelligent Data Understanding (CIDU 2012), P47, DOI 10.1109/CIDU.2012.6382200 Voros Z, 2003, ANN GEOPHYS-GERMANY, V21, P1955 Wawrzaszek A, 2015, ASTROPHYS J LETT, V814, DOI 10.1088/2041-8205/814/2/L19 Wawrzaszek A, 2010, J GEOPHYS RES-SPACE, V115, DOI 10.1029/2009JA015176 WELCH PD, 1967, IEEE T ACOUST SPEECH, VAU15, P70, DOI 10.1109/TAU.1967.1161901 WENZEL KP, 1992, ASTRON ASTROPHYS SUP, V92, P207 Weygand JM, 2005, J GEOPHYS RES-SPACE, V110, DOI 10.1029/2004JA010581 Yordanova E, 2005, NONLINEAR PROC GEOPH, V12, P817, DOI 10.5194/npg-12-817-2005 NR 85 TC 2 Z9 2 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA EI 2333-5084 J9 EARTH SPACE SCI JI Earth Space Sci. PD APR PY 2020 VL 7 IS 4 AR UNSP e2019EA001004 DI 10.1029/2019EA001004 PG 16 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Geology GA LP8XI UT WOS:000534600100010 PM 32715025 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Aebischer, J Kuhr, T Lieret, K AF Aebischer, Jason Kuhr, Thomas Lieret, Kilian TI Clustering of B -> D(*)tau- nu(tau) kinematic distributions with ClusterKinG SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE B physics; Beyond Standard Model; e(+)-e(-) Experiments; Flavor physics ID PROGRAM; SPHENO AB New Physics can manifest itself in kinematic distributions of particle decays. The parameter space defining the shape of such distributions can be large which is chalenging for both theoretical and experimental studies. Using clustering algorithms, the parameter space can however be dissected into subsets (clusters) which correspond to similar kinematic distributions. Clusters can then be represented by benchmark points, which allow for less involved studies and a concise presentation of the results. We demonstrate this concept using the Python package ClusterKinG, an easy to use framework for the clustering of distributions that particularly aims to make these techniques more accessible in a High Energy Physics context. As an example we consider B over bar -> D) (tau-nu over bar tau distributions and discuss various clustering methods and possible implications for future experimental analyses. C1 [Aebischer, Jason] Excellence Cluster Universe, Garching, Germany. [Kuhr, Thomas; Lieret, Kilian] Excellence Cluster Origins, Garching, Germany. [Kuhr, Thomas; Lieret, Kilian] Ludwig Maximilians Univ Munchen, Munich, Germany. RP Aebischer, J (corresponding author), Excellence Cluster Universe, Garching, Germany. EM jason.aebischer@tum.de; thomas.kuhr@lmu.de; kilian.lieret@lmu.de FU DFG cluster of excellence "Origin and Structure of the Universe"German Research Foundation (DFG); DFG cluster of excellence "ORIGINS: from the Origin of the Universe to the First Building Blocks of Life" FX We thank Alejandro Celis and David Straub for useful discussions. The work of J. A., T. K. and K. L. is supported by the DFG clusters of excellence "Origin and Structure of the Universe"and "ORIGINS: from the Origin of the Universe to the First Building Blocks of Life". CR Aebischer J., 2019, ARXIV190310434 Aebischer J, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2016)037 Aebischer J, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-6977-z Aebischer J, 2018, EUR PHYS J C, V78, DOI 10.1140/epjc/s10052-018-6492-7 Aebischer J, 2018, COMPUT PHYS COMMUN, V232, P71, DOI 10.1016/j.cpc.2018.05.022 Aebischer J, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2017)158 Alguero M, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-7216-3 Alonso R, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.094021 Alonso R, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2014)159 Altmannshofer W, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.095010 BaBar collaboration, 2012, PHYS REV LETT, V109 Becirevic D, 2019, NUCL PHYS B, V946, DOI 10.1016/j.nuclphysb.2019.114707 Becirevic D, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.055003 Beirevi D., ARXIV190702257 Belle Belle-II collaboration, 2019, 10 INT WORKSH CKM U Bernlochner F.U., ARXIV200200020 Bhattacharya B, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2019)191 Bhattacharya S, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-6767-7 Blanke M, 2019, PHYS REV D, V99, DOI 10.1103/PhysRevD.99.075006 Brivio I., COMPUTING TOOLS SMEF Brivio I, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2017)070 Criado J, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-6769-5 Carvalho A., ARXIV171008261 Carvalho A., ARXIV160806578 Carvalho A, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2016)126 Celis A, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-4967-6 Celis A, 2017, PHYS LETT B, V771, P168, DOI 10.1016/j.physletb.2017.05.037 Ciuchini M, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-7210-9 Criado JC, 2018, COMPUT PHYS COMMUN, V227, P42, DOI 10.1016/j.cpc.2018.02.016 Datta A, 2019, PHYS LETT B, V797, DOI 10.1016/j.physletb.2019.134858 Dedes A, 2020, COMPUT PHYS COMMUN, V247, DOI 10.1016/j.cpc.2019.106931 Dekens W, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2019)197 Duell S, POS ICHEP2016 1074 Evans J.A., ARXIV160600003 Gomez JD, 2019, PHYS REV D, V100, DOI 10.1103/PhysRevD.100.093003 Gratrex J, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.054008 Gripaios B, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2019)128 Grzadkowski B, 2010, J HIGH ENERGY PHYS, DOI [10.1007/JHEP10(2010)85, 10.1007/JHEP10(2010)085] Hartigan J. A., 1975, WILEY SERIES PROBABI Jenkins EE, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2018)016 Jenkins EE, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2018)084 Jenkins EE, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2014)035 Jenkins EE, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2013)087 Jones E., 2001, SCIPY OPEN SOURCE SC Jung M, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2019)009 Kaufman L, 1990, FINDING GROUPS DATA Khachatryan V, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.052012 Macqueen J., 1965, P 5 BERK S MATH STAT, P281, DOI DOI 10.1007/S11665-016-2173-6 Mahmoudi F, 2008, COMPUT PHYS COMMUN, V178, P745, DOI 10.1016/j.cpc.2007.12.006 MASSEY FJ, 1951, J AM STAT ASSOC, V46, P68, DOI 10.2307/2280095 Millman J., 2010, P56, DOI DOI 10.1016/S0168-0102(02)00204-3 Murgui C, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2019)103 PETTITT AN, 1976, BIOMETRIKA, V63, P161, DOI 10.1093/biomet/63.1.161 Porod W, 2003, COMPUT PHYS COMMUN, V153, P275, DOI 10.1016/S0010-4655(03)00222-4 Porod W, 2012, COMPUT PHYS COMMUN, V183, P2458, DOI 10.1016/j.cpc.2012.05.021 Porod W, 2014, EUR PHYS J C, V74, P1, DOI 10.1140/epjc/s10052-014-2992-2 Shi RX, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2019)065 Straub D.M, ARXIV181008132 Wilks SS, 1938, ANN MATH STAT, V9, P60, DOI 10.1214/aoms/1177732360 NR 59 TC 4 Z9 4 U1 1 U2 3 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD APR 1 PY 2020 IS 4 AR 007 DI 10.1007/JHEP04(2020)007 PG 21 WC Physics, Particles & Fields SC Physics GA LB3CY UT WOS:000524516700006 OA DOAJ Gold DA 2021-04-21 ER PT J AU Koerner, LJ Caswell, TA Allan, DB Campbell, SI AF Koerner, Lucas J. Caswell, Thomas A. Allan, Daniel B. Campbell, Stuart I. TI A Python Instrument Control and Data Acquisition Suite for Reproducible Research SO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT LA English DT Article DE Computerized instrumentation; demodulation AB Tools that standardize and automate experimental data collection are needed for greater confidence in research results. The National Synchrotron Light Source-II (NSLS-II) has generated an open-source Python data acquisition, management, and analysis software suite that automates X-ray experiments and collects an experimental record that facilitates complete reproducibility. Here, we show that the NSLS-II tools are not only useful for X-ray science at large-scale facilities by presenting an add-on package that adapts these tools for use in a small laboratory with common physics and electrical engineering instruments. The composite software suite eases and automates the execution of experiments, records extensive metadata, stores data in portable containers, and speeds up the analysis through tools for comprehensive searches. In total, this software suite increases the reproducibility of laboratory experiments. We demonstrate the software via the evaluation of two lock-in amplifiers-the miniature ADA2200 and the ubiquitous Stanford Research Systems (SRS) SR810. The frequency resolution, signal-to-noise ratio, and dynamic reserve of the lock-in amplifiers are measured and presented. The usage of the software suite is described throughout these measurements so that the reader can implement the tools in their lab. C1 [Koerner, Lucas J.] Univ St Thomas, Dept Elect & Comp Engn, St Paul, MN 55105 USA. [Caswell, Thomas A.; Allan, Daniel B.; Campbell, Stuart I.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Koerner, LJ (corresponding author), Univ St Thomas, Dept Elect & Comp Engn, St Paul, MN 55105 USA. EM koerner.lucas@stthomas.edu RI Campbell, Stuart I/A-8485-2010; Campbell, Stuart/ABA-6344-2020 OI Campbell, Stuart I/0000-0001-7079-0878; Campbell, Stuart/0000-0001-7079-0878; Koerner, Lucas/0000-0002-7236-7202 FU National Synchrotron Light Source II, U.S. Department of Energy (DOE) Office of Science User FacilityUnited States Department of Energy (DOE); DOE Office of Science, Brookhaven National Laboratory [DE-SC0012704] FX This work was supported by the National Synchrotron Light Source II, U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science, Brookhaven National Laboratory under Contract DE-SC0012704. CR [Anonymous], 2018, PYVISA DOCUMENTATION [Anonymous], 1999, STANDARD COMMANDS PR, V1 Arkilic A., 2017, Synchrotron Radiation News, V30, P44, DOI 10.1080/08940886.2017.1289810 Arkilic A., 2015, P 15 INT C ACC LARG Baumer B., 2014, R MARKDOWN INTEGRATI Bengtsson LE, 2012, REV SCI INSTRUM, V83, DOI 10.1063/1.4731683 Dalesio L., 1999, P INT C ACC LARG EXP, P1 Ellis J. M., 2001, U.S. Patent, Patent No. [6 324 485 B1, 6324485] Hayden EC, 2014, NATURE, V516, P131, DOI 10.1038/516131a Herr AE, 2005, ANAL CHEM, V77, P585, DOI 10.1021/ac0489768 Johnson JL, 2015, JALA-J LAB AUTOM, V20, P10, DOI 10.1177/2211068214553022 Koerner L., 2019, INSTRBUILDER GITHUB Kozubal A. J., 1989, P INT C ACC LARG EXP, P288 Li G, 2011, REV SCI INSTRUM, V82, DOI 10.1063/1.3633943 Liechti C., 2017, PYSERIAL DOCUMENTATI MEADE ML, 1982, J PHYS E SCI INSTRUM, V15, P395, DOI 10.1088/0022-3735/15/4/001 Millman J., 2010, P56, DOI DOI 10.1016/S0168-0102(02)00204-3 Myers FB, 2008, LAB CHIP, V8, P2015, DOI 10.1039/b812343h Newville M., 2016, PYEPICS PYTHON EPICS NSLS, NSLS 2 SOFTW DOC Oliphant T, 2006, NUMPY GUIDE NUMPY Orozco L., 2014, ANALOG DIALOGUE, V48, P1 Ortega-Robles E, 2018, REV SCI INSTRUM, V89, DOI 10.1063/1.4997455 Pastell M., 2016, PWEAVE Pernstich KP, 2012, J RES NATL INST STAN, V117, P176, DOI 10.6028/jres.117.010 Ragan-Kelley M., 2014, P AGU FALL M DEC Saar BG, 2010, SCIENCE, V330, P1368, DOI 10.1126/science.1197236 Stodden V., 2013, SIAM NEWS, V46, P4 Sushynskyi O, 2016, 2016 13TH INTERNATIONAL CONFERENCE ON MODERN PROBLEMS OF RADIO ENGINEERING, TELECOMMUNICATIONS AND COMPUTER SCIENCE (TCSET), P418, DOI 10.1109/TCSET.2016.7452075 Xie Y, 2014, IMPLEMENT REPROD, V1, P20 NR 30 TC 3 Z9 3 U1 2 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9456 EI 1557-9662 J9 IEEE T INSTRUM MEAS JI IEEE Trans. Instrum. Meas. PD APR PY 2020 VL 69 IS 4 BP 1698 EP 1707 DI 10.1109/TIM.2019.2914711 PN 2 PG 10 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA KW4VO UT WOS:000521164300028 DA 2021-04-21 ER PT J AU Owens, M Lang, MH Barnard, L Riley, P Ben-Nun, M Scott, CJ Lockwood, M Reiss, MA Arge, CN Gonzi, S AF Owens, Mathew Lang, Matthew Barnard, Luke Riley, Pete Ben-Nun, Michal Scott, Chris J. Lockwood, Mike Reiss, Martin A. Arge, Charles N. Gonzi, Siegfried TI A Computationally Efficient, Time-Dependent Model of the Solar Wind for Use as a Surrogate to Three-Dimensional Numerical Magnetohydrodynamic Simulations SO SOLAR PHYSICS LA English DT Article ID DATA ASSIMILATION; ARRIVAL-TIME; PLASMA BETA; WSA-ENLIL; CORONA; INPUT; SUN; VALIDATION; PREDICTION; PARAMETERS AB Near-Earth solar-wind conditions, including disturbances generated by coronal mass ejections (CMEs), are routinely forecast using three-dimensional, numerical magnetohydrodynamic (MHD) models of the heliosphere. The resulting forecast errors are largely the result of uncertainty in the near-Sun boundary conditions, rather than heliospheric model physics or numerics. Thus ensembles of heliospheric model runs with perturbed initial conditions are used to estimate forecast uncertainty. MHD heliospheric models are relatively cheap in computational terms, requiring tens of minutes to an hour to simulate CME propagation from the Sun to Earth. Thus such ensembles can be run operationally. However, ensemble size is typically limited to 101 members, which may be inadequate to sample the relevant high-dimensional parameter space. Here, we describe a simplified solar-wind model that can estimate CME arrival time in approximately 0.01 seconds on a modest desktop computer and thus enables significantly larger ensembles. It is a one-dimensional, incompressible, hydrodynamic model, which has previously been used for the steady-state solar wind, but it is here used in time-dependent form. This approach is shown to adequately emulate the MHD solutions to the same boundary conditions for both steady-state solar wind and CME-like disturbances. We suggest it could serve as a "surrogate" model for the full three-dimensional MHD models. For example, ensembles of 105members can be used to identify regions of parameter space for more detailed investigation by the MHD models. Similarly, the simplicity of the model means it can be rewritten as an adjoint model, enabling variational data assimilation with MHD models without the need to alter their code. The model code is available as an Open Source download in the Python language. C1 [Owens, Mathew; Lang, Matthew; Barnard, Luke; Scott, Chris J.; Lockwood, Mike] Univ Reading, Dept Meteorol, Earley Gate,POB 243, Reading RG6 6BB, Berks, England. [Riley, Pete; Ben-Nun, Michal] Predict Sci Inc, 9990 Mesa Rim Rd,Suite 170, San Diego, CA 92121 USA. [Reiss, Martin A.; Arge, Charles N.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Reiss, Martin A.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Gonzi, Siegfried] Met Off, Exeter, Devon, England. RP Owens, M (corresponding author), Univ Reading, Dept Meteorol, Earley Gate,POB 243, Reading RG6 6BB, Berks, England. EM m.j.owens@reading.ac.uk RI Lockwood, Mike/G-1030-2011; Scott, Christopher J/H-8664-2012; Lang, Matthew/J-7510-2017; Barnard, Luke/L-2930-2015 OI Lockwood, Mike/0000-0002-7397-2172; Lang, Matthew/0000-0002-1904-3700; Barnard, Luke/0000-0001-9876-4612; Owens, Mathew/0000-0003-2061-2453; Reiss, Martin/0000-0002-6362-5054 FU Science and Technology Facilities Council (STFC)UK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)Science and Technology Development Fund (STDF) [ST/R000921/1]; Natural Environment Research Council (NERC)UK Research & Innovation (UKRI)Natural Environment Research Council (NERC) [NE/P016928/1] FX Work was part-funded by Science and Technology Facilities Council (STFC) grant number ST/R000921/1 and Natural Environment Research Council (NERC) grant number NE/P016928/1. This work was aided by useful discussions at the Lorentz Center workshop on Ensemble Forecasts in Space Weather, organized by E. Doornbos, J. Guerra, and S. Murray. CR Arge CN, 2013, AIP CONF PROC, V1539, P11, DOI 10.1063/1.4810977 Arge CN, 2004, J ATMOS SOL-TERR PHY, V66, P1295, DOI 10.1016/j.jastp.2004.03.018 Arge CN, 2003, AIP CONF PROC, V679, P190 BLANNING RW, 1975, SIMULATION, V24, P177, DOI 10.1177/003754977502400606 Cannon P., 2013, EXTREME SPACE WEATHE Cargill PJ, 2004, SOL PHYS, V221, P135, DOI 10.1023/B:SOLA.0000033366.10725.a2 Case AW, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2008GL034493 Cash MD, 2015, SPACE WEATHER, V13, P611, DOI 10.1002/2015SW001232 Dumbovic M, 2018, ASTROPHYS J, V854, DOI 10.3847/1538-4357/aaaa66 Emmons D, 2013, SPACE WEATHER, V11, P95, DOI 10.1002/swe.20019 Gary GA, 2001, SOL PHYS, V203, P71, DOI 10.1023/A:1012722021820 Hapgood MA, 2011, ADV SPACE RES, V47, P2059, DOI 10.1016/j.asr.2010.02.007 Hickmann KS, 2015, SOL PHYS, V290, P1105, DOI 10.1007/s11207-015-0666-3 Jian LK, 2016, SPACE WEATHER, V14, P592, DOI 10.1002/2016SW001435 Jian LK, 2015, SPACE WEATHER, V13, P316, DOI 10.1002/2015SW001174 Johnson C, 2009, MON WEATHER REV, V137, P1717, DOI 10.1175/2009MWR2715.1 Kay C, 2018, J GEOPHYS RES-SPACE, V123, P7220, DOI 10.1029/2018JA025780 Kay C, 2015, ASTROPHYS J, V805, DOI 10.1088/0004-637X/805/2/168 Lang M, 2019, SPACE WEATHER, V17, P59, DOI 10.1029/2018SW001857 Lang M, 2017, SPACE WEATHER, V15, P1490, DOI 10.1002/2017SW001681 Lee CO, 2015, SOL PHYS, V290, P1207, DOI 10.1007/s11207-015-0667-2 Lee CO, 2013, SOL PHYS, V285, P349, DOI 10.1007/s11207-012-9980-1 Linker JA, 1999, J GEOPHYS RES-SPACE, V104, P9809, DOI 10.1029/1998JA900159 Lu D, 2019, GEOSCI MODEL DEV, V12, P1791, DOI 10.5194/gmd-12-1791-2019 MacNeice P, 2018, SPACE WEATHER, V16, P1644, DOI 10.1029/2018SW002040 Mays ML, 2015, SOL PHYS, V290, P1775, DOI 10.1007/s11207-015-0692-1 Merkin VG, 2016, J GEOPHYS RES-SPACE, V121, P2866, DOI 10.1002/2015JA022200 Millward G, 2013, SPACE WEATHER, V11, P57, DOI 10.1002/swe.20024 Murray SA, 2018, SPACE WEATHER, V16, P777, DOI 10.1029/2018SW001861 Odstrcil D, 2003, ADV SPACE RES, V32, P497, DOI 10.1016/S0273-1177(03)00332-6 Odstrcil D, 2005, J GEOPHYS RES-SPACE, V110, DOI 10.1029/2003JA010135 Owens M, 2004, ANN GEOPHYS-GERMANY, V22, P4397, DOI 10.5194/angeo-22-4397-2004 Owens MJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-04546-3 Owens MJ, 2017, SCI REP-UK, V7, DOI 10.1038/srep41548 Owens MJ, 2008, SPACE WEATHER, V6, DOI 10.1029/2007SW000380 Owens MJ, 2017, SPACE WEATHER, V15, P1461, DOI 10.1002/2017SW001679 Paruolo P, 2013, J R STAT SOC A STAT, V176, P609, DOI 10.1111/j.1467-985X.2012.01059.x PIZZO V, 1978, J GEOPHYS RES-SPACE, V83, P5563, DOI 10.1029/JA083iA12p05563 Pizzo VJ, 2015, SPACE WEATHER, V13, P676, DOI 10.1002/2015SW001221 Pomoell J, 2018, J SPACE WEATHER SPAC, V8, DOI 10.1051/swsc/2018020 Press W.H., 1989, NUMERICAL RECIPES Reiss MA, 2019, ASTROPHYS J SUPPL S, V240, DOI 10.3847/1538-4365/aaf8b3 Reiss MA, 2016, SPACE WEATHER, V14, P495, DOI 10.1002/2016SW001390 Richardson IG, 2002, J GEOPHYS RES-SPACE, V107, DOI 10.1029/2001JA000504 Riley P, 2011, SOL PHYS, V270, P575, DOI 10.1007/s11207-011-9766-x Riley P, 2001, J GEOPHYS RES-SPACE, V106, P15889, DOI 10.1029/2000JA000121 Riley P, 2018, SPACE WEATHER, V16, P1245, DOI 10.1029/2018SW001962 Riley P, 2012, J ATMOS SOL-TERR PHY, V83, P1, DOI 10.1016/j.jastp.2011.12.013 Saltelli A, 2002, J AM STAT ASSOC, V97, P702, DOI 10.1198/016214502388618447 Schwenn R., 1990, PHYS INNER HELIOSPHE, VVol. 1, P99 Shen F, 2018, ASTROPHYS J, V866, DOI 10.3847/1538-4357/aad806 Torok T, 2018, ASTROPHYS J, V856, DOI 10.3847/1538-4357/aab36d Toth G, 2005, J GEOPHYS RES-SPACE, V110, DOI 10.1029/2005JA011126 Tu CY, 2004, J GEOPHYS RES-SPACE, V109, DOI 10.1029/2004JA010391 Vrsnak B, 2002, J GEOPHYS RES-SPACE, V107, DOI 10.1029/2001JA000120 Zhao XP, 2002, J GEOPHYS RES-SPACE, V107, DOI 10.1029/2001JA009143 NR 56 TC 4 Z9 4 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 EI 1573-093X J9 SOL PHYS JI Sol. Phys. PD MAR 19 PY 2020 VL 295 IS 3 AR 43 DI 10.1007/s11207-020-01605-3 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA KX8PP UT WOS:000522137100001 OA Other Gold, Green Accepted DA 2021-04-21 ER PT J AU Li, JC Liu, J Kooi, K AF Li, Jianchen Liu, Jing Kooi, Kyler TI HPGe detector field calculation methods demonstrated with an educational program, GeFiCa SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DRIFT VELOCITY; ELECTRON AB A review of tools and methods to calculate electrostatic potentials and fields inside high-purity germanium detectors in various configurations is given. The methods are illustrated concretely with a new educational program named GeFiCa - Germanium detector Field Calculator. Demonstrated in GeFiCa are generic numerical calculations based on the successive over-relaxation method as well as analytic ones whenever simplification is possible due to highly symmetric detector geometries. GeFiCa is written in C++and provided as an extension to the CERN ROOT libraries widely used in the particle physics community. Calculation codes for individual detectors, provided as ROOT macros and python scripts, are distributed along with the GeFiCa core library, serving as both examples showing the usage of GeFiCa and starting points for customized calculations. They can be run without compilation in a ROOT interactive session or directly from a Linux shell. The numerical results are saved in a ROOT tree, making full use of the I/O optimization and plotting functionalities in ROOT. The speed and precision of the calculation are comparable to other commonly used packages, which qualifies GeFiCa as a scientific research tool. However, the main focus of GeFiCa is to clearly explain and demonstrate the analytic and numeric methods to solve Poisson's equation, practical coding considerations and visualization methods, with intensive documentation and example macros. It serves as a one-stop resource for people who want to understand the operating mechanism of such a package under the hood. C1 [Li, Jianchen; Liu, Jing; Kooi, Kyler] Univ South Dakota, Dept Phys, 414 East Clark St, Vermillion, SD 57069 USA. RP Liu, J (corresponding author), Univ South Dakota, Dept Phys, 414 East Clark St, Vermillion, SD 57069 USA. EM Jing.Liu@usd.edu RI Liu, Jing/A-4365-2011 OI Liu, Jing/0000-0003-1869-2407 FU NSFNational Science Foundation (NSF) [OIA-1738695, OISE-1743790, OAC-1626516]; Office of Research at the University of South Dakota FX The authors thank David Radford at the Oak Ridge National Laboratory for his patient instruction in various aspects of the field calculation, Oliver Schulz at the Max-Planck-Institut fur Physik for his introduction of the Julia language and the SSD package, Christopher Haufe and Anna Reine at the University of North Carolina at Chapel Hill for their instruction on how to use FEniCS to calculate fields in a point-contact detector. This work is supported by NSF award OIA-1738695 and OISE-1743790, and the Office of Research at the University of South Dakota. Computations supporting this project were performed on High Performance Computing systems at the University of South Dakota, funded by NSF award OAC-1626516. CR Aalseth CE, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.131301 Abgrall N, 2014, ADV HIGH ENERGY PHYS, V2014, DOI 10.1155/2014/365432 Abt I, 2007, NUCL INSTRUM METH A, V583, P332, DOI 10.1016/j.nima.2007.09.017 Abt I, 2010, EUR PHYS J C, V68, P609, DOI 10.1140/epjc/s10052-010-1364-9 Agostinelli S, 2003, NUCL INSTRUM METH A, V506, P250, DOI 10.1016/S0168-9002(03)01368-8 Agostini M., 2016, NUCL PART PHYS P, V1876, P273 Allison J, 2006, IEEE T NUCL SCI, V53, P270, DOI 10.1109/TNS.2006.869826 Allison J, 2016, NUCL INSTRUM METH A, V835, P186, DOI 10.1016/j.nima.2016.06.125 Amman M., 2018, ARXIV180903046 [Anonymous], 2019, SOLID STATE DETECTOR Barrett R, 1994, TEMPLATES SOLUTION L, P2 Boswell M, 2011, IEEE T NUCL SCI, V58, P1212, DOI 10.1109/TNS.2011.2144619 Bruyneel B, 2016, EUR PHYS J A, V52, DOI 10.1140/epja/i2016-16070-9 Bruyneel B, 2006, NUCL INSTRUM METH A, V569, P764, DOI 10.1016/j.nima.2006.08.130 GATTI E, 1982, NUCL INSTRUM METHODS, V193, P651, DOI 10.1016/0029-554X(82)90265-8 Giovanetti G., 2015, THESIS Hansen W.L., 1982, MRS ONLINE P LIB ARC, V16, P1982 He Z, 2001, NUCL INSTRUM METH A, V463, P250, DOI 10.1016/S0168-9002(01)00223-6 Kerman S, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.113006 Lenz D., 2010, THESIS Liu J., 2009, THESIS LUKE PN, 1989, IEEE T NUCL SCI, V36, P926, DOI 10.1109/23.34577 Mihailescu L, 2000, NUCL INSTRUM METH A, V447, P350, DOI 10.1016/S0168-9002(99)01286-3 NASHASHIBI T, 1990, IEEE T NUCL SCI, V37, P452, DOI 10.1109/23.106661 NASHASHIBI T, 1992, NUCL INSTRUM METH A, V322, P551, DOI 10.1016/0168-9002(92)91230-7 RADEKA V, 1988, ANNU REV NUCL PART S, V38, P217, DOI 10.1146/annurev.ns.38.120188.001245 Radford D., 2017, LARGE INVERTED COAXI Radford D., 2015, MAJORANA SIGGEN Radford D., ICPC SIGGEN REGGIANI L, 1978, PHYS REV B, V17, P2800, DOI 10.1103/PhysRevB.17.2800 Salathe M, 2017, NUCL INSTRUM METH A, V868, P19, DOI 10.1016/j.nima.2017.06.036 Salathe M., 2015, THESIS Takahashi Y, 2019, EPJ WEB CONF, V214, DOI 10.1051/epjconf/201921402011 Wang GJ, 2015, MAT SCI SEMICON PROC, V39, P54, DOI 10.1016/j.mssp.2015.04.044 Weisshaar D., 2016, NUCL INSTRUM METHODS Yue Q, 2016, J PHYS CONF SER, V718, DOI 10.1088/1742-6596/718/4/042066 NR 36 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR 11 PY 2020 VL 80 IS 3 AR 230 DI 10.1140/epjc/s10052-020-7786-0 PG 25 WC Physics, Particles & Fields SC Physics GA KV4TF UT WOS:000520474100002 OA DOAJ Gold DA 2021-04-21 ER PT J AU Vogt, J Blagau, A Pick, L AF Vogt, J. Blagau, A. Pick, L. TI Robust Adaptive Spacecraft Array Derivative Analysis SO EARTH AND SPACE SCIENCE LA English DT Article ID GRADIENT CALCULATION; SWARM CONSTELLATION AB Multispacecraft missions such as Cluster, Themis, Swarm, and MMS contribute to the exploration of geospace with their capability to produce gradient and curl estimates from sets of spatially distributed in situ measurements. This paper combines all existing estimators of the reciprocal vector family for spatial derivatives and their errors. The resulting framework proves to be robust and adaptive in the sense that it works reliably for arrays with arbitrary numbers of spacecraft and possibly degenerate geometries. The analysis procedure is illustrated using synthetic data as well as magnetic measurements from the Cluster and Swarm missions. An implementation of the core algorithm in Python is shown to be compact and computationally efficient so that it can be easily integrated in the various free and open source packages for the Space Physics and Heliophysics community. C1 [Vogt, J.; Blagau, A.; Pick, L.] Jacobs Univ, Dept Phys & Earth Sci, Bremen, Germany. [Blagau, A.] Inst Space Sci, Bucharest, Romania. [Pick, L.] Deutsch GeoForschungsZentrum, Potsdam, Germany. RP Vogt, J (corresponding author), Jacobs Univ, Dept Phys & Earth Sci, Bremen, Germany. EM j.vogt@jacobs-university.de OI Pick, Leonie/0000-0002-5266-9764 FU Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [SPP 1788, VO 855/4-1]; ESA project MAGICS, PRODEX [4000127660] FX Financial support from the Deutsche Forschungsgemeinschaft in the context of the SPP 1788 Dynamic Earth through Grant VO 855/4-1 is acknowledged. The work in Romania was supported by the ESA project MAGICS, PRODEX Contract 4000127660. Swarm Level 1b and Level 2 data are available from ESA (https://www.esa.int/Swarm).Cluster FGM data are provided by the Cluster Science Archive (https://www.cosmos.esa.int/web/csa). CR Blagau A, 2019, J GEOPHYS RES-SPACE, V124, P6869, DOI 10.1029/2018JA026439 Burrell AG, 2018, J GEOPHYS RES-SPACE, V123, P10384, DOI 10.1029/2018JA025877 Chanteur G, 2000, ESA SP PUBL, V449, P265 Chanteur G., 1998, ISSI SCI REP SER, V1, P371 De Keyser J, 2007, ANN GEOPHYS-GERMANY, V25, P971, DOI 10.5194/angeo-25-971-2007 De Keyser J, 2008, ANN GEOPHYS-GERMANY, V26, P3295, DOI 10.5194/angeo-26-3295-2008 Dunlop MW, 2015, J GEOPHYS RES-SPACE, V120, P8307, DOI 10.1002/2015JA021707 Dunlop MW, 2005, ANN GEOPHYS-GERMANY, V23, P901, DOI 10.5194/angeo-23-901-2005 Dunlop MW, 1988, ADV SPACE RES, V8, P9, DOI [10.1016/0273-1177(88)90141-X, DOI 10.1016/0273-1177(88)90141-X] Gil Y, 2016, EARTH SPACE SCI, V3, P388, DOI 10.1002/2015EA000136 Hamrin M, 2008, ANN GEOPHYS-GERMANY, V26, P3491, DOI 10.5194/angeo-26-3491-2008 Harvey C.C., 1998, ISSI SCI RES SERIES, P307 Paschmann G., 2008, MULTISPACECRAFT ANAL Paschmann G., 1998, SR001 ISSIESA Ritter P, 2006, EARTH PLANETS SPACE, V58, P463, DOI 10.1186/BF03351942 Ritter P, 2013, EARTH PLANETS SPACE, V65, P1285, DOI 10.5047/eps.2013.09.006 Robert P., 1998, ISSI SCI REPORTS SER, V1, P395 Robert P., 1998, ISSI SCI REP SER, P323 Shen C, 2012, J GEOPHYS RES-SPACE, V117, DOI 10.1029/2012JA018075 Stansby D., 2019, HELIOPYTHON HELIOPY Stoneback RA, 2018, J GEOPHYS RES-SPACE, V123, P5271, DOI 10.1029/2018JA025297 Vogt J, 2008, ANN GEOPHYS-GERMANY, V26, P1699, DOI 10.5194/angeo-26-1699-2008 Vogt J, 2011, ANN GEOPHYS-GERMANY, V29, P2239, DOI 10.5194/angeo-29-2239-2011 Vogt J, 2009, ANN GEOPHYS-GERMANY, V27, P3249, DOI 10.5194/angeo-27-3249-2009 Vogt J., 2014, HDB GEOMATHEMATICS, P1 Vogt J., 2019, LOCAL LEAST SQUARES Vogt J., 1998, KEPLERLAAN, V1, P419 NR 27 TC 0 Z9 0 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA EI 2333-5084 J9 EARTH SPACE SCI JI Earth Space Sci. PD MAR PY 2020 VL 7 IS 3 AR UNSP e2019EA000953 DI 10.1029/2019EA000953 PG 8 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Geology GA LH9XG UT WOS:000529137300002 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Mathieu, D AF Mathieu, Didier TI Modeling Sensitivities of Energetic Materials using the Python Language and Libraries SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Article DE Sensitivity; Explosive; Molecular modeling; Computer program; QSPR ID PREDICTING IMPACT SENSITIVITIES; SOFTWARE; KINETICS; DESIGN AB Assessing the value of new compounds as components of energetic materials requires the determination of a significant amount of data, including sensitivities to various stimuli. Unfortunately, the dependence of these properties on molecular structure is still poorly understood. In view of estimating their values for putative high energy molecules, standard quantitative structure-property relationship (QSPR) methodologies are widely used. In doing so, a special focus is put on standard descriptors and formalisms. To foster further progress through consideration of alternative approaches, this article emphasizes how the Python language and associated libraries make it straightforward to implement arbitrary models, including schemes a la Keshavarz based on the occurrences of highly specific molecular fragments as well as the non-linear expressions naturally arising from physics-based approaches to sensitivities. Two previously published models are implemented for illustrative purposes. The first one is a simple fragment-based equation for electric spark sensitivity of nitroarenes. The second one is a model for impact sensitivity of general molecular energetic materials. In each case a Python implementation is provided as supporting information and may be used as is or serve as a template to implement alternative schemes. C1 [Mathieu, Didier] CEA, DAM, F-37260 Le Ripault, Monts, France. RP Mathieu, D (corresponding author), CEA, DAM, F-37260 Le Ripault, Monts, France. EM didier.mathieu@cea.fr FU CEAFrench Atomic Energy Commission FX The research reported in this publication was supported by CEA. The author also acknowledges stimulating discussions with Julien Glorian (Institut Saint-Louis, France). CR Asay BW, 2010, SHOCK WAVE SCI TECHN, V5, P45, DOI 10.1007/978-3-540-87953-4_3 Bondarchuk SV, 2018, J PHYS CHEM A, V122, P5455, DOI 10.1021/acs.jpca.8b01743 Bondarchuk SV, 2017, INT J QUANTUM CHEM, V117, DOI 10.1002/qua.25430 BRILL TB, 1993, CHEM REV, V93, P2667, DOI 10.1021/cr00024a005 Burns L., 2019, 257 NAT M AM CHEM SO KAMLET MJ, 1979, PROPELLANTS EXPLOS, V4, P30, DOI 10.1002/prep.19790040204 Keshavarz MH, 2017, PROPELL EXPLOS PYROT, V42, P854, DOI 10.1002/prep.201700144 Keshavarz MH, 2013, PROPELL EXPLOS PYROT, V38, P754, DOI 10.1002/prep.201200128 Keshavarz MH, 2019, CENT EUR J ENERG MAT, V16, P65, DOI 10.22211/cejem/104389 Keshavarz MH, 2015, CENT EUR J ENERG MAT, V12, P215 Kuklja MM, 2003, APPL PHYS A-MATER, V76, P359, DOI 10.1007/s00339-002-1821-x Lu T, 2012, J COMPUT CHEM, V33, P580, DOI 10.1002/jcc.22885 Mathieu D, 2005, PHYS SCRIPTA, VT118, P171, DOI 10.1238/Physica.Topical.118a00171 Mathieu D, 2012, J PHYS CHEM A, V116, P1794, DOI 10.1021/jp209730a Mathieu D, 2017, IND ENG CHEM RES, V56, P8191, DOI 10.1021/acs.iecr.7b02021 Mathieu D, 2016, IND ENG CHEM RES, V55, P7569, DOI 10.1021/acs.iecr.6b01536 Mathieu D, 2015, J MOL GRAPH MODEL, V62, P81, DOI 10.1016/j.jmgm.2015.09.001 Mathieu D, 2014, J PHYS CHEM A, V118, P9720, DOI 10.1021/jp507057r Mathieu D, 2013, J PHYS CHEM A, V117, P2253, DOI 10.1021/jp311677s Mathieu D, 2010, J HAZARD MATER, V176, P313, DOI 10.1016/j.jhazmat.2009.11.030 Mauri A, 2006, MATCH-COMMUN MATH CO, V56, P237 Mereau R, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.104101 Moriwaki H, 2018, J CHEMINFORMATICS, V10, DOI 10.1186/s13321-018-0258-y Morrill JA, 2008, J MOL GRAPH MODEL, V27, P349, DOI 10.1016/j.jmgm.2008.06.003 Murray JS, 1998, MOL PHYS, V93, P187, DOI 10.1080/00268979809482203 Pospisil M, 2010, J MOL MODEL, V16, P895, DOI 10.1007/s00894-009-0587-x Ren G., 2016, STAT THEORY INITIATI Rice BM, 2002, J MOL STRUC-THEOCHEM, V583, P69, DOI 10.1016/S0166-1280(01)00782-5 Sahigara F, 2012, MOLECULES, V17, P4791, DOI 10.3390/molecules17054791 STORM CB, 1990, NATO ADV SCI I C-MAT, V309, P605 Zhang H, 2013, ASIAN J CHEM, V25, P5670, DOI 10.14233/ajchem.2013.OH58 NR 31 TC 1 Z9 1 U1 7 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD JUN PY 2020 VL 45 IS 6 BP 966 EP 973 DI 10.1002/prep.201900377 PG 8 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA LT6QU UT WOS:000514741600001 DA 2021-04-21 ER PT J AU Haber, A Verhaegen, M AF Haber, Aleksandar Verhaegen, Michel TI Modeling and state-space identification of deformable mirrors SO OPTICS EXPRESS LA English DT Article ID ADAPTIVE SECONDARY MIRROR; PREDICTIVE CONTROL; SHAPE CONTROL; DESIGN; CONTROLLER AB To develop high-performance controllers for adaptive optics (AO) systems, it is essential to first derive sufficiently accurate state-space models of deformable mirrors (DMs). However, it is often challenging to develop realistic large-scale finite element (FE) state-space models that take into account the system damping, actuator dynamics, boundary conditions, and multi-physics phenomena affecting the system dynamics. Furthermore, it is challenging to establish a modeling framework capable of the automated and quick derivation of state-space models for different actuator configurations and system geometries. On the other hand, for accurate model-based control and system monitoring, it is often necessary to estimate state-space models from the experimental data. However, this is a challenging problem since the DM dynamics is inherently infinite-dimensional and it is characterized by a large number of eigenmodes and eigenfrequencies. In this paper, we provide modeling and estimation frameworks that address these challenges. We develop an FE state-space model of a faceplate DM that incorporates damping and actuator dynamics. We investigate the frequency and time domain responses for different model parameters. The state-space modeling process is completely automated using the LiveLink for MATLAB toolbox that is incorporated into the COMSOL Multiphysics software package. The developed state-space model is used to generate the estimation data. This data, together with a subspace identification algorithm, is used to estimate reduced-order DM models. We address the model-order selection and model validation problems. The results of this paper provide essential modeling and estimation tools to broad AO and mechatronics scientific communities. The developed Python, MATLAB, and COMSOL Multiphysics codes are available online. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement C1 [Haber, Aleksandar] CUNY Coll Staten Isl, Dept Engn & Environm Sci, 2800 Victory Blvd, Staten Isl, NY 10314 USA. [Verhaegen, Michel] Delft Univ Technol, Delft Ctr Syst & Control, Mekelweg 5, NL-2628 CD Delft, Netherlands. RP Haber, A (corresponding author), CUNY Coll Staten Isl, Dept Engn & Environm Sci, 2800 Victory Blvd, Staten Isl, NY 10314 USA. EM aleksandar.haber@csi.cuny.edu FU H2020 European Research Council [ERC 339681]; City University of New York (PSC-CUNY Award A) [61303-00 49, 62267-00 50] FX H2020 European Research Council (ERC 339681); City University of New York (PSC-CUNY Award A (61303-00 49), PSC-CUNY Award A (62267-00 50)). CR Agapito G, 2011, EUR J CONTROL, V17, P273, DOI 10.3166/EJC.17.273-289 Andersen T, 2006, OPT ENG, V45, DOI 10.1117/1.2227014 Bathe K.-J., 2014, FINITE ELEMENT PROCE Bohm M, 2015, IEEE INTL CONF CONTR, P418, DOI 10.1109/CCA.2015.7320665 Brusa G, 1999, P SOC PHOTO-OPT INS, V3762, P38, DOI 10.1117/12.363599 Brusa G, 1998, APPL OPTICS, V37, P4656, DOI 10.1364/AO.37.004656 Brusa G, 1998, P SOC PHOTO-OPT INS, V3353, P764, DOI 10.1117/12.321693 Brusa G., 2000, P BACK WORKSH EXTR L, V57, P181 Cayrel M, 2012, PROC SPIE, V8444, DOI 10.1117/12.925175 Chiuso A, 2010, IEEE T CONTR SYST T, V18, P705, DOI 10.1109/TCST.2009.2023914 Ellenbroek R, 2006, PROC SPIE, V6272, pU1191, DOI 10.1117/12.671688 Fraanje R, 2010, INT J OPTOMECHATRONI, V4, P269, DOI 10.1080/15599612.2010.512380 Haber A, 2013, OPT EXPRESS, V21, P21530, DOI 10.1364/OE.21.021530 Haber A., 2019, ARXIV190802379 Haber A., 2019, 2019 COMSOL MULT C B Haber A., 2019, P ASME 2019 DYN SYST Haber A., 2019, MACHINE LEARNING SYS Haber A, 2018, IEEE T CONTROL NETW, V5, P694, DOI 10.1109/TCNS.2017.2728201 Haber A, 2018, COMPUT METHOD APPL M, V335, P610, DOI 10.1016/j.cma.2018.01.034 Haber A, 2016, OPT LETT, V41, P5162, DOI 10.1364/OL.41.005162 Haber A, 2014, IEEE T AUTOMAT CONTR, V59, P2754, DOI 10.1109/TAC.2014.2310375 Haber A, 2013, OPT LETT, V38, P3061, DOI 10.1364/OL.38.003061 Hamelinck R. F. M. M., 2010, THESIS Hamelinck R, 2008, PROC SPIE, V7015, DOI 10.1117/12.787755 Heimsten R, 2012, OPT ENG, V51, DOI 10.1117/1.OE.51.2.026601 Heimsten R, 2012, APPL OPTICS, V51, P515, DOI 10.1364/AO.51.000515 Hippler S., 2018, ARXIV180802693 Houtzager I., 2009, P 15 IFAC S SYST ID, P96 Houtzager I, 2009, IEEE DECIS CONTR P, P3370, DOI 10.1109/CDC.2009.5400695 Iserles, 2009, 1 COURSE NUMERICAL A Jenkins DR, 2018, MON NOT R ASTRON SOC, V478, P3149, DOI 10.1093/mnras/sty1310 Kuiper S, 2018, PROC SPIE, V10706, DOI 10.1117/12.2311981 Kuiper S, 2016, PROC SPIE, V9912, DOI 10.1117/12.2230891 Kulcsar C, 2012, AUTOMATICA, V48, P1939, DOI 10.1016/j.automatica.2012.03.030 MacMartin DG, 2003, PROC SPIE, V5054, P275, DOI 10.1117/12.484661 MacMynowski DG, 2011, EUR J CONTROL, V17, P249, DOI 10.3166/EJC.17.249-260 Manetti M, 2016, J VIB CONTROL, V22, P1288, DOI 10.1177/1077546314536426 Manetti M, 2014, PROC SPIE, V9148, DOI 10.1117/12.2055919 Manetti M, 2014, IEEE T CONTR SYST T, V22, P838, DOI 10.1109/TCST.2013.2267814 Manetti M, 2012, CONTROL ENG PRACT, V20, P783, DOI 10.1016/j.conengprac.2012.03.018 Manetti M, 2010, CONTROL ENG PRACT, V18, P1386, DOI 10.1016/j.conengprac.2010.07.002 Massioni P, 2011, J OPT SOC AM A, V28, P2298, DOI 10.1364/JOSAA.28.002298 Preumont A., 2018, VIBRATION CONTROL AC, V4th Ravensbergen SK, 2013, PRECIS ENG, V37, P353, DOI 10.1016/j.precisioneng.2012.10.004 Ravensbergen S. K., 2009, P SOC PHOTO-OPT INS, V7466 Ravensbergen S. K., 2012, THESIS Ruppel T, 2013, IEEE T CONTR SYST T, V21, P579, DOI 10.1109/TCST.2012.2186813 Sedghi B, 2012, PROC SPIE, V8444, DOI 10.1117/12.925123 Sinquin B, 2018, J OPT SOC AM A, V35, P1612, DOI 10.1364/JOSAA.35.001612 Sinquin JC, 2008, P SOC PHOTO-OPT INS, V7015, DOI 10.1117/12.787400 Song H, 2011, EUR J CONTROL, V17, P290, DOI 10.3166/EJC.17.290-301 Stephens D. G., 1965, TECH REP Timoshenko S., 1959, THEORY PLATES SHELLS Tyson R, 1999, ADAPTIVE OPTICS ENG Tyson RK, 2014, PRINCIPLES AND APPLICATIONS OF FOURIER OPTICS, P1, DOI 10.1088/978-0-750-31056-7 Verhaegen M., 2007, FILTERING SYSTEM IDE Vogel CR, 2006, J OPT SOC AM A, V23, P1074, DOI 10.1364/JOSAA.23.001074 Yu CP, 2018, IEEE T CONTR SYST T, V26, P664, DOI 10.1109/TCST.2017.2692738 Zienkiewicz OC, 2005, FINITE ELEMENT METHOD FOR FLUID DYNAMICS, 6TH EDITION, P1 NR 59 TC 3 Z9 3 U1 1 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 17 PY 2020 VL 28 IS 4 BP 4726 EP 4740 DI 10.1364/OE.382880 PG 15 WC Optics SC Optics GA KN1BS UT WOS:000514575500032 PM 32121705 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Barnes, WT Bobra, MG Christe, SD Freij, N Hayes, LA Ireland, J Mumford, S Perez-Suarez, D Ryan, DF Shih, ABY Chanda, P Glogowski, K Hewett, R Hughitt, VK Hill, A Hiware, K Inglis, A Kirk, MSF Konge, S Mason, JP Maloney, SA Murray, SA Panda, A Park, J Pereira, TMD Reardon, K Savage, S Sipocz, BM Stansby, D Jain, Y Taylor, G Yadav, T Rajul Dang, TK AF Barnes, Will T. Bobra, Monica G. Christe, Steven D. Freij, Nabil Hayes, Laura A. Ireland, Jack Mumford, Stuart Perez-Suarez, David Ryan, Daniel F. Shih, Albert Y. Chanda, Prateek Glogowski, Kolja Hewett, Russell Hughitt, V. Keith Hill, Andrew Hiware, Kaustubh Inglis, Andrew Kirk, Michael S. F. Konge, Sudarshan Mason, James Paul Maloney, Shane Anthony Murray, Sophie A. Panda, Asish Park, Jongyeob Pereira, Tiago M. D. Reardon, Kevin Savage, Sabrina Sipocz, Brigitta M. Stansby, David Jain, Yash Taylor, Garrison Yadav, Tannmay Rajul Dang, Trung Kien CA The SunPy Community TI The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package SO ASTROPHYSICAL JOURNAL LA English DT Article DE The Sun ID SOLAR; TELESCOPE; REGION AB The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project. C1 [Barnes, Will T.] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA. [Barnes, Will T.] Bay Area Environm Res Inst, Moffett Field, CA 94952 USA. [Bobra, Monica G.] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Christe, Steven D.; Hayes, Laura A.; Ireland, Jack; Ryan, Daniel F.; Shih, Albert Y.; Inglis, Andrew; Kirk, Michael S. F.; Mason, James Paul] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Mumford, Stuart] Univ Sheffield, Sch Math & Stat, SP2RC, Sheffield, S Yorkshire, England. [Mumford, Stuart] Aperio Software, Leeds LS6 3HN, W Yorkshire, England. [Perez-Suarez, David] UCL, Gower St, London, England. [Kirk, Michael S. F.] Catholic Univ Amer, Washington, DC 20664 USA. [Chanda, Prateek] Indian Inst Engn Sci & Technol Shibpur, Sibpur, India. [Glogowski, Kolja] Kiepenheuer Inst Sonnenphys, Freiburg, Germany. [Glogowski, Kolja] Univ Freiburg, Ctr Comp, ESci Dept, Freiburg, Germany. [Hewett, Russell] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA. [Hughitt, V. Keith] NCI, Ctr Canc Res, Bethesda, MD 20892 USA. [Hill, Andrew] Oklahoma Baptist Univ, Shawnee, OK 74804 USA. [Hiware, Kaustubh; Jain, Yash; Yadav, Tannmay; Rajul] Indian Inst Technol Kharagpur, Kharagpur, W Bengal, India. [Konge, Sudarshan] Microsoft India Dev Ctr, Bangalore, Karnataka, India. [Maloney, Shane Anthony; Murray, Sophie A.] Trinity Coll Dublin, Sch Phys, Astrophys & Space Phys, Dublin, Ireland. [Maloney, Shane Anthony; Murray, Sophie A.] Dublin Inst Adv Studies, Cosm Phys, Astron & Astrophys, Dublin, Ireland. [Panda, Asish] Google, Mountain View, CA USA. [Park, Jongyeob] Korea Astron & Space Sci Inst, Div Space Sci, Daejeon 34055, South Korea. [Pereira, Tiago M. D.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Pereira, Tiago M. D.] Univ Oslo, Rosseland Ctr Solar Phys, Oslo, Norway. [Reardon, Kevin] Natl Solar Observ, Boulder, CO 80303 USA. [Savage, Sabrina] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Sipocz, Brigitta M.] Univ Washington, Dept Astron, DIRAC Inst, Seattle, WA 98195 USA. [Stansby, David] Univ England, Mullard Space Sci Lab, Holmbury Hill Rd, Dorking RH5 6NT, Surrey, England. [Taylor, Garrison] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Freij, Nabil] Univ Reading, Inst Environm Analyt, Reading RG6 6BX, Berks, England. [Ryan, Daniel F.] Amer Univ, Washington, DC 20016 USA. [Dang, Trung Kien] Natl Univ Singapore, Natl Univ Hlth Syst, Saw Swee Hock Sch Publ Hlth, Singapore, Singapore. RP Christe, SD (corresponding author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM steven.christe@nasa.gov; mail@kien.ai RI Stansby, David/AAT-8717-2020 OI Dang, Trung Kien/0000-0001-7562-6495; Shih, Albert/0000-0001-6874-2594; Freij, Nabil/0000-0002-6253-082X; Barnes, Will/0000-0001-9642-6089; Bobra, Monica/0000-0002-5662-9604; Murray, Sophie/0000-0002-9378-5315; Savage, Sabrina/0000-0002-6172-0517; Perez-Suarez, David/0000-0003-0784-6909 FU NSFNational Science Foundation (NSF) [AST-1715122]; DIRAC Institute in the Department of Astronomy at the University of Washington; STFC studentshipUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) [ST/N504336/1]; STFC grantUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) [ST/N000692/1]; Google; NumFocus; Solar Physics Division of the American Astronomical Society; Space program FX The following individuals recognize support for their personal contributions. B.M.S. is supported by the NSF grant AST-1715122 and acknowledges support from the DIRAC Institute in the Department of Astronomy at the University of Washington. The DIRAC Institute is supported through generous gifts from the Charles and Lisa Simonyi Fund for Arts and Sciences, and the Washington Research Foundation. D.S. was supported by STFC studentship ST/N504336/1 and STFC grant ST/N000692/1.; We acknowledge financial contributions from Google as part of the Google Summer of Code program and from the Space program. We acknowledge financial contributions from NumFocus for improving the usability of SunPy's Data Downloader. Additionally, we acknowledge current and future funding from the Solar Physics Division of the American Astronomical Society for SunPy workshops and tutorials at annual meetings.; This work has made use of data from the European Space Agency (ESA) mission Gaia,80 processed by the Gaia Data Processing and Analysis Consortium (DPAC).81 Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. CR Abbott BP, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.061102 Akiyama K, 2019, ASTROPHYS J LETT, V875, DOI 10.3847/2041-8213/ab0ec7 Annex A., 2018, PYTHON HELIOPHYSICS, DOI [10.5281/zenodo.2529131, DOI 10.5281/ZENODO.2529131] Bangerth Wolfgang, 2013, COMPUTATIONAL SCI DI, V6, P1, DOI 10.1088/1749-4699/6/1/015010 Beck JG, 2000, SOL PHYS, V191, P47, DOI 10.1023/A:1005226402796 Brown AGA, 2018, ASTRON ASTROPHYS, V616, DOI 10.1051/0004-6361/201833051 Brueckner GE, 1995, SOL PHYS, V162, P357, DOI 10.1007/BF00733434 Burrell AG, 2018, J GEOPHYS RES-SPACE, V123, P10384, DOI 10.1029/2018JA025877 Caswell T. A., 2019, MATPLOTLIB MATPLOTLI, DOI [10.5281/zenodo.2893252, DOI 10.5281/ZENODO.2893252] Christe S., 2014, SUNPY PROPOSAL ENHAN, DOI [10.5281/zenodo.3261707, DOI 10.5281/ZENODO.3261707] Christe S., 2019, RECOMMENDATION COMPL, DOI [10.5281/zenodo.3362439, DOI 10.5281/ZENODO.3362439] Christe S., 2014, SUNPY PROPOSAL ENHAN, DOI [10.5281/zenodo.3261403, DOI 10.5281/ZENODO.3261403] Christe S., 2018, SUNPY PROPOSAL ENHAN, DOI [10.5281/zenodo.3261663, DOI 10.5281/ZENODO.3261663] Damevski K, 2009, P 2009 WORKSH COMP B, V13, DOI 10.1145/1687774.1687787 De Pontieu B, 2014, SOL PHYS, V289, P2733, DOI 10.1007/s11207-014-0485-y de Wijn AG, 2012, PROC SPIE, V8444, DOI 10.1117/12.926511 Delaboudiniere J.-P., 1995, SOL PHYS, P291, DOI 10.1007/978-94-009-0191-9_8 Dominique M, 2013, SOL PHYS, V286, P21, DOI 10.1007/s11207-013-0252-5 Freeland SL, 1998, SOL PHYS, V182, P497, DOI 10.1023/A:1005038224881 GARCIA HA, 1994, SOL PHYS, V154, P275, DOI 10.1007/BF00681100 Ginsburg A, 2019, ASTRON J, V157, DOI 10.3847/1538-3881/aafc33 Glogowski K., 2019, JOSS, V4, P1614, DOI [10.21105/joss.01614, DOI 10.21105/JOSS.01614] Golub L., 2008, HINODE MISSION, P27, DOI [10.1007/978-0-387-88739-5_5, DOI 10.1007/978-0-387-88739-5_5] Greenfield P., 2013, ASTROPY PROPOSAL ENH, DOI [10.5281/zenodo.1043886, DOI 10.5281/ZENODO.1043886] Greisen EW, 2002, ASTRON ASTROPHYS, V395, P1061, DOI 10.1051/0004-6361:20021326 Guo P., 2014, PYTHON IS NOW MOST P Handy BN, 1999, SOL PHYS, V187, P229, DOI 10.1023/A:1005166902804 Hanser FA, 1996, P SOC PHOTO-OPT INS, V2812, P344, DOI 10.1117/12.254082 Hill F, 2009, EARTH MOON PLANETS, V104, P315, DOI 10.1007/s11038-008-9274-7 Howard RA, 2008, SPACE SCI REV, V136, P67, DOI 10.1007/s11214-008-9341-4 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Hurlburt N, 2012, SOL PHYS, V275, P67, DOI 10.1007/s11207-010-9624-2 Jones E., 2001, SCIPY OPEN SOURCE SC Lemen JR, 2012, SOL PHYS, V275, P17, DOI 10.1007/s11207-011-9776-8 Lin RP, 2002, SOL PHYS, V210, P3, DOI 10.1023/A:1022428818870 Meegan C, 2009, ASTROPHYS J, V702, P791, DOI 10.1088/0004-637X/702/1/791 Millman J., 2010, P56, DOI DOI 10.1016/S0168-0102(02)00204-3 Mumford S., 2014, SUNPY PROPOSAL ENHAN, DOI [10.5281/zenodo.3261752, DOI 10.5281/ZENODO.3261752] Mumford S., 2019, SUNPY PROPOSAL ENHAN, DOI [10.5281/zenodo.3261800, DOI 10.5281/ZENODO.3261800] Mumford S., 2018, SUNPY PROPOSAL ENHAN, DOI [10.5281/zenodo.3261794, DOI 10.5281/ZENODO.3261794] Mumford Stuart J., 2015, Computational Science and Discovery, V8, DOI 10.1088/1749-4699/8/1/014009 Mumford S. J., 2020, JOSS, DOI [10.21105/joss.01832, DOI 10.21105/JOSS.01832] Muna D., 2016, ARXIV161003159 NAKAJIMA H, 1994, P IEEE, V82, P705, DOI 10.1109/5.284737 National Academies of Sciences E, 2019, REPRODUCIBILITY REPL, DOI [10.17226/25303, DOI 10.17226/25303, 10.17226/25303.] National Academies of Sciences Engineering and Medicine, 2018, OP SOURC SOFTW POL O, DOI [10.17226/25217, DOI 10.17226/25217] Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Pence WD, 2010, ASTRON ASTROPHYS, V524, DOI 10.1051/0004-6361/201015362 Price-Whelan AM, 2018, ASTRON J, V156, DOI 10.3847/1538-3881/aac387 Prusti T, 2016, ASTRON ASTROPHYS, V595, DOI 10.1051/0004-6361/201629272 Robitaille TP, 2013, ASTRON ASTROPHYS, V558, DOI 10.1051/0004-6361/201322068 Rocklin M., 2015, P 14 PYTH SCI C, P126, DOI 10.25080/Majora-7b98e3ed-013 Scherrer PH, 1995, SOL PHYS, V162, P129, DOI 10.1007/BF00733429 Schou J, 2012, SOL PHYS, V275, P229, DOI 10.1007/s11207-011-9842-2 Seaton DB, 2013, SOL PHYS, V286, P43, DOI 10.1007/s11207-012-0114-6 Seidelmann PK, 2007, CELEST MECH DYN ASTR, V98, P155, DOI 10.1007/s10569-007-9072-y The Mars Climate Orbiter Mishap Investigation Board, 1999, MARS CLIMATE ORBITER Thompson WT, 2006, ASTRON ASTROPHYS, V449, P791, DOI 10.1051/0004-6361:20054262 TSUNETA S, 1991, SOL PHYS, V136, P37, DOI 10.1007/BF00151694 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Verbeeck C, 2014, ASTRON ASTROPHYS, V561, DOI 10.1051/0004-6361/201321243 Ware A., 2019, PYTHON HELIOPHYSICS, DOI [10.5281/zenodo.2537188, DOI 10.5281/ZENODO.2537188] Wilson G, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001745 Woods TN, 2012, SOL PHYS, V275, P115, DOI 10.1007/s11207-009-9487-6 NR 64 TC 24 Z9 24 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2020 VL 890 IS 1 AR 68 DI 10.3847/1538-4357/ab4f7a PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA KT0DZ UT WOS:000518682400001 OA Green Published, Other Gold DA 2021-04-21 ER PT J AU Barnes, R Luger, R Deitrick, R Driscoll, P Quinn, TR Fleming, DP Smotherman, H McDonald, DV Wilhelm, C Garcia, R Barth, P Guyer, B Meadows, VS Bitz, CM Gupta, P Domagal-Goldman, SD Armstrong, J AF Barnes, Rory Luger, Rodrigo Deitrick, Russell Driscoll, Peter Quinn, Thomas R. Fleming, David P. Smotherman, Hayden McDonald, Diego V. Wilhelm, Caitlyn Garcia, Rodolfo Barth, Patrick Guyer, Benjamin Meadows, Victoria S. Bitz, Cecilia M. Gupta, Pramod Domagal-Goldman, Shawn D. Armstrong, John TI VPLanet: The Virtual Planet Simulator SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article DE binaries (including multiple); close; methods; numerical; planets and satellites; atmospheres; planets and satellites; dynamical evolution and stability; planets and satellites; interiors; planets and satellites; magnetic fields; planets and satellites; physical evolution; stars; kinematics and dynamics; stars; pre-main sequence ID CLOSE BINARY STARS; TIDAL DISSIPATION; OORT CLOUD; HYDRODYNAMIC ESCAPE; HABITABLE ZONES; SUPER-EARTHS; ORBITAL CIRCULARIZATION; TERRESTRIAL EXOPLANETS; INSOLATION QUANTITIES; DYNAMICAL EVOLUTION AB We describe a software package called VPLanet that simulates fundamental aspects of planetary system evolution over Gyr timescales, with a focus on investigating habitable worlds. In this initial release, eleven physics modules are included that model internal, atmospheric, rotational, orbital, stellar, and galactic processes. Many of these modules can be coupled to simultaneously simulate the evolution of terrestrial planets, gaseous planets, and stars. The code is validated by reproducing a selection of observations and past results. VPLanet is written in C and designed so that the user can choose the physics modules to apply to an individual object at runtime without recompiling, i.e., a single executable can simulate the diverse phenomena that are relevant to a wide range of planetary and stellar systems. This feature is enabled by matrices and vectors of function pointers that are dynamically allocated and populated based on user input. The speed and modularity of VPLanet enables large parameter sweeps and the versatility to add/remove physical phenomena to assess their importance. VPLanet is publicly available from a repository that contains extensive documentation, numerous examples, Python scripts for plotting and data management, and infrastructure for community input and future development. C1 [Barnes, Rory; Quinn, Thomas R.; Fleming, David P.; Smotherman, Hayden; McDonald, Diego V.; Wilhelm, Caitlyn; Garcia, Rodolfo; Guyer, Benjamin; Meadows, Victoria S.; Gupta, Pramod] Univ Washington, Dept Astron, Box 951580, Seattle, WA 98195 USA. [Barnes, Rory; Luger, Rodrigo; Deitrick, Russell; Driscoll, Peter; Quinn, Thomas R.; Fleming, David P.; Smotherman, Hayden; McDonald, Diego V.; Wilhelm, Caitlyn; Garcia, Rodolfo; Meadows, Victoria S.; Bitz, Cecilia M.; Gupta, Pramod; Domagal-Goldman, Shawn D.; Armstrong, John] NASA, Virtual Planetary Lab, Lead Team, Washington, DC 20546 USA. [Luger, Rodrigo] Flatiron Inst, Ctr Computat Astrophys, New York, NY 10010 USA. [Deitrick, Russell] Univ Bern, Ctr Space & Habitabil, Gesellschaftsstr 6, CH-3012 Bern, Switzerland. [Driscoll, Peter] Carnegie Inst Sci, Dept Terr Magnetism, 5241 Broad Branch Rd, Washington, DC 20015 USA. [Barth, Patrick] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Bitz, Cecilia M.] Univ Washington, Dept Atmospher Sci, Box 951640, Seattle, WA 98195 USA. [Domagal-Goldman, Shawn D.] NASA, Planetary Environm Lab, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Armstrong, John] Weber State Univ, Dept Phys, Ogden, UT 84408 USA. RP Barnes, R (corresponding author), Univ Washington, Dept Astron, Box 951580, Seattle, WA 98195 USA.; Barnes, R (corresponding author), NASA, Virtual Planetary Lab, Lead Team, Washington, DC 20546 USA. EM rory@astro.washington.edu RI Driscoll, Peter/X-7034-2019 OI Driscoll, Peter/0000-0001-6241-3925; Barth, Patrick/0000-0002-5418-0882; Deitrick, Russell/0000-0001-9423-8121; Quinn, Thomas/0000-0001-5510-2803 FU NASA Astrobiology Institute's Virtual Planetary Laboratory [NNA13AA93A]; NASANational Aeronautics & Space Administration (NASA) [NNX15AN35G, 13-13NAI7_0024]; NASA Headquarters under the NASA Earth and Space Science Fellowship [80NSSC17K0482] FX This work was supported by the NASA Astrobiology Institute's Virtual Planetary Laboratory under Cooperative Agreement number NNA13AA93A. Additional support was provided by NASA grants NNX15AN35G, and 13-13NAI7_0024. D.P.F. is supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program-grant 80NSSC17K0482. This work also benefited from participation in the NASA Nexus for Exoplanet Systems Science (NExSS) research coordination network. We thank an anonymous referee whose comments greatly improved the quality of this manuscript. We are also grateful for stimulating conversations with Brian Jackson, Hector Martinez-Rodriguez, Terry Hurford, Ludmila Carone, Juliette Becker, John Ahlers, Quadry Chance, and Nathan Kaib. CR Abe-Ouchi A, 2013, NATURE, V500, P190, DOI 10.1038/nature12374 Allart R, 2019, ASTRON ASTROPHYS, V623, DOI 10.1051/0004-6361/201834917 Andrault D, 2011, EARTH PLANET SC LETT, V304, P251, DOI 10.1016/j.epsl.2011.02.006 Anglada-Escude G, 2016, NATURE, V536, P437, DOI 10.1038/nature19106 Araki T, 2005, NATURE, V436, P499, DOI 10.1038/nature03980 Arevalo R, 2013, GEOCHEM GEOPHY GEOSY, V14, P2265, DOI 10.1002/ggge.20152 Armstrong JC, 2014, ASTROBIOLOGY, V14, P277, DOI 10.1089/ast.2013.1129 Armstrong JC, 2004, ICARUS, V171, P255, DOI 10.1016/j.icarus.2004.05.007 Baland RM, 2016, ICARUS, V268, P12, DOI 10.1016/j.icarus.2015.11.039 Baraffe I, 2015, ASTRON ASTROPHYS, V577, DOI 10.1051/0004-6361/201425481 BARKER BM, 1970, PHYS REV D, V2, P1428, DOI 10.1103/PhysRevD.2.1428 BARKSTROM BR, 1990, EOS, V71, P297, DOI DOI 10.1029/E0071I009P00297 Barnes R, 2017, CELEST MECH DYN ASTR, V129, P509, DOI 10.1007/s10569-017-9783-7 Barnes R, 2015, ASTROPHYS J, V801, DOI 10.1088/0004-637X/801/2/101 Barnes R, 2013, ASTROBIOLOGY, V13, P225, DOI 10.1089/ast.2012.0851 BERGER A, 1991, QUATERNARY SCI REV, V10, P297, DOI 10.1016/0277-3791(91)90033-Q BERGER AL, 1978, J ATMOS SCI, V35, P2362, DOI 10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2 Berta-Thompson ZK, 2015, NATURE, V527, P204, DOI 10.1038/nature15762 Bills BG, 2005, ICARUS, V175, P233, DOI 10.1016/j.icarus.2004.10.028 Bills BG, 2000, J GEOPHYS RES-PLANET, V105, P29277, DOI 10.1029/2000JE001248 Bolmont E, 2017, MON NOT R ASTRON SOC, V464, P3728, DOI 10.1093/mnras/stw2578 Bolmont E, 2012, ASTRON ASTROPHYS, V544, DOI 10.1051/0004-6361/201219645 Braithwaite RJ, 2000, J GLACIOL, V46, P7, DOI 10.3189/172756500781833511 Brasser R, 2014, MON NOT R ASTRON SOC, V440, P3685, DOI 10.1093/mnras/stu555 Chambers JE, 1999, MON NOT R ASTRON SOC, V304, P793, DOI 10.1046/j.1365-8711.1999.02379.x Chassefiere E, 1996, ICARUS, V124, P537, DOI 10.1006/icar.1996.0229 Chassefiere E, 2004, PLANET SPACE SCI, V52, P1039, DOI 10.1016/j.pss.2004.07.002 Chassefiere E, 1996, J GEOPHYS RES-PLANET, V101, P26039, DOI 10.1029/96JE01951 Clark PU, 1998, PALEOCEANOGRAPHY, V13, P1, DOI 10.1029/97PA02660 Cogne JP, 2004, EARTH PLANET SC LETT, V227, P427, DOI 10.1016/j.epsl.2004.09.002 Collins BF, 2010, ASTRON J, V140, P1306, DOI 10.1088/0004-6256/140/5/1306 COLOMBO G, 1966, ASTROPHYS J, V145, P296, DOI 10.1086/148762 Cook A. H., 1980, INTERIORS PLANETS Costa A, 2009, GEOCHEM GEOPHY GEOSY, V10, DOI 10.1029/2008GC002138 Cox A.N., 2000, ALLENS ASTROPHYSICAL CRANK J, 1947, P CAMB PHILOS SOC, V43, P50, DOI 10.1017/S0305004100023197 Cranmer SR, 2011, ASTROPHYS J, V741, DOI 10.1088/0004-637X/741/1/54 Darwin G. H., 1880, RSPT, V171, P713, DOI [10.1098/rstl.1880.0020, DOI 10.1098/RSTL.1880.0020] Deitrick R, 2018, ASTRON J, V155, DOI 10.3847/1538-3881/aac214 Deitrick R, 2018, ASTRON J, V155, DOI 10.3847/1538-3881/aaa301 DONAHUE TM, 1982, SCIENCE, V216, P630, DOI 10.1126/science.216.4546.630 Doyle LR, 2011, SCIENCE, V333, P1602, DOI 10.1126/science.1210923 Driscoll P, 2014, PHYS EARTH PLANET IN, V236, P36, DOI 10.1016/j.pepi.2014.08.004 Driscoll PE, 2015, ASTROBIOLOGY, V15, P739, DOI 10.1089/ast.2015.1325 Driscoll P, 2011, ICARUS, V213, P12, DOI 10.1016/j.icarus.2011.02.010 DUNCAN M, 1987, ASTRON J, V94, P1330, DOI 10.1086/114571 DZIEWONSKI AM, 1981, PHYS EARTH PLANET IN, V25, P297, DOI 10.1016/0031-9201(81)90046-7 Efroimsky M, 2009, CELEST MECH DYN ASTR, V104, P257, DOI 10.1007/s10569-009-9204-7 Elkins-Tanton LT, 2008, EARTH PLANET SC LETT, V271, P181, DOI 10.1016/j.epsl.2008.03.062 Elkins-Tanton LT, 2012, ANNU REV EARTH PL SC, V40, P113, DOI 10.1146/annurev-earth-042711-105503 Ellis KM, 2000, ICARUS, V147, P129, DOI 10.1006/icar.2000.6399 Erkaev NV, 2007, ASTRON ASTROPHYS, V472, P329, DOI 10.1051/0004-6361:20066929 Fabrycky DC, 2007, ASTROPHYS J, V665, P754, DOI 10.1086/519075 Ferraz-Mello S, 2008, CELEST MECH DYN ASTR, V101, P171, DOI 10.1007/s10569-008-9133-x Fleming DP, 2019, ASTROPHYS J, V881, DOI 10.3847/1538-4357/ab2ed2 Fleming DP, 2018, ASTROPHYS J, V858, DOI 10.3847/1538-4357/aabd38 Garcia-Sanchez J, 2001, ASTRON ASTROPHYS, V379, P634, DOI 10.1051/0004-6361:20011330 Gillmann C, 2009, EARTH PLANET SC LETT, V286, P503, DOI 10.1016/j.epsl.2009.07.016 Gillon M, 2017, NATURE, V542, P456, DOI 10.1038/nature21360 Gillon M, 2016, NATURE, V533, P221, DOI 10.1038/nature17448 Gladman B, 1996, ICARUS, V122, P166, DOI 10.1006/icar.1996.0117 GLEN JW, 1958, NATURE, V182, P1560, DOI 10.1038/1821560a0 GOLDREIC.P, 1966, ASTRON J, V71, P1, DOI 10.1086/109844 GOLDREICH P, 1966, ICARUS, V5, P375, DOI 10.1016/0019-1035(66)90051-0 Gomi H, 2013, PHYS EARTH PLANET IN, V224, P88, DOI 10.1016/j.pepi.2013.07.010 Goni MFS, 2019, EARTH PLANET SC LETT, V511, P117, DOI 10.1016/j.epsl.2019.01.032 Greenberg R, 2009, ASTROPHYS J LETT, V698, pL42, DOI 10.1088/0004-637X/698/1/L42 HEISLER J, 1986, ICARUS, V65, P13, DOI 10.1016/0019-1035(86)90060-6 HEISLER J, 1987, ICARUS, V70, P269, DOI 10.1016/0019-1035(87)90135-7 Heller R, 2011, ASTRON ASTROPHYS, V528, DOI 10.1051/0004-6361/201015809 Henning WG, 2009, ASTROPHYS J, V707, P1000, DOI 10.1088/0004-637X/707/2/1000 Hirschmann MM, 2000, GEOCHEM GEOPHY GEOSY, V1, DOI 10.1029/2000GC000070 Howard L. N., 1966, APPL MECH, P1109, DOI DOI 10.1007/978-3-662-29364-5_147 Hubbard W. B., 1984, PLANETARY INTERIORS HUBBARD WB, 1978, ICARUS, V33, P336, DOI 10.1016/0019-1035(78)90153-7 HUNTEN DM, 1987, ICARUS, V69, P532, DOI 10.1016/0019-1035(87)90022-4 HUNTEN DM, 1973, J ATMOS SCI, V30, P1481, DOI 10.1175/1520-0469(1973)030<1481:TEOLGF>2.0.CO;2 HUT P, 1981, ASTRON ASTROPHYS, V99, P126 Huybers P, 2008, PALEOCEANOGRAPHY, V23, DOI 10.1029/2007PA001463 Jackson AP, 2012, MON NOT R ASTRON SOC, V422, P2024, DOI 10.1111/j.1365-2966.2012.20657.x Jackson B, 2009, ASTROPHYS J, V698, P1357, DOI 10.1088/0004-637X/698/2/1357 Jackson I, 2004, J GEOPHYS RES-SOL EA, V109, DOI 10.1029/2003JB002406 JANKOWSKI DG, 1989, ICARUS, V80, P211, DOI 10.1016/0019-1035(89)90169-3 Jaupart C., 2015, TREATISE GEOPHYS, V7, P253 Jenson JW, 1996, J GEOPHYS RES-SOL EA, V101, P8717, DOI 10.1029/96JB00169 Johnson RE, 2013, ASTROPHYS J LETT, V768, DOI 10.1088/2041-8205/768/1/L4 Kaib NA, 2013, NATURE, V493, P381, DOI 10.1038/nature11780 KASTING JF, 1983, ICARUS, V53, P479, DOI 10.1016/0019-1035(83)90212-9 KASTING JF, 1984, ICARUS, V57, P335, DOI 10.1016/0019-1035(84)90122-2 KASTING JF, 1988, ICARUS, V74, P472, DOI 10.1016/0019-1035(88)90116-9 KASTING JF, 1993, ICARUS, V101, P108, DOI 10.1006/icar.1993.1010 Kenyon SJ, 2004, NATURE, V432, P598, DOI 10.1038/nature03136 KINOSHITA H, 1977, CELESTIAL MECH, V15, P277, DOI 10.1007/BF01228425 Kinoshita H., 1975, SAOSR, V364, P1 Kopparapu RK, 2013, ASTROPHYS J, V765, DOI 10.1088/0004-637X/765/2/131 Kordopatis G, 2015, MON NOT R ASTRON SOC, V447, P3526, DOI 10.1093/mnras/stu2726 Labrosse S, 2001, EARTH PLANET SC LETT, V190, P111, DOI 10.1016/S0012-821X(01)00387-9 LAMBECK K, 1977, PHILOS T R SOC A, V287, P545, DOI 10.1098/rsta.1977.0159 Lammer H, 2013, MON NOT R ASTRON SOC, V430, P1247, DOI 10.1093/mnras/sts705 Laskar J, 2004, ICARUS, V170, P343, DOI 10.1016/j.icarus.2004.04.005 LASKAR J, 1993, ASTRON ASTROPHYS, V270, P522 LASKAR J, 1986, ASTRON ASTROPHYS, V157, P59 Leconte J, 2010, ASTRON ASTROPHYS, V516, DOI 10.1051/0004-6361/201014337 Lee MH, 2006, ICARUS, V184, P573, DOI 10.1016/j.icarus.2006.04.017 Lefebre F, 2002, ANN GLACIOL-SER, V35, P391, DOI 10.3189/172756402781816889 Lehmer OR, 2017, ASTROPHYS J, V845, DOI 10.3847/1538-4357/aa8137 Leung GCK, 2013, ASTROPHYS J, V763, DOI 10.1088/0004-637X/763/2/107 Levrard B, 2007, ASTRON ASTROPHYS, V462, pL5, DOI 10.1051/0004-6361:20066487 Lincowski AP, 2018, ASTROPHYS J, V867, DOI 10.3847/1538-4357/aae36a Line MR, 2014, ASTROPHYS J, V783, DOI 10.1088/0004-637X/783/2/70 Lissauer JJ, 2007, ASTROPHYS J, V660, pL149, DOI 10.1086/518121 Lopez ED, 2018, MON NOT R ASTRON SOC, V479, P5303, DOI 10.1093/mnras/sty1707 Lopez ED, 2014, ASTROPHYS J, V792, DOI 10.1088/0004-637X/792/1/1 Lopez ED, 2013, ASTROPHYS J, V776, DOI 10.1088/0004-637X/776/1/2 Lopez ED, 2012, ASTROPHYS J, V761, DOI 10.1088/0004-637X/761/1/59 Lovett E. O, 1895, AJ, V15, P113 Luger R, 2015, ASTROBIOLOGY, V15, P119, DOI 10.1089/ast.2014.1231 Luger R, 2015, ASTROBIOLOGY, V15, P57, DOI 10.1089/ast.2014.1215 Lurie JC, 2017, ASTRON J, V154, DOI 10.3847/1538-3881/aa974d Lynch CR, 2018, MON NOT R ASTRON SOC, V478, P1763, DOI 10.1093/mnras/sty1138 Ma B, 2018, MON NOT R ASTRON SOC, V480, P2411, DOI 10.1093/mnras/sty1933 MacDonald RJ, 2019, MON NOT R ASTRON SOC, V486, P1292, DOI 10.1093/mnras/stz789 Mardling RA, 2002, ASTROPHYS J, V573, P829, DOI 10.1086/340752 Matt SP, 2019, ASTROPHYS J LETT, V870, DOI 10.3847/2041-8213/aafa1b Matt SP, 2015, ASTROPHYS J LETT, V799, DOI 10.1088/2041-8205/799/2/L23 MCKENZIE D, 1984, J PETROL, V25, P713, DOI 10.1093/petrology/25.3.713 MCKENZIE D, 1988, J PETROL, V29, P625, DOI 10.1093/petrology/29.3.625 McQuillan A, 2014, ASTROPHYS J SUPPL S, V211, DOI 10.1088/0067-0049/211/2/24 Meadows V. S., 2018, FACTORS AFFECTING EX, P57 Meadows VS, 2018, ASTROBIOLOGY, V18, P133, DOI 10.1089/ast.2016.1589 Meibom S, 2005, ASTROPHYS J, V620, P970, DOI 10.1086/427082 Minchev I, 2012, ASTRON ASTROPHYS, V548, DOI 10.1051/0004-6361/201219714 Moore WB, 2003, J GEOPHYS RES-PLANET, V108, DOI 10.1029/2002JE001943 Morbidelli A, 2018, SPACE SCI REV, V214, DOI 10.1007/s11214-018-0545-y Murray C.D., 1999, SOLAR SYSTEM DYNAMIC Murray-Clay RA, 2009, ASTROPHYS J, V693, P23, DOI 10.1088/0004-637X/693/1/23 NORTH GR, 1979, J ATMOS SCI, V36, P1189, DOI 10.1175/1520-0469(1979)036<1189:DBSAMA>2.0.CO;2 Nortmann L, 2018, SCIENCE, V362, P1388, DOI 10.1126/science.aat5348 Odert P, 2019, ARXIV190310772 Olson P, 2006, EARTH PLANET SC LETT, V250, P561, DOI 10.1016/j.epsl.2006.08.008 OREILLY TC, 1981, GEOPHYS RES LETT, V8, P313, DOI 10.1029/GL008i004p00313 Owen J. E., 2013, ARXIV13033899 Owen JE, 2017, ASTROPHYS J, V847, DOI 10.3847/1538-4357/aa890a Owen JE, 2016, MON NOT R ASTRON SOC, V459, P4088, DOI 10.1093/mnras/stw959 PARKER EN, 1964, ASTROPHYS J, V139, P72, DOI 10.1086/147740 Paterson WSB., 1994, PHYS GLACIERS, V3 PEALE SJ, 1969, ASTRON J, V74, P483, DOI 10.1086/110825 Penev K, 2018, ASTRON J, V155, DOI 10.3847/1538-3881/aaaf71 Pozzo M, 2012, NATURE, V485, P355, DOI 10.1038/nature11031 Press W. H., 1987, AM J PHYS, V55, P90, DOI [DOI 10.1119/1.14981, 10.1119/1.14981] Prsa A, 2016, ASTRON J, V152, DOI 10.3847/0004-6256/152/2/41 Rauch K P, 2002, BAAS, V34, P938 Reid IN, 2002, ASTRON J, V124, P2721, DOI 10.1086/343777 Reiners A, 2012, ASTROPHYS J, V746, DOI 10.1088/0004-637X/746/1/43 REMY F, 1985, ICARUS, V63, P1, DOI 10.1016/0019-1035(85)90016-8 Repetto S, 2014, MON NOT R ASTRON SOC, V444, P542, DOI 10.1093/mnras/stu1454 Ribas I, 2005, ASTROPHYS J, V622, P680, DOI 10.1086/427977 Rickman H, 2008, CELEST MECH DYN ASTR, V102, P111, DOI 10.1007/s10569-008-9140-y Rickman H, 2005, EARTH MOON PLANETS, V97, P411, DOI 10.1007/s11038-006-9113-7 Robertson P, 2014, SCIENCE, V345, P440, DOI [10.1126/science.1253253, 10.1126/science.1255525] Rodriguez A, 2011, MON NOT R ASTRON SOC, V415, P2349, DOI 10.1111/j.1365-2966.2011.18861.x Rokar R., 2008, APJ, V684, pL79, DOI [10.1086/592231, DOI 10.1086/592231] Rokar R., 2012, MNRAS, V426, P2089, DOI DOI 10.1111/J.1365-2966.2012.21860.X Scalo J, 2007, ASTROBIOLOGY, V7, P85, DOI 10.1089/ast.2006.0000 Schaefer L, 2016, ASTROPHYS J, V829, DOI 10.3847/0004-637X/829/2/63 Schubert G., 2002, GEODYNAMICS SEGATZ M, 1988, ICARUS, V75, P187, DOI 10.1016/0019-1035(88)90001-2 SKUMANICH A, 1972, ASTROPHYS J, V171, P565, DOI 10.1086/151310 SOLOMATOV VS, 1995, PHYS FLUIDS, V7, P266, DOI 10.1063/1.868624 Sotin C, 2007, ICARUS, V191, P337, DOI 10.1016/j.icarus.2007.04.006 Sotin C, 1999, PHYS EARTH PLANET IN, V112, P171, DOI 10.1016/S0031-9201(99)00004-7 Tian F, 2015, EARTH PLANET SC LETT, V432, P126, DOI 10.1016/j.epsl.2015.09.051 TOUMA J, 1993, SCIENCE, V259, P1294, DOI 10.1126/science.259.5099.1294 Udry S, 2007, ASTRON ASTROPHYS, V469, pL43, DOI 10.1051/0004-6361:20077612 van Dishoeck E. F., 2014, PROTOSTARS PLANETS, VVI, P835, DOI [10.2458/azu_uapress_9780816531240-ch036, DOI 10.2458/AZU_UAPRESS_9780816531240-CH036] VEEDER GJ, 1994, J GEOPHYS RES-PLANET, V99, P17095, DOI 10.1029/94JE00637 Veeder GJ, 2012, ICARUS, V219, P701, DOI 10.1016/j.icarus.2012.04.004 Volkov AN, 2013, ASTROPHYS J, V765, DOI 10.1088/0004-637X/765/2/90 Ward WR, 2004, ASTRON J, V128, P2501, DOI 10.1086/424533 WARD WR, 1991, ICARUS, V94, P160, DOI 10.1016/0019-1035(91)90146-K Ward WR, 1992, LONG TERM ORBITAL SP, P298 WARREN SG, 1979, J ATMOS SCI, V36, P1377, DOI 10.1175/1520-0469(1979)036<1377:SSAATF>2.0.CO;2 WATSON AJ, 1981, ICARUS, V48, P150, DOI 10.1016/0019-1035(81)90101-9 WILLIAMS JG, 1978, GEOPHYS RES LETT, V5, P943, DOI 10.1029/GL005i011p00943 Winn JN, 2005, ASTROPHYS J, V628, pL159, DOI 10.1086/432834 Wisdom J, 2008, ICARUS, V193, P637, DOI 10.1016/j.icarus.2007.09.002 Wright NJ, 2011, ASTROPHYS J, V743, DOI 10.1088/0004-637X/743/1/48 Wu YQ, 2002, ASTROPHYS J, V564, P1024, DOI 10.1086/324193 Yoder C.F., 1995, GLOBAL EARTH PHYS HD ZAHN JP, 1989, ASTRON ASTROPHYS, V220, P112 ZAHN JP, 1989, ASTRON ASTROPHYS, V223, P112 ZAHNLE KJ, 1986, ICARUS, V68, P462, DOI 10.1016/0019-1035(86)90051-5 ZAHNLE KJ, 1988, ICARUS, V74, P62, DOI 10.1016/0019-1035(88)90031-0 Zhang K, 2008, ICARUS, V193, P267, DOI 10.1016/j.icarus.2007.08.024 NR 194 TC 4 Z9 4 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD FEB PY 2020 VL 132 IS 1008 AR 024502 DI 10.1088/1538-3873/ab3ce8 PG 61 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA KT4TT UT WOS:000519008100001 DA 2021-04-21 ER PT J AU Glaser, C Garcia-Fernandez, D Nelles, A Alvarez-Muniz, J Barwick, SW Besson, DZ Clark, BA Connolly, A Deaconu, C de Vries, KD Hanson, JC Hokanson-Fasig, B Lahmann, R Latif, U Kleinfelder, SA Persichilli, C Pan, Y Pfendner, C Plaisier, I Seckel, D Torres, J Toscano, S van Eijndhoven, N Vieregg, A Welling, C Winchen, T Wissel, SA AF Glaser, C. Garcia-Fernandez, D. Nelles, A. Alvarez-Muniz, J. Barwick, S. W. Besson, D. Z. Clark, B. A. Connolly, A. Deaconu, C. de Vries, K. D. Hanson, J. C. Hokanson-Fasig, B. Lahmann, R. Latif, U. Kleinfelder, S. A. Persichilli, C. Pan, Y. Pfendner, C. Plaisier, I Seckel, D. Torres, J. Toscano, S. van Eijndhoven, N. Vieregg, A. Welling, C. Winchen, T. Wissel, S. A. TI NuRadioMC: simulating the radio emission of neutrinos from interaction to detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID CHERENKOV RADIATION; AIR-SHOWERS; PULSES; ICE; SCALE; MEDIA; ARRAY AB NuRadioMC is a Monte Carlo framework designed to simulate ultra-high energy neutrino detectors that rely on the radio detection method. This method exploits the radio emission generated in the electromagnetic component of a particle shower following a neutrino interaction. NuRadioMC simulates everything from the neutrino interaction in a medium, the subsequent Askaryan radio emission, the propagation of the radio signal to the detector and finally the detector response. NuRadioMC is designed as a modern, modular Python-based framework, combining flexibility in detector design with user-friendliness. It includes a state-of-the-art event generator, an improved modelling of the radio emission, a revisited approach to signal propagation and increased flexibility and precision in the detector simulation. This paper focuses on the implemented physics processes and their implications for detector design. A variety of models and parameterizations for the radio emission of neutrino-induced showers are compared and reviewed. Comprehensive examples are used to discuss the capabilities of the code and different aspects of instrumental design decisions. C1 [Glaser, C.; Barwick, S. W.; Persichilli, C.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Garcia-Fernandez, D.; Nelles, A.; Plaisier, I; Welling, C.] DESY, Platanenallee 6, D-15738 Zeuthen, Germany. [Garcia-Fernandez, D.; Nelles, A.; Plaisier, I; Welling, C.] Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Alvarez-Muniz, J.] Univ Santiago de Compostela, Dept Fis Particulas, IGFAE, Santiago De Compostela, Spain. [Besson, D. Z.; Latif, U.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Clark, B. A.; Connolly, A.; Torres, J.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Clark, B. A.; Connolly, A.; Torres, J.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Deaconu, C.; Vieregg, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [de Vries, K. D.; van Eijndhoven, N.; Winchen, T.] Vrije Univ Brussels, Brussels, Belgium. [Hanson, J. C.] Whittier Coll, Dept Phys, Whittier, CA USA. [Hokanson-Fasig, B.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Hokanson-Fasig, B.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI USA. [Kleinfelder, S. A.] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA. [Pan, Y.; Seckel, D.] Univ Delaware, Dept Phys, Newark, DE 19716 USA. [Pan, Y.; Seckel, D.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Lahmann, R.; Pfendner, C.] Otterbein Univ, Westerville, OH USA. [Toscano, S.] Univ Libre, Brussels, Belgium. [Winchen, T.] Max Planck Inst Radio Astron, Bonn, Germany. [Wissel, S. A.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. RP Glaser, C (corresponding author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. EM christian.glaser@uci.edu; daniel.garcia@desy.de; anna.nelles@desy.de RI Nelles, Anna/AAU-1193-2020; Lahmann, Robert/L-7461-2015 OI Nelles, Anna/0000-0002-1720-6350; Wissel, Stephanie/0000-0003-0569-6978; Glaser, Christian/0000-0001-5998-2553; Clark, Brian/0000-0003-4089-2245; Deaconu, Cosmin/0000-0002-4953-6397; Latif, Uzair/0000-0002-7609-1266 FU German research foundation (DFG)German Research Foundation (DFG) [GL 914/1-1, NE 2031/2-1]; Ministerio de Economia, Industria y Competitividad [FPA 2017-85114-P]; Xunta deGaliciaXunta de GaliciaEuropean Commission [ED431C 2017/07]; Feder FundsEuropean Commission; RENATA Red Nacional Tematica de Astroparticulas [FPA2015-68783-REDT]; Maria de Maeztu Unit of Excellence [MDM-2016-0692]; U.S. National Science Foundation-Physics DivisionNational Science Foundation (NSF) [NSF-1607719]; National Science FoundationNational Science Foundation (NSF) [DGE-1343012]; NSF CAREER awardNational Science Foundation (NSF)NSF - Office of the Director (OD) [28820]; NSFNational Science Foundation (NSF) [49285]; ERC-StG of the European Research Council [805486] FX This article and NuRadioMC itself would not exist without the constructive spirit of the InIceMC working group of theARAandARIANNAcollaborations. We acknowledge funding from the German research foundation (DFG) under grant GL 914/1-1 (CG) and grant NE 2031/2-1 (DGF, AN, IP, and CW). JAM is supported by Ministerio de Economia, Industria y Competitividad (FPA 2017-85114-P), Xunta deGalicia (ED431C 2017/07), Feder Funds, RENATA Red Nacional Tematica de Astroparticulas (FPA2015-68783-REDT) and Maria de Maeztu Unit of Excellence (MDM-2016-0692). We are grateful to the U.S. National Science Foundation-Office of Polar Programs, the U.S. National Science Foundation-Physics Division (grant NSF-1607719) and the U.S. Department of Energy(SWBandCP). BAC thanks the National Science Foundation for support through the Graduate Research Fellowship Program Award DGE-1343012. AC acknowledges funding from the NSF CAREER award 28820 and NSF award 49285. We acknowledge Belgian Funds for Scientific Research (FRS-FNRS and FWO) (ST and NvE), the FWO programme for International Research Infrastructure, and funds from the ERC-StG (No. 805486) of the European Research Council (KDdV). CR Aab A, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.241101 Aab A, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.092008 Aartsen MG, 2018, SCIENCE, V361, DOI 10.1126/science.aat1378 Aartsen MG, 2017, J INSTRUM, V12, DOI 10.1088/1748-0221/12/03/P03012 Aartsen MG, 2015, ASTROPHYS J, V809, DOI 10.1088/0004-637X/809/1/98 Aartsen MG, 2013, NUCL INSTRUM METH A, V711, P73, DOI 10.1016/j.nima.2013.01.054 Abreu P, 2011, NUCL INSTRUM METH A, V635, P92, DOI 10.1016/j.nima.2011.01.049 Ackermann M., 2019, ARXIV190304333 Ackermann M., 2019, ARXIV190304334 Alley R, 1988, ANN GLACIOL, V10, P1 Allison P, 2019, NUCL INSTRUM METH A, V930, P112, DOI 10.1016/j.nima.2019.01.067 Allison P, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.082003 Allison P, 2015, ASTROPART PHYS, V70, P62, DOI 10.1016/j.astropartphys.2015.04.006 Alvarez-Muniz J, 2009, ASTROPART PHYS, V32, P100, DOI 10.1016/j.astropartphys.2009.06.005 Alvarez-Muniz J, 2000, PHYS REV D, V62, DOI 10.1103/PhysRevD.62.063001 Alvarez-Muniz J, 1998, PHYS LETT B, V434, P396, DOI 10.1016/S0370-2693(98)00905-8 Alvarez-Muniz J, 2006, PHYS REV D, V74, DOI 10.1103/PhysRevD.74.023007 Alvarez-Muniz J, 2019, PHYS REV D, V99, DOI 10.1103/PhysRevD.99.069902 Alvarez-Muniz J, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.023021 Alvarez-Muniz J, 2012, ASTROPART PHYS, V35, P325, DOI 10.1016/j.astropartphys.2011.10.005 Alvarez-Muniz J, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.103003 Alvarez-Muniz J, 2010, PHYS REV D, V81, DOI 10.1103/PhysRevD.81.123009 AlvarezMuniz J, 1997, PHYS LETT B, V411, P218, DOI 10.1016/S0370-2693(97)01009-5 Amsler C., 2018, PHYS LETT B, V667 ANITA collaboration, ARXIV190311043 ANITA ANITA collaboration, 2018, PHYS REV D, V98 Anker A, 2019, ADV SPACE RES, V64, P2595, DOI 10.1016/j.asr.2019.06.016 [Anonymous], TUTORIAL [Anonymous], ONL DOC [Anonymous], SIGN PROP BAS CLASS [Anonymous], CLUST DOC [Anonymous], EV GEN SKEL [Anonymous], EX D N R AN [Anonymous], EX PULS CAL MEAS [Anonymous], EX MULT COINC ARA collaboration, 2019, ASTROPART PHYS, V108, P63, DOI [10.1016/j.astropartphys.2019.01.004, DOI 10.1016/J.ASTROPARTPHYS.2019.01.004] ARA Project, ATT MOD Argiro S, 2007, NUCL INSTRUM METH A, V580, P1485, DOI 10.1016/j.nima.2007.07.010 ASKARYAN GA, 1965, SOV PHYS JETP-USSR, V21, P658 Barwick S, 2005, J GLACIOL, V51, P231, DOI 10.3189/172756505781829467 Barwick SW, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/07/055 Barwick SW, 2015, IEEE T NUCL SCI, V62, P2202, DOI 10.1109/TNS.2015.2468182 Barwick SW, 2015, ASTROPART PHYS, V70, P12, DOI 10.1016/j.astropartphys.2015.04.002 Batista RA, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/05/038 Bellm J., ARXIV170506919 BERESINSKY VS, 1969, PHYS LETT B, VB 28, P423, DOI 10.1016/0370-2693(69)90341-4 Brent R.P., 1973, ALGORITHMS MINIMIZAT Buitink S., 2018, P ARENA 2018 CAT SIC Buniy RV, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.016003 Connolly A, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.113009 Cooper-Sarkar A, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2011)042 Deaconu C, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.043010 DeYoung T, 2007, ASTROPART PHYS, V27, P238, DOI 10.1016/j.astropartphys.2006.11.003 Dookayka K., 2011, THESIS Dunsch M., ARXIV180907740 Dutta SI, 2001, PHYS REV D, V63, DOI 10.1103/PhysRevD.63.094020 Engel Ralph, 2019, Computing and Software for Big Science, V3, DOI 10.1007/s41781-018-0013-0 Essig R., 2013, FERMILABCONF13653 Frezza F, 2015, J OPT SOC AM A, V32, P1485, DOI 10.1364/JOSAA.32.001485 Galassi M, GNU SCI LIB REFERENC Gandhi R, 1996, ASTROPART PHYS, V5, P81, DOI 10.1016/0927-6505(96)00008-4 Gandhi R, 1998, PHYS REV D, V58, P58 Garcia-Fernandez D, 2019, PHYS REV D, V99, DOI 10.1103/PhysRevD.99.063009 Garcia-Fernandez D, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.023003 Gerhardt L, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.074017 Glaser C, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-6971-5 Glaser C, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/09/024 Gottowik M, 2018, ASTROPART PHYS, V103, P87, DOI 10.1016/j.astropartphys.2018.07.004 GRAND collaboration, ARXIV181009994 GRAND GREISEN K, 1966, PHYS REV LETT, V16, P748, DOI 10.1103/PhysRevLett.16.748 Hanson JC, 2017, ASTROPART PHYS, V91, P75, DOI 10.1016/j.astropartphys.2017.03.008 Hawley RL, 2008, J GLACIOL, V54, P839, DOI 10.3189/002214308787779951 Heinze J., ARXIV190103338 Hu CY, 2012, ASTROPART PHYS, V35, P421, DOI 10.1016/j.astropartphys.2011.11.008 Huege T, 2013, AIP CONF PROC, V1535, P128, DOI 10.1063/1.4807534 IceCube Collaboration, 2017, P SCI ICRC2017, V35, P981, DOI DOI 10.22323/1.301.0981 IceCube collaboration, 2018, POS ICRC2017, V1005 James CW, 2017, EPJ WEB CONF, V135, DOI 10.1051/epjconf/201713504001 Jones E., 2001, SCIPY OPEN SOURCE SC Karle A., 2019, P 18 INT WORKSH NEUT Kleinfelder S.A., ARXIV150802460 Koehne JH, 2013, COMPUT PHYS COMMUN, V184, P2070, DOI 10.1016/j.cpc.2013.04.001 Kolundzija B, 2011, 2011 5th European Conference on Antennas and Propagation (EuCAP), P2844 Kunz K. S., 1993, FINITE DIFFERENCE TI LANDAU L, 1953, DOKL AKAD NAUK SSSR+, V92, P535 MIGDAL AB, 1956, PHYS REV, V103, P1811, DOI 10.1103/PhysRev.103.1811 Persichilli C., 2018, THESIS Schellart P, 2013, ASTRON ASTROPHYS, V560, DOI 10.1051/0004-6361/201322683 Tanabashi M, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.030001 The HDF Group, HIER DAT FORM VERS 5 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 van Vliet A., ARXIV190101899 Werner K, 2012, ASTROPART PHYS, V37, P5, DOI 10.1016/j.astropartphys.2012.07.007 Winchen T., 2017, Journal of Physics: Conference Series, V898, DOI 10.1088/1742-6596/898/3/032004 Winchen T., 2018, P ARENA 2018 CAT SIC Wissel S., 2018, P ARENA 2018 CAT SIC ZAS E, 1992, PHYS REV D, V45, P362, DOI 10.1103/PhysRevD.45.362 ZATSEPIN GT, 1966, JETP LETT-USSR, V4, P78 NR 98 TC 3 Z9 3 U1 1 U2 1 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN 31 PY 2020 VL 80 IS 2 AR 77 DI 10.1140/epjc/s10052-020-7612-8 PG 35 WC Physics, Particles & Fields SC Physics GA KL2CB UT WOS:000513235800002 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT S AU Rieger, M AF Rieger, Marcel GP IOP Publishing TI Design Pattern for Analysis Automation on Distributed Resources using Luigi Analysis Workflows SO 19TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT) CY MAR 11-15, 2019 CL Saas Fee, SWITZERLAND AB In particle physics, workflow management systems are primarily used as tailored solutions in dedicated areas such as Monte Carlo event generation. However, physicists performing data analyses are usually required to steer their individual workflows manually, which is time-consuming and often leads to undocumented relations between particular workloads. We present the Luigi Analysis Workflows (Law) Python package, which is based on the open-source pipelining tool Luigi, originally developed by Spotify. It establishes a generic design pattern for analyses of arbitrary scale and complexity, and shifts the focus from executing to defining the analysis logic. Law provides the building blocks to seamlessly integrate interchangeable remote resources without, however, limiting itself to a specific choice of infrastructure. In particular, it encourages and enables the separation of analysis algorithms on the one hand, and run locations, storage locations, and software environments on the other hand. To cope with the sophisticated demands of end-to-end HEP analyses, Law supports job execution on WLCG infrastructure (ARC, gLite) as well as on local computing clusters (HTCondor, LSF), remote file access via most common protocols through the GFAL2 library, and an environment sandboxing mechanism with support for Docker and Singularity containers. Moreover, the novel approach ultimately aims for analysis preservation out-of-the-box. Law is entirely experiment independent and developed open-source. C1 [Rieger, Marcel] CERN, Geneva, Switzerland. RP Rieger, M (corresponding author), CERN, Geneva, Switzerland. EM marcel.rieger@cern.ch CR Andreetto P, 2008, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/119/6/062007 Ayllon A. A., 2017, J PHYS C SER, V898 Boettiger Carl, 2015, ACM SIGOPS Operating Systems Review, V49, P71 CMS Collaboration, 2019, J HIGH ENERGY PHYS, V2019, P26, DOI [10.1007/JHEP03(2019)026, DOI 10.1007/JHEP03(2019)026] Cowton J, 2015, J PHYS CONF SER, V664, DOI 10.1088/1742-6596/664/3/032030 Ellert M, 2007, FUTURE GENER COMP SY, V23, P219, DOI 10.1016/j.future.2006.05.008 Free Software Foundation, 2016, GNU MAK Kurtzer GM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177459 Lumb I., 2004, GRID RESOURCE MANAGE Rieger M., 2018, LUIGI ANAL WORKFLOWS Tannenbaum T., 2002, BEOWULF CLUSTER COMP Thain D, 2005, CONCURR COMP-PRACT E, V17, P323, DOI 10.1002/cpe.938 The ATLAS Collaboration, 2005, ATLAS COMPUTING TECH The CMS Collaboration, 2005, LHC COMP GRID TECHN The CMS Collaboration, 2005, CMS COMP TECHN DES R The DPHEP Collaboration, 2012, ARXIV12054667 The Luigi Authors, 2018, LUIG DOC NR 17 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2020 VL 1525 AR 012035 DI 10.1088/1742-6596/1525/1/012035 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Multidisciplinary SC Computer Science; Physics GA BQ7XS UT WOS:000618973400035 OA Green Published, Bronze DA 2021-04-21 ER PT J AU Sadovyi, MI Riezina, OV Tryfonova, OM AF Sadovyi, Mykola, I Riezina, Olga, V Tryfonova, Olena M. TI THE USE OF COMPUTER GRAPHICS IN TEACHING PHYSICS AND TECHNICAL DISCIPLINES AT PEDAGOGICAL UNIVERSITIES SO INFORMATION TECHNOLOGIES AND LEARNING TOOLS LA Russian DT Article DE educational process; teaching physics and technical subjects; digitization; process modeling; scientific graphics; Python programming language AB The article deals with the issue on using scientific graphics during teaching physics and technical subjects in terms of digitization of the educational process in higher education institutions. We have analyzed the literature, regulatory documents disclosing the problem of digitization of Ukrainian society and European trends in digitization and emphasized the need to modernize approaches and learning tools in the modern context. The need to distinguish scientific and presentation visual aids is emphasized. In the 21st century it became a time requirement. Presentational visual aids perform the functions of direct identification of phenomena and processes. The possibilities of their research are limited. Perspectives are provided by scientific visual aids. It provides avenues for the pursuit of research and digital competences in the study of physics and technical subjects. The article substantiates the use of scientific graphics in the educational process of physics and technical subjects. The advantages of Python programming language are outlined. It is considered as a means of creating scientific graphics. Python is a popular language among the scientific community. It is clear and concise. This provides an advantage for laboratory programming, which is done by a researcher, not a professional programmer. This language is supported by all major operating systems, is free, has a simple syntax that makes it easy to learn and read programs. The article discusses several tasks that we consider appropriate to offer students to perform computer simulations using the Python programming language and its NumPy and Matplotlib modules. The detailed progress of the solution of the problem is given, code snippets are offered. The ability to change one or more parameters is emphasized. This improves not only the programming skills but also the understanding of the physical and technical content of the solution of the task. The implementation of the developed methodology has shown its effectiveness during the educational process in physics and technical subjects. This is confirmed by the positive dynamics of the quality of students' knowledge. C1 [Sadovyi, Mykola, I] Volodymyr Vynnychenko Cent Ukrainian State Pedag, Dept Theory & Methods Technol Preparat Labour & H, Kropyvnytskyi, Ukraine. [Riezina, Olga, V] Volodymyr Vynnychenko Cent Ukrainian State Pedag, Dept Comp Studies & Technol, Kropyvnytskyi, Ukraine. [Tryfonova, Olena M.] Volodymyr Vynnychenko Cent Ukrainian State Pedag, Dept Nat Sci & Their Teaching Methods, Kropyvnytskyi, Ukraine. RP Sadovyi, MI (corresponding author), Volodymyr Vynnychenko Cent Ukrainian State Pedag, Dept Theory & Methods Technol Preparat Labour & H, Kropyvnytskyi, Ukraine. EM smikdpu@i.ua; olga.riezina@gmail.com; olenatrifonova82@gmail.com RI Riezina, Olga/AAI-8785-2021 CR Averbukh V.L., SCI VISUALIZATION, V11, P1, DOI [10.26583/sv.11.3.01, DOI 10.26583/SV.11.3.01] Ayer VM, 2014, POWDER DIFFR, V29, pS48, DOI 10.1017/S0885715614000931 Binder JM, 2017, SOFTWAREX, V6, P85, DOI 10.1016/j.softx.2017.02.001 Blakeney C., 2017, B AM PHYS SOC, V62 Bykov VY, 2019, INF TECHNOL LEARN TO, V74, P1 Kalapusha L.R., 2007, COMPUTER SIMULATION Khomutenko MV, 2015, INF TECHNOL LEARN TO, V45, P78, DOI 10.33407/itlt.v45i1.1191 Kinder J. M., 2016, STUDENTS GUIDE PYTHO Kulikova N.V., NAUCHNAYA VIZUALIZAT, V10, P102, DOI [10.26583/sv.10.5.07, DOI 10.26583/SV.10.5.07] Pilyugin V.V., SCI VISUALIZATION, V11, P46, DOI [10.26583/sv.11.5.05, DOI 10.26583/SV.11.5.05] Plaskura P, 2019, INF TECHNOL LEARN TO, V71, P1 Ramskyy Yu.C., 2008, NAUKOVYY CHASOPYS 2, P93 Sadovyi M.I., 2019, CLOUD ORIENTED ED EN Scopatz A., EFFECTIVE COMPUTATIO Shabanov P.A., SCI GRAPHICS PYTHON Somenko D.V., 2015, THESIS Teplytskyy I.O., 2004, TEORIYA TA METODYKA, V4, P414 Tryfonova O.M., 2009, THESIS Vovkotrub V.P., 2011, SELECTED PROBLEMS PH Zhaldak M. I., 2013, PROBLEMS INFORM ED P, V3, P8 NR 20 TC 0 Z9 0 U1 2 U2 2 PU NATL ACAD PEDAGOGICAL SCIENCES UKRAINE, INST INFO TECHNOL & LEARNING TOOLS PI KYIV PA VUL M BERLYNSKOHO 9, KYIV, 04060, UKRAINE SN 2076-8184 J9 INF TECHNOL LEARN TO JI Inf. Technol. Learn. Tools PY 2020 VL 80 IS 6 BP 188 EP 206 DI 10.33407/itlt.v80i6.3740 PG 19 WC Education & Educational Research SC Education & Educational Research GA PO2LE UT WOS:000605000400012 OA DOAJ Gold DA 2021-04-21 ER PT J AU Sun, TX Meng, XY Cao, JF Wang, Y Guo, Z Wang, ZJ Liu, HG Zhang, XZ Tai, RZ AF Sun, Tianxiao Meng, Xiangyu Cao, Jiefeng Wang, Yong Guo, Zhi Wang, Zhijun Liu, Haigang Zhang, Xiangzhi Tai, Renzhong TI A portable data-collection system for soft x-ray absorption spectroscopy in the Shanghai Synchrotron Radiation Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID XAFS; TEMPERATURE AB Based on the Experimental Physics and Industrial Control System, a portable data-collection system for soft x-ray absorption spectroscopy has been developed at the BL02B and BL08U beamlines of the Shanghai Synchrotron Radiation Facility. The data-collection system can be used to carry out total electron yield (TEY) and total fluorescence yield (TFY) experiments simultaneously. The hardware consists of current preamplifiers, voltage-to-frequency converters, and a multi-channel counter, which are aimed at improving the signal-to-noise ratio. The control logic is developed using Python and Java. The novelty of this control system is its designed portability while being extensible and readable and having low noise and high real-time capabilities. The oxygen K-edge absorption spectra of SrTiO3 were obtained using the TEY and TFY technology at the BL02B beamline. Furthermore, the TEY and TFY spectra of the relaxor ferroelectric single-crystal of lead magnesium niobate-lead titanate measured by the present data-collection system have lower peak-to-peak noise amplitude than the ones measured by using a picoammeter. The experimental results show that the spectral signal-to-noise ratio recorded by the present system is 5.7-12.4 dB higher than that with the picoammeter detector. C1 [Sun, Tianxiao; Meng, Xiangyu; Cao, Jiefeng; Wang, Yong; Guo, Zhi; Wang, Zhijun; Liu, Haigang; Zhang, Xiangzhi; Tai, Renzhong] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Sun, Tianxiao; Meng, Xiangyu; Cao, Jiefeng; Wang, Yong; Guo, Zhi; Wang, Zhijun; Liu, Haigang; Zhang, Xiangzhi; Tai, Renzhong] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201210, Peoples R China. [Sun, Tianxiao] Univ Chinese Acad Sci, Beijing 200049, Peoples R China. RP Meng, XY (corresponding author), Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.; Meng, XY (corresponding author), Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201210, Peoples R China. EM mengxiangyu@zjlab.org.cn; caojiefeng@zjlab.org.cn; zhangxiangzhi@zjlab.org.cn FU National Key Research and Development Program [2016YFB0700402, 2017YFA0403401]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11705272, 11875314, U1632268, 51571208] FX This work was financially supported by the National Key Research and Development Program (Grant Nos. 2016YFB0700402 and 2017YFA0403401) and the National Natural Science Foundation of China (Grant Nos. 11705272, 11875314, U1632268, and 51571208). CR Abe H, 2018, J SYNCHROTRON RADIAT, V25, P972, DOI 10.1107/S1600577518006021 Akiyama D, 2019, J NUCL MATER, V520, P27, DOI 10.1016/j.jnucmat.2019.03.055 Annamaria K., 2019, ENVIRON SCI TECHNOL, V53, P6877, DOI [10.1021/acs.est.8b06952, DOI 10.1021/ACS.EST.8B06952] Elena F., 2018, J SYNCHROTRON RADIAT, V25, P232, DOI [10.1107/s1600577517016253, DOI 10.1107/S1600577517016253] Gursoy D, 2014, J SYNCHROTRON RADIAT, V21, P1188, DOI 10.1107/S1600577514013939 Guo Z, 2017, J SYNCHROTRON RADIAT, V24, P877, DOI 10.1107/S1600577517006087 Himpsel FJ, 2011, PHYS STATUS SOLIDI B, V248, P292, DOI 10.1002/pssb.201046212 Isomura N, 2019, J SYNCHROTRON RADIAT, V26, P462, DOI 10.1107/S1600577519001504 KRAUSE MO, 1979, J PHYS CHEM REF DATA, V8, P307, DOI 10.1063/1.555594 Liu HG, 2019, REV SCI INSTRUM, V90, DOI 10.1063/1.5080760 Liu XS, 2014, ADV MATER, V26, P7710, DOI 10.1002/adma.201304676 Lu RY, 2016, NUCL SCI TECH, V27, DOI 10.1007/s41365-016-0084-8 Luo JJ, 2019, J HAZARD MATER, V376, P21, DOI 10.1016/j.jhazmat.2019.05.012 Mangold S, 2018, J SYNCHROTRON RADIAT, V25, P960, DOI 10.1107/S1600577518007518 Martensson N, 2013, J PHYS CONF SER, V430, DOI 10.1088/1742-6596/430/1/012131 Meng XY, 2019, J SYNCHROTRON RADIAT, V26, P543, DOI 10.1107/S1600577518018179 Mooney TM, 2000, AIP CONF PROC, V521, P322 Niibe M, 2013, J PHYS CONF SER, V425, DOI 10.1088/1742-6596/425/13/132008 Tomson NC, 2015, CHEM SCI, V6, P2474, DOI 10.1039/c4sc03294b Xiao QF, 2017, J SYNCHROTRON RADIAT, V24, P333, DOI 10.1107/S1600577516017604 Zhang LJ, 2015, NUCL SCI TECH, V26 Zheng L, 2014, SPECTROCHIM ACTA B, V101, P1, DOI 10.1016/j.sab.2014.07.006 NR 22 TC 0 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JAN 1 PY 2020 VL 91 IS 1 AR 014709 DI 10.1063/1.5128054 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA PK6QL UT WOS:000602566800002 PM 32012623 DA 2021-04-21 ER PT S AU Nayak, AK Hagishima, A AF Nayak, Ajaya Ketan Hagishima, Aya BE Kurnitski, J Kalamees, T TI Modification of building energy simulation tool TRNSYS for modelling nonlinear heat and moisture transfer phenomena by TRNSYS/MATLAB integration SO 12TH NORDIC SYMPOSIUM ON BUILDING PHYSICS (NSB 2020) SE E3S Web of Conferences LA English DT Proceedings Paper CT 12th Nordic Symposium on Building Physics (NSB) CY SEP 06-09, 2020 CL Tallinn, ESTONIA ID EVAPORATION; PERFORMANCE; ROOF AB Software for numerical simulation of various types of energy used in buildings, i.e. building energy simulation (BES), have become an essential tool for recent research pertaining to building physics. TRNSYS is a well-known BES used in both academia and the construction industry for a wide range of simulations, such as the design and performance evaluation of buildings and related facilities for heating, cooling, and ventilation. TRNSYS has a modular structure comprising various components, and each component is interconnected and compiled through a common interface using a FORTRAN compiler. Its modular structure enables interactions with various external numerical simulation tools, such as MATLAB, Python, and ESP-r. For ordinary simulations of building energy load using TRNSYS, the generic module Type 56 is usually recommended, which provides detailed physics modelling of building thermal behaviours based on unsteady energy conservation equations and Fourier's law for each building material. However, Type 56 explicitly depends on the transfer function method to discretise the original differential equations; therefore, it cannot model nonlinear phenomena, such as latent heat and moisture transfer between a building surface and ambient air. In other words, the current TRNSYS cannot be used to estimate the effectiveness of evaporation during cooling, which is a typical passive design method. Hence, the authors developed a MATLAB/TRNSYS integration scheme, in which TRNSYS was modified to model simultaneous heat and moisture transfer from the wet roof surface of a building. This scheme enabled TRNSYS to calculate the rate of evaporative heat and moisture transfer dynamically from the roof surface, assuming a control volume approximation of the roof surface. Finally, the effect of evaporative cooling on the thermal performance of an Indian building was estimated using the modified model. C1 [Nayak, Ajaya Ketan; Hagishima, Aya] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Dept Energy & Environm Engn, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan. [Nayak, Ajaya Ketan] Kalinga Inst Ind Technol, Sch Mech Engn, Bhubaneswar 751024, Odisha, India. RP Nayak, AK (corresponding author), Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Dept Energy & Environm Engn, 6-1 Kasuga Koen, Kasuga, Fukuoka 8168580, Japan.; Nayak, AK (corresponding author), Kalinga Inst Ind Technol, Sch Mech Engn, Bhubaneswar 751024, Odisha, India. EM ajaya.ketana@gmail.com CR [Anonymous], 2004, TRNSYS 18 DOCUMENTAT Ben Cheikh H, 2004, RENEW ENERG, V29, P1877, DOI 10.1016/j.renene.2003.12.021 Chen W, 2011, ENERG CONVERS MANAGE, V52, P2217, DOI 10.1016/j.enconman.2010.12.029 Crawley DB, 2008, BUILD ENVIRON, V43, P661, DOI 10.1016/j.buildenv.2006.10.027 Delcroix1 B., 2012, CONDUCTION TRANSFER dos Santos GH, 2013, APPL THERM ENG, V51, P25, DOI 10.1016/j.applthermaleng.2012.08.046 Fermanel F, 1999, APPL THERM ENG, V19, P1107, DOI 10.1016/S1359-4311(98)00110-0 Hagishima A, 2003, BUILD ENVIRON, V38, P873, DOI 10.1016/S0360-1323(03)00033-7 Hendel M, 2015, APPL THERM ENG, V78, P658, DOI 10.1016/j.applthermaleng.2014.11.060 Ibanez M, 2005, APPL THERM ENG, V25, P1796, DOI 10.1016/j.applthermaleng.2004.11.001 Kas O., 2008, ENERGY COMPARISON EX, V33, P1816 Klein S.A., 2004, TRNSYS, V16 Lu X, 2006, APPL THERM ENG, V26, P1901, DOI 10.1016/j.applthermaleng.2006.01.017 Nayak AK, 2020, APPL THERM ENG, V165, DOI 10.1016/j.applthermaleng.2019.114514 Purohit I, 2006, INT J AMBIENT ENERGY, V27, P193, DOI 10.1080/01430750.2006.9675398 Shah MM, 2002, HVAC&R RES, V8, P125, DOI 10.1080/10789669.2002.10391292 Spanaki A, 2014, APPL ENERG, V123, P273, DOI 10.1016/j.apenergy.2014.02.040 Stephenson D.G., 1971, ASHRAE T 2, V77, P117 TIWARI GN, 1982, ENERG CONVERS MANAGE, V22, P143, DOI 10.1016/0196-8904(82)90036-X Zingre KT, 2015, ENERGY, V82, P813, DOI 10.1016/j.energy.2015.01.092 NR 20 TC 0 Z9 0 U1 2 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2267-1242 J9 E3S WEB CONF PY 2020 VL 172 AR 25009 DI 10.1051/e3sconf/202017225009 PG 8 WC Architecture; Construction & Building Technology; Green & Sustainable Science & Technology; Engineering, Civil; Physics, Applied SC Architecture; Construction & Building Technology; Science & Technology - Other Topics; Engineering; Physics GA BQ4RB UT WOS:000594033400252 OA DOAJ Gold DA 2021-04-21 ER PT S AU Hillairet, J AF Hillairet, Julien BE Bonoli, P Pinsker, R Wang, X TI RF Network Analysis of the WEST ICRH Antenna with the Open-Source Python scikit-rf Package SO 23RD TOPICAL CONFERENCE ON RADIOFREQUENCY POWER IN PLASMAS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 23rd Topical Conference on Radiofrequency Power in Plasmas CY MAY 14-17, 2019 CL Hefei, PEOPLES R CHINA SP Chinese Acad Sci, Inst Plasma Phys, Spinner Telecommunicat Devices Co Ltd AB Scikit-rf is an open-source Python package developed for RF/Microwave engineering. The package provides a modern, object-oriented library for network analysis and calibration which is both flexible and scalable. Besides offering standard microwave network physics and operations, it is also capable of advanced operations such as interpolating between an individual set of networks or deriving network statistical properties. The package also allows direct plotting of rectangular plots, Smith Charts or automated uncertainty bounds. In this paper, the scikit-rf package is used to simulate the WEST ICRH antennas. The antenna is modelled by connecting the various elements that compose it, separately full-wave modelled. Tunable elements, such as the matching capacitors, can be either created from ideal lump components or from interpolating full-wave calculations performed at various capacitance configurations. Finally, a numerical antenna model of a WEST ICRH antenna can be used offline or online by using operating-system-level virtualization services. C1 [Hillairet, Julien] CEA, IRFM, F-13108 St Paul Les Durance, France. RP Hillairet, J (corresponding author), CEA, IRFM, F-13108 St Paul Les Durance, France. EM julien.hillairet@cea.fr CR Bussonnier Matthias, 2018, P 17 PYTH SCI C, DOI [10.25080/majora-4af1f417-011, DOI 10.25080/MAJORA-4AF1F417-011] Durodie F, 2015, AIP CONF PROC, V1689, DOI 10.1063/1.4936520 Hagberg A, 2008, 7 PYTH SCI C SCIPY20, V7, P11, DOI DOI 10.1016/J.JELECTROCARD.2010.09.003 Hallbjorner P, 2003, MICROW OPT TECHN LET, V38, P99, DOI 10.1002/mop.10983 Helou W., 2018, THESIS Helou W, 2015, AIP CONF PROC, V1689, DOI 10.1063/1.4936511 Hillairet J., 2019, JUPYTER NOTEBOOKS GI Hillairet J, 2015, AIP CONF PROC, V1689, DOI 10.1063/1.4936512 Ince DC, 2012, NATURE, V482, P485, DOI 10.1038/nature10836 Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 Millman KJ, 2011, COMPUT SCI ENG, V13, P9, DOI 10.1109/MCSE.2011.36 Murphy N. A., 2018, PLASMAPY COMMUNITY, DOI [10.5281/zenodo.1238132., DOI 10.5281/ZENODO.1238132] Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-2013-7 J9 AIP CONF PROC PY 2020 VL 2254 AR 070010 DI 10.1063/5.0013523 PG 4 WC Physics, Fluids & Plasmas SC Physics GA BQ5CL UT WOS:000598537500004 OA Bronze DA 2021-04-21 ER PT J AU Saenz, J Gurtubay, IG Izaola, Z Lopez, GA AF Saenz, Jon Gurtubay, Idoia G. Izaola, Zunbeltz Lopez, Gabriel A. TI pygiftgenerator: a python module designed to prepare Moodle-based quizzes SO EUROPEAN JOURNAL OF PHYSICS LA English DT Article DE STEM; physics; active learning; Moodle; formative evaluation ID PHYSICS; STUDENTS AB We present pygiftgenerator, a python module for systematically preparing a large number of numerical and multiple-choice questions for Moodle-based quizzes oriented to students' formative evaluation. The use of the module is illustrated by means of examples provided with the code and drawn from different topics, such as mechanics, electromagnetism, thermodynamics and modern physics. The fact that pygiftgenerator relies on a well-established computer language, which allows functions to be combined and reused in order to solve complex problems, makes it a very robust tool. Simply by changing the input parameters, a large question bank with solutions to complex physical problems, can be generated. Thus, it is a powerful alternative to the calculated and multiple-choice questions which can be written directly in the Moodle platform. The module writes questions to be imported into Moodle and produces simple and human-readable ASCII output using the GIFT format, which enables html definitions for URLs for importing figures, or for simple text formatting (sub/superindices or Greek letters) for equations and units. This format also allows LaTeX and MathJax typing for complex equations. C1 [Saenz, Jon; Lopez, Gabriel A.] Univ Basque Country, UPV EHU, Dept Appl Phys 2, Leioa, Spain. [Gurtubay, Idoia G.] Univ Basque Country, UPV EHU, Dept Condensed Matter Phys, Leioa 48940, Spain. [Izaola, Zunbeltz] Inst Maquina Herramienta IMH, Escuela Univ Ingn Dual, Azkue Auzoa 1, Elgoibar, Spain. RP Saenz, J (corresponding author), Univ Basque Country, UPV EHU, Dept Appl Phys 2, Leioa, Spain. EM jon.saenz@ehu.eus RI Gurtubay, Idoia/C-3899-2012; Saenz, Jon/A-7500-2011; Lopez, Gabriel A./M-7414-2013 OI Gurtubay, Idoia/0000-0002-7060-5174; Saenz, Jon/0000-0002-5920-7570; Lopez, Gabriel A./0000-0002-5429-7490 FU Spanish Government's MINECO; ERDFEuropean Commission [CGL2016-76561-R]; UPV/EHUUniversity of Basque Country [GIU17/02]; University of the Basque Country UPV/EHUUniversity of Basque Country [GIU18/138] FX JS acknowledges support by the Spanish Government's MINECO grant and ERDF (Grant No. CGL2016-76561-R) and the UPV/EHU (Grant No. GIU17/02). IG acknowledges the University of the Basque Country UPV/EHU (Grant No. GIU18/138) for financial support. CR [Anonymous], 2020, GIFT FORMAT MOODLEDO [Anonymous], 2015, ECTS US GUID [Anonymous], 2018, MOODLE PROJECT MOODL [Anonymous], 2020, MOODLE PROJECT Borondo J, 2014, EUR J ENG EDUC, V39, P496, DOI 10.1080/03043797.2013.874980 Broadbent J, 2018, ETR&D-EDUC TECH RES, V66, P1435, DOI 10.1007/s11423-018-9595-9 CLARK RE, 1994, ETR&D-EDUC TECH RES, V42, P21, DOI 10.1007/BF02299088 Corrigan-Gibbs H, 2015, ACM T COMPUT-HUM INT, V22, DOI 10.1145/2810239 European Commission/EACEA/Eurydice, 2015, EUR HIGH ED AR BOL P Freeman S, 2014, P NATL ACAD SCI USA, V111, P8410, DOI 10.1073/pnas.1319030111 Gamage SHPW, 2019, INT J STEM EDUC, V6, DOI 10.1186/s40594-019-0181-4 Gurtubay IG, 2018, EDULEARN PROC, P5742 Gurtubay IG, 2018, INTED PROC, P5703 Gurtubay I G, 2019, 3 EUROSOTL C EXPL NE, P206 KOZMA RB, 1994, ETR&D-EDUC TECH RES, V42, P7, DOI 10.1007/BF02299087 Liagkou V, 2018, INT C DEP COMPL SYST, P338 Lopez GA, 2016, J SCI EDUC TECHNOL, V25, P575, DOI 10.1007/s10956-016-9614-8 Means B, 2010, TECHNICAL REPORT Mir-Torres A, 2009, IADIS INT C, P47 Petty G.W., 2008, 1 COURSE ATMOSPHERIC Saenz J, 2017, ICERI PROC, P5469 van Rossum G, 1995, PYTHON TUTORIAL Wallace J. M., 2006, ATMOSPHERIC SCI INTR NR 23 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0143-0807 EI 1361-6404 J9 EUR J PHYS JI Eur. J. Phys. PD JAN PY 2020 VL 42 IS 1 AR 015702 DI 10.1088/1361-6404/abb114 PG 13 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA OT3AK UT WOS:000590722200001 DA 2021-04-21 ER PT B AU Park, H DeNio, J Choi, J Lee, H AF Park, Heecheon DeNio, Joshus Choi, Jeongyun Lee, Hanku GP IEEE TI mpiPython: A Robust Python MPI Binding SO 2020 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTER TECHNOLOGIES (ICICT 2020) LA English DT Proceedings Paper CT 3rd International Conference on Information and Computer Technologies (ICICT) CY MAR 09-12, 2020 CL San Jose, CA DE Python; Message-Passing; High-Performance; Parallel Computing; Performance AB For the last two decades, Python has become one of the most popular programming languages and been used to develop and analyze data-intensive scientific and engineering applications and in the areas such as Bigdata Analytics, Social Media, Data Science, Physics, Psychology, Healthcare, Political Science, etc. Moreover, demand of supporting Python data-parallel applications for those areas is rapidly growing. There have been international efforts to produce a message passing interface for Python bindings to support parallel computing, but specific challenges still remain to improve Python bindings. The main purpose of this paper is to introduce our MPI Python binding, called mpiPython, with the MPI standard communication API. In this paper, we first will discuss the design issues of the mpiPython API, associated with its development. In the second part of the paper, we will discuss node/parallel performance to compare mpiPython to other MPI bindings on a Linux cluster and can expect mpiPython achieves quite acceptable performance. C1 [Park, Heecheon; DeNio, Joshus; Choi, Jeongyun; Lee, Hanku] Minnesota State Univ Moorhead, Comp Sci & Informat Syst, Moorhead, MN 56563 USA. RP Park, H (corresponding author), Minnesota State Univ Moorhead, Comp Sci & Informat Syst, Moorhead, MN 56563 USA. EM heecheon92@gmail.com; joshua.denio@go.mnstate.ed; jeongyun.choi@go.mnstate.edu; hanku.lee@mnstate.edu CR Baker M., 1999, INT WORKSH JAV PAR D Carpenter B., 2000, CONCURRENCY PRACTICE, V12 Carpenter B., 2001, PARALLEL PROGRAMMING Lee H.-K., 2003, P INT C PAR DISTR PR Lee H.-K., 2002, 6 WORKSH LANG COMP R Lim SB, 2008, J SUPERCOMPUT, V43, P165, DOI 10.1007/s11227-007-0125-5 NR 6 TC 1 Z9 1 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-1-7281-7283-5 PY 2020 BP 96 EP 101 DI 10.1109/ICICT50521.2020.00023 PG 6 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BQ2XL UT WOS:000582696300016 DA 2021-04-21 ER PT S AU Bhattarai, B Maharjan, M Hanif, S Cai, MM Pratt, R AF Bhattarai, Bishnu Maharjan, Manisha Hanif, Sarmad Cai, Mengmeng Pratt, Robert GP IEEE TI Transactive Electric Water Heater Agent: Design and Performance Evaluation SO 2020 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT) SE Innovative Smart Grid Technologies LA English DT Proceedings Paper CT IEEE-Power-and-Energy-Society Innovative Smart Grid Technologies Conference (ISGT) CY FEB 17-20, 2020 CL Washington, DC SP IEEE Power & Energy Soc DE Demand flexibility; distribution system; electric water heater; transactive energy system ID STRATIFICATION AB Electric water heaters (EWHs) are usually equipped with inbuilt thermostats to measure water temperature near the installed positions. Most of the existing EWHs have only two thermostats and often do not have water flow sensor installed. Estimation of state of heat energy (SOHE) inside the hot water tank, which is crucial for efficient control and operation of the EWH, under such imperfect system conditions is very challenging. This paper, therefore, designs a transactive EWH agent (TEWHA) to better estimate SOHE in presence of measurement errors and imperfect system knowledge. The TEWHA, built-in Python, approximates the EWH physics using limited measurements obtained from the ground truth GridLAB-D model. The performance of the TEWHA is validated against ground truth system for three scenarios: a) ideal condition where TEWHA has complete knowledge of the system, b) imperfect condition where TEWHA has incomplete system information, and c) noised condition where TEWHA measurements contain random errors. Finally, an optimization problem is formulated and solved to demonstrate how TEWHA could use the estimated and measured parameters for a transactive control of EWH. C1 [Bhattarai, Bishnu; Maharjan, Manisha; Hanif, Sarmad; Pratt, Robert] Pacific Northwest Natl Lab, Elect Infrasruct Grp, Richland, WA 99354 USA. [Cai, Mengmeng] Virginia Tech, Blacksburg, VA USA. RP Bhattarai, B (corresponding author), Pacific Northwest Natl Lab, Elect Infrasruct Grp, Richland, WA 99354 USA. FU PNNL; U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC05-76RL01830] FX This research is supported by PNNL with funding from the U.S. Department of Energy under contract No. DE-AC05-76RL01830. CR Bhattarai B. P., 2016, IEEE PES GEN M, P1 Han YM, 2009, RENEW SUST ENERG REV, V13, P1014, DOI 10.1016/j.rser.2008.03.001 Hao H, 2018, IEEE T SMART GRID, V9, P4335, DOI 10.1109/TSG.2017.2655083 Hawlader M. N. A., 1988, International Journal of Solar Energy, V6, P119, DOI 10.1080/01425918808914224 Healy WM, 2008, ASHRAE TRAN, V114, P85 Koch S., 2012, TECH REP Kondoh J., 2011, POW EN SOC GEN M 201, P1, DOI DOI 10.1109/PES.2011.6039149 Nel P., 2016, IEEE T SMART GRID, V9, P48 Recktenwald G., 2011, TECH REP Svalstedt C., 2016, LOAD FLEXIBILITY HOU Xu ZJ, 2014, IEEE T SMART GRID, V5, P2203, DOI 10.1109/TSG.2014.2317149 NR 11 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2167-9665 BN 978-1-7281-3103-0 J9 INNOV SMART GRID TEC PY 2020 PG 5 WC Computer Science, Artificial Intelligence; Energy & Fuels; Engineering, Electrical & Electronic SC Computer Science; Energy & Fuels; Engineering GA BQ1WX UT WOS:000578005500006 DA 2021-04-21 ER PT S AU Ferigo, D Traversaro, S Metta, G Pucci, D AF Ferigo, Diego Traversaro, Silvio Metta, Giorgio Pucci, Daniele GP IEEE TI Gym-Ignition: Reproducible Robotic Simulations for Reinforcement Learning SO 2020 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII) SE IEEE/SICE International Symposium on System Integration LA English DT Proceedings Paper CT IEEE/SICE International Symposium on System Integration (SII) CY JAN 12-15, 2020 CL Honolulu, HI SP IEEE, SICE AB This paper presents Gym-Ignition, a new framework to create reproducible robotic environments for reinforcement learning research. It interfaces with the new generation of Gazebo, part of the Ignition Robotics suite, which provides three main improvements for reinforcement learning applications compared to the alternatives: 1) the modular architecture enables using the simulator as a 0, library, simplifying the interconnection with external software; 2) multiple physics and rendering engines are supported as plugins, simplifying their selection during the execution; 3) the new distributed simulation capability allows simulating complex scenarios while sharing the load on multiple workers and machines. The core of Gym-Ignition is a component that contains the Ignition Gazebo simulator and exposes a simple interface for its configuration and execution. We provide a Python package that allows developers to create robotic environments simulated in Ignition Gazebo. Environments expose the common OpenAI Gym interface, making them compatible out-of-the-box with third-party frameworks containing reinforcement learning algorithms. Simulations can be executed in both headless and GUI mode, the physics engine can run in accelerated mode, and instances can be parallelized. Furthermore, the Gym-Ignition software architecture provides abstraction of the Robot and the Task, making environments agnostic on the specific runtime. This abstraction allows their execution also in a real-time setting on actual robotic platforms, even if driven by different middlewares. C1 [Ferigo, Diego; Traversaro, Silvio; Metta, Giorgio; Pucci, Daniele] Ist Italiano Tecnol, Dynam Interact Control, I-16163 Genoa, Italy. [Ferigo, Diego] Univ Manchester, Machine Learning & Optimisat, Manchester M13 9PL, Lancs, England. RP Ferigo, D (corresponding author), Ist Italiano Tecnol, Dynam Interact Control, I-16163 Genoa, Italy.; Ferigo, D (corresponding author), Univ Manchester, Machine Learning & Optimisat, Manchester M13 9PL, Lancs, England. EM diego.ferigo@iit.it; silvio.traversaro@iit.it; giorgio.metta@iit.it; daniele.pucci@iit.it RI Traversaro, Silvio/M-6862-2019 OI Traversaro, Silvio/0000-0002-9283-6133 FU European UnionEuropean Commission [731540] FX This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 731540 (An.Dy). CR Andrychowicz M., 2018, ARXIV180800177 Beattie C, 2016, ARXIV161203801 Beazley D. M., 1996, TCL TK WORKSH Bellemare M. G., 2013, J ARTIFICIAL INTELLI Brockman G., 2016, ARXIV160601540 Chebotar Y., 2018, ARXIV181005687 Christiano P., 2016, ARXIV161003518 Coumans E., 2016, PYBULLET PYTHON MODU Delhaisse B., 2019, PYROBOLEARN PYTHON F, P11 Dulac-Arnold G., 2019, ARXIV190412901 Erez T., 2015, SIMULATION TOOLS MOD Hwangbo J, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aau5872 Hwangbo J, 2018, IEEE ROBOT AUTOM LET, V3, P895, DOI 10.1109/LRA.2018.2792536 Ivaldi S., 2014, IEEE RAS INT C HUM R Jain D., 2019, ARXIV190508926 Jeong R., 2019, ARXIV191009471 Juliani A., 2018, UNITY GEN PLATFORM I Koenig N., 2004, DESIGN USE PARADIGMS Krammer M., 2019, 13 INT MOD C FEB Lee Jeongseok, 2018, J OPEN SOURCE SOFTWA Li T., 2019, ICRA Liang J., 2018, ARXIV181005762 Lopez NG, 2019, GYM GAZEBO2 TOOLKIT Muratore F., 2019, ARXIV190704685 Parker S. G., 2010, OPTIX GEN PURPOSE RA Peng XB, 2018, IEEE INT CONF ROBOT, P3803, DOI 10.1109/ICCABS.2018.8541936 Ramos F., 2019, ARXIV190601728 Tan J., 2018, ARXIV180410332 Tassa Y, 2018, ARXIV180100690 Todorov E., 2012, MUJOCO PHYS ENGINE M Xia F., 2018, IEEE CVF C COMP VIS Xie Z., 2019, ITERATIVE REINFORCEM NR 32 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2474-2317 BN 978-1-7281-6667-4 J9 IEEE/SICE I S SYS IN PY 2020 BP 885 EP 890 PG 6 WC Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BP8HN UT WOS:000565648500155 DA 2021-04-21 ER PT S AU Baltanas, SF Ruiz-Sarmiento, JR Gonzalez-Jimenez, J AF Baltanas, Samuel-Felipe Ruiz-Sarmiento, Jose-Raul Gonzalez-Jimenez, Javier BE Chova, LG Martinez, AL Torres, IC TI EMPOWERING MOBILE ROBOTICS UNDERGRADUATE COURSES BY USING JUPYTER NOTEBOOKS SO 14TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE (INTED2020) SE INTED Proceedings LA English DT Proceedings Paper CT 14th International Technology, Education and Development Conference (INTED) CY MAR 02-04, 2020 CL Valencia, SPAIN DE Mobile robotics courses; undergraduate courses; Jupyter Notebook; pedagogical material ID HOME; LOCALIZATION AB Mobile robotics has surged in popularity with the emergence of applications for commercial and industrial use such as autonomous cars, drones, or warehouse robots. Accordingly, new practitioners versed both in the theoretical and the practical aspects of the field are on high demand. Supporting material is key for the training of such stakeholders, especially in a multidisciplinary field such as robotics, which includes numerous and heterogeneous concepts from mathematics, statistics, physics, etc. In this regard, these complex concepts are better understood when presented in the context in which they are applied, where the environment, goals, and actions can be clearly visualized. This fact calls for modern and quality material using methodologies and tools applied to real use cases, seamlessly introducing theoretical concepts and their implementation and moving away from the traditional theory/exercise pedagogical approach. This paper presents a collection of educational Jupyter Notebooks for use in undergraduate robotics courses, which have been built from the ground up to meet these issues. First, they make use of the Python programming language, praised both for its ease of use and the breadth of its library support. It has gained particular relevancy in Computer and Data Science applications, which can be of use in a field increasingly reliant on machine learning approaches as mobile robotics. Second, they are implemented using the Jupyter Notebook technology, widely resorted to in well-known online learning platforms such as Coursera or Udacity. Jupyter Notebooks permit us to combine at the same place theoretical explanations through text, images, mathematical equations, videos and/or links to additional resources, as well as executable code, this way producing comprehensive and contextualized material that incorporates the interactivity, dynamic visualizations and possibilities of an application. The notebooks provide a broad view of the robotics field, with a particular emphasis on mobile robotics, as they cover aspects like: probability bases, robot motion, sensing, localization, mapping, or motion planning. The developed notebooks are meant to be an engaging tool for mobile robotics lecturers, students and practitioners seeking to enhance their knowledge basis. Currently they are being used in undergraduate courses at the University of Malaga (Spain) with promising results. The student version (without solutions) of the presented notebooks is publicly available at https://github.com/jotaraul/jupyter-notebooks-for-robotics-courses, while the complete version can be requested individually by any interested lecturer. This learning tool welcome any contribution from the mobile robotics community. C1 [Baltanas, Samuel-Felipe; Ruiz-Sarmiento, Jose-Raul; Gonzalez-Jimenez, Javier] Univ Malaga, Machine Percept & Intelligent Robot Grp, Syst Engn & Auto Dept, Inst Invest Biomed Malaga IBIMA, Malaga, Spain. RP Baltanas, SF (corresponding author), Univ Malaga, Machine Percept & Intelligent Robot Grp, Syst Engn & Auto Dept, Inst Invest Biomed Malaga IBIMA, Malaga, Spain. RI Gonzalez-Jimenez, Javier/D-5774-2011 OI Gonzalez-Jimenez, Javier/0000-0003-3845-3497 FU WISER project [DPI2014-55826-R]; Spanish Ministry of Economy, Industry and Competitiveness; I-PPIT-UMA program; University of Malaga; Innovative Education Project [PIE19-165] FX Work partially funded by the WISER project ([DPI2014-55826-R]), financed by the Spanish Ministry of Economy, Industry and Competitiveness, by a postdoc contract from the I-PPIT-UMA program, financed by the University of Malaga, and by the Innovative Education Project PIE19-165 financed by the same university. CR Bogue R, 2016, IND ROBOT, V43, P583, DOI 10.1108/IR-07-2016-0194 Cadena C, 2016, IEEE T ROBOT, V32, P1309, DOI 10.1109/TRO.2016.2624754 Fernandez-Madrigal J.-A., 2012, IGI GLOBAL Gonzalez-Jimenez J., 2012, 2012 IEEE RO MAN 21 Gunther M, 2018, ROBOT AUTON SYST, V110, P12, DOI 10.1016/j.robot.2018.08.016 Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 LaValle S. M, 2006, PLANNING ALGORITHMS Orlandini A, 2016, PRESENCE-TELEOP VIRT, V25, P204, DOI 10.1162/PRES_a_00262 Perez F., 2015, PROJECT JUPYTER COMP, V11, P108 Python Software Foundation, 2018, PYTH LANG REF VERS 3 Quigley M, 2009, IEEE INT CONF ROBOT, P3604 Restas A., 2015, WORLD J ENG TECHNOLO, V3, P316, DOI [10.4236/wjet.2015.33C047, DOI 10.4236/WJET.2015.33C047] Ruiz-Sarmiento JR, 2019, INTED PROC, P3321 Ruiz-Sarmiento JR, 2017, INTED PROC, P3803 Ruiz-Sarmiento JR, 2017, INT J ROBOT RES, V36, P131, DOI 10.1177/0278364917695640 Ruiz-Sarmiento JR, 2017, KNOWL-BASED SYST, V119, P257, DOI 10.1016/j.knosys.2016.12.016 Song GM, 2009, IEEE T CONSUM ELECTR, V55, P2034, DOI 10.1109/TCE.2009.5373766 Thrun S, 2002, COMMUN ACM, V45, P52 TIOBE Index, 2019, TIOB SOFTW QUAL CO Vaussard F, 2014, ROBOT AUTON SYST, V62, P376, DOI 10.1016/j.robot.2013.09.014 Vazquez-Fernandez E, 2013, IET BIOMETRICS, V2, P10, DOI 10.1049/iet-bmt.2011.0006 Younes G, 2017, ROBOT AUTON SYST, V98, P67, DOI 10.1016/j.robot.2017.09.010 Zuniga-Noel D, 2019, IEEE ROBOT AUTOM LET, V4, P2862, DOI 10.1109/LRA.2019.2922618 NR 23 TC 0 Z9 0 U1 0 U2 0 PU IATED-INT ASSOC TECHNOLOGY EDUCATION & DEVELOPMENT PI VALENICA PA LAURI VOLPI 6, VALENICA, BURJASSOT 46100, SPAIN SN 2340-1079 BN 978-84-09-17939-8 J9 INTED PROC PY 2020 BP 5859 EP 5868 PG 10 WC Education & Educational Research SC Education & Educational Research GA BP5RO UT WOS:000558088805147 DA 2021-04-21 ER PT J AU Stansbury, C Lanzara, A AF Stansbury, Conrad Lanzara, Alessandra TI PyARPES: An analysis framework for multimodal angle-resolved photoemission spectroscopies SO SOFTWAREX LA English DT Article DE ARPES; NanoARPES; Pump-probe ARPES; Photoemission; Python; Qt; Jupyter ID ELECTRON; SOFTWARE; SURFACE AB The advent of higher resolution and throughput photoemission spectroscopy experiments has made angle-resolved photoemission spectroscopy (ARPES) a critical tool for the study of quantum materials. The simultaneous development of novel ARPES techniques, including nano/mu-ARPES, spin-resolved ARPES, and pump-probe ARPES mirrors the expansion in scanning modes for scanning tunneling microscopy, which made scanning probe methods the gold standard for driving insights into surface physics. In this paper, we introduce PyARPES, an open source and modular data analysis framework for angle-resolved photoemission spectroscopies. We highlight PyARPES' current capabilities for the analysis of the large photoemission datasets created by nano-ARPES and pump-probe ARPES experiments, show how PyARPES fulfills current data analysis needs for ARPES analysis, and discuss prospects for the future of analysis techniques enabled by PyARPES. (C) 2020 Published by Elsevier B.V. C1 Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Stansbury, Conrad] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Stansbury, C (corresponding author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM chstan@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy, as part of the Ultrafast Materials Science ProgramUnited States Department of Energy (DOE) [DE-AC02-05CH11231, KC2203] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231, as part of the Ultrafast Materials Science Program (KC2203). CR Arango YC, 2016, SCI REP-UK, V6, DOI 10.1038/srep29493 Basham M, 2015, J SYNCHROTRON RADIAT, V22, P853, DOI 10.1107/S1600577515002283 Boschini F, 2018, NAT MATER, V17, P416, DOI 10.1038/s41563-018-0045-1 Bostwick A, 2007, NAT PHYS, V3, P36, DOI 10.1038/nphys477 Chen CY, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9585 Cilento F, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aar1998 Devereaux TP, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.117004 Graf J, 2011, NAT PHYS, V7, P805, DOI 10.1038/nphys2027 Graf J, 2010, J APPL PHYS, V107, DOI 10.1063/1.3273487 He Y, 2017, REV SCI INSTRUM, V88, DOI 10.1063/1.4993919 Larsen AH, 2017, J PHYS-CONDENS MAT, V29, DOI 10.1088/1361-648X/aa680e Horcas I, 2007, REV SCI INSTRUM, V78, DOI 10.1063/1.2432410 Hoyer S., 2017, J OPEN RES SOFTWARE, V5, P10, DOI [10.5334/jors.148, DOI 10.5334/J0RS.148] Jozwiak C, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13143 Jozwiak C, 2013, NAT PHYS, V9, P293, DOI 10.1038/nphys2572 Kaminski A, 2005, NEW J PHYS, V7, DOI 10.1088/1367-2630/7/1/098 Konnecke M, 2015, J APPL CRYSTALLOGR, V48, P301, DOI 10.1107/S1600576714027575 Kordyuk AA, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.064504 Laine RF, 2019, J PHYS D APPL PHYS, V52, DOI 10.1088/1361-6463/ab0261 Lanzara A, 2001, NATURE, V412, P510, DOI 10.1038/35087518 Lollobrigida V, 2015, J ELECTRON SPECTROSC, V205, P98, DOI 10.1016/j.elspec.2015.09.005 Lu DH, 2012, ANNU REV CONDEN MA P, V3, P129, DOI 10.1146/annurev-conmatphys-020911-125027 Necas D, 2012, CENT EUR J PHYS, V10, P181, DOI 10.2478/s11534-011-0096-2 Ong SP, 2013, COMP MATER SCI, V68, P314, DOI 10.1016/j.commatsci.2012.10.028 Reber TJ, 2014, REV SCI INSTRUM, V85, DOI 10.1063/1.4870283 Rotenberg E, 2014, J SYNCHROTRON RADIAT, V21, P1048, DOI 10.1107/S1600577514015409 Santander-Syro AF, 2014, NAT MATER, V13, P1085, DOI [10.1038/nmat4107, 10.1038/NMAT4107] Smallwood CL, 2016, EPL-EUROPHYS LETT, V115, DOI 10.1209/0295-5075/115/27001 Sprinkle M, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.226803 van der Walt S, 2014, PEERJ, V2, DOI 10.7717/peerj.453 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Verna A, 2016, J ELECTRON SPECTROSC, V209, P14, DOI 10.1016/j.elspec.2016.03.001 Wang Z, 2016, NAT MATER, V15, P835, DOI [10.1038/nmat4623, 10.1038/NMAT4623] Zahl P, 2003, REV SCI INSTRUM, V74, P1222, DOI 10.1063/1.1540718 Zhou SY, 2007, NAT MATER, V6, P770, DOI 10.1038/nmat2003 NR 35 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2352-7110 J9 SOFTWAREX JI SoftwareX PD JAN-JUN PY 2020 VL 11 AR 100472 DI 10.1016/j.softx.2020.100472 PG 8 WC Computer Science, Software Engineering SC Computer Science GA MM1SA UT WOS:000549937400025 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Eschle, J Navarro, AP Coutinho, RS Serra, N AF Eschle, Jonas Navarro, Albert Puig Coutinho, Rafael Silva Serra, Nicola TI zfit: Scalable pythonic fitting SO SOFTWAREX LA English DT Article DE Model fitting; Data analysis; Statistical inference; Python AB Statistical modeling is a key element in many scientific fields and especially in High-Energy Physics (HEP) analysis. The standard framework to perform this task in HEP is the C++ ROOT/RooFit toolkit; with Python bindings that are only loosely integrated into the scientific Python ecosystem. In this paper, zfit, a new alternative to RooFit written in pure Python, is presented. Most of all, zfit provides a well defined high-level API and workflow for advanced model building and fitting, together with an implementation on top of TensorFlow, allowing a transparent usage of CPUs and GPUs. It is designed to be extendable in a very simple fashion, allowing the usage of cutting-edge developments from the scientific Python ecosystem in a transparent way. The main features of zfit are introduced, and its extension to data analysis, especially in the context of HEP experiments, is discussed. (C) 2020 The Authors. Published by Elsevier B.V. C1 [Eschle, Jonas; Navarro, Albert Puig; Coutinho, Rafael Silva; Serra, Nicola] Univ Zurich, Phys Inst, Zurich, Switzerland. RP Eschle, J (corresponding author), Univ Zurich, Phys Inst, Zurich, Switzerland. EM Jonas.Eschle@cern.ch; albert.puig.navarro@gmail.com; rafael.silva.coutinho@cern.ch; nicola.serra@cern.ch OI Eschle, Jonas/0000-0002-7312-3699; Silva Coutinho, Rafael/0000-0002-1545-959X FU Swiss National Science Foundation (SNF)Swiss National Science Foundation (SNSF) [168169, 174182, 182622] FX We are grateful to Anton Poluektov, Chris Burr and Igor Babuschkin for demonstrating the potential of unbinned model fitting within the context of TensorFlow, which inspired this work. We also thank the Zurich LHCb Group, Matthieu Marinangeli, Josh Bendavid, Lukas Heinrich and the HSF community, especially Scikit-HEP project members, for useful discussions. A. Puig, R. Silva Coutinho, J.Eschle and N. Serra gratefully acknowledge the support by the Swiss National Science Foundation (SNF) under contracts 168169, 174182 and 182622. CR Babuschkin I, 2019, TENSORPROB Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Dillon J. V., 2017, ARXIV171110604 JAMES F, 1975, COMPUT PHYS COMMUN, V10, P343, DOI 10.1016/0010-4655(75)90039-9 Jones E., 2001, SCIPY OPEN SOURCE SC Kingma DP, 2015, 3 INT C LEARN REPR S Martin Abadi, 2015, TENSORFLOW LARGE SCA Millman KJ, 2011, COMPUT SCI ENG, V13, P9, DOI 10.1109/MCSE.2011.36 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Poluektov A, 2018, USING TENSORFLOW AMP, DOI [10.5281/zenodo.1415412, DOI 10.5281/ZENODO.1415412] Verkerke W, 2003, ECONF C NR 11 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2352-7110 J9 SOFTWAREX JI SoftwareX PD JAN-JUN PY 2020 VL 11 AR 100508 DI 10.1016/j.softx.2020.100508 PG 6 WC Computer Science, Software Engineering SC Computer Science GA MM1TE UT WOS:000549940500003 OA DOAJ Gold, Green Accepted DA 2021-04-21 ER PT J AU Guzel, O Ozdarcan, O AF Guzel, O. Ozdarcan, O. TI PyWD2015-A new GUI for the Wilson-Devinney code SO CONTRIBUTIONS OF THE ASTRONOMICAL OBSERVATORY SKALNATE PLESO LA English DT Article DE binaries: eclipsing; methods: data analysis AB A new, modern graphical user interface (GUI) for the 2015 version of the Wilson-Devinney (WD) code is developed. PyWD2015 is written in Python 2:7 and uses the Qt4 interface framework. At its core, the GUI generates lcin and dcin files from user inputs and sends them to WD, then reads and visualises the output in a user friendly way. It also includes some useful tools for the user, which makes technical aspects of the modelling process significantly easier. While multiple sky surveys and space missions generate, reduce and categorize large amounts of observational data, it's up to dedicated studies to analyse peculiar or anomalous systems and make further progress in the field of physics of eclipsing binaries. We believe PyWD2015 will be a great dedicated study" suite for such systems. C1 [Guzel, O.; Ozdarcan, O.] Ege Univ, Fac Sci, Astron & Space Sci Dept, TR-35100 Izmir, Turkey. RP Guzel, O (corresponding author), Ege Univ, Fac Sci, Astron & Space Sci Dept, TR-35100 Izmir, Turkey. EM ozanguzel35@outlook.com RI Ozdarcan, Orkun/AAG-4552-2021 OI Ozdarcan, Orkun/0000-0003-4820-3950 CR Drilling J. S., 2000, ALLENS ASTROPHYSICAL, P381 Flower PJ, 1996, ASTROPHYS J, V469, P355, DOI 10.1086/177785 Gray DJ, 2005, PLANT DEVELOPMENT AND BIOTECHNOLOGY, P3 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Kallrath J, 2009, ASTRON ASTROPHYS LIB, P3, DOI 10.1007/978-1-4419-0699-1_1 Kopal Z., 1959, CLOSE BINARY SYSTEMS Oliphant T.E., 2015, GUIDE NUMPY POPPER DM, 1980, ANNU REV ASTRON ASTR, V18, P115, DOI 10.1146/annurev.aa.18.090180.000555 Prsa A, 2005, ASTROPHYS J, V628, P426, DOI 10.1086/430591 Tokunaga A. T., 2000, ALLENS ASTROPHYSICAL, P143 Wilson RE, 2014, ASTROPHYS J, V780, DOI 10.1088/0004-637X/780/2/151 WILSON RE, 1971, ASTROPHYS J, V166, P605, DOI 10.1086/150986 NR 12 TC 1 Z9 1 U1 0 U2 0 PU SLOVAK ACADEMY SCIENCES ASTRONOMICAL INST PI TATRANSKA LOMINICA PA SLOVAK ACADEMY SCIENCES ASTRONOMICAL INST, TATRANSKA LOMINICA, SK-059 60, SLOVAKIA SN 1335-1842 EI 1336-0337 J9 CONTRIB ASTRON OBS S JI Contrib. Astron. Obs. S. PY 2020 VL 50 IS 2 BP 535 EP 538 DI 10.31577/caosp.2020.50.2.535 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA KZ9JA UT WOS:000523574300033 OA Bronze DA 2021-04-21 ER PT J AU Becchetti, FD Damron, N Torres-Isea, RO AF Becchetti, F. D. Damron, N. Torres-Isea, R. O. TI Applications of high-speed digital pulse acquisition and software-defined electronics (SDE) in advanced nuclear teaching laboratories SO AMERICAN JOURNAL OF PHYSICS LA English DT Article ID OF-FLIGHT SETUP; NEUTRON; SCINTILLATORS; SPECTROSCOPY AB There is a new generation of high-speed programmable pulse digitizers available now from several vendors at modest cost. These digitizers in tandem with on-board or post-processing software combine to produce a Software-Defined Electronics (SDE) system that can be effectively used in several advanced physics teaching lab experiments. In particular, as we will demonstrate, they are particularly well suited for nuclear-physics related experiments, often replacing many analog electronics modules. Appropriate on-board SDE can generate full or partial integrals of the pulses, pulse-shape characterization (PSD) data, coincidence signal indication, fast timing, or other information. Likewise, external PC-based SDE post-processing software can readily be developed and applied by undergraduate students or instructors using one of several different software languages available: matlab, python, LabVIEW, root, basic, etc. As demonstrated here, an SDE-based system is a cost-effective substitute for many dedicated NIM or CAMAC electronics modules as this requires only a single digitizer module and a computer. A single digitizer with SDE is easily adapted for use in many different experiments. Applications of various high- and low-speed digitizers with SDE for many other types of physics teaching lab experiments will also be discussed. C1 [Becchetti, F. D.; Damron, N.; Torres-Isea, R. O.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Becchetti, FD (corresponding author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. FU REU [PHY 14-01242] FX This work was supported in part by REU supplement to NSF grant PHY 14-01242. This paper is based mostly on the work presented by one of us (N.D.) at the October 2018 Fall APS meeting (Ref. 42). CR [Anonymous], RX1200 DIG SPECTR [Anonymous], 1987, EXPT NUCL SCI [Anonymous], 2018, ADV LAB NOT [Anonymous], 37830 LLC TN [Anonymous], 2017, LAB MAN NUCL SCI EXP Becchetti FD, 2017, NUCL INSTRUM METH A, V874, P72, DOI 10.1016/j.nima.2017.08.034 Becchetti FD, 2016, AM J PHYS, V84, P883, DOI 10.1119/1.4964109 Becchetti FD, 2014, AM J PHYS, V82, P706, DOI 10.1119/1.4876218 Becchetti FD, 2013, AM J PHYS, V81, P112, DOI 10.1119/1.4769032 Bryan Jeff C., 2018, INTRO NUCL SCI Damron Nathan, 2018, B AM PHYS SOC, V63, P12 Das Ashok, 2003, INTRO NUCL PARTICLE DEVOIGT MJA, 1983, REV MOD PHYS, V55, P949, DOI 10.1103/RevModPhys.55.949 Di Fulvio A., 2019, COMMUNICATION Duggan Jerome L., 1988, LAB INVESTIGATIONS N Engbrecht J, 2018, AM J PHYS, V86, P549, DOI 10.1119/1.5038672 Essick John, 2019, HANDS ON INTRO LABVI FROHNER FH, 1990, NUCL SCI ENG, V106, P345 Hammer J. W., 2008, ADV PHYS LAB MANUAL Henley E. M., 2007, SUBATOMIC PHYS Katz Sidney A., 2011, EXPT NUCL SCI KNOLL G.F., 2011, RAD DETECTION MEASUR Kolumban G, 2015, ICT EXPRESS, V1, P44, DOI 10.1016/S2405-9595(15)30021-7 Krane K. S., 1988, INTRO NUCL PHYS Lavelle CM, 2018, AM J PHYS, V86, P384, DOI 10.1119/1.5026595 Leo W.R., 1994, TECHNIQUES NUCL PART Melissinos Adrian C., 2013, EXPT MODERN PHYS Peterson Randolph S., 1996, EXPT RAY SPECTROSCOP Saha GB, 2010, BASICS OF PET IMAGING: PHYSICS, CHEMISTRY AND REGULATIONS, SECOND EDITION, P1, DOI 10.1007/978-1-4419-0805-6_1 Tsoulfanidis N, 2011, MEASUREMENT DETECTIO Ward D, 2001, ADV NUCL PHYS, V26, P167 Weisshaar D, 2017, NUCL INSTRUM METH A, V847, P187, DOI 10.1016/j.nima.2016.12.001 Zaitseva NP, 2018, NUCL INSTRUM METH A, V889, P97, DOI 10.1016/j.nima.2018.01.093 NR 33 TC 0 Z9 0 U1 0 U2 3 PU AMER ASSN PHYSICS TEACHERS PI COLLEGE PK PA 5110 ROANOKE PLACE SUITE 101, COLLEGE PK, MD 20740 USA SN 0002-9505 EI 1943-2909 J9 AM J PHYS JI Am. J. Phys. PD JAN PY 2020 VL 88 IS 1 BP 70 EP 80 DI 10.1119/1.5125128 PG 11 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA KA1FE UT WOS:000505543900010 DA 2021-04-21 ER PT J AU Schneider, H AF Schneider, Howard TI The meaningful-based cognitive architecture model of schizophrenia SO COGNITIVE SYSTEMS RESEARCH LA English DT Article DE Cognitive architecture; Artificial general intelligence; Cortical minicolumns; Psychosis; Schizophrenia ID TOOL-USE; BEHAVIOR; LEVEL; SOLVE AB In subsymbolic operation of the Meaningful-Based Cognitive Architecture (MBCA) the input sensory vector is propagated through a hierarchy of Hopfield-like Network (HLN) functional groups, is recognized and may associatively trigger in the instinctual core goals module as well as in groups of HLNs arranged as pre-causal and pattern memory, vectors propagated to the output motor group of HLNs which produce an output signal. In full causal symbolic operation, the processed sensory input vector is also propagated to the logic/working memory groups of HLNs, where it can be compared to other vectors in the logic/working memory, and produce various outputs in response. The processed sensory input vector can trigger in the instinctual core goals module intuitive logic, intuitive physics, intuitive psychology and intuitive planning procedural vectors, as well as trigger in the causal group of HLNs learned logic, physics, psychology and planning procedural vectors which are also sent to the logic/working memory groups of HLNs. These circuits can allow the MBCA to act causally on information it has never seen before. An example is given of a Python simulation where the MBCA which is controlling a legged robot causally determines that a shallow whitewater river will cause water damage to itself, while if the MBCA is acting associatively only and never having seen whitewater before and normally crossing shallow rivers, will cross the whitewater river and become damaged. While the MBCA does not attempt to replicate biological systems at the neuronal spiking level, its HLNs and the organization of its HLNs are indeed inspired by biological mammalian minicolumns and mammalian brains. The MBCA model leads to the hypothesis that in the course of hominin evolution, HLNs became co-opted into groups of HLNs providing more extensive working memories with causal abilities, unlike non-hominins. While such co-option of the minicolumns can allow advantageous causal symbolic processing integrated with subsymbolic processing, the order of magnitude of increased complexity required for such organization and operation, created a vulnerability in the human brain to psychosis, which does not occur with significant prevalence in non-humans. (C) 2019 Elsevier B.V. All rights reserved. C1 [Schneider, Howard] Sheppard Clin North, Toronto, ON M2M3X4, Canada. RP Schneider, H (corresponding author), Sheppard Clin North, Toronto, ON M2M3X4, Canada. EM howard.schneider@gmail.com CR Aase I, 2018, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.00608 Albantakis L, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003966 Anderson JR, 2004, PSYCHOL REV, V111, P1036, DOI 10.1037/0033-295x.111.4.1036 Anttila V, 2018, SCIENCE, V360, P1313, DOI 10.1126/science.aap8757 Bach J, 2008, FR ART INT, V171, P63 Bechdolf A, 2012, BRIT J PSYCHIAT, V200, P22, DOI 10.1192/bjp.bp.109.066357 Benitez-Burraco A, 2017, BRAIN BEHAV EVOLUT, V89, P162, DOI 10.1159/000468506 Buxhoeveden DP, 2002, BRAIN, V125, P935, DOI 10.1093/brain/awf110 COHEN JD, 1992, PSYCHOL REV, V99, P45, DOI 10.1037/0033-295X.99.1.45 Collier M, 2018, 27 INT C ART NEUR NE Crow TJ, 2000, BRAIN RES REV, V31, P118, DOI 10.1016/S0165-0173(99)00029-6 Eliasmith C, 2014, CURR OPIN NEUROBIOL, V25, P1, DOI 10.1016/j.conb.2013.09.009 Goodfellow I, 2016, DEEP LEARNING Graves A, 2016, NATURE, V538, P471, DOI 10.1038/nature20101 Hawkins J., 2004, INTELLIGENCE Jones CA, 2011, BRIT J PHARMACOL, V164, P1162, DOI 10.1111/j.1476-5381.2011.01386.x Kilicay-Ergin N. H., 2012, IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), V42, P1231, DOI 10.1109/TSMCC.2012.2201469 KURZWEIL R, 2012, HOW TO CREATE A MIND Lake BM, 2017, BEHAV BRAIN SCI, V40, DOI 10.1017/S0140525X16001837 Langley P, 2017, P 31 AAAI C ART INT Lazaro-Gredilla M., 2017, ARXIV161102252V2 Li Shen, 2018, ARXIV180810326 Liu CX, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00389 Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236 Mountcastle VB, 1997, BRAIN, V120, P701, DOI 10.1093/brain/120.4.701 Neilands PD, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0167419 Nissani M, 2006, J EXP PSYCHOL ANIM B, V32, P91, DOI 10.1037/0097-7403.32.1.91 Pearlson GD, 2008, SCHIZOPHRENIA BULL, V34, P722, DOI 10.1093/schbul/sbm130 Polimeni J, 2003, CAN J PSYCHIAT, V48, P34 Reich D, 2010, NATURE, V468, P1053, DOI 10.1038/nature09710 Rosenbloom Paul S., 2016, Journal of Artificial General Intelligence, V7, P1, DOI 10.1515/jagi-2016-0001 Russell Stuart J, 2009, ARTIFICIAL INTELLIGE Sabaroedin K., 2018, BIOL PSYCHIAT Samsonovich AV, 2010, FRONT ARTIF INTEL AP, V221, P195, DOI 10.3233/978-1-60750-661-4-195 Sawa K, 2009, JPN PSYCHOL RES, V51, P222, DOI 10.1111/j.1468-5884.2009.00396.x Schneider H., ADV INTELLIGENT SYST, V948, DOI [10.1007/978-3-030-25719-4_61, DOI 10.1007/978-3-030-25719-4_61] Schneider H, 2018, PROCEDIA COMPUT SCI, V145, P471, DOI 10.1016/j.procs.2018.11.109 Schwalger T, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005507 Seed AM, 2009, J EXP PSYCHOL ANIM B, V35, P23, DOI 10.1037/a0012925 Simon H., 1996, SCI ARTIFICIAL Taylor AH, 2012, P ROY SOC B-BIOL SCI, V279, P4977, DOI 10.1098/rspb.2012.1998 Ullman S, 2019, SCIENCE, V363, P692, DOI 10.1126/science.aau6595 van Os J, 2001, ARCH GEN PSYCHIAT, V58, P663, DOI 10.1001/archpsyc.58.7.663 VISALBERGHI E, 1994, J COMP PSYCHOL, V108, P15, DOI 10.1037/0735-7036.108.1.15 Waismeyer A, 2015, DEVELOPMENTAL SCI, V18, P175, DOI 10.1111/desc.12208 Wente AO, 2019, CHILD DEV, V90, P859, DOI 10.1111/cdev.12943 Zhang RB, 2016, SCHIZOPHRENIA BULL, V42, P1068, DOI 10.1093/schbul/sbv221 NR 47 TC 0 Z9 0 U1 3 U2 14 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1389-0417 J9 COGN SYST RES JI Cogn. Syst. Res. PD JAN PY 2020 VL 59 BP 73 EP 90 DI 10.1016/j.cogsys.2019.09.019 PG 18 WC Computer Science, Artificial Intelligence; Neurosciences; Psychology, Experimental SC Computer Science; Neurosciences & Neurology; Psychology GA JQ3OW UT WOS:000498859500006 DA 2021-04-21 ER PT J AU Cai, XX Kittelmann, T AF Cai, X-X Kittelmann, T. TI NCrystal: A library for thermal neutron transport SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Thermal neutron scattering; Simulations; Monte Carlo; Crystals; Bragg diffraction ID CRYSTAL X-RAY; CROSS-SECTIONS; SCATTERING; RADIATION; OPTIMIZATION; SIMULATIONS; PROGRAM; VERSION AB An open source software package for modelling thermal neutron transport is presented. The code facilitates Monte Carlo-based transport simulations and focuses in the initial release on interactions in both mosaic single crystals as well as polycrystalline materials and powders. Both coherent elastic (Bragg diffraction) and incoherent or inelastic (phonon) scattering are modelled, using basic parameters of the crystal unit cell as input. Included is a data library of validated crystal definitions, standalone tools and interfaces for C++, C and Python programming languages. Interfaces for two popular simulation packages, Geant4 and McStas, are provided, enabling highly realistic simulations of typical components at neutron scattering instruments, including beam filters, monochromators, analysers, samples, and detectors. All interfaces are presented in detail, along with the end-user configuration procedure which is deliberately kept user-friendly and consistent across all interfaces. An overview of the relevant neutron scattering theory is provided, and the physics modelling capabilities of the software are discussed. Particular attention is given here to the ability to load crystal structures and form factors from various sources of input, and the results are benchmarked and validated against experimental data and existing crystallographic software. Good agreements are observed. Program summary Program Title: NCrystal Program Files doi: http://dx.doi.org/10.17632/s3rpb5d9j3.1 Licensing provisions: Apache License, Version 2.0 (for core NCrystal). Programming language: C++, C and Python External routines/libraries: Geant4, McStas Nature of problem: Thermal neutron transport in structured materials is inadequately supported in popular Monte Carlo transport applications, preventing simulations of a range of otherwise interesting setups. Solution method: Provide models for thermal neutron transport in flexible open source library, to be used standalone or as backend in existing Monte Carlo packages. Facilitate validation and work sharing by making it possible to share material configurations between supported applications. (C) 2019 The Author(s). Published by Elsevier B.V. C1 [Cai, X-X; Kittelmann, T.] European Spallat Source ERIC, Lund, Sweden. [Cai, X-X] Tech Univ Denmark, DTU Nutech, Lyngby, Denmark. RP Kittelmann, T (corresponding author), European Spallat Source ERIC, Lund, Sweden. EM thomas.kittelmann@esss.se RI Cai, Xiao-Xiao/O-3766-2018 OI Cai, Xiao-Xiao/0000-0002-9075-7052; Kittelmann, Thomas/0000-0002-7396-4922 FU European UnionEuropean Commission [676548] FX This work was supported in part by the European Union's Horizon 2020 research and innovation programme under grant agreement No 676548 (the BrightnESS project). The authors would like to thank the following colleagues for valuable contributions, testing, feedback, ideas or other support: E. Dian, G. Galgoczi, R. Hall-Wilton, K. Kanaki, M. Klausz, E. Klinkby, E. B. Knudsen, J.I. Marquez Damian, V. Maulerova, A. Morozov, V. Santoro, and P. Willendrup. CR Adib M., 2007, 6 C NUCL PART PHYS L, V642, P3954 Agostinelli S, 2003, NUCL INSTRUM METH A, V506, P250, DOI 10.1016/S0168-9002(03)01368-8 Allison J, 2006, IEEE T NUCL SCI, V53, P270, DOI 10.1109/TNS.2006.869826 Allison J, 2016, NUCL INSTRUM METH A, V835, P186, DOI 10.1016/j.nima.2016.06.125 [Anonymous], 1963, CRYSTAL STRUCTURES, Vvol. 1 Antao SM, 2009, CAN MINERAL, V47, P1245, DOI 10.3749/canmin.47.5.1245 Antao SM, 2008, CAN MINERAL, V46, P1501, DOI 10.3749/canmin.46.5.1501 Apache Software Foundation, 2004, APACHE LICENSE VERSI Bethe HA, 1935, PHYS REV, V47, P0747, DOI 10.1103/PhysRev.47.747 BINDER K, 1970, PHYS STATUS SOLIDI, V41, P767, DOI 10.1002/pssb.19700410233 Blackman D., 2018, SCRAMBLED LINEAR PSE Bohlen TT, 2014, NUCL DATA SHEETS, V120, P211, DOI 10.1016/j.nds.2014.07.049 Boin M, 2012, J PHYS CONF SER, V340, DOI 10.1088/1742-6596/340/1/012022 Boin M, 2011, J APPL CRYSTALLOGR, V44, P1040, DOI 10.1107/S0021889811025970 Boin M, 2012, J APPL CRYSTALLOGR, V45, P603, DOI 10.1107/S0021889812016056 Breit G, 1936, PHYS REV, V49, P0519, DOI 10.1103/PhysRev.49.519 Brown DA, 2018, NUCL DATA SHEETS, V148, P1, DOI 10.1016/j.nds.2018.02.001 Cai XX, 2019, J COMPUT PHYS, V380, P400, DOI 10.1016/j.jcp.2018.11.043 CASSELS JM, 1950, PROG NUCL PHYS, V1, P185 Cherkashyna N, 2014, J PHYS CONF SER, V528, DOI 10.1088/1742-6596/528/1/012013 Debye P, 1912, ANN PHYS-BERLIN, V39, P789 Dian E, 2019, J INSTRUM, V14, DOI 10.1088/1748-0221/14/01/P01021 DIAN M, 2017, ELSEV ASIA STUD SER, P1, DOI DOI 10.1109/NSSMIC.2017.8532930 Downs RT, 2003, AM MINERAL, V88, P247 Farhi E, 2014, J NEUTRON RES, V17, P5, DOI 10.3233/JNR-130001 Fermi E., 1936, Ricerca Scientifica, V7, P13 FREUND AK, 1983, NUCL INSTRUM METHODS, V213, P495, DOI 10.1016/0167-5087(83)90447-7 Galgoczi G, 2018, J INSTRUM, V13, DOI 10.1088/1748-0221/13/12/P12031 Garoby R, 2018, PHYS SCRIPTA, V93, DOI 10.1088/1402-4896/aa9bff Ghalsasi P, 2011, INORG CHEM, V50, P86, DOI 10.1021/ic101248g GLAUBER RJ, 1955, PHYS REV, V98, P1692, DOI 10.1103/PhysRev.98.1692 Goorley J.T., 2013, LAUR1322934 LOS AL N Grazulis S, 2009, J APPL CRYSTALLOGR, V42, P726, DOI 10.1107/S0021889809016690 Grosse-Kunstleve R.W., 1998, SGLNFO COMPREHENSIVE Gustafsson T, 2001, ACTA CRYSTALLOGR C, V57, P668, DOI 10.1107/S0108270101005352 Hahn T., 2002, INT TABLES CRYSTALLO HALL SR, 1991, ACTA CRYSTALLOGR A, V47, P655, DOI 10.1107/S010876739101067X HAZEN RM, 1976, AM MINERAL, V61, P266 Larsen AH, 2017, J PHYS-CONDENS MAT, V29, DOI 10.1088/1361-648X/aa680e Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jericha E., 2001, NEUTRON SCATTERING L Kanaki K, 2018, J INSTRUM, V13, DOI 10.1088/1748-0221/13/07/P07016 Kanaki K, 2018, PHYSICA B, V551, P386, DOI 10.1016/j.physb.2018.03.025 KIRFEL A, 1990, ACTA CRYSTALLOGR A, V46, P271, DOI 10.1107/S0108767389012596 Kittel C, 2004, INTRO SOLID STATE PH Kittelmann T, 2015, COMPUT PHYS COMMUN, V189, P114, DOI 10.1016/j.cpc.2014.11.009 Kittelmann T, 2014, J PHYS CONF SER, V513, DOI 10.1088/1742-6596/513/2/022017 KOESTER L, 1991, ATOM DATA NUCL DATA, V49, P65, DOI 10.1016/0092-640X(91)90012-S Kropff F., 1977, UNPUB Lefmann K., 1999, NEUTRON NEWS, V10, P20, DOI DOI 10.1080/10448639908233684 Leppanen J, 2015, ANN NUCL ENERGY, V82, P142, DOI 10.1016/j.anucene.2014.08.024 Lieutenant K, 2004, PROC SPIE, V5536, P134, DOI 10.1117/12.562814 MacFarlane R.E., 2012, LAUR1227079 LOS AL N Damian JIM, 2014, ANN NUCL ENERGY, V65, P280, DOI 10.1016/j.anucene.2013.11.014 Marshall W., 1971, THEORY THERMAL NEUTR Martin K, 2015, MASTERING CMAKE CROS Mauri G, 2018, J INSTRUM, V13, DOI 10.1088/1748-0221/13/03/P03004 Messi F., 2017, NEUTRON TAGGING FACI Metropolis N., 1987, LOS ALAMOS SCI, P125, DOI DOI 10.1128/JCM.05092-11 Morozov A, 2016, J INSTRUM, V11, DOI 10.1088/1748-0221/11/04/P04022 Newhauser WD, 2011, NAT REV CANCER, V11, P438, DOI 10.1038/nrc3069 Oliphant T, 2006, NUMPY GUIDE NUMPY Otuka N, 2014, NUCL DATA SHEETS, V120, P272, DOI 10.1016/j.nds.2014.07.065 Park WB, 2011, J MATER CHEM, V21, P5780, DOI 10.1039/c0jm03538f Peggs S., 2012, 2012001 ESS Peggs S., 2013, 2013001 ESS Peng LM, 1996, ACTA CRYSTALLOGR A, V52, P456, DOI 10.1107/S010876739600089X PLACZEK G, 1952, PHYS REV, V86, P377, DOI 10.1103/PhysRev.86.377 Rauch H., 2000, 6 NEUTRON CCATTERING, P1, DOI [10.1007/10499706_6, DOI 10.1007/10499706_6] RODRIGUEZCARVAJAL J, 1993, PHYSICA B, V192, P55, DOI 10.1016/0921-4526(93)90108-I Romano PK, 2015, ANN NUCL ENERGY, V82, P90, DOI 10.1016/j.anucene.2014.07.048 Sands D., 1993, DOVER BOOKS CHEM SER Santoro V, 2015, J NEUTRON RES, V18, P135, DOI 10.3233/JNR-160034 Saroun J, 1997, PHYSICA B, V234, P1102, DOI 10.1016/S0921-4526(97)00037-9 Sato T, 2018, J NUCL SCI TECHNOL, V55, P684, DOI 10.1080/00223131.2017.1419890 Schober H, 2014, J NEUTRON RES, V17, P109, DOI 10.3233/JNR-140016 SEARS VF, 1986, PHYS REP, V141, P281, DOI 10.1016/0370-1573(86)90129-8 SEARS VF, 1984, AECL8490 CHALK RIV N Seeger P.A., 2002, NEUTRON NEWS, V13, P20, DOI DOI 10.1080/10448630208218490 Siegrist T, 1997, J APPL CRYSTALLOGR, V30, P418, DOI 10.1107/S0021889897003026 SJOLANDER A, 1958, ARK FYS, V14, P315 Squires G.L., 2012, INTRO THEORY THERMAL, DOI [10.1017/CB09781139107808, DOI 10.1017/CB09781139107808] Toby BH, 2013, J APPL CRYSTALLOGR, V46, P544, DOI 10.1107/S0021889813003531 TRUCANO P, 1975, NATURE, V258, P136, DOI 10.1038/258136a0 van Rossum Jr G, 2011, PYTHON LANGUAGE REFE van Sluijs R, 2015, J RADIOANAL NUCL CH, V306, P579, DOI 10.1007/s10967-015-4134-1 Vogel S., 2000, THESIS CRISTIAN ALBR Wang BT, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.104107 Waseda Y, 2011, XRAY DIFFRACTION CRY Waters LS, 2007, AIP CONF PROC, V896, P81, DOI 10.1063/1.2720459 Willendrup P, 2004, PHYSICA B, V350, pE735, DOI 10.1016/j.physb.2004.03.193 Wyckoff R.W.G., 1922, ANAL EXPRESSION RESU X-5 Monte Carlo Team, 2003, LACP030245 X5 MONT C, VII Xu XG, 2008, PHYS MED BIOL, V53, pR193, DOI 10.1088/0031-9155/53/13/R01 YVON K, 1977, J APPL CRYSTALLOGR, V10, P73, DOI 10.1107/S0021889877012898 Zsigmond G., 2002, NEUTRON NEWS, V13, P11, DOI [10.1080/10448630208218488, DOI 10.1080/10448630208218488] NR 96 TC 8 Z9 8 U1 1 U2 9 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JAN PY 2020 VL 246 AR 106851 DI 10.1016/j.cpc.2019.07.015 PG 30 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA JP5UR UT WOS:000498329900009 OA Other Gold, Green Published DA 2021-04-21 ER PT J AU Gardenier, DW van Leeuwen, J Connor, L Petroff, E AF Gardenier, D. W. van Leeuwen, J. Connor, L. Petroff, E. TI Synthesising the intrinsic FRB population using frbpoppy SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE radio continuum; general; methods; statistical ID FAST RADIO-BURSTS; EVENT RATE COUNTS; PULSAR SURVEY; GALACTIC POPULATION; DISTRIBUTIONS; SEARCHES; ENVIRONMENT; EVOLUTION; REDSHIFT; FLUENCE AB Context. Fast radio bursts (FRBs) are radio transients of an unknown origin whose nature we wish to determine. The number of detected FRBs is large enough for a statistical approach to parts of this challenge to be feasible. Aims. Our goal is to determine the current best-fit FRB population model. Our secondary aim is to provide an easy-to-use tool for simulating and understanding FRB detections. This tool can compare surveys, or provide information about the intrinsic FRB population. Methods. To understand the crucial link between detected FRBs and the underlying FRB source classes, we performed an FRB population synthesis to determine how the underlying population behaves. The Python package we developed for this synthesis, frbpoppy, is open source and freely available. frbpoppy simulates intrinsic FRB populations and the surveys that find them with the aim to produce virtual observed populations. These populations can then be compared with real data, which allows constraints to be placed on the underlying physics and selection effects. Results. We are able to replicate real Parkes and ASKAP FRB surveys in terms of detection rates and observed distributions. We also show the effect of beam patterns on the observed dispersion measure distributions. We compare four types of source models. The "complex" model, featuring a range of luminosities, pulse widths, and spectral indices, reproduces current detections best. Conclusions. Using frbpoppy, an open-source FRB population synthesis package, we explain current FRB detections and offer a first glimpse of what the true population must be. C1 [Gardenier, D. W.; van Leeuwen, J.] ASTRON Netherlands Inst Radio Astron, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, Netherlands. [Gardenier, D. W.; van Leeuwen, J.; Connor, L.; Petroff, E.] Univ Amsterdam, Anton Pannekoek Inst Astron, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. RP Gardenier, DW (corresponding author), ASTRON Netherlands Inst Radio Astron, Oude Hoogeveensedijk 4, NL-7991 PD Dwingeloo, Netherlands.; Gardenier, DW (corresponding author), Univ Amsterdam, Anton Pannekoek Inst Astron, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. EM gardenier@astron.nl OI Gardenier, David/0000-0002-4760-152X FU European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant [617199]; Vici research programme "ARGO" - Netherlands Organisation for Scientific Research (NWO)Netherlands Organization for Scientific Research (NWO) [639.043.815]; Netherlands Research School for Astronomy (NOVA4-ARTS); NWO Veni FellowshipNetherlands Organization for Scientific Research (NWO) FX We thank Chris Flynn for carefully reading this manuscript and for providing valuable comment and suggestions. We also thank the participants of the 2017 2019 FRB meetings for the useful discussions. Thanks additionally go to Sarah Burke-Spolaor for initial survey parameter data. DWG acknowledges travel support from the Research Corporation for Scientific Advancement to attend the Aspen FRB meeting in 2017. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 617199 ("ALERT"); from Vici research programme "ARGO" with project number 639.043.815, financed by the Netherlands Organisation for Scientific Research (NWO); and from the Netherlands Research School for Astronomy (NOVA4-ARTS). EP further acknowledges funding from an NWO Veni Fellowship. This research has made use of numpy (van derWalt et al. 2011), scipy (Oliphant 2007), astropy (Astropy Collaboration 2018), matplotlib (Hunter 2007), bokeh (Bokeh Development Team 2018) and NASA's Astrophysics Data System. CR Adams EAK, 2019, NAT ASTRON, V3, P188, DOI 10.1038/s41550-019-0692-4 Ade PAR, 2016, ASTRON ASTROPHYS, V594, DOI 10.1051/0004-6361/201525830 Amiri M, 2019, NATURE, V566, P235, DOI 10.1038/s41586-018-0864-x AMIRI M, 2017, APJ, V844, DOI DOI 10.3847/1538-4357/AA713F AMIRI M, 2018, APJ, V863, DOI DOI 10.3847/1538-4357/AAD188 Bailes M, 2017, PUBL ASTRON SOC AUST, V34, DOI 10.1017/pasa.2017.39 Bannister KW, 2019, SCIENCE, V365, P565, DOI 10.1126/science.aaw5903 Bannister KW, 2017, ASTROPHYS J LETT, V841, DOI 10.3847/2041-8213/aa71ff Bates SD, 2014, MON NOT R ASTRON SOC, V439, P2893, DOI 10.1093/mnras/stu157 Bates SD, 2013, MON NOT R ASTRON SOC, V431, P1352, DOI 10.1093/mnras/stt257 Batten A., 2019, J OPEN SOURCE SOFTW, V4, P1399 Beloborodov A. M, 2019, APJ UNPUB Bhat NDR, 2004, ASTROPHYS J, V605, P759, DOI 10.1086/382680 BHATTACHARYA D, 1992, ASTRON ASTROPHYS, V254, P198 Bhattacharya M., 2019, MNRAS UNPUB Bokeh Development Team, 2018, BOK PYTH LIB INT VIS Caleb M, 2019, MON NOT R ASTRON SOC, V484, P5500, DOI 10.1093/mnras/stz386 Caleb M, 2016, MON NOT R ASTRON SOC, V458, P708, DOI 10.1093/mnras/stw175 Caleb M, 2016, MON NOT R ASTRON SOC, V458, P718, DOI 10.1093/mnras/stw109 Champion DJ, 2016, MON NOT R ASTRON SOC, V460, pL30, DOI 10.1093/mnrasl/slw069 CHAWLA P, 2017, APJ, V844, DOI DOI 10.3847/1538-4357/AA7D57 Chippendale AP, 2015, PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), P541, DOI 10.1109/ICEAA.2015.7297174 Connor L, 2019, MON NOT R ASTRON SOC, V487, P5753, DOI 10.1093/mnras/stz1666 Connor L, 2016, MON NOT R ASTRON SOC, V460, P1054, DOI 10.1093/mnras/stw907 Connor L, 2016, MON NOT R ASTRON SOC, V458, pL19, DOI 10.1093/mnrasl/slv124 Cordes JM, 2016, MON NOT R ASTRON SOC, V457, P232, DOI 10.1093/mnras/stv2948 Cordes J.M., 2002, ARXIVASTROPH0207156 Cordes J. M., 2003, ARXIVASTROPH0301598 Cordes JM, 2006, ASTROPHYS J, V637, P446, DOI 10.1086/498335 Cordes JM, 2003, ASTROPHYS J, V596, P1142, DOI 10.1086/378231 Farah W, 2019, MON NOT R ASTRON SOC, V488, P2989, DOI 10.1093/mnras/stz1748 Farah W, 2018, MON NOT R ASTRON SOC, V478, P1209, DOI 10.1093/mnras/sty1122 Faucher-Giguere CA, 2006, ASTROPHYS J, V643, P332, DOI 10.1086/501516 FIALKOV A, 2018, APJ, V863, DOI DOI 10.3847/1538-4357/AAD196 Ghirlanda G, 2013, MON NOT R ASTRON SOC, V428, P1410, DOI 10.1093/mnras/sts128 GOURDJI K, 2019, APJ, V877, DOI DOI 10.3847/2041-8213/AB1F8A GUNN JE, 1970, ASTROPHYS J, V160, P979, DOI 10.1086/150487 Hessels JWT, 2019, ASTROPHYS J LETT, V876, DOI 10.3847/2041-8213/ab13ae HEWISH A, 1968, NATURE, V217, P709, DOI 10.1038/217709a0 Hogg D.W., 1999, ARXIVASTROPH9905116 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Inoue S, 2004, MON NOT R ASTRON SOC, V348, P999, DOI 10.1111/j.1365-2966.2004.07359.x Ioka K, 2003, ASTROPHYS J, V598, pL79, DOI 10.1086/380598 Izzard R.G., 2018, ARXIV180806883 Johnson NL., 1994, CONTINUOUS UNIVARIAT Katz JI, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.103009 Keane EF, 2018, NAT ASTRON, V2, P865, DOI 10.1038/s41550-018-0603-0 Keane EF, 2015, MON NOT R ASTRON SOC, V447, P2852, DOI 10.1093/mnras/stu2650 Keith MJ, 2010, MON NOT R ASTRON SOC, V409, P619, DOI 10.1111/j.1365-2966.2010.17325.x Lazarus P, 2015, ASTROPHYS J, V812, DOI 10.1088/0004-637X/812/1/81 Lorimer DR, 2007, SCIENCE, V318, P777, DOI 10.1126/science.1147532 Lorimer DR, 2006, MON NOT R ASTRON SOC, V372, P777, DOI 10.1111/j.1365-2966.2006.10887.x Lorimer DR, 2013, MON NOT R ASTRON SOC, V436, pL5, DOI 10.1093/mnrasl/slt098 Lorimer D.R., 2012, HDB PULSAR ASTRONOMY Lu WB, 2018, MON NOT R ASTRON SOC, V477, P2457, DOI 10.1093/mnras/sty716 Luo R, 2018, MON NOT R ASTRON SOC, V481, P2320, DOI 10.1093/mnras/sty2364 LYNE AG, 1985, MON NOT R ASTRON SOC, V213, P613, DOI 10.1093/mnras/213.3.613 Maan Y., 2017, ARXIV170906104 Macquart JP, 2018, MON NOT R ASTRON SOC, V480, P4211, DOI 10.1093/mnras/sty2083 Macquart JP, 2018, MON NOT R ASTRON SOC, V474, P1900, DOI 10.1093/mnras/stx2825 MACQUART JP, 2013, APJ, V776, DOI DOI 10.1088/0004-637X/776/2/125 MACQUART JP, 2019, APJ, V872, DOI DOI 10.3847/2041-8213/AB03D6 Madau P, 2014, ANNU REV ASTRON ASTR, V52, P415, DOI 10.1146/annurev-astro-081811-125615 Masui K, 2015, NATURE, V528, P523, DOI 10.1038/nature15769 Masui KW, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.121301 McQuinn M, 2014, ASTROPHYS J LETT, V780, DOI 10.1088/2041-8205/780/2/L33 Metzger BD, 2019, MON NOT R ASTRON SOC, V485, P4091, DOI 10.1093/mnras/stz700 Michilli D, 2018, NATURE, V553, P182, DOI 10.1038/nature25149 NARAYAN R, 1990, ASTROPHYS J, V352, P222, DOI 10.1086/168529 NIINO Y, 2018, APJ, V858, DOI DOI 10.3847/1538-4357/AAB9A9 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Oosterloo T., 2009, WIDE FIELD ASTRONOMY, P70 Oppermann N, 2016, MON NOT R ASTRON SOC, V461, P984, DOI 10.1093/mnras/stw1401 PATEL C, 2018, APJ, V869, DOI DOI 10.3847/1538-4357/AAEE65 Petroff E, 2019, ASTRON ASTROPHYS REV, V27, DOI 10.1007/s00159-019-0116-6 Petroff E, 2016, PUBL ASTRON SOC AUST, V33, DOI 10.1017/pasa.2016.35 Petroff E, 2015, MON NOT R ASTRON SOC, V454, P457, DOI 10.1093/mnras/stv1953 Platts E, 2019, PHYS REP, V821, P1, DOI 10.1016/j.physrep.2019.06.003 Pol N., 2019, APJ UNPUB Price-Whelan AM, 2018, ASTRON J, V156, DOI 10.3847/1538-3881/aabc4f Ravi V, 2019, NATURE, V572, P352, DOI 10.1038/s41586-019-1389-7 Ravi V, 2016, SCIENCE, V354, P1249, DOI 10.1126/science.aaf6807 Ravi V, 2019, BAAS, V51, P420 RAVI V, 2019, APJ, V874, DOI DOI 10.3847/1538-4357/AB0748 Ravi V, 2019, NAT ASTRON, V3, P928, DOI 10.1038/s41550-019-0831-y Remazeilles M, 2015, MON NOT R ASTRON SOC, V451, P4311, DOI 10.1093/mnras/stv1274 Romero GE, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.023001 Sanidas S, 2019, ASTRON ASTROPHYS, V626, DOI 10.1051/0004-6361/201935609 Scholz P, 2016, ASTROPHYS J, V833, DOI 10.3847/1538-4357/833/2/177 Shannon RM, 2018, NATURE, V562, P386, DOI 10.1038/s41586-018-0588-y Smits R, 2009, ASTRON ASTROPHYS, V493, P1161, DOI 10.1051/0004-6361:200810383 Spitler LG, 2016, NATURE, V531, P202, DOI 10.1038/nature17168 Spitler LG, 2014, ASTROPHYS J, V790, DOI 10.1088/0004-637X/790/2/101 SZARY A, 2014, APJ, V784, DOI DOI 10.1088/0004-637X/784/1/59 TAYLOR JH, 1977, ASTROPHYS J, V215, P885, DOI 10.1086/155426 Tendulkar SP, 2017, ASTROPHYS J LETT, V834, DOI 10.3847/2041-8213/834/2/L7 Thomas A, 2017, ROUTL AFR STUD, V23, P3 Thornton D, 2013, SCIENCE, V341, P53, DOI 10.1126/science.1236789 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 van Leeuwen J, 2010, ASTRON ASTROPHYS, V509, DOI 10.1051/0004-6361/200913121 van Leeuwen J., 2004, IAU S, V218, P41 Vedantham HK, 2016, ASTROPHYS J, V830, DOI 10.3847/0004-637X/830/2/75 Vieyro FL, 2017, ASTRON ASTROPHYS, V602, DOI 10.1051/0004-6361/201730556 Walker C. R. H., 2018, A A UNPUB Wright EL, 2006, PUBL ASTRON SOC PAC, V118, P1711, DOI 10.1086/510102 XU SY, 2016, APJ, V832, DOI DOI 10.3847/0004-637X/832/2/199 YANG YP, 2017, APJ, V839, DOI DOI 10.3847/2041-8213/AA6C2E Yao JM, 2017, ASTROPHYS J, V835, DOI 10.3847/1538-4357/835/1/29 ZHANG B, 2018, APJ, V867, DOI DOI 10.3847/2041-8213/AAE8E3 NR 109 TC 5 Z9 5 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC 16 PY 2019 VL 632 AR A125 DI 10.1051/0004-6361/201936404 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA JW3ZY UT WOS:000502994500006 OA Bronze DA 2021-04-21 ER PT J AU Raaijmakers, G Riley, TE Watts, AL Greif, SK Morsink, SM Hebeler, K Schwenk, A Hinderer, T Nissanke, S Guillot, S Arzoumanian, Z Bogdanov, S Chakrabarty, D Gendreau, KC Ho, WCG Lattimer, JM Ludlam, RM Wolff, MT AF Raaijmakers, G. Riley, T. E. Watts, A. L. Greif, S. K. Morsink, S. M. Hebeler, K. Schwenk, A. Hinderer, T. Nissanke, S. Guillot, S. Arzoumanian, Z. Bogdanov, S. Chakrabarty, D. Gendreau, K. C. Ho, W. C. G. Lattimer, J. M. Ludlam, R. M. Wolff, M. T. TI A NICER View of PSR J0030+0451: Implications for the Dense Matter Equation of State SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article ID ROTATING RELATIVISTIC STARS; NEUTRON-STAR; EFFICIENT; PYTHON; FORCES; RADIUS; MODELS; MASS AB Both the mass and radius of the millisecond pulsar PSR J0030+0451 have been inferred via pulse-profile modeling of X-ray data obtained by NASA's Neutron Star Interior Composition Explorer (NICER) mission. In this Letter we study the implications of the mass-radius inference reported for this source by Riley et al. for the dense matter equation of state (EoS), in the context of prior information from nuclear physics at low densities. Using a Bayesian framework we infer central densities and EoS properties for two choices of high-density extensions: a piecewise-polytropic model and a model based on assumptions of the speed of sound in dense matter. Around nuclear saturation density these extensions are matched to an EoS uncertainty band obtained from calculations based on chiral effective field theory interactions, which provide a realistic description of atomic nuclei as well as empirical nuclear matter properties within uncertainties. We further constrain EoS expectations with input from the current highest measured pulsar mass; together, these constraints offer a narrow Bayesian prior informed by theory as well as laboratory and astrophysical measurements. The NICER mass-radius likelihood function derived by Riley et al. using pulse-profile modeling is consistent with the highest-density region of this prior. The present relatively large uncertainties on mass and radius for PSR J0030+0451 offer, however, only a weak posterior information gain over the prior. We explore the sensitivity to the inferred geometry of the heated regions that give rise to the pulsed emission, and find a small increase in posterior gain for an alternative (but less preferred) model. Lastly, we investigate the hypothetical scenario of increasing the NICER exposure time for PSR J0030+0451. C1 [Raaijmakers, G.; Riley, T. E.; Watts, A. L.; Hinderer, T.; Nissanke, S.] Univ Amsterdam, Astron Inst Anton Pannekoek, Sci Pk 904, NL-1090 GE Amsterdam, Netherlands. [Greif, S. K.; Hebeler, K.; Schwenk, A.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Greif, S. K.; Hebeler, K.; Schwenk, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Morsink, S. M.] Univ Alberta, Dept Phys, 4-183 CCIS, Edmonton, AB T6G 2E1, Canada. [Schwenk, A.] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. [Hinderer, T.; Nissanke, S.] Univ Amsterdam, GRAPPA Inst High Energy Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Guillot, S.] CNRS, IRAP, 9 Ave Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Guillot, S.] Univ Toulouse, CNES, UPS, OMP, F-31028 Toulouse, France. [Arzoumanian, Z.; Gendreau, K. C.] NASA, Xray Astrophys Lab, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Bogdanov, S.] Columbia Univ, Columbia Astrophys Lab, 550 West 120th St, New York, NY 10027 USA. [Chakrabarty, D.] MIT, MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Ho, W. C. G.] Haverford Coll, Dept Phys & Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Ho, W. C. G.] Univ Southampton, Math Sci Phys & Astron, Southampton SO17 1BJ, Hants, England. [Ho, W. C. G.] Univ Southampton, STAG Res Ctr, Southampton SO17 1BJ, Hants, England. [Lattimer, J. M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ludlam, R. M.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Wolff, M. T.] US Naval Res Lab, Space Sci Div, Washington, DC 20375 USA. RP Raaijmakers, G (corresponding author), Univ Amsterdam, Astron Inst Anton Pannekoek, Sci Pk 904, NL-1090 GE Amsterdam, Netherlands. EM G.Raaijmakers@uva.nl OI Ho, Wynn/0000-0002-6089-6836; Morsink, Sharon/0000-0003-4357-0575; Schwenk, Achim/0000-0001-8027-4076; Greif, Svenja/0000-0001-8641-2062 FU NASA through the NICER mission; ERCEuropean Research Council (ERC)European Commission [639217 CSINEUTRONSTAR]; NWO Exact and Natural Sciences; DFGGerman Research Foundation (DFG)European Commission [SFB 1245]; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the VIDI grant; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through Projectruimte grant; CNESCentre National D'etudes Spatiales; NSERCNatural Sciences and Engineering Research Council of Canada (NSERC); NASANational Aeronautics & Space Administration (NASA) [80NSSC17K0554, HST-HF2-51440.001]; U.S. DOEUnited States Department of Energy (DOE) [DE-FG02-87ER40317]; NASA through the Astrophysics Explorers Program; SURF Cooperative FX This work was supported in part by NASA through the NICER mission and the Astrophysics Explorers Program. T.E.R. and A.L.W. acknowledge support from ERC Starting Grant No..639217 CSINEUTRONSTAR (PI: Watts). A.L.W. would like to thank Andrew Steiner for useful discussions on the role of priors in previously published results. The authors would also like to thank Kent Wood for helpful comments. This work was sponsored by NWO Exact and Natural Sciences for the use of supercomputer facilities, and was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. S.K.G., K.H., and A.S. acknowledge support from the DFG through SFB 1245. G.R., T.H., and S.N. are grateful for support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the VIDI and Projectruimte grants (PI: Nissanke). S.G. acknowledges the support of the CNES. S.M.M. thanks NSERC for support. J.M.L. acknowledges support from NASA through Grant 80NSSC17K0554 and the U.S. DOE from Grant DE-FG02-87ER40317. R.M.L. acknowledges the support of NASA through Hubble Fellowship Program grant HST-HF2-51440.001. This research has made extensive use of NASA's Astrophysics Data System Bibliographic Services (ADS) and the arXiv. CR Abbott BP, 2019, PHYS REV X, V9, DOI 10.1103/PhysRevX.9.011001 Abbott BP, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.161101 Abbott B, 2018, LIVING REV RELATIV, V21, DOI 10.1007/s41114-018-0012-9 Abbott BP, 2017, PHYS REV LETT, V119, DOI 10.1103/PhysRevLett.119.161101 Akmal A, 1998, PHYS REV C, V58, P1804, DOI 10.1103/PhysRevC.58.1804 Alford MG, 2016, EUR PHYS J A, V52, DOI 10.1140/epja/i2016-16062-9 AlGendy M, 2014, ASTROPHYS J, V791, DOI 10.1088/0004-637X/791/2/78 Annala E, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.172703 Antoniadis J, 2013, SCIENCE, V340, DOI 10.1126/science.1233232 Baillot dEtivaux N., 2019, ARXIV190501081 Baldo M, 1997, ASTRON ASTROPHYS, V328, P274 Baym G, 2018, REP PROG PHYS, V81, DOI 10.1088/1361-6633/aaae14 Behnel S, 2011, COMPUT SCI ENG, V13, P31, DOI 10.1109/MCSE.2010.118 Bilous AV, 2019, ASTROPHYS J LETT, V887, DOI 10.3847/2041-8213/ab53e7 Bogdanov S, 2019, ASTROPHYS J LETT, V887, DOI 10.3847/2041-8213/ab53eb Bogdanov S, 2016, ASTROPHYS J, V831, DOI 10.3847/0004-637X/831/2/184 Bogdanov S, 2016, EUR PHYS J A, V52, DOI 10.1140/epja/i2016-16037-x Buchner J, 2014, ASTRON ASTROPHYS, V564, DOI 10.1051/0004-6361/201322971 Chirenti C, 2019, ASTROPHYS J LETT, V884, DOI 10.3847/2041-8213/ab43e0 Cromartie HT, 2020, NAT ASTRON, V4, P72, DOI 10.1038/s41550-019-0880-2 Dalcin L, 2008, J PARALLEL DISTR COM, V68, P655, DOI 10.1016/j.jpdc.2007.09.005 De S, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.091102 Drischler C, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.042501 Feroz F, 2008, MON NOT R ASTRON SOC, V384, P449, DOI 10.1111/j.1365-2966.2007.12353.x Feroz F, 2009, MON NOT R ASTRON SOC, V398, P1601, DOI 10.1111/j.1365-2966.2009.14548.x Feroz F., 2013, ARXIV13062144 Flanagan EE, 2008, PHYS REV D, V77, DOI 10.1103/PhysRevD.77.021502 Fraga ES, 2014, ASTROPHYS J LETT, V781, DOI 10.1088/2041-8205/781/2/L25 Gendreau KC, 2016, PROC SPIE, V9905, DOI 10.1117/12.2231304 Gough B., 2009, GNU SCI LIB REFERENC Greif SK, 2019, MON NOT R ASTRON SOC, V485, P5363, DOI 10.1093/mnras/stz654 Harding AK, 2002, ASTROPHYS J, V568, P862, DOI 10.1086/338985 HARTLE JB, 1968, ASTROPHYS J, V153, P807, DOI 10.1086/149707 HARTLE JB, 1967, ASTROPHYS J, V150, P1005, DOI 10.1086/149400 Hebeler K, 2015, ANNU REV NUCL PART S, V65, P457, DOI 10.1146/annurev-nucl-102313-025446 Hebeler K, 2013, ASTROPHYS J, V773, DOI 10.1088/0004-637X/773/1/11 Hebeler K, 2010, PHYS REV C, V82, DOI 10.1103/PhysRevC.82.014314 Higson E, 2018, JOSS, V3, P916, DOI [10.21105/joss.00916, DOI 10.21105/JOSS.00916] Higson E, 2019, MON NOT R ASTRON SOC, V483, P2044, DOI 10.1093/mnras/sty3090 Higson E, 2018, BAYESIAN ANAL, V13, P873, DOI 10.1214/17-BA1075 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones E., 2001, SCIPY OPEN SOURCE SC KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572 Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694 Lattimer JM, 2014, ASTROPHYS J, V784, DOI 10.1088/0004-637X/784/2/123 Lim Y, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.062701 Lo KH, 2013, ASTROPHYS J, V776, DOI 10.1088/0004-637X/776/1/19 Lynn JE, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.062501 Margueron J, 2018, PHYS REV C, V97, DOI 10.1103/PhysRevC.97.025806 Margueron J, 2018, PHYS REV C, V97, DOI 10.1103/PhysRevC.97.025805 Miller M. C., 2019, APJ Miller MC, 2015, ASTROPHYS J, V808, DOI 10.1088/0004-637X/808/1/31 Most ER, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.261103 MPI Forum, 1994, MPI MESSAGE PASSING Oertel M, 2017, REV MOD PHYS, V89, DOI 10.1103/RevModPhys.89.015007 Ozel F, 2016, ASTROPHYS J, V820, DOI 10.3847/0004-637X/820/1/28 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 PANDHARIPANDE VR, 1975, NUCL PHYS A, VA237, P507, DOI 10.1016/0375-9474(75)90415-7 Paschalidis V, 2017, LIVING REV RELATIV, V20, DOI 10.1007/s41114-017-0008-x Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Psaltis D, 2014, ASTROPHYS J, V787, DOI 10.1088/0004-637X/787/2/136 Raaijmakers G, 2018, MON NOT R ASTRON SOC, V478, P2177, DOI 10.1093/mnras/sty1052 Raithel CA, 2018, ASTROPHYS J LETT, V857, DOI 10.3847/2041-8213/aabcbf Riley TE, 2019, ASTROPHYS J LETT, V887, DOI 10.3847/2041-8213/ab481c Riley TE, 2018, MON NOT R ASTRON SOC, V478, P1093, DOI 10.1093/mnras/sty1051 Shoemaker D., 2019, ARXIV190403187 Skilling J, 2006, BAYESIAN ANAL, V1, P833, DOI 10.1214/06-BA127 Steiner AW, 2018, MON NOT R ASTRON SOC, V476, P421, DOI 10.1093/mnras/sty215 Steiner AW, 2013, ASTROPHYS J LETT, V765, DOI 10.1088/2041-8205/765/1/L5 Steiner AW, 2010, ASTROPHYS J, V722, P33, DOI 10.1088/0004-637X/722/1/33 STERGIOULAS N, 1995, ASTROPHYS J, V444, P306, DOI 10.1086/175605 Tews I, 2018, PHYS REV C, V98, DOI 10.1103/PhysRevC.98.045804 TEWS I, 2018, APJ, V860, DOI DOI 10.3847/1538-4357/AAC267 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Watts A. L., 2019, ARXIV190407012 Watts AL, 2016, REV MOD PHYS, V88, DOI 10.1103/RevModPhys.88.021001 NR 77 TC 54 Z9 54 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD DEC 10 PY 2019 VL 887 IS 1 AR L22 DI 10.3847/2041-8213/ab451a PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA KS5YZ UT WOS:000518385600022 OA Green Published, Green Accepted DA 2021-04-21 ER PT J AU Syben, C Michen, M Stimpel, B Seitz, S Ploner, S Maier, AK AF Syben, Christopher Michen, Markus Stimpel, Bernhard Seitz, Stephan Ploner, Stefan Maier, Andreas K. TI Technical Note: PYRO-NN: Python reconstruction operators in neural networks SO MEDICAL PHYSICS LA English DT Article DE inverse problems; known operator learning; machine learning; open source; reconstruction ID IMAGE-RECONSTRUCTION; DEEP; FRAMEWORK; DOMAIN AB PurposeRecently, several attempts were conducted to transfer deep learning to medical image reconstruction. An increasingly number of publications follow the concept of embedding the computed tomography (CT) reconstruction as a known operator into a neural network. However, most of the approaches presented lack an efficient CT reconstruction framework fully integrated into deep learning environments. As a result, many approaches use workarounds for mathematically unambiguously solvable problems. MethodsPYRO-NN is a generalized framework to embed known operators into the prevalent deep learning framework Tensorflow. The current status includes state-of-the-art parallel-, fan-, and cone-beam projectors, and back-projectors accelerated with CUDA provided as Tensorflow layers. On top, the framework provides a high-level Python API to conduct FBP and iterative reconstruction experiments with data from real CT systems. ResultsThe framework provides all necessary algorithms and tools to design end-to-end neural network pipelines with integrated CT reconstruction algorithms. The high-level Python API allows a simple use of the layers as known from Tensorflow. All algorithms and tools are referenced to a scientific publication and are compared to existing non-deep learning reconstruction frameworks. To demonstrate the capabilities of the layers, the framework comes with baseline experiments, which are described in the supplementary material. The framework is available as open-source software under the Apache 2.0 licence at . ConclusionsPYRO-NN comes with the prevalent deep learning framework Tensorflow and allows to setup end-to-end trainable neural networks in the medical image reconstruction context. We believe that the framework will be a step toward reproducible research and give the medical physics community a toolkit to elevate medical image reconstruction with new deep learning techniques. C1 [Syben, Christopher; Michen, Markus; Stimpel, Bernhard; Seitz, Stephan; Ploner, Stefan; Maier, Andreas K.] Friedrich Alexander Univ Erlangen Nurnberg, Pattern Recognit Lab, D-91058 Erlangen, Germany. RP Syben, C (corresponding author), Friedrich Alexander Univ Erlangen Nurnberg, Pattern Recognit Lab, D-91058 Erlangen, Germany. EM christopher.syben@fau.de FU European Research CouncilEuropean Research Council (ERC)European Commission [810316] Funding Source: Medline; Friedrich-Alexander University Erlangen-Nurnberg Funding Source: Medline CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Adler J, 2018, IEEE T MED IMAGING, V37, P1322, DOI 10.1109/TMI.2018.2799231 Antun V, 2019, ARXIV190205300 Chen H, 2018, IEEE T MED IMAGING, V37, P1333, DOI 10.1109/TMI.2018.2805692 FELDKAMP LA, 1984, J OPT SOC AM A, V1, P612, DOI 10.1364/JOSAA.1.000612 Galigekere RR, 2003, IEEE T MED IMAGING, V22, P1202, DOI 10.1109/TMI.2003.817787 Greenspan H, 2016, IEEE T MED IMAGING, V35, P1153, DOI 10.1109/TMI.2016.2553401 Gursoy D, 2014, J SYNCHROTRON RADIAT, V21, P1188, DOI 10.1107/S1600577514013939 Hammernik K., 2017, BILDVERARBEITUNG MED, V2017, P92, DOI DOI 10.1007/978-3-662-54345-0_25 Jin KH, 2017, IEEE T IMAGE PROCESS, V26, P4509, DOI 10.1109/TIP.2017.2713099 Kak A.C., 1988, PRINCIPLES COMPUTERI Kofler A, 2018, LECT NOTES COMPUT SC, V11074, P91, DOI 10.1007/978-3-030-00129-2_11 Kohr H, 2017, OPERATOR DISCRETIZAT Krizhevsky Alex, 2012, ADV NEURAL INFORM PR, P1097, DOI DOI 10.1145/3065386 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Maier A, 2018, ARXIV181005401 Maier A, 2018, INT C PATT RECOG, P183, DOI 10.1109/ICPR.2018.8545553 Maier A, 2013, MED PHYS, V40, DOI 10.1118/1.4824926 Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28 Scherl H, 2007, IEEE NUCL SCI CONF R, P4464, DOI 10.1109/NSSMIC.2007.4437102 SHEPP LA, 1974, IEEE T NUCL SCI, VNS21, P21, DOI 10.1109/TNS.1974.6499235 Stimpel B, 2017, ARXIV171007498 Syben C, 2017, PYCONRAD Syben C, 2018, PATTERN RECOGNITION Syben C., 2018, P 5 INT C IM FORM XR, P386 van Aarle W, 2016, OPT EXPRESS, V24, P25129, DOI 10.1364/OE.24.025129 van den Oord A., 2016, ABS160903499 CORR Wang G, 2018, IEEE T MED IMAGING, V37, P1289, DOI 10.1109/TMI.2018.2833635 Wurfl T, 2018, IEEE T MED IMAGING, V37, P1454, DOI 10.1109/TMI.2018.2833499 Wurfl Tobias, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9902, P432, DOI 10.1007/978-3-319-46726-9_50 Ye JC, 2018, SIAM J IMAGING SCI, V11, P991, DOI 10.1137/17M1141771 Zeng GSL, 2000, IEEE T MED IMAGING, V19, P548, DOI 10.1109/42.870265 Zhu B, 2018, NATURE, V555, P487, DOI 10.1038/nature25988 NR 33 TC 4 Z9 4 U1 0 U2 4 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0094-2405 EI 2473-4209 J9 MED PHYS JI Med. Phys. PD NOV PY 2019 VL 46 IS 11 BP 5110 EP 5115 DI 10.1002/mp.13753] PG 6 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA JK5PF UT WOS:000494894600037 PM 31389023 DA 2021-04-21 ER PT J AU Kraml, S Loc, TQ Nhung, DT Ninh, LD AF Kraml, Sabine Tran Quang Loc Dao Thi Nhung Le Duc Ninh TI Constraining new physics from Higgs measurements with Lilith: update to LHC Run 2 results SO SCIPOST PHYSICS LA English DT Article ID VECTOR-BOSON FUSION; PP COLLISIONS; ROOT-S=13 TEV; SEARCH AB Lilith is a public Python library for constraining new physics from Higgs signal strength measurements. We here present version 2.0 of Lilith together with an updated XML database which includes the current ATLAS and CMS Run 2 Higgs results for 36 fb(-1). Both the code and the database were extended from the ordinary Gaussian approximation employed in Lilith-1.1 to using variable Gaussian and Poisson likelihoods. Moreover, Lilith can now make use of correlation matrices of arbitrary dimension. We provide detailed validations of the implemented experimental results as well as a status of global fits for reduced Higgs couplings, Two-Higgs-doublet models of Type I and Type II, and invisible Higgs decays. Lilith-2.0 is available on GitHub and ready to be used to constrain a wide class of new physics scenarios. C1 [Kraml, Sabine] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, 53 Ave Martyrs, F-38026 Grenoble, France. [Tran Quang Loc; Dao Thi Nhung; Le Duc Ninh] ICISE, Inst Interdisciplinary Res Sci & Educ, Quy Nhon 590000, Vietnam. [Tran Quang Loc] VNUHCM Univ Sci, 227 Nguyen Van Cu,Dist 5, Ho Chi Minh City, Vietnam. RP Kraml, S (corresponding author), Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, 53 Ave Martyrs, F-38026 Grenoble, France. EM sabine.kraml@lpsc.in2p3.fr FU Vietnam National Foundation for Science and Technology Development (NAFOSTED)National Foundation for Science & Technology Development (NAFOSTED) [103.01-2017.78]; LPSC Grenoble; IN2P3 theory project "LHC-itools: methods and tools for the interpretation of the LHC Run 2 results for new physics"; ICISE Quy Nhon FX S.K. thanks R. Schofbeck, W. Waltenberger and N. Wardle for helpful discussions. This work was supported in part by the IN2P3 theory project "LHC-itools: methods and tools for the interpretation of the LHC Run 2 results for new physics". D.T.N and L.D.N. are funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2017.78. D.T.N. thanks the LPSC Grenoble for hospitality and financial support for a research visit within the LHC-itools project. T.Q.L. acknowledges the hospitality and financial support of the ICISE Quy Nhon. CR Aaboud M, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.231801 Aaboud M, 2019, PHYS REV D, V99, DOI 10.1103/PhysRevD.99.072001 Aaboud M, 2019, PHYS LETT B, V789, P508, DOI 10.1016/j.physletb.2018.11.064 Aaboud M, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.052005 Aaboud M, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.052003 Aaboud M, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.072016 Aaboud M, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.072003 Aaboud M, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2018)095 Aaboud M, 2018, PHYS LETT B, V776, P318, DOI 10.1016/j.physletb.2017.11.049 Aaboud M, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2017)024 Aaboud M, 2017, PHYS REV LETT, V119, DOI 10.1103/PhysRevLett.119.051802 Aad G., 2019, Physics Letters B, V798, P368, DOI 10.1016/j.physletb.2019.134949 Aad G, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2016)045 Alwall J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)079 Badger S., 2016, 9 HOUCH WORKSH PHYS Ball RD, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2015)040 Barducci D, 2018, COMPUT PHYS COMMUN, V222, P327, DOI 10.1016/j.cpc.2017.08.028 Barlow R., 2004, STAT PROBLEMS PARTIC Bechtle P, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-013-2711-4 Belanger G, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.075008 Belanger G, 2013, PHYS LETT B, V723, P340, DOI 10.1016/j.physletb.2013.05.024 Belanger G, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2013)053 Berkhout P, 2004, STAT NEERL, V58, P349, DOI 10.1111/j.1467-9574.2004.00126.x Bernon J, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.035027 Bernon J, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.075004 Bernon J, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3645-9 Bernon J, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.071301 Biekotter A, 2019, SCIPOST PHYS, V6, DOI 10.21468/SciPostPhys.6.6.064 Boudjema F., 2013, WORKSH LIK LHC SEARC Chowdhury D, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2018)161 de Florian D., 2016, HDB LHC HIGGS CROSS, DOI [10.23731/CYRM-2017-002, DOI 10.23731/CYRM-2017-002] Demartin F, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-4601-7 Ellis J, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2018)146 Ferreira PM, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.115003 LHC Higgs Cross Section Working Group, 2013, CERN2013004, DOI [10.5170/CERN-2013-004, DOI 10.5170/CERN-2013-004] Sanz V, 2018, ADV HIGH ENERGY PHYS, V2018, DOI 10.1155/2018/7168480 Sirunyan AM, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2018)066 Sirunyan AM, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-6909-y Sirunyan AM, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2019)093 Sirunyan AM, 2019, PHYS LETT B, V793, P520, DOI 10.1016/j.physletb.2019.04.025 Sirunyan AM, 2019, PHYS LETT B, V791, P96, DOI 10.1016/j.physletb.2018.12.073 Sirunyan AM, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2019)026 Sirunyan AM, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.021801 Sirunyan AM, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2018)185 Sirunyan AM, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2018)101 Sirunyan AM, 2018, PHYS LETT B, V780, P501, DOI 10.1016/j.physletb.2018.02.050 Sirunyan AM, 2018, PHYS LETT B, V779, P283, DOI 10.1016/j.physletb.2018.02.004 Sirunyan AM, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.071802 Sirunyan AM, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2017)047 NR 49 TC 14 Z9 14 U1 2 U2 7 PU SCIPOST FOUNDATION PI AMSTERDAM PA C/O J S CAUX, INST PHYSICS, UNIV AMSTERDAM, AMSTERDAM, 1098 XH, NETHERLANDS SN 2542-4653 J9 SCIPOST PHYS JI SciPost Phys. PD OCT PY 2019 VL 7 IS 4 AR 052 DI 10.21468/SciPostPhys.7.4.052 PG 27 WC Physics, Multidisciplinary SC Physics GA JF0UF UT WOS:000491101700012 OA DOAJ Gold DA 2021-04-21 ER PT J AU Law, E AF Law, Everest TI Identifying clusters on a discrete periodic lattice via machine learning SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Hierarchical clustering; Lattice simulations; Breadth-first search; Periodic boundary conditions ID PARALLEL ALGORITHMS; SIMULATIONS AB Given the ubiquity of lattice models in physics, it is imperative for researchers to possess robust methods for quantifying clusters on the lattice - whether they be Ising spins or clumps of molecules. Inspired by biophysical studies, we present Python code for handling clusters on a 2D periodic lattice. Properties of individual clusters, such as their area, can be obtained with a few function calls. Our code invokes an unsupervised machine learning method called hierarchical clustering, which is simultaneously effective for the present problem and simple enough for non-experts to grasp qualitatively. Moreover, our code transparently merges clusters neighboring each other across periodic boundaries using breadth-first search (BFS), an algorithm well-documented in computer science pedagogy. The fact that our code is written in Python - instead of proprietary languages - further enhances its value for reproducible science. (C) 2019 Elsevier B.V. All rights reserved. C1 [Law, Everest] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Law, Everest] Univ Southern Calif, Mol Computat Biol Program, Los Angeles, CA 90089 USA. [Law, Everest] Univ Southern Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. RP Law, E (corresponding author), Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.; Law, E (corresponding author), Univ Southern Calif, Mol Computat Biol Program, Los Angeles, CA 90089 USA.; Law, E (corresponding author), Univ Southern Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. EM everestl@usc.edu OI Law, Everest/0000-0003-1283-999X FU National Science Foundation (NSF)National Science Foundation (NSF) [DMR-1554716]; USC Center for High Performance Computing FX This work was supported by National Science Foundation (NSF) award number DMR-1554716 and the USC Center for High Performance Computing. CR [Anonymous], 2004, PLOS BIOL, V2, pe168, DOI [10.1371/journal.pbio.0020168, DOI 10.1371/JOURNAL.PBIO.0020168] Dahlhaus E, 2000, J ALGORITHMS, V36, P205, DOI 10.1006/jagm.2000.1090 Dash M, 2004, LECT NOTES COMPUT SC, V3149, P363 Domany E, 1999, COMPUT PHYS COMMUN, V121, P5, DOI 10.1016/S0010-4655(99)00267-2 Erban R., 2007, ARXIV07041908PHYSICS Fange D, 2012, BIOINFORMATICS, V28, P3155, DOI 10.1093/bioinformatics/bts584 Gillespie DT, 2014, J CHEM PHYS, V140, DOI 10.1063/1.4863990 Hastie T., 2016, ELEMENTS STAT LEARNI, V2nd James G., 2017, INTRO STAT LEARNING Li YW, 2017, PHYS REV E, V95, DOI 10.1103/PhysRevE.95.052406 Mullner, 2013, J STAT SOFTW, DOI [10.18637/jss.v053.i09, DOI 10.18637/JSS.V053.I09] MURTAGH FD, 1988, COMPUT PHYS COMMUN, V52, P15, DOI 10.1016/0010-4655(88)90166-X OLSON CF, 1995, PARALLEL COMPUT, V21, P1313, DOI 10.1016/0167-8191(95)00017-I Roberts E, 2013, J COMPUT CHEM, V34, P245, DOI 10.1002/jcc.23130 Shomar A, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005668 Smith S., 2018, B MATH BIOL, P1, DOI 10.1007/s11538-018-0443-1 Szklarczyk OM, 2013, PLOS COMPUT BIOL, V9, DOI 10.1371/journal.pcbi.1003310 Tang AH, 2016, NATURE, V536, P210, DOI 10.1038/nature19058 Verma Mudita, 2017, IOP Conference Series: Materials Science and Engineering, V263, DOI 10.1088/1757-899X/263/4/042094 NR 19 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD OCT PY 2019 VL 243 BP 106 EP 109 DI 10.1016/j.cpc.2019.05.004 PG 4 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA IH2HX UT WOS:000474316900010 DA 2021-04-21 ER PT J AU Piccione, N Militello, B Napoli, A Bellomo, B AF Piccione, Nicolo Militello, Benedetto Napoli, Anna Bellomo, Bruno TI Simple scheme for extracting work with a single bath SO PHYSICAL REVIEW E LA English DT Article ID ENTROPY PRODUCTION; PYTHON FRAMEWORK; QUANTUM; DYNAMICS; PHYSICS; QUTIP AB We propose a simple protocol exploiting the thermalization of a storage bipartite system S to extract work from a resource system R. The protocol is based on a recent work definition involving only a single bath. A general description of the protocol is provided without specifying the characteristics of S. We quantify both the extracted work and the ideal efficiency of the process, also giving maximum bounds for them. Then, we apply the protocol to two cases: two interacting qubits and the Rabi model. In both cases, for very strong couplings, an extraction of work comparable with the bare energies of the subsystems of S is obtained and its peak is reached for finite values of the bath temperature, T. We finally show, in the Rabi model at T = 0, how to transfer the work stored in S to an external device, permitting thus a cyclic implementation of the whole work-extraction protocol. Our proposal makes use of simple operations not needing fine control. C1 [Piccione, Nicolo; Bellomo, Bruno] Univ Bourgogne Franche Comte, Observ Sci Univers THETA, Inst UTINAM, CNRS UMR 6213, 41 Bis Ave Observ, F-25010 Besancon, France. [Militello, Benedetto; Napoli, Anna] Univ Palermo, Dipartimento Fis & Chim Emilio Segre, Via Archirafi 36, I-90123 Palermo, Italy. [Militello, Benedetto; Napoli, Anna] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy. RP Piccione, N (corresponding author), Univ Bourgogne Franche Comte, Observ Sci Univers THETA, Inst UTINAM, CNRS UMR 6213, 41 Bis Ave Observ, F-25010 Besancon, France. EM nicolo.piccione@univ-fcomte.fr RI Bellomo, Bruno/J-4520-2012 OI Bellomo, Bruno/0000-0002-3336-2441; Piccione, Nicolo/0000-0001-6391-2187 FU Erasmus+ program of the European Union; Institut UTINAM FX N.P. acknowledges the financial support of the Erasmus+ program of the European Union and of the Institut UTINAM for the development of this program. N.P. and B.B. acknowledge useful suggestions by Felipe Fernandes Fanchini and thank the IT team of the Institut UTINAM for its technical support. CR Beaudoin F, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.043832 Beretta GP, 2014, PHYS REV E, V90, DOI 10.1103/PhysRevE.90.042113 Beretta GP, 2009, REP MATH PHYS, V64, P139, DOI 10.1016/S0034-4877(09)90024-6 Braak D, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.100401 Brandao F, 2015, P NATL ACAD SCI USA, V112, P3275, DOI 10.1073/pnas.1411728112 Breuer HP., 2002, THEORY OPEN QUANTUM Casanova J, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.263603 Chen QH, 2012, PHYS REV A, V86, DOI 10.1103/PhysRevA.86.023822 Dawson CM, 2004, PHYS REV A, V69, DOI 10.1103/PhysRevA.69.052316 Decordi GL, 2017, OPT COMMUN, V387, P366, DOI 10.1016/j.optcom.2016.10.017 Esposito M, 2010, NEW J PHYS, V12, DOI 10.1088/1367-2630/12/1/013013 Gallego R, 2016, NEW J PHYS, V18, DOI 10.1088/1367-2630/18/10/103017 Gemmer J, 2001, PHYS REV LETT, V86, P1927, DOI 10.1103/PhysRevLett.86.1927 Haroche S., 2006, EXPLORING QUANTUM AT Hewgill A, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.042102 Horodecki M, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3059 Humphrey TE, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.116801 Irish EK, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.173601 James M., 2016, NEW J PHYS, V18, P11002 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Kadowaki T, 1998, PHYS REV E, V58, P5355, DOI 10.1103/PhysRevE.58.5355 Kim SW, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.070401 Langford NK, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01061-x Leggio B, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.012117 Lostaglio M., 2016, RESOURCE THEORY QUAN Lostaglio M, 2018, QUANTUM-AUSTRIA, V2, DOI 10.22331/q-2018-02-08-52 Lostaglio M, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7383 Maissen C, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.205309 Martyushev LM, 2006, PHYS REP, V426, P1, DOI 10.1016/j.physrep.2005.12.001 Maruyama K, 2009, REV MOD PHYS, V81, P1, DOI 10.1103/RevModPhys.81.1 Militello B, 2018, PHYS REV E, V97, DOI 10.1103/PhysRevE.97.052113 Perry C, 2018, PHYS REV X, V8, DOI 10.1103/PhysRevX.8.041049 Popescu S, 2006, NAT PHYS, V2, P754, DOI 10.1038/nphys444 Quan HT, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.180402 Quan HT, 2007, PHYS REV E, V76, DOI 10.1103/PhysRevE.76.031105 Skrzypczyk P, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5185 Vinjanampathy S, 2016, CONTEMP PHYS, V57, P545, DOI 10.1080/00107514.2016.1201896 Wang YM, 2015, PHYS LETT A, V379, P779, DOI 10.1016/j.physleta.2014.12.052 wiklinski P., 2015, PHYS REV LETT, V115 Xie QT, 2017, J PHYS A-MATH THEOR, V50, DOI 10.1088/1751-8121/aa5a65 Yoshihara F, 2017, NAT PHYS, V13, P44, DOI [10.1038/NPHYS3906, 10.1038/nphys3906] NR 42 TC 2 Z9 2 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD SEP 27 PY 2019 VL 100 IS 3 AR 032143 DI 10.1103/PhysRevE.100.032143 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA JB0SA UT WOS:000488266000003 PM 31639978 DA 2021-04-21 ER PT J AU Syben, C Michen, M Stimpel, B Seitz, S Ploner, S Maier, AK AF Syben, Christopher Michen, Markus Stimpel, Bernhard Seitz, Stephan Ploner, Stefan Maier, Andreas K. TI Technical Note: PYRO-NN: Python reconstruction operators in neural networks SO MEDICAL PHYSICS LA English DT Article; Early Access DE inverse problems; known operator learning; machine learning; open source; reconstruction ID IMAGE-RECONSTRUCTION; DEEP; FRAMEWORK; DOMAIN AB Purpose Recently, several attempts were conducted to transfer deep learning to medical image reconstruction. An increasingly number of publications follow the concept of embedding the computed tomography (CT) reconstruction as a known operator into a neural network. However, most of the approaches presented lack an efficient CT reconstruction framework fully integrated into deep learning environments. As a result, many approaches use workarounds for mathematically unambiguously solvable problems. Methods PYRO-NN is a generalized framework to embed known operators into the prevalent deep learning framework Tensorflow. The current status includes state-of-the-art parallel-, fan-, and cone-beam projectors, and back-projectors accelerated with CUDA provided as Tensorflow layers. On top, the framework provides a high-level Python API to conduct FBP and iterative reconstruction experiments with data from real CT systems. Results The framework provides all necessary algorithms and tools to design end-to-end neural network pipelines with integrated CT reconstruction algorithms. The high-level Python API allows a simple use of the layers as known from Tensorflow. All algorithms and tools are referenced to a scientific publication and are compared to existing non-deep learning reconstruction frameworks. To demonstrate the capabilities of the layers, the framework comes with baseline experiments, which are described in the supplementary material. The framework is available as open-source software under the Apache 2.0 licence at . Conclusions PYRO-NN comes with the prevalent deep learning framework Tensorflow and allows to setup end-to-end trainable neural networks in the medical image reconstruction context. We believe that the framework will be a step toward reproducible research and give the medical physics community a toolkit to elevate medical image reconstruction with new deep learning techniques. C1 [Syben, Christopher; Michen, Markus; Stimpel, Bernhard; Seitz, Stephan; Ploner, Stefan; Maier, Andreas K.] Friedich Alexander Univ Erlangen Nurnberg, Pattern Recognit Lab, D-91058 Erlangen, Germany. RP Syben, C (corresponding author), Friedich Alexander Univ Erlangen Nurnberg, Pattern Recognit Lab, D-91058 Erlangen, Germany. EM christopher.syben@fau.de FU European Research Council (ERC) under European UnionEuropean Research Council (ERC) [810316]; Emerging Fields Initiative (EFI) of the Friedrich-Alexander University Erlangen-Nurnberg (FAU); European Research CouncilEuropean Research Council (ERC)European Commission [810316] Funding Source: Medline; Friedrich-Alexander University Erlangen-Nurnberg Funding Source: Medline FX The research leading to these results has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (ERC Grant No. 810316). Additional financial support for this project was granted by the Emerging Fields Initiative (EFI) of the Friedrich-Alexander University Erlangen-Nurnberg (FAU). CR Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Adler J, 2018, IEEE T MED IMAGING, V37, P1322, DOI 10.1109/TMI.2018.2799231 Antun V, 2019, ARXIV190205300 Chen H, 2018, IEEE T MED IMAGING, V37, P1333, DOI 10.1109/TMI.2018.2805692 FELDKAMP LA, 1984, J OPT SOC AM A, V1, P612, DOI 10.1364/JOSAA.1.000612 Galigekere RR, 2003, IEEE T MED IMAGING, V22, P1202, DOI 10.1109/TMI.2003.817787 Greenspan H, 2016, IEEE T MED IMAGING, V35, P1153, DOI 10.1109/TMI.2016.2553401 Gursoy D, 2014, J SYNCHROTRON RADIAT, V21, P1188, DOI 10.1107/S1600577514013939 Hammernik K., 2017, BILDVERARBEITUNG MED, V2017, P92, DOI DOI 10.1007/978-3-662-54345-0_25 Jin KH, 2017, IEEE T IMAGE PROCESS, V26, P4509, DOI 10.1109/TIP.2017.2713099 Kak A.C., 1988, PRINCIPLES COMPUTERI Kofler A, 2018, LECT NOTES COMPUT SC, V11074, P91, DOI 10.1007/978-3-030-00129-2_11 Kohr H, OPERATOR DISCRETIZAT Krizhevsky A, 2017, COMMUN ACM, V60, P84, DOI 10.1145/3065386 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Maier A, 2018, ARXIV181005401 Maier A, 2018, INT C PATT RECOG, P183, DOI 10.1109/ICPR.2018.8545553 Maier A, 2013, MED PHYS, V40, DOI 10.1118/1.4824926 Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28 Scherl H, 2007, IEEE NUCL SCI CONF R, P4464, DOI 10.1109/NSSMIC.2007.4437102 SHEPP LA, 1974, IEEE T NUCL SCI, VNS21, P21, DOI 10.1109/TNS.1974.6499235 Stimpel B, 2017, ARXIV171007498 Syben C, 2017, PYCONRAD SOFTWARE Syben C, 2018, PATTERN RECOGNITION Syben C., 2018, P 5 INT C IM FORM XR, P386 Syben C., 2019, CODE OCEAN, DOI [10.24433/CO.1164752.v1, DOI 10.24433/CO.1164752.V1] van Aarle W, 2016, OPT EXPRESS, V24, P25129, DOI 10.1364/OE.24.025129 van den Oord A., 2016, ABS160903499 CORR Wang G, 2018, IEEE T MED IMAGING, V37, P1289, DOI 10.1109/TMI.2018.2833635 Wurfl T, 2018, IEEE T MED IMAGING, V37, P1454, DOI 10.1109/TMI.2018.2833499 Wurfl Tobias, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9902, P432, DOI 10.1007/978-3-319-46726-9_50 Ye JC, 2018, SIAM J IMAGING SCI, V11, P991, DOI 10.1137/17M1141771 Zeng GSL, 2000, IEEE T MED IMAGING, V19, P548, DOI 10.1109/42.870265 Zhu B, 2018, NATURE, V555, P487, DOI 10.1038/nature25988 NR 34 TC 4 Z9 4 U1 0 U2 4 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0094-2405 EI 2473-4209 J9 MED PHYS JI Med. Phys. DI 10.1002/mp.13753 PG 6 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA IU6RV UT WOS:000483714300001 PM 31389023 OA Green Published, Other Gold DA 2021-04-21 ER PT J AU Pesce-Rollins, M Di Lalla, N Omodei, N Baldini, L AF Pesce-Rollins, Melissa Di Lalla, Niccolo Omodei, Nicola Baldini, Luca TI An observation-simulation and analysis framework for the Imaging X-ray Polarimetry Explorer (IXPE) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Review DE Detector techniques for cosmology; Astroparticle physics AB We present a new simulation framework, based on the Python programming language and specifically developed for the Imaging X-ray Polarimetry Explorer (IXPE) mission. Starting from an arbitrary source model (including morphological, temporal, spectral and polarimetric information), this framework uses the instrument response functions to produce fast and realistic observation-simulations. The generated event lists can be directly fed into the standard X-ray visualization and analysis tools, including XSPEC-which make this framework a useful tool not only for simulating observations of astronomical sources, but also to develop and test end-to-end analysis chains. We will give an overview of the basic architecture of the software and we will present a few physically interesting case studies in the context of the IXPE mission. C1 [Pesce-Rollins, Melissa; Di Lalla, Niccolo; Baldini, Luca] Ist Nazl Fis Nucl, Pisa, Italy. [Di Lalla, Niccolo; Baldini, Luca] Univ Pisa, Pisa, Italy. [Omodei, Nicola] Stanford Univ, Stanford, CA 94305 USA. RP Pesce-Rollins, M (corresponding author), Ist Nazl Fis Nucl, Pisa, Italy. EM melissa.pesce.rollins@pi.infn.it RI Rollins, Melissa Pesce/AAB-4010-2021 OI Baldini, Luca/0000-0002-9785-7726 CR Helder EA, 2008, ASTROPHYS J, V686, P1094, DOI 10.1086/591242 NR 1 TC 3 Z9 3 U1 1 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD AUG 21 PY 2019 VL 936 BP 224 EP 226 DI 10.1016/j.nima.2018.10.041 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA ID6YL UT WOS:000471828100080 DA 2021-04-21 ER PT J AU Martone, R Guidorzi, C Mundell, CG Kobayashi, S Cucchiara, A Gomboc, A Jordana, N Laskar, T Marongiu, M Morris, DC Smith, RJ Steele, IA AF Martone, R. Guidorzi, C. Mundell, C. G. Kobayashi, S. Cucchiara, A. Gomboc, A. Jordana, N. Laskar, T. Marongiu, M. Morris, D. C. Smith, R. J. Steele, I. A. TI A robotic pipeline for fast GRB followup with the Las Cumbres observatory network SO EXPERIMENTAL ASTRONOMY LA English DT Article DE GRB; LCO; Telegram ID GAMMA-RAY BURST; OPTICAL-EMISSION; TELESCOPE; POLARIZATION; RADIATION; FLASHES; LIGHT AB In the era of multi-messenger astronomy the exploration of the early emission from transients is key for understanding the encoded physics. At the same time, current generation networks of fully-robotic telescopes provide new opportunities in terms of fast followup and sky coverage. This work describes our pipeline designed for robotic optical followup of gamma-ray bursts with the Las Cumbres Observatory network. We designed a Python code to promptly submit observation requests to the Las Cumbres Observatory network within 3 minutes of the receipt of the socket notice. Via Telegram the pipeline keeps the users informed, allowing them to take control upon request. Our group was able to track the early phases of the evolution of the optical output from gamma-ray bursts with a fully-robotic procedure and here we report the case of GRB180720B as an example. The developed pipeline represents a key ingredient for any reliable and rapid (minutes timescale) robotic telescope system. While successfully utilized and adapted for LCO, it can also be adapted to any other robotic facilities. C1 [Martone, R.; Guidorzi, C.; Marongiu, M.] Univ Ferrara, Dept Phys & Earth Sci, Via Saragat 1, I-44122 Ferrara, Italy. [Martone, R.; Marongiu, M.] ICRANet, Piazzale Repubbl 10, I-65122 Pescara, Italy. [Mundell, C. G.; Jordana, N.; Laskar, T.] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England. [Kobayashi, S.; Smith, R. J.; Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Cucchiara, A.; Morris, D. C.] Univ Virgin Isl, 2 John Brewers Bay, St Thomas, VI 00802 USA. [Gomboc, A.] Univ Nova Gorica, Ctr Astrophys & Cosmol, Vipavska 11c, Ajdovscina 5270, Slovenia. RP Martone, R (corresponding author), Univ Ferrara, Dept Phys & Earth Sci, Via Saragat 1, I-44122 Ferrara, Italy.; Martone, R (corresponding author), ICRANet, Piazzale Repubbl 10, I-65122 Pescara, Italy. EM mrtrnt@unife.it OI Martone, Renato/0000-0002-0335-319X; Guidorzi, Cristiano/0000-0001-6869-0835; Marongiu, Marco/0000-0002-5817-4009; Kobayashi, Shiho/0000-0001-7946-4200; Smith, Rory/0000-0001-8516-3324; Jordana-Mitjans, Nuria/0000-0002-5467-8277; Laskar, Tanmoy/0000-0003-1792-2338 FU Universita di Ferrara FX We thank Leo Singer for his help and support in the developing of the code. Support for this work was provided by Universita di Ferrara through grant FIR 2018 "A Broad-band study of Cosmic Gamma-Ray Burst Prompt and Afterglow Emission" (PI Guidorzi). CR Abbott BP, 2017, ASTROPHYS J LETT, V848, DOI 10.3847/2041-8213/aa91c9 Akerlof C, 1999, NATURE, V398, P400, DOI 10.1038/18837 Akerlof CW, 2003, PUBL ASTRON SOC PAC, V115, P132, DOI 10.1086/345490 BARTHELMY SD, 1995, ASTROPHYS SPACE SCI, V231, P235, DOI 10.1007/BF00658623 Boer M, 1999, ASTRON ASTROPHYS SUP, V138, P579, DOI 10.1051/aas:1999356 Brown TM, 2013, PUBL ASTRON SOC PAC, V125, P1031, DOI 10.1086/673168 Castro-Tirado AJ, 1999, ASTRON ASTROPHYS SUP, V138, P583, DOI 10.1051/aas:1999362 EICHLER D, 1989, NATURE, V340, P126, DOI 10.1038/340126a0 Gehrels N, 2004, ASTROPHYS J, V611, P1005, DOI 10.1086/422091 Gomboc A, 2008, ASTROPHYS J, V687, P443, DOI 10.1086/592062 Gomboc A, 2009, AIP CONF PROC, V1133, P145, DOI 10.1063/1.3155867 Guidorzi C, 2006, PUBL ASTRON SOC PAC, V118, P288, DOI 10.1086/499289 Japelj J, 2014, ASTROPHYS J, V785, DOI 10.1088/0004-637X/785/2/84 KLEBESADEL RW, 1973, ASTROPHYS J, V182, pL85, DOI 10.1086/181225 Kopac D, 2015, ASTROPHYS J, V813, DOI 10.1088/0004-637X/813/1/1 Laskar T, 2018, ASTROPHYS J, V862, DOI 10.3847/1538-4357/aacbcc Laskar T, 2016, ASTROPHYS J, V833, DOI 10.3847/1538-4357/833/1/88 Lavigne JM, 1998, NUCL PHYS B, P69, DOI 10.1016/S0920-5632(97)00502-1 Lewis F, 2010, ADV ASTRON, V2010, DOI 10.1155/2010/873059 Lipunov V, 2010, ADV ASTRON, V2010, DOI 10.1155/2010/349171 LIPUNOV VM, 1995, ASTROPHYS J, V454, P593, DOI 10.1086/176512 Martone R., 2018, GRB COORDINATES NETW Meegan C, 2009, ASTROPHYS J, V702, P791, DOI 10.1088/0004-637X/702/1/791 Melandri A, 2008, ASTROPHYS J, V686, P1209, DOI 10.1086/591243 Monfardini A, 2006, ASTROPHYS J, V648, P1125, DOI 10.1086/506170 Mundell CG, 2007, ASTROPHYS J, V660, P489, DOI 10.1086/512605 Mundell CG, 2013, NATURE, V504, P119, DOI 10.1038/nature12814 Mundell CG, 2010, ADV ASTRON, V2010, DOI 10.1155/2010/718468 Mundell CG, 2007, SCIENCE, V315, P1822, DOI 10.1126/science.1138484 NARAYAN R, 1992, ASTROPHYS J, V395, pL83, DOI 10.1086/186493 Paczynski B., 1991, Acta Astronomica, V41, P257 Schlegel DJ, 1998, ASTROPHYS J, V500, P525, DOI 10.1086/305772 Siegel M., 2018, GRB COORDINATES NETW Steele IA, 2009, NATURE, V462, P767, DOI 10.1038/nature08590 Steele IA, 2004, P SOC PHOTO-OPT INS, V5489, P679, DOI 10.1117/12.551456 Troja E, 2017, NATURE, V547, P425, DOI 10.1038/nature23289 Tsapras Y, 2009, ASTRON NACHR, V330, P4, DOI 10.1002/asna.200811130 vanParadijs J, 1997, NATURE, V386, P686, DOI 10.1038/386686a0 Virgili FJ, 2013, ASTROPHYS J, V778, DOI 10.1088/0004-637X/778/1/54 Woosley SE, 2012, CAMBRIDGE ASTROPHYS, V51, P191 NR 40 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD AUG PY 2019 VL 48 IS 1 BP 25 EP 48 DI 10.1007/s10686-019-09634-y PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA IR9JA UT WOS:000481758700002 OA Green Accepted DA 2021-04-21 ER PT J AU Blyth, D Alcaraz, J Binet, S Chekanov, SV AF Blyth, D. Alcaraz, J. Binet, S. Chekanov, S. V. TI ProIO: An event-based I/O stream format for protobuf messages SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Protobuf; I/O; Event; Stream AB ProIO is a new event-oriented streaming data format which utilizes Google's Protocol Buffers (protobuf) to be flexible and highly language-neutral. The ProIO concept is described here along with its software implementations. The performance of the ProIO concept for a dataset with Monte-Carlo event records used in high-energy physics was benchmarked and compared/contrasted with ROOT I/O. Various combinations of general-purpose compression and variable-length integer encoding available in protobuf were used to investigate the relationship between I/O performance and size-on-disk in a few key scenarios. Program summary Program Title: ProlO Program Files doi: http://dx.doi.org/10.17632/mfxsg2d5x5.1 Licensing provisions: BSD 3-clause Programming language: Python, Go, C++, Java Nature of problem: In high-energy and nuclear physics (HEP and NP), Google's Protocol Buffers (protobufs) can be a useful tool for the persistence of data. However, protobufs are not well-suited for describing large, rich datasets. Additionally, features such as direct event access, lazy event decoding, general-purpose compression, and self-description are features that are important to HEP and NP, but that are missing from protobuf. Solution method: The solution adopted here is to describe and implement a streaming format for wrapping protobufs in an event structure. This solution requires small (typically less than 1000 lines of code) implementations of the format in the desired programming languages. With this approach, most of the I/O heavy lifting is done by the protobufs, and ProlO adds the necessary physics-oriented features. Published by Elsevier B.V. C1 [Blyth, D.; Chekanov, S. V.] Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Binet, S.] Univ Clermont Auvergne, CNRS, IN2P3, LPC, F-63000 Clermont Ferrand, France. [Alcaraz, J.] Northern Illinois Univ, De Kalb, IL 60115 USA. [Blyth, D.] Radiat Detect & Imaging RDI Technol LLC, 21215 N 36th PI, Phoenix, AZ 85050 USA. RP Blyth, D (corresponding author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dblyth@radiationimaging.com OI Blyth, David/0000-0001-8452-516X; Chekanov, Sergei/0000-0001-7314-7247 FU U.S. Department of Energy Office of Science laboratoryUnited States Department of Energy (DOE) [DE-AC02-06CH11357]; U.S. Department of Energy, Office of High Energy PhysicsUnited States Department of Energy (DOE) [DE-AC02-06CH11357]; ANL LDRD project [2017-058]; EIC eRD20 project FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.Part of Argonne National Laboratory's work was funded by the U.S. Department of Energy, Office of High Energy Physics under contract DE-AC02-06CH11357. The work of D. Blyth was supported by an ANL LDRD project 2017-058. The work of J. Alcaraz was supported by the EIC eRD20 project. CR Antcheva I, 2009, COMPUT PHYS COMMUN, V180, P2499, DOI 10.1016/j.cpc.2009.08.005 Binet S., 2018, ARXIV180806529 Blomer J, 2018, J PHYS CONF SER, V1085, DOI 10.1088/1742-6596/1085/3/032020 Chekanov SV, 2015, ADV HIGH ENERGY PHYS, V2015, DOI 10.1155/2015/136093 Chekanov SV, 2014, COMPUT PHYS COMMUN, V185, P2629, DOI 10.1016/j.cpc.2014.06.016 Gaede F., 2003, ARXIV PREPRINT Sjostrand T, 2008, COMPUT PHYS COMMUN, V178, P852, DOI 10.1016/j.cpc.2008.01.036 NR 7 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD AUG PY 2019 VL 241 BP 98 EP 112 DI 10.1016/j.cpc.2019.03.018 PG 15 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA IF8YW UT WOS:000473380200012 DA 2021-04-21 ER PT J AU Staub, F AF Staub, Florian TI xSLHA: An Les Houches Accord reader for Python and Mathematica SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE BSM; SLHA; Parser; Spectrum files ID SUSY; SPHENO; MODELS; FLAVOR; TOOL AB The format defined by the SUSY Les Houches Accord (SLHA) is widely used in high energy physics to store and exchange information. It is no longer applied only to a few supersymmetric models, but the general structure is adapted to all kinds of models. Therefore, it is helpful to have parsers at hand which can import files in the SLHA format into high-level languages as Python and Mathematica in order to further process the data. The focus of the xSLHA package, which exists now for Python and Mathematica, was on a fast read-in of large data samples. Moreover, also some blocks used by different tools, as HiggsBounds for instance, deviate from the standard conventions. These are also supported by xSLHA. Program summary Program Title: xSLHA Program Files doi: http://dx.doLorg/10.17632/cj958d76pf.1 Licensing provisions: MIT Programming language: Python, Mathematica Nature of problem: Many numerical computer tools in phenomenological high-energy physics store the results in the so called SUSY Les Houches Accord (SLHA) format. In order to process the data with high-level languages as Mathematica or Python, these files must be translated into these languages. This can be very time consuming for large data samples. Solution method: xSLHA is a pretty fast parser to import SLHA files into Python or Mathematica. It is also the first fully general SLHA reader written for Mathematica at all. In order to speed up the import of a large data sample, it provides the possibility to pre-process the SLHA files using very efficient shell tools as grep or cat. This improves the speed easily by an order of magnitude and more. (C) 2019 Elsevier B.V. All rights reserved. C1 [Staub, Florian] Karlsruhe Inst Technol, ITP, Engesserstr 7, D-76128 Karlsruhe, Germany. [Staub, Florian] Karlsruhe Inst Technol, Inst Nucl Phys IKP, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. RP Staub, F (corresponding author), Karlsruhe Inst Technol, ITP, Engesserstr 7, D-76128 Karlsruhe, Germany. EM florian.staub@kit.edu OI Staub, Florian/0000-0001-5911-5804 FU ERC Recognition Award of the Helmholtz Association [ERC-RA-0008] FX I thank Martin Gabelmann Toby Opferkuch for testing xSLHA under Linux and MacOS. This work is supported by the ERC Recognition Award ERC-RA-0008 of the Helmholtz Association. CR Allanach BC, 2009, COMPUT PHYS COMMUN, V180, P8, DOI 10.1016/j.cpc.2008.08.004 Basso L, 2013, COMPUT PHYS COMMUN, V184, P698, DOI 10.1016/j.cpc.2012.11.004 Bechtle P, 2011, COMPUT PHYS COMMUN, V182, P2605, DOI 10.1016/j.cpc.2011.07.015 Bechtle P, 2010, COMPUT PHYS COMMUN, V181, P138, DOI 10.1016/j.cpc.2009.09.003 Bechtle P, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-013-2693-2 Buckley A, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3638-8 Hahn T, 2009, COMPUT PHYS COMMUN, V180, P1681, DOI 10.1016/j.cpc.2009.03.012 HAHN T, 2004, HEPPH0408283 Mahmoudi F, 2012, COMPUT PHYS COMMUN, V183, P285, DOI 10.1016/j.cpc.2011.10.006 Marquard P, 2014, COMPUT PHYS COMMUN, V185, P1153, DOI 10.1016/j.cpc.2013.12.005 Porod W, 2003, COMPUT PHYS COMMUN, V153, P275, DOI 10.1016/S0010-4655(03)00222-4 Porod W, 2012, COMPUT PHYS COMMUN, V183, P2458, DOI 10.1016/j.cpc.2012.05.021 Sjostrand T, 2004, J HIGH ENERGY PHYS Staub F, 2014, COMPUT PHYS COMMUN, V185, P1773, DOI 10.1016/j.cpc.2014.02.018 Staub F, 2013, COMPUT PHYS COMMUN, V184, P1792, DOI 10.1016/j.cpc.2013.02.019 Staub F, 2012, COMPUT PHYS COMMUN, V183, P2165, DOI 10.1016/j.cpc.2012.04.013 Staub F, 2011, COMPUT PHYS COMMUN, V182, P808, DOI 10.1016/j.cpc.2010.11.030 Staub F, 2010, COMPUT PHYS COMMUN, V181, P1077, DOI 10.1016/j.cpc.2010.01.011 NR 18 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD AUG PY 2019 VL 241 BP 132 EP 138 DI 10.1016/j.cpc.2019.03.013 PG 7 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA IF8YW UT WOS:000473380200015 DA 2021-04-21 ER PT J AU Pintaldi, S Li, JM Sethuyenkatraman, S White, S Rosengarten, G AF Pintaldi, Sergio Li, Jiaming Sethuyenkatraman, Subbu White, Stephen Rosengarten, Gary TI Model predictive control of a high efficiency solar thermal cooling system with thermal storage SO ENERGY AND BUILDINGS LA English DT Article DE Non linear model predictive control; Genetic algorithm; Solar cooling; Thermal energy storage; Triple-effect absorption chiller ID PERFORMANCE; ALGORITHMS; COLLECTORS; BUILDINGS; PLANT; PART AB This work presents the benefits of using a model predictive control (MPC) approach for controlling a high efficiency absorption chiller-based solar cooling system with thermal energy storage, incorporating perfect solar resource and load forecasting information. A dynamic physics-based model of the solar air-conditioning system has been built for studying the system behavior. A genetic algorithm based predictive controller is utilized to minimize backup energy consumption while satisfying the cooling demand. The simulations have been carried out using the open-source programming language Python. Detailed investigation of the role of the predictive controller and its decision strategy have been carried out using ten and fifty days simulations. Effect of storage tank heat losses has been investigated. For the simulated example case pertaining to a building, results show the model predictive controller usage delivers about 10% reduction in auxiliary energy use in the system. This is achieved through reduction in tank heat losses, better utilization of heat stored in the tank. It is seen that the MPC based controller enables new system operational capabilities by running the solar collector pump in variable flow mode and allowing the simultaneous heat delivery from storage and backup devices. Opportunities to improve the MPC benefits have been identified. The benefits of the MPC are seen to be sensitive to the system parameters and specific constraints. In summary, this paper provides valuable insights into solar cooling system design and control. Crown Copyright (C) 2019 Published by Elsevier B.V. All rights reserved. C1 [Pintaldi, Sergio; Rosengarten, Gary] RMIT Univ, Sch Aerosp Mech & Mfg Engn, Melbourne, Vic, Australia. [Pintaldi, Sergio; Sethuyenkatraman, Subbu; White, Stephen] CSIRO, Energy, Newcastle, NSW, Australia. [Li, Jiaming] CSIRO, Data61, Sydney, NSW, Australia. RP Pintaldi, S (corresponding author), RMIT Univ, Sch Aerosp Mech & Mfg Engn, Melbourne, Vic, Australia.; Pintaldi, S (corresponding author), CSIRO, Energy, Newcastle, NSW, Australia. EM sergio.pintaldi@switchdin.com OI Sethuvenkatraman, Subbu/0000-0001-7197-2307 FU Australian Renewable Energy Agency (ARENA), Micro Urban Solar Integrated Concentrators project [1-USO MUSIC] FX The authors would like to thank Thermax Limited for providing the data of the triple effect absorption chiller, the Australian Renewable Energy Agency (ARENA) for providing funds to carry out this research work as a part of Micro Urban Solar Integrated Concentrators (grant no. "1-USO MUSIC") project and the developers of the Python packages Pandas and Matplotlib [51,521 for making their tools freely available with full documentation, and finally Dr Cristian Perfumo for his support related to the model predictive controller development. CR ACADS-BSG PtyLtd Elms consulting engineers, 2002, ABCB EN MOD OFF BUIL Balaras CA, 2007, RENEW SUST ENERG REV, V11, P299, DOI 10.1016/j.rser.2005.02.003 Berkenkamp F, 2014, ENERG BUILDINGS, V84, P233, DOI 10.1016/j.enbuild.2014.07.052 Blasco X., 1998, APPL CONTROL NONLINE, P428, DOI [10.1007/3-540-64582-9_773, DOI 10.1007/3-540-64582-9_773] Bujedo LA, 2011, SOL ENERGY, V85, P1302, DOI 10.1016/j.solener.2011.03.009 Cabrera FJ, 2013, RENEW SUST ENERG REV, V20, P103, DOI 10.1016/j.rser.2012.11.081 Camacho EF, 2012, ADV IND CONTROL, P1, DOI 10.1007/978-0-85729-916-1 Coley D.A., 1999, INTRO GENETIC ALGORI Drosou VN, 2014, RENEW SUST ENERG REV, V29, P463, DOI 10.1016/j.rser.2013.08.019 Eicker U, 2015, RENEW ENERG, V80, P827, DOI 10.1016/j.renene.2015.02.019 Ernst D, 2009, IEEE T SYST MAN CY B, V39, P517, DOI 10.1109/TSMCB.2008.2007630 Fiorentini M, 2017, APPL ENERG, V187, P465, DOI 10.1016/j.apenergy.2016.11.041 Fortin FA, 2012, J MACH LEARN RES, V13, P2171 Garcia-Gabin W, 2009, CONTROL ENG PRACT, V17, P652, DOI 10.1016/j.conengprac.2008.10.015 Gholamibozanjani G, 2018, APPL ENERG, V231, P959, DOI 10.1016/j.apenergy.2018.09.181 Goldberg D. E, 1989, GENETIC ALGORITHM SE Goyal A, 2019, INT J REFRIG, V97, P1, DOI 10.1016/j.ijrefrig.2018.08.026 Halvgaard R, 2012, ENRGY PROCED, V30, P270, DOI 10.1016/j.egypro.2012.11.032 Han YM, 2009, RENEW SUST ENERG REV, V13, P1014, DOI 10.1016/j.rser.2008.03.001 Henning HM, 2007, APPL THERM ENG, V27, P1734, DOI 10.1016/j.applthermaleng.2006.07.021 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 International Energy Agency (IEA), 2015, WORLD EN OUTL SPEC R Killian M, 2016, BUILD ENVIRON, V105, P403, DOI 10.1016/j.buildenv.2016.05.034 Kuhn A., 2005, PROC 1ST INT CONF SO, V10, P5 Li SW, 2015, SOL ENERGY, V113, P139, DOI 10.1016/j.solener.2014.11.024 Marc O, 2010, ENERG BUILDINGS, V42, P774, DOI 10.1016/j.enbuild.2009.12.006 Menchinelli P, 2008, EUR J CONTROL, V14, P501, DOI 10.3166/EJC.14.501-515 Millman J., 2010, P56, DOI DOI 10.1016/S0168-0102(02)00204-3 Mugnier D., 2017, SOLAR COOLING DESIGN Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Onnen C, 1997, CONTROL ENG PRACT, V5, P1363, DOI 10.1016/S0967-0661(97)00133-0 Pichler MF, 2014, SOL ENERGY, V101, P203, DOI 10.1016/j.solener.2013.12.015 Pintaldi S, 2017, APPL ENERG, V188, P160, DOI 10.1016/j.apenergy.2016.11.123 Pintaldi S, 2015, RENEW SUST ENERG REV, V41, P975, DOI 10.1016/j.rser.2014.08.062 Powell KM, 2013, P AMER CONTR CONF, P2946 Rennard J. P, 2000, INTRO GENETIC ALGORI Rodriguez M, 2008, EUR J CONTROL, V14, P484, DOI 10.3166/EJC.14.484-500 Rossetti A, 2018, INT J REFRIG, V93, P213, DOI 10.1016/j.ijrefrig.2018.06.004 Serale G, 2018, ENERG CONVERS MANAGE, V173, P438, DOI 10.1016/j.enconman.2018.07.099 Wang SW, 2008, HVAC&R RES, V14, P3, DOI 10.1080/10789669.2008.10390991 Shirazi A, 2016, ENERG CONVERS MANAGE, V114, P258, DOI 10.1016/j.enconman.2016.01.070 Siroky J, 2011, APPL ENERG, V88, P3079, DOI 10.1016/j.apenergy.2011.03.009 Sonntag C, 2008, EUR J CONTROL, V14, P451, DOI 10.3166/EJC.14.451-463 Sousa JM, 1997, CONTROL ENG PRACT, V5, P1395, DOI 10.1016/S0967-0661(97)00136-6 Vukovic PD, 2001, FUZZY SET SYST, V122, P107, DOI 10.1016/S0165-0114(00)00048-8 Weeratunge H, 2018, ENERGY, V152, P974, DOI 10.1016/j.energy.2018.03.079 [ Xue Fuzhen], 2004, [, Journal of University of Science and Technology of China], V34, P593 Yabase H., 2012, INT REFR AIR COND C, P1272 Yang Jian-jun, 2003, Control and Decision, V18, P141 Zambrano D, 2002, PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 & 2, P1230, DOI 10.1109/CCA.2002.1038781 Zambrano D, 2008, EUR J CONTROL, V14, P464, DOI 10.3166/EJC.14.464-483 NR 51 TC 3 Z9 3 U1 0 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD AUG 1 PY 2019 VL 196 BP 214 EP 226 DI 10.1016/j.enbuild.2019.05.008 PG 13 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA IE2VO UT WOS:000472242900019 DA 2021-04-21 ER PT J AU Martin, RD Cai, Q Garrow, T Kapahi, C AF Martin, R. D. Cai, Q. Garrow, T. Kapahi, C. TI QExpy: A python-3 module to support undergraduate physics laboratories SO SOFTWAREX LA English DT Article DE Physics; Uncertainties; Error; Plotting; Fitting; Data-analysis AB QExpy is an open source python-3 module that was developed in order to simplify the analysis of data in undergraduate physics laboratories. Through the use of this module, students can focus their time on understanding the science and the data from their experiments, rather than on processing their data. In particular, the module allows users to easily propagate uncertainties from measured quantities using a variety of techniques (derivatives, Monte Carlo), as well as to plot and fit functions to data. The interface is designed to be pedagogical so that students with no prior programming experience can be eased into using python in their introductory physics laboratories. (C) 2019 The Authors. Published by Elsevier B.V. C1 [Martin, R. D.; Cai, Q.; Garrow, T.; Kapahi, C.] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON, Canada. [Kapahi, C.] Univ Waterloo, Inst Quantum Comp, Waterloo, ON, Canada. [Kapahi, C.] Univ Waterloo, Dept Phys, Waterloo, ON, Canada. RP Martin, RD (corresponding author), Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON, Canada. EM ryan.martin@queensu.ca OI Kapahi, Connor/0000-0001-6051-6859 FU Department of Physics, Engineering Physics & Astronomy at Queen's University FX We would like to thank the Department of Physics, Engineering Physics & Astronomy at Queen's University for their support of students to develop this software. We would also like to thank Prof. A.B. McLean for the all of the valuable support and input in developing QExpy, and for the original idea of developing a ``professor approved'' python module for error propagation. We also would like to thank the many students from the department for their valuable feedback. CR Bokeh Development Team, 2018, BOK PYTH LIB INT VIS Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones E., 2001, SCIPY OPEN SOURCE SC Lebigot E.O, 2017, UNCERTAINTIES PYTHON MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P431, DOI 10.1137/0111030 Martin RD, 2016, QEXPY GITHUB REPOSIT PICUP, 2019, PICUP PARTNERSHIP IN van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 NR 8 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2352-7110 J9 SOFTWAREX JI SoftwareX PD JUL-DEC PY 2019 VL 10 AR 100273 DI 10.1016/j.softx.2019.100273 PG 6 WC Computer Science, Software Engineering SC Computer Science GA JX9RT UT WOS:000504065000049 OA DOAJ Gold DA 2021-04-21 ER PT J AU Olarinoye, IO Odiaga, RI Paul, S AF Olarinoye, I. O. Odiaga, R., I Paul, S. TI EXABCal: A program for calculating photon exposure and energy absorption buildup factors SO HELIYON LA English DT Article DE Atomic physics; Nuclear physics; Nuclear engineering; Physics methods; Photons; Buildup factors; Shielding; Radiation dose; Equivalent atomic number ID MFP AB This research presents a new Windows compatible program (EXABCal) for photon exposure and energy absorption buildup factors for standard energy grid from 0.015-15 MeV for elements, mixtures and compound. This program was written using Python programming language and the calculation of buildup factors was based on the well-known Geometric Progression (GP) fitting procedure. The equivalent atomic numbers and GP fitting parameters of mixtures and compounds can also be evaluated using this program. The program has been used to evaluate the photon exposure and energy absorption buildup factors for standard energy grid from 0.015-15 MeV for water, air and concrete, compared with values from the American Nuclear Society (ANS) standard reference data (ANSI-6.4.3) and found to be of high accurate with minimal errors. The program is fast and easy to use and will be of valuable interest to medical Physicist, radiation Physicists, Radiation shielding design engineers, students, teachers and researchers and other experts working in areas where nuclear radiation is applied. C1 [Olarinoye, I. O.; Odiaga, R., I; Paul, S.] Fed Univ Technol, Dept Phys, Minna, Nigeria. RP Olarinoye, IO (corresponding author), Fed Univ Technol, Dept Phys, Minna, Nigeria. EM leke.olarinoye@futminna.edu.ng RI Olarinoye, Oyeleke/AAD-7898-2021 OI Olarinoye, Oyeleke/0000-0002-3433-5250 CR [Anonymous], 1991, ANSIANS643 Gerward L, 2004, RADIAT PHYS CHEM, V71, P653, DOI 10.1016/j.radphyschem.2004.04.040 HARIMA Y, 1993, RADIAT PHYS CHEM, V41, P631, DOI 10.1016/0969-806X(93)90317-N HARIMA Y, 1983, NUCL SCI ENG, V83, P299, DOI 10.13182/NSE83-A18222 HARIMA Y, 1986, NUCL SCI ENG, V94, P24, DOI 10.13182/NSE86-A17113 Hirayama H, 1995, J NUCL SCI TECHNOL, V32, P1201, DOI 10.3327/jnst.32.1201 Hubbell J. H., 1987, PHOTON CROSS SECTION, V87, P3597 Issa S. A. M., 2018, MAT CHEM PHYS James E.M., 2006, PHYS RAD PROTECTION, P822 Kucuk N, 2010, EXPERT SYST APPL, V37, P3762, DOI 10.1016/j.eswa.2009.11.047 Kurudirek M, 2013, ANN NUCL ENERGY, V53, P485, DOI 10.1016/j.anucene.2012.08.002 Mann KS, 2013, ANN NUCL ENERGY, V51, P81, DOI 10.1016/j.anucene.2012.08.024 Obaid SS, 2018, RADIAT PHYS CHEM, V148, P86, DOI 10.1016/j.radphyschem.2018.02.026 Olarinoye I.O., 2017, J NUCL RES DEV, V13, P57 Sayyed MI, 2017, RESULTS PHYS, V7, P2528, DOI 10.1016/j.rinp.2017.07.028 Sayyed MI, 2017, RADIAT PHYS CHEM, V139, P33, DOI 10.1016/j.radphyschem.2017.05.013 Shimizu A, 2002, J NUCL SCI TECHNOL, V39, P477, DOI 10.3327/jnst.39.477 Singh Vishwanath P., 2012, International Journal of Nuclear Energy Science and Technology, V7, P75, DOI 10.1504/IJNEST.2012.046987 NR 18 TC 17 Z9 17 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 2405-8440 J9 HELIYON JI Heliyon PD JUL PY 2019 VL 5 IS 7 AR e02017 DI 10.1016/j.heliyon.2019.e02017 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA IN4RL UT WOS:000478663100099 PM 31360782 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Hayen, L Severijns, N AF Hayen, L. Severijns, N. TI Beta Spectrum Generator: High precision allowed beta spectrum shapes SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Beta decay; Standard model; Spectrum shape ID NUCLEAR; DECAY; TRANSITIONS; PARTICLE; ELEMENTS; TABLE; TESTS AB Several searches for Beyond Standard Model physics rely on an accurate and highly precise theoretical description of the allowed beta spectrum. Following recent theoretical advances, a C++ implementation of an analytical description of the allowed beta spectrum shape was constructed. It implements all known corrections required to give a theoretical description accurate to a few parts in 10(4). The remaining nuclear structure-sensitive input can optionally be calculated in an extreme single-particle approximation with a variety of nuclear potentials, or obtained through an interface with more state-of-the-art computations. Due to its relevance in modern neutrino physics, the corresponding (anti)neutrino spectra are readily available with appropriate radiative corrections. In the interest of user-friendliness, a graphical interface was developed in Python with a coupling to a variety of nuclear databases. We present several test cases and illustrate potential usage of the code. Our work can be used as the foundation for current and future high-precision experiments related to the beta decay process. Source code: https://github.com/leenderthayen/BSG Documentation: http://bsg.readthedocs.io Program summary Program Title: BSG Program Files doi: http://dx.doi.org/10.17632/gx6yrpn22x.1 Licensing provisions: MIT Programming language: C++ and Python Nature of problem: The theoretical allowed beta spectrum contains a large variety of corrections from different areas of physics, each of which is important in certain energy ranges. A high precision description is required for new physics searches throughout the entire nuclear chart. Solution method: We implement the analytical corrections described in recent theoretical work. Nuclear matrix elements in allowed Gamow-Teller,6 decay are calculated in a spherical harmonic oscillator basis. Wave functions can be calculated in an extreme single-particle approximation using different nuclear potentials, or provided by the user as the output from more sophisticated routines. Corresponding neutrino spectra are calculated with appropriate radiative corrections. A graphical user interface written in Python additionally provides connections to a variety of nuclear databases. Additional comments: CPC Library subprograms used: ABOV_v1_0 (C) 2019 Elsevier B.V. All rights reserved. C1 [Hayen, L.; Severijns, N.] Katholieke Univ Leuven, Inst Kern & Stralingsfys, Celestijnenlaan 200D, B-3001 Leuven, Belgium. RP Hayen, L (corresponding author), Katholieke Univ Leuven, Inst Kern & Stralingsfys, Celestijnenlaan 200D, B-3001 Leuven, Belgium. EM leendert.hayen@kuleuven.be OI Hayen, Leendert/0000-0002-9471-0964 FU Belgian Federal Science Policy OfficeBelgian Federal Science Policy OfficeEuropean Commission [IUAP EP/12-c]; Fund for Scientific Research Flanders (FWO)FWO FX The authors would like to thank L De Keukeleere and S. Vanlangendonck for their valuable feedback. This work has been partly funded by the Belgian Federal Science Policy Office, under Contract No. IUAP EP/12-c and the Fund for Scientific Research Flanders (FWO). CR Angeli I, 2013, ATOM DATA NUCL DATA, V99, P69, DOI 10.1016/j.adt.2011.12.006 Bao M, 2016, PHYS REV C, V94, DOI 10.1103/PhysRevC.94.064315 BEHRENS H, 1970, NUCL PHYS A, VA150, P481, DOI 10.1016/0375-9474(70)90413-6 Behrens H., 1982, ELECT RADIAL WAVE FU BERTHIER J, 1966, NUCL PHYS, V78, P448, DOI 10.1016/0029-5582(66)90619-5 Bhattacharya T, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.054512 Broussard L. J., 2019, Hyperfine Interactions, V240, DOI 10.1007/s10751-018-1538-7 Brown BA, 2014, NUCL DATA SHEETS, V120, P115, DOI 10.1016/j.nds.2014.07.022 Brown BA, 2006, PHYS REV C, V74, DOI 10.1103/PhysRevC.74.034315 DAVIDSON JP, 1968, COLLECTIVE MODELS NU deShalit A., 1974, THEORETICAL NUCL PHY, VV1 DUDEK J, 1980, NUCL PHYS A, V341, P253, DOI 10.1016/0375-9474(80)90312-7 DUDEK J, 1982, PHYS REV C, V26, P1712, DOI 10.1103/PhysRevC.26.1712 ELTON LRB, 1958, NUCL PHYS, V5, P173, DOI 10.1016/0029-5582(58)90016-6 Fang DL, 2013, PHYS REV C, V88, DOI 10.1103/PhysRevC.88.034304 Fenker B, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.062502 GALLAGHER CJ, 1958, PHYS REV, V111, P1282, DOI 10.1103/PhysRev.111.1282 Hardy JC, 2015, PHYS REV C, V91, DOI 10.1103/PhysRevC.91.025501 Hayen L, 2019, PHYS REV C, V99, DOI 10.1103/PhysRevC.99.031301 Hayen L, 2018, REV MOD PHYS, V90, DOI 10.1103/RevModPhys.90.015008 Hayes AC, 2016, ANNU REV NUCL PART S, V66, P219, DOI 10.1146/annurev-nucl-102115-044826 HIRD B, 1973, COMPUT PHYS COMMUN, V6, P30, DOI 10.1016/0010-4655(73)90020-9 HJORTHJENSEN M, 1995, PHYS REP, V261, P126 Holstein BR, 2014, J PHYS G NUCL PARTIC, V41, DOI 10.1088/0954-3899/41/11/114001 HOLSTEIN BR, 1974, REV MOD PHYS, V46, P789, DOI 10.1103/RevModPhys.46.789 JACKSON JD, 1957, PHYS REV, V106, P517, DOI 10.1103/PhysRev.106.517 KLAPDOR HV, 1985, FORTSCHR PHYS, V33, P1, DOI 10.1002/prop.2190330102 LEE TD, 1956, PHYS REV, V104, P254, DOI 10.1103/PhysRev.104.254 Moller P, 2016, ATOM DATA NUCL DATA, V109, P1, DOI 10.1016/j.adt.2015.10.002 Mougeot X, 2014, PHYS REV A, V90, DOI 10.1103/PhysRevA.90.012501 Mueller TA, 2011, PHYS REV C, V83, DOI 10.1103/PhysRevC.83.054615 Naviliat-Cuncic O, 2013, ANN PHYS-BERLIN, V525, P600, DOI 10.1002/andp.201300072 Nilsson S. G., DAN MAT FYS MEDD, V29 Perkowski M, 2018, ACTA PHYS POL B, V49, P261, DOI 10.5506/APhysPolB.49.261 ROSE ME, 1954, PHYS REV, V93, P1326, DOI 10.1103/PhysRev.93.1326 Severijns N, 2014, J PHYS G NUCL PARTIC, V41, DOI 10.1088/0954-3899/41/11/114006 Severijns N, 2008, PHYS REV C, V78, DOI 10.1103/PhysRevC.78.055501 Sirlin A, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.014021 Soti G, 2014, PHYS REV C, V90, DOI 10.1103/PhysRevC.90.035502 Sternberg MG, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.182501 Stone NJ, 2005, ATOM DATA NUCL DATA, V90, P75, DOI 10.1016/j.adt.2005.04.001 Suhonen JT, 2017, FRONT PHYS-LAUSANNE, V5, DOI 10.3389/fphy.2017.00055 Suzuki T, 2012, PHYS REV C, V85, DOI 10.1103/PhysRevC.85.015802 Towner IS, 2015, PHYS REV C, V91, DOI 10.1103/PhysRevC.91.015501 Vos KK, 2015, REV MOD PHYS, V87, P1483, DOI 10.1103/RevModPhys.87.1483 WILKINSON DH, 1993, NUCL INSTRUM METH A, V335, P182, DOI 10.1016/0168-9002(93)90271-I NR 46 TC 3 Z9 3 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2019 VL 240 BP 152 EP 164 DI 10.1016/j.cpc.2019.02.012 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA IH2GJ UT WOS:000474312900014 DA 2021-04-21 ER PT J AU Aebischer, J Kumar, J Stangl, P Straub, DM AF Aebischer, Jason Kumar, Jacky Stangl, Peter Straub, David M. TI A global likelihood for precision constraints and flavour anomalies SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID ELECTROWEAK MEASUREMENTS; PHYSICS; SEARCH; COLLISIONS; VIOLATION; DECAYS AB We present a global likelihood function in the space of dimension-six Wilson coefficients in the Standard Model Effective Field Theory. The likelihood includes contributions from flavour-changing neutral current B decays, lepton flavour universality tests in charged- and neutral-current B and K decays, meson-antimeson mixing observables in the K, B, and D systems, direct CP violation in K, charged lepton flavour violating B, tau, and muon decays, electroweak precision tests on the Z and W poles, the anomalous magnetic moments of the electron, muon, and tau, and several other precision observables, 265 in total. The Wilson coefficients can be specified at any scale, with the one-loop running above and below the electroweak scale automatically taken care of. The implementation of the likelihood function is based on the open source tools flavio and wilson as well as the open Wilson coefficient exchange format (WCxf) and can be installed as a Python package. It can serve as a basis either for model-independent fits or for testing dynamical models, in particular models built to address the anomalies in B physics. We discuss a number of example applications, reproducing results from the EFT and model building literature. C1 [Aebischer, Jason; Straub, David M.] Tech Univ Munich, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Kumar, Jacky] Univ Montreal, Phys Particules, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada. [Stangl, Peter] Univ Savoie Mt Blanc, Lab Annecy Le Vieux Phys Theor, UMR5108, 9 Chemin Bellevue,BP 110, F-74941 Annecy Le Vieux, France. [Stangl, Peter] CNRS, 9 Chemin Bellevue,BP 110, F-74941 Annecy Le Vieux, France. RP Aebischer, J (corresponding author), Tech Univ Munich, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. EM jason.aebischer@tum.de; jacky.kumar@umontreal.ca; peter.stangl@lapth.cnrs.fr; david.straub@tum.de OI Stangl, Peter/0000-0002-8485-4091; Kumar, Jacky/0000-0001-9053-0731; Straub, David/0000-0001-5762-7339 FU DFG cluster of excellence "Origin and Structure of the Universe"German Research Foundation (DFG); NSERC of CanadaNatural Sciences and Engineering Research Council of Canada (NSERC) FX We thank Wolfgang Altmannshofer, Christoph Bobeth, IlariaBrivio, Andreas Crivellin, Martin Jung, AneeshManohar, and Jordy de Vries for discussions. We thank Alejandro Celis, Meril Reboud, and Olcyr Sumensari for pointing out typos. We thank Martin Gonzalez-Alonso, Admir Greljo, andMarco Nardecchia for useful comments. The work of D. S. and J. A. is supported by the DFG cluster of excellence "Origin and Structure of the Universe". The work of J. K. is financially supported by NSERC of Canada. CR Aaboud M, 2018, EUR PHYS J C, V78, DOI 10.1140/epjc/s10052-017-5475-4 Aaboud M., ARXIV180504000 ATLAS Aaboud M., 2018, JHEP Aad G, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2016)045 Aad G, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.072010 Aaij R, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.171802 Aaij R, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2018)078 Aaij R, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.251802 Aaij R, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2017)142 Aaij R, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.191801 Aaij R, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2016)047 Aaij R, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2016)104 Aaij R, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.159901 Aaij R, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2015)179 Aaij R, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.111803 Aaij R, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2015)115 Aaij R, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2015)064 Aaij R, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.151601 Aaij R, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2014)133 Aaij R, 2013, NUCL PHYS B, V867, P1, DOI 10.1016/j.nuclphysb.2012.09.013 Aaij R., 2017, HEP, V08 Aaij R., 2018, JHEP Aaltonen T, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.052018 Abdesselam A., ARXIV170201521 BELL Abdesselam A., ARXIV180903290 BELL Abreu P, 1997, Z PHYS C PART FIELDS, V73, P243, DOI 10.1007/s002880050315 Adamczyk Karol, 2019, 10 INT WORKSH CKM UN Aebischer J., 2019, ARXIV190310434 Aebischer J., ARXIV180405033 Aebischer J., ARXIV180702520 Aebischer J., ARXIV180800466 Aebischer J., ARXIV180701709 Aebischer J, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2016)037 Aebischer J, 2018, COMPUT PHYS COMMUN, V232, P71, DOI 10.1016/j.cpc.2018.05.022 Aebischer J, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2017)158 Aguilar-Arevalo A, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.071801 Aguilar-Saavedra JA, 2011, NUCL PHYS B, V843, P638, DOI 10.1016/j.nuclphysb.2010.10.015 Ahn JK, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.021802 Akeroyd AG, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.075011 AKERS R, 1995, Z PHYS C PART FIELDS, V67, P555 Alioli S, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2017)086 Alonso R, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.081802 Alonso R, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2014)159 Altmannshofer W, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.055008 Altmannshofer W, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-4952-0 Altmannshofer W, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3602-7 Altmannshofer W, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.091801 Amhis Y, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-5058-4 Amhis Y., ARXIV14127515 HFAG C Artamonov AV, 2009, PHYS REV D, V79, DOI 10.1103/PhysRevD.79.092004 Aubert B, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.051801 Aubert B, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.251802 Aubert B, 2006, PHYS REV D, V73, DOI 10.1103/PhysRevD.73.092001 Aubert B, 2008, PHYS REV D, V77, DOI 10.1103/PhysRevD.77.091104 Bai Z, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.212001 Barbieri R, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-3905-3 Barducci D, ARXIV180207237 Becirevic D, 2003, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2003/05/007 Becirevic D, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-3985-0 Beirevi D., 2018, PHYS REV D, V98 Bharucha A, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2016)098 Bhattacharya B, 2015, PHYS LETT B, V742, P370, DOI 10.1016/j.physletb.2015.02.011 Bhattacharya S., ARXIV180508222 Bjorn M, 2016, PHYS LETT B, V762, P426, DOI 10.1016/j.physletb.2016.10.003 Black D, 2002, PHYS REV D, V66, DOI 10.1103/PhysRevD.66.053002 Blum T, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.074502 Bobeth C, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2015)018 Bobeth C, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3535-1 Bobeth C, 2013, ACTA PHYS POL B, V44, P127, DOI 10.5506/APhysPolB.44.127 Boer P, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2015)155 Bordone M, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-4274-7 Brignole A, 2004, NUCL PHYS B, V701, P3, DOI 10.1016/j.nuclphysb.2004.08.037 Brivio I., ARXIV170608945 Brivio I, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2017)148 Brod J, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.033002 Brod J, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2015)141 BUCHMULLER W, 1986, NUCL PHYS B, V268, P621, DOI 10.1016/0550-3213(86)90262-2 Buckley A, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.091501 Buras AJ, 2001, NUCL PHYS B, V605, P600, DOI 10.1016/S0550-3213(01)00207-3 Buras AJ, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2015)202 Buras AJ, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2015)184 Buras AJ, 2009, PHYS REV D, V79, DOI 10.1103/PhysRevD.79.053010 Buttazzo D, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2017)044 Butter A, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2016)152 Camargo-Molina JE, 2018, PHYS LETT B, V784, P284, DOI 10.1016/j.physletb.2018.07.051 Capdevila B, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2018)093 [CDF Collaboration C. Collaboration], PREC MEAS EXCL B SMU Celis Alejandro, 2013, Journal of High Energy Physics, DOI 10.1007/JHEP01(2013)054 Celis A, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.035026 Celis A, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-4967-6 Celis A, 2017, PHYS LETT B, V771, P168, DOI 10.1016/j.physletb.2017.05.037 Celis A, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.095014 Charles J, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-4767-z Chatrchyan S, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.101804 Chobanova V, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2018)024 Cirigliano V, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.034031 Cirigliano V., ARXIV180901161 Cirigliano V, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2013)046 Ciuchini M, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-5270-2 [CMSCollaboration C. Collaboration], MEAS P1 P5 ANG PAR D Crivellin A., ARXIV180702068 David Andre, 2016, Reviews in Physics, V1, P13, DOI 10.1016/j.revip.2016.01.001 de Blas J, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2015)189 de Boer S, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2017)091 de Boer S, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.074001 De Bruyn K, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.041801 De Bruyn K, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.014027 de Florian D., HDB LHC HIGGS CROSS Dedes A, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2018)103 Dedes A, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2017)143 Dekens W, 2019, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2019)069 del Amo Sanchez P, 2010, Physical Review D, V82, DOI 10.1103/PhysRevD.82.112002 Descotes-Genon S., ARXIV181208163 Descotes-Genon S, 2016, J HIGH ENERGY PHYS, P1, DOI 10.1007/JHEP06(2016)092 Detmold W, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.074501 Dutta D, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.011101 Efrati A, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2015)018 Ellis J, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2018)146 Fajfer S, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3801-2 Falkowski A, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2017)123 Falkowski A, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2016)086 Falkowski A, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.011801 Faroughy DA, 2017, PHYS LETT B, V764, P126, DOI 10.1016/j.physletb.2016.11.011 Feruglio F., ARXIV180610155 Feruglio F, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2017)061 Freytsis M, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.054018 GEIREGAT D, 1990, PHYS LETT B, V245, P271, DOI 10.1016/0370-2693(90)90146-W Gonzalez-Alonso M, 2019, PROG PART NUCL PHYS, V104, P165, DOI 10.1016/j.ppnp.2018.08.002 Gonzalez-Alonso M, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2016)052 Grygier J, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.099902 Grygier J, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.091101 Grzadkowski B, 2010, J HIGH ENERGY PHYS, DOI [10.1007/JHEP10(2010)85, 10.1007/JHEP10(2010)085] Haller J, 2018, EUR PHYS J C, V78, DOI 10.1140/epjc/s10052-018-6131-3 Hamer P, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.032007 Hartman C, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2015)151 Hartmann C, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.191801 Hayasaka K, 2010, PHYS LETT B, V687, P139, DOI 10.1016/j.physletb.2010.03.037 Hirose S, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.211801 Hu Q.-Y., ARXIV181004939 Huber T, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2015)176 Hurth T, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.095034 Huschle M, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.072014 Jenkins EE, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2018)016 Jenkins EE, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2018)084 Jenkins EE, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2014)035 Jenkins EE, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2013)087 Jung M., ARXIV180101112 Kallen G, 1964, ELEMENTARY PARTICLE Kamenik JF, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.035002 Khachatryan V, 2016, PHYS LETT B, V753, P424, DOI 10.1016/j.physletb.2015.12.020 Kumar J., ARXIV180607403 Kuno Y, 2001, REV MOD PHYS, V73, P151, DOI 10.1103/RevModPhys.73.151 Lees JP, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.031802 Lees JP, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.211802 Lees JP, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.072012 Lees JP, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.112005 Lees JP, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.012004 Li XQ, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2016)054 Lutz O, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.111103 MISHRA SR, 1991, PHYS REV LETT, V66, P3117, DOI 10.1103/PhysRevLett.66.3117 Misiak M, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.221801 Misiak M, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-4776-y Olive KA, 2014, CHINESE PHYS C, V38, DOI 10.1088/1674-1137/38/9/090001 Patrignani C, 2016, CHINESE PHYS C, V40, DOI 10.1088/1674-1137/40/10/100001 Paul A, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2017)027 Petrin A. B., 2016, Applied Physics, P11 Pich A, 2014, PROG PART NUCL PHYS, V75, P41, DOI 10.1016/j.ppnp.2013.11.002 Romao JC, 2012, INT J MOD PHYS A, V27, DOI 10.1142/S0217751X12300256 Sato Y., 2016, PHYS REV D, V94 Schael S, 2013, PHYS REP, V532, P119, DOI 10.1016/j.physrep.2013.07.004 Schael S, 2006, PHYS REP, V427, P257, DOI 10.1016/j.physrep.2005.12.006 Straub D.M., FLAVIO FLAVOUR PHENO Tanabashi M, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.030001 Wells JD, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2016)123 NR 174 TC 26 Z9 26 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUN 15 PY 2019 VL 79 IS 6 AR 509 DI 10.1140/epjc/s10052-019-6977-z PG 31 WC Physics, Particles & Fields SC Physics GA ID4ED UT WOS:000471628700006 OA DOAJ Gold DA 2021-04-21 ER PT J AU Heagy, LJ Kang, S Cockett, R Oldenburg, DW AF Heagy, Lindsey J. Kang, Seogi Cockett, Rowan Oldenburg, Douglas W. TI Open-source software for simulations and inversions of airborne electromagnetic data SO EXPLORATION GEOPHYSICS LA English DT Article DE Airborne electromagnetics; electromagnetic geophysics; inversion; programming; 3D modelling AB Inversion of airborne electromagnetic data is often an iterative process, not only requiring that the researcher be able to explore the impact of changing components, such as the choice of regularisation functional or model parameterisation, but also often requiring that forward simulations be run and fields and fluxes visualised in order to build an understanding of the physical processes governing what we observe in the data. In the hope of facilitating this exploration and promoting the reproducibility of geophysical simulations and inversions, we have developed the open-source software package SimPEG. The software has been designed to be modular and extensible, with the goal of allowing researchers to interrogate all of the components and to facilitate the exploration of new inversion strategies. We present an overview of the software in its application to airborne electromagnetics and demonstrate its use for visualising fields and fluxes in a forward simulation, as well as its flexibility in formulating and solving the inverse problem. We invert a line of airborne time-domain electromagnetic data over a conductive vertical plate using a 1D voxel inversion, a 2D voxel inversion and a parametric inversion, where all of the forward modelling is done on a 3D grid. The results in this paper can be reproduced using the provided Jupyter notebooks. The Python software can also be modified to allow users to experiment with parameters and explore the physics of the electromagnetics and intricacies of inversion. C1 [Heagy, Lindsey J.; Kang, Seogi; Cockett, Rowan; Oldenburg, Douglas W.] Univ British Columbia, Earth Ocean & Atmospher Sci, Vancouver, BC, Canada. RP Heagy, LJ (corresponding author), Univ British Columbia, Earth Ocean & Atmospher Sci, Vancouver, BC, Canada. EM lheagy@eos.ubc.ca OI Heagy, Lindsey/0000-0002-1551-5926; KANG, SEOGI/0000-0002-9963-936X; Oldenburg, Douglas/0000-0002-4327-2124 CR Cockett R, 2015, COMPUT GEOSCI-UK, V85, P142, DOI 10.1016/j.cageo.2015.09.015 Heagy LJ, 2017, COMPUT GEOSCI-UK, V107, P1, DOI 10.1016/j.cageo.2017.06.018 Kang S., 2015, SEG TECHN PROGR, P5000, DOI [10.1190/segam201 5- 5930379.1., DOI 10.1190/SEGAM2015-5930379.1] Kang S, 2016, GEOPHYS J INT, V207, P174, DOI 10.1093/gji/ggw256 McMillan MS, 2015, GEOPHYSICS, V80, pK25, DOI 10.1190/GEO2015-0141.1 Oldenburg D. W., 2017, GEOPHYS ELECTROMAGNE Pereira Fabio, 2015, 2015 IEEE Power & Energy Society General Meeting, P1, DOI 10.1109/PESGM.2015.7286381 Tikhonov A. N., 1977, MATH COMPUT, V32, P491, DOI DOI 10.2307/2006360 Viezzoli A, 2008, GEOPHYSICS, V73, pF105, DOI 10.1190/1.2895521 Viezzoli A, 2009, EXPLOR GEOPHYS, V40, P173, DOI 10.1071/EG08027 Yang DK, 2014, GEOPHYS J INT, V196, P1492, DOI 10.1093/gji/ggt465 NR 11 TC 2 Z9 2 U1 2 U2 9 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0812-3985 EI 1834-7533 J9 EXPLOR GEOPHYS JI Explor. Geophys. PD JAN 2 PY 2020 VL 51 IS 1 BP 38 EP 44 DI 10.1080/08123985.2019.1583538 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA OU8PT UT WOS:000481374100001 DA 2021-04-21 ER PT J AU Hickstein, DD Gibson, ST Yurchak, R Das, DD Ryazanov, M AF Hickstein, Daniel D. Gibson, Stephen T. Yurchak, Roman Das, Dhrubajyoti D. Ryazanov, Mikhail TI A direct comparison of high-speed methods for the numerical Abel transform SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SOOT VOLUME FRACTION; INVERSION; RECONSTRUCTION; IMAGES; FLAME AB The Abel transform is a mathematical operation that transforms a cylindrically symmetric three-dimensional (3D) object into its two-dimensional (2D) projection. The inverse Abel transform reconstructs the 3D object from the 2D projection. Abel transforms have wide application across numerous fields of science, especially chemical physics, astronomy, and the study of laser-plasma plumes. Consequently, many numerical methods for the Abel transform have been developed, which makes it challenging to select the ideal method for a specific application. In this work, eight published transform methods have been incorporated into a single, open-source Python software package (PyAbel) to provide a direct comparison of the capabilities, advantages, and relative computational efficiency of each transform method. Most of the tested methods provide similar, high-quality results. However, the computational efficiency varies across several orders of magnitude. By optimizing the algorithms, we find that some transform methods are sufficiently fast to transform 1-megapixel images at more than 100 frames per second on a desktop personal computer. In addition, we demonstrate the transform of gigapixel images. C1 [Hickstein, Daniel D.] Kapteyn Murnane Labs Inc, Boulder, CO 80301 USA. [Gibson, Stephen T.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 2601, Australia. [Yurchak, Roman] Symerio, F-91120 Palaiseau, France. [Das, Dhrubajyoti D.] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA. [Ryazanov, Mikhail] Natl Inst Stand & Technol, JILA, Boulder, CO 80309 USA. [Ryazanov, Mikhail] Univ Colorado, Boulder, CO 80309 USA. RP Hickstein, DD (corresponding author), Kapteyn Murnane Labs Inc, Boulder, CO 80301 USA. EM danhickstein@gmail.com RI ; Hickstein, Daniel/I-8532-2012 OI Das, Dhrubajyoti/0000-0001-9731-2489; Yurchak, Roman/0000-0002-2565-4444; Hickstein, Daniel/0000-0003-1277-847X; Gibson, Stephen/0000-0002-3767-6114 FU Australian Research Council Discovery ProjectAustralian Research Council [DP160102585] FX S.T.G.'s research was supported by the Australian Research Council Discovery Project, Grant No. DP160102585. CR Behnel S, 2011, COMPUT SCI ENG, V13, P31, DOI 10.1109/MCSE.2010.118 Bordas C, 1996, REV SCI INSTRUM, V67, P2257, DOI 10.1063/1.1147044 Brady DJ, 2012, NATURE, V486, P386, DOI 10.1038/nature11150 CHANDLER DW, 1987, J CHEM PHYS, V87, P1445, DOI 10.1063/1.453276 Cignoli F, 2001, APPL OPTICS, V40, P5370, DOI 10.1364/AO.40.005370 COPPERSMITH D, 1990, J SYMB COMPUT, V9, P251, DOI 10.1016/S0747-7171(08)80013-2 CRAIG IJD, 1979, ASTRON ASTROPHYS, V79, P121 Das DD, 2017, P COMBUST INST, V36, P871, DOI 10.1016/j.proci.2016.06.047 DASCH CJ, 1992, APPL OPTICS, V31, P1146, DOI 10.1364/AO.31.001146 Daun KJ, 2006, APPL OPTICS, V45, P4638, DOI 10.1364/AO.45.004638 De Iuliis S, 1998, COMBUST FLAME, V115, P253, DOI 10.1016/S0010-2180(97)00357-X De Micheli E, 2017, APPL MATH COMPUT, V301, P12, DOI 10.1016/j.amc.2016.12.009 Dick B, 2014, PHYS CHEM CHEM PHYS, V16, P570, DOI 10.1039/c3cp53673d Dribinski V, 2002, REV SCI INSTRUM, V73, P2634, DOI 10.1063/1.1482156 Duzor M. V., 2010, J CHEM PHYS, V133 Garcia GA, 2004, REV SCI INSTRUM, V75, P4989, DOI 10.1063/1.1807578 Gascooke J. R., 2000, THESIS Gascooke JR, 2017, J CHEM PHYS, V147, DOI 10.1063/1.4981024 Gerber T, 2013, REV SCI INSTRUM, V84, DOI 10.1063/1.4793404 Gibson S., 2019, PYABEL PYABEL V0 8 2, DOI 10.5281/zenodo.3243413 Gladstone GR, 2016, SCIENCE, V351, DOI 10.1126/science.aad8866 GLASSER J, 1978, APPL OPTICS, V17, P3750, DOI 10.1364/AO.17.003750 HANSEN EW, 1985, J OPT SOC AM A, V2, P510, DOI 10.1364/JOSAA.2.000510 HANSEN EW, 1985, IEEE T ACOUST SPEECH, V33, P666, DOI 10.1109/TASSP.1985.1164579 Harrison GR, 2018, J CHEM PHYS, V148, DOI 10.1063/1.5025057 Liu C, 2014, IEEE T INSTRUM MEAS, V63, P3067, DOI 10.1109/TIM.2014.2315737 Lumpe JD, 2007, J GEOPHYS RES-ATMOS, V112, DOI 10.1029/2006JD008076 Rallis CE, 2014, REV SCI INSTRUM, V85, DOI 10.1063/1.4899267 Renth F, 2006, REV SCI INSTRUM, V77, DOI 10.1063/1.2176056 Ryazanov M., 2012, THESIS Snelling DR, 1999, APPL OPTICS, V38, P2478, DOI 10.1364/AO.38.002478 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Whitaker B. J., 2003, IMAGING MOL DYNAMICS Yurchak R., 2015, THESIS NR 34 TC 14 Z9 14 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUN PY 2019 VL 90 IS 6 AR 065115 DI 10.1063/1.5092635 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA IH6JI UT WOS:000474601100043 PM 31255037 OA Green Published DA 2021-04-21 ER PT J AU Glaser, C Nelles, A Plaisier, I Welling, C Barwick, SW Garcia-Fernandez, D Gaswint, G Lahmann, R Persichilli, C AF Glaser, Christian Nelles, Anna Plaisier, Ilse Welling, Christoph Barwick, Steven W. Garcia-Fernandez, Daniel Gaswint, Geoffrey Lahmann, Robert Persichilli, Christopher TI NuRadioReco: a reconstruction framework for radio neutrino detectors SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID AIR-SHOWERS; COSMIC-RAYS; EMISSION; ASKARYAN AB While the radio detection of cosmic rays has advanced to a standard method in astroparticle physics, the radio detection of neutrinos is just about to start its full bloom. The successes of pilot-arrays have to be accompanied by the development of modern and flexible software tools to ensure rapid progress in reconstruction algorithms and data processing. We present NuRadioReco as such a modern Python-based data analysis tool. It includes a suitable data-structure, a database-implementation of a time-dependent detector, modern browser-based data visualization tools, and fully separated analysis modules. We describe the framework and examples, as well as new reconstruction algorithms to obtain the full three-dimensional electric field from distributed antennas which is needed for high-precision energy reconstruction of particle showers. C1 [Glaser, Christian; Barwick, Steven W.; Gaswint, Geoffrey; Lahmann, Robert; Persichilli, Christopher] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Nelles, Anna; Plaisier, Ilse; Welling, Christoph; Garcia-Fernandez, Daniel] DESY, Platanenallee 6, D-15738 Zeuthen, Germany. [Nelles, Anna; Plaisier, Ilse; Welling, Christoph; Garcia-Fernandez, Daniel; Lahmann, Robert] Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. RP Glaser, C (corresponding author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. EM christian.glaser@uci.edu; anna.nelles@desy.de RI Lahmann, Robert/L-7461-2015; Nelles, Anna/AAU-1193-2020 OI Nelles, Anna/0000-0002-1720-6350; Glaser, Christian/0000-0001-5998-2553 FU German research foundation (DFG)German Research Foundation (DFG) [GL 914/1-1, NE 2031/2-1]; U.S. National Science Foundation-Physics DivisionNational Science Foundation (NSF) [NSF-1607719] FX We acknowledge funding from the German research foundation (DFG) under Grants GL 914/1-1 and NE 2031/2-1, and the U.S. National Science Foundation-Physics Division (Grant NSF-1607719). CR Aab A, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/10/026 Aab A, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.241101 Aab A, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.122005 Aab A, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.052002 Aartsen MG, 2017, PHYS REV LETT, V19, DOI 10.1103/PhysRevLett.119.259902 Aartsen MG, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.241101 Abreu P, 2012, J INSTRUM, V7, DOI 10.1088/1748-0221/7/10/P10011 Abreu P, 2011, NUCL INSTRUM METH A, V635, P92, DOI 10.1016/j.nima.2011.01.049 Allison P, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.082003 Allison P, 2015, ASTROPART PHYS, V70, P62, DOI 10.1016/j.astropartphys.2015.04.006 Alvarez-Muniz J, 2014, ASTROPART PHYS, V59, P29, DOI 10.1016/j.astropartphys.2014.04.004 [Anonymous], 2019, DASH [Anonymous], 2019, BOOTSTRAP [Anonymous], 2019, NURADIORECO [Anonymous], 2019, TINYDB [Anonymous], 2019, NURADIOMC Argiro S, 2007, NUCL INSTRUM METH A, V580, P1485, DOI 10.1016/j.nima.2007.07.010 ASKARYAN GA, 1965, SOV PHYS JETP-USSR, V21, P658 Barwick S, 2005, J GLACIOL, V51, P231, DOI 10.3189/172756505781829467 Barwick SW, 2017, ASTROPART PHYS, V90, P50, DOI 10.1016/j.astropartphys.2017.02.003 Barwick SW, 2015, ASTROPART PHYS, V70, P12, DOI 10.1016/j.astropartphys.2015.04.002 BERESINSKY VS, 1969, PHYS LETT B, VB 28, P423, DOI 10.1016/0370-2693(69)90341-4 Bezyazeekov PA, 2015, NUCL INSTRUM METH A, V802, P89, DOI 10.1016/j.nima.2015.08.061 Bretz HP, 2012, J INSTRUM, V7, DOI 10.1088/1748-0221/7/08/T08005 Buitink S, 2016, NATURE, V531, P70, DOI 10.1038/nature16976 Buitink S, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.082003 Burke G., 1983, TECH REP Corstanje A, 2017, ASTROPART PHYS, V89, P23, DOI 10.1016/j.astropartphys.2017.01.009 Dookayka K., 2011, THESIS Farr E. G., 2011, SENSOR SIMULATION NO Glaser C., 2017, THESIS, DOI [10.18154/RWTH-2017-02960, DOI 10.18154/RWTH-2017-02960] Glaser C., 2018, EPJC CATANIA S UNPUB Glaser C., 2019, P COSPAR 2018 UNPUB Glaser C, 2019, ASTROPART PHYS, V104, P64, DOI 10.1016/j.astropartphys.2018.08.004 Glaser C, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/09/024 Gottowik M, 2018, ASTROPART PHYS, V103, P87, DOI 10.1016/j.astropartphys.2018.07.004 GREISEN K, 1966, PHYS REV LETT, V16, P748, DOI 10.1103/PhysRevLett.16.748 Huege T, 2013, AIP CONF PROC, V1535, P128, DOI 10.1063/1.4807534 Huege T, 2016, PHYS REP, V620, P1, DOI 10.1016/j.physrep.2016.02.001 Kelley J. L., 2018, EPJC CATANIA S UNPUB Kolundzija B, 2011, 2011 5th European Conference on Antennas and Propagation (EuCAP), P2844 Kravchenko I., ARXIV07054491 Kunz K. S., 1993, FINITE DIFFERENCE TI Nelles A, 2015, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2015/05/018 Nelles A., 2019, 18 INT WORKSH NEUTR Nelles A, 2015, ASTROPART PHYS, V60, P13, DOI 10.1016/j.astropartphys.2014.05.001 Oliphant T.E., 2006, A GUIDE TO NUMPY, VVolume 1 Rossant C., 2016, SHOULD YOU USE HDF5 Rossant C., 2016, MOVING AWAY HDF5 Schellart P, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/10/014 Schellart P, 2013, ASTRON ASTROPHYS, V560, DOI 10.1051/0004-6361/201322683 Scholten O, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.103010 Schroder FG, 2017, PROG PART NUCL PHYS, V93, P1, DOI 10.1016/j.ppnp.2016.12.002 van Haarlem MP, 2013, ASTRON ASTROPHYS, V556, DOI 10.1051/0004-6361/201220873 ZATSEPIN GT, 1966, JETP LETT-USSR, V4, P78 NR 55 TC 7 Z9 7 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUN 1 PY 2019 VL 79 IS 6 AR 464 DI 10.1140/epjc/s10052-019-6971-5 PG 21 WC Physics, Particles & Fields SC Physics GA IA8BL UT WOS:000469782400002 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Kurchin, R Romano, G Buonassisi, T AF Kurchin, Rachel Romano, Giuseppe Buonassisi, Tonio TI Bayesim: A tool for adaptive grid model fitting with Bayesian inference SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Bayesian inference; Photovoltaics AB Bayesian inference is a widely used and powerful analytical technique in fields such as astronomy and particle physics but has historically been underutilized in some other disciplines including semiconductor devices. In this work, we introduce bayesim, a Python package that utilizes adaptive grid sampling to efficiently generate a probability distribution over multiple input parameters to a forward model using a collection of experimental measurements. We discuss the implementation choices made in the code, showcase two examples in photovoltaics, and discuss general prerequisites for the approach to apply to other systems. (C) 2019 Elsevier B.V. All rights reserved. C1 [Kurchin, Rachel; Romano, Giuseppe; Buonassisi, Tonio] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Kurchin, R; Buonassisi, T (corresponding author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM rkurchin@alum.mit.edu; buonassisi@mit.edu OI /0000-0002-2147-4809; Romano, Giuseppe/0000-0003-0026-8237 FU Blue Waters Graduate Fellowship, USA; TOTAL SA research, USA grant through MITei; MIT Energy Initiative; U.S. Department of Energy, Office of ScienceUnited States Department of Energy (DOE) FX R.C.K. acknowledges the funding of a Blue Waters Graduate Fellowship, USA. The experimental data acquisition shown was supported by a TOTAL SA research, USA grant funded through MITei, the MIT Energy Initiative and the computational work was supported as part of the Center for Next-Generation Materials by Design, USA, an Energy Frontier Research Center, USA funded by the U.S. Department of Energy, Office of Science. The authors also acknowledge I.M. Peters for helpful conversations. CR Brandt RE, 2017, JOULE, V1, P843, DOI 10.1016/j.joule.2017.10.001 Burgelman M, 2000, THIN SOLID FILMS, V361, P527, DOI 10.1016/S0040-6090(99)00825-1 de Blas J, 2016, NUCL PART PHYS P, V273, P834, DOI 10.1016/j.nuclphysbps.2015.09.128 Feroz F, 2009, MON NOT R ASTRON SOC, V398, P1601, DOI 10.1111/j.1365-2966.2009.14548.x Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones E., 2001, SCIPY OPEN SOURCE SC Kurchin R. C., 2018, P 2018 7 WORLD C PHO Kurchin R. C., 2018, BAYESIM Kurchin R. C., BAYESIM Larsson G., DEEPDISH Millman J., 2010, P56, DOI DOI 10.1016/S0168-0102(02)00204-3 Oliphant T.E., 2006, A GUIDE TO NUMPY Scheres SHW, 2012, J STRUCT BIOL, V180, P519, DOI 10.1016/j.jsb.2012.09.006 Trotta R, 2008, CONTEMP PHYS, V49, P71, DOI 10.1080/00107510802066753 Trotta R, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/12/024 Ueno Tsuyoshi, 2016, Materials Discovery, V4, P18, DOI 10.1016/j.md.2016.04.001 Wilkinson DJ, 2007, BRIEF BIOINFORM, V8, P109, DOI 10.1093/bib/bbm007 Xue DZ, 2016, P NATL ACAD SCI USA, V113, P13301, DOI 10.1073/pnas.1607412113 2001, SCIENCE, V294, P2310, DOI DOI 10.1126/SCIENCE.1065889 NR 19 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUN PY 2019 VL 239 BP 161 EP 165 DI 10.1016/j.cpc.2019.01.022 PG 5 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA HV8QN UT WOS:000466248000015 OA Bronze DA 2021-04-21 ER PT J AU Krivenko, I Harland, M AF Krivenko, Igor Harland, Malte TI TRIQS/SOM: Implementation of the stochastic optimization method for analytic continuation SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Quantum Monte Carlo; Analytic continuation; Stochastic optimization; Python ID QUANTUM MONTE-CARLO; HUBBARD-MODEL AB We present the TRIQS/SOM analytic continuation package, an efficient implementation of the Stochastic Optimization Method proposed by Mishchenko et al. (2000). TRIQS/SOM strives to provide a high quality open source (distributed under the GNU General Public License version 3) alternative to the more widely adopted Maximum Entropy continuation programs. It supports a variety of analytic continuation problems encountered in the field of computational condensed matter physics. Those problems can be formulated in terms of response functions of imaginary time, Matsubara frequencies or in the Legendre polynomial basis representation. The application is based on the TRIQS C++/Python framework, which allows for easy interoperability with TRIQS-based quantum impurity solvers, electronic band structure codes and visualization tools. Similar to other TRIQS packages, it comes with a convenient Python interface. (C) 2019 Elsevier B.V. All rights reserved. C1 [Krivenko, Igor; Harland, Malte] Univ Hamburg, Inst Theoret Phys 1, Jungiusstr 9, D-20355 Hamburg, Germany. RP Krivenko, I (corresponding author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. EM ikrivenk@physnet.uni-hamburg.de; mharland@physnet.uni-hamburg.de FU Deutschen Forschungsgemeinschaft (DFG)German Research Foundation (DFG) [SFB668]; DFG, GermanyGerman Research Foundation (DFG) [SFB925] FX Authors are grateful to Alexander Lichtenstein and Olga Goulko for fruitful discussions, to Roberto Mozara for his valuable comments on the usability of the code, and to Andrey Mishchenko for giving access to the original FORTRAN implementation of the SOM algorithm. We would also like to thank Vladislav Pokorny and Hanna Terletska, who stimulated writing of this paper. I.K. acknowledges support from Deutschen Forschungsgemeinschaft (DFG) via project SFB668 (subproject A3, "Electronic structure and magnetism of correlated systems"). M.H. acknowledges financial support by the DFG, Germany in the framework of the SFB925. The computations were performed with resources provided by the North -German Supercomputing Alliance (HLRN). CR Abramowitz M., 1972, HDB MATH FUNCTIONS, P443 Beach K.S.D., 2004, ARXIVCONDMAT0403055 Beach KSD, 2000, PHYS REV B, V61, P5147, DOI 10.1103/PhysRevB.61.5147 Bergeron D., TRIQS INTERFACE OMEG Bergeron D, 2016, PHYS REV E, V94, DOI 10.1103/PhysRevE.94.023303 BLANKENBECLER R, 1981, PHYS REV D, V24, P2278, DOI 10.1103/PhysRevD.24.2278 Boehnke L, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.075145 BRYAN RK, 1990, EUR BIOPHYS J, V18, P165, DOI 10.1007/BF02427376 CARLITZ L, 1957, DUKE MATH J, V24, P151, DOI 10.1215/S0012-7094-57-02421-3 Chen HT, 2017, J CHEM PHYS, V146, DOI 10.1063/1.4974329 Chen HT, 2017, J CHEM PHYS, V146, DOI 10.1063/1.4974328 Fuchs S, 2010, J PHYS CONF SER, V200, DOI 10.1088/1742-6596/200/1/012041 Georges A, 1996, REV MOD PHYS, V68, P13, DOI 10.1103/RevModPhys.68.13 GEORGES A, 1992, PHYS REV B, V45, P6479, DOI 10.1103/PhysRevB.45.6479 Goulko O, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.014102 Groetsch C W, 2007, Journal of Physics: Conference Series, V73, P012001, DOI 10.1088/1742-6596/73/1/012001 Gull E, 2008, EPL-EUROPHYS LETT, V82, DOI 10.1209/0295-5075/82/57003 HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.2307/2334940 Jarrell M, 1996, PHYS REP, V269, P133, DOI 10.1016/0370-1573(95)00074-7 Kotliar G, 2006, REV MOD PHYS, V78, P865, DOI 10.1103/RevModPhys.78.865 Kraberger G. J., MAXENT Kraberger GJ, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.155128 Levy R, 2017, COMPUT PHYS COMMUN, V215, P149, DOI 10.1016/j.cpc.2017.01.018 METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114 METZNER W, 1989, PHYS REV LETT, V62, P324, DOI 10.1103/PhysRevLett.62.324 Mishchenko A. S., 2012, REIHE MODELING SIMUL, V2 Mishchenko AS, 2000, PHYS REV B, V62, P6317, DOI 10.1103/PhysRevB.62.6317 Moeller G, 1999, PHYS REV B, V59, P6846, DOI 10.1103/PhysRevB.59.6846 Otsuki J, 2017, PHYS REV E, V95, DOI 10.1103/PhysRevE.95.061302 Otsuki J, 2007, J PHYS SOC JPN, V76, DOI 10.1143/JPSJ.76.114707 Parcollet O, 2015, COMPUT PHYS COMMUN, V196, P398, DOI 10.1016/j.cpc.2015.04.023 Potthoff M, 1997, PHYS REV B, V55, P16132, DOI 10.1103/PhysRevB.55.16132 Prokof'ev NV, 2013, JETP LETT+, V97, P649, DOI 10.1134/S002136401311009X Prokof'ev N, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.250201 Rubtsov AN, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.035122 Sandvik AW, 1998, PHYS REV B, V57, P10287, DOI 10.1103/PhysRevB.57.10287 Seth P, 2016, COMPUT PHYS COMMUN, V200, P274, DOI 10.1016/j.cpc.2015.10.023 Vafayi K, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.035115 VIDBERG HJ, 1977, J LOW TEMP PHYS, V29, P179, DOI 10.1007/BF00655090 Werner P, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.035108 Werner P, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.035320 Zhu XL, 2002, J COMPUT APPL MATH, V148, P341, DOI 10.1016/S0377-0427(02)00554-X 2008, PHYS REV B, V78 2008, PHYS REV B, V77 2011, REV MOD PHYS, V83, P349, DOI DOI 10.1103/REVMODPHYS.83.349 2006, PHYS REV B, V74 2016, PHYS REV B, V94 2008, PHYS REV LETT, V100 NR 48 TC 4 Z9 4 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUN PY 2019 VL 239 BP 166 EP 183 DI 10.1016/j.cpc.2019.01.021 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA HV8QN UT WOS:000466248000016 DA 2021-04-21 ER PT J AU Rykhlevskii, A Bae, JW Huff, KD AF Rykhlevskii, Andrei Bae, Jin Whan Huff, Kathryn D. TI Modeling and simulation of online reprocessing in the thorium-fueled molten salt breeder reactor SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Molten salt reactor; Molten salt breeder reactor; Python; Depletion; Online reprocessing; Nuclear fuel cycle; Salt treatment ID ANALYSIS CAPABILITIES; CORE PHYSICS; CYCLE; NEUTRONICS AB In the search for new ways to generate carbon-free, reliable base-load power, interest in advanced nuclear energy technologies, particularly Molten Salt Reactors (MSRs), has resurged with multiple new companies pursuing MSR commercialization. To further develop these MSR concepts, researchers need simulation tools for analyzing liquid-fueled MSR depletion and fuel processing. However, most contemporary nuclear reactor physics software is unable to perform high-fidelity full-core depletion calculations for a reactor design with online reprocessing. This paper introduces a Python package, SaltProc, which couples with the Monte Carlo code, SERPENT2 to simulate MSR online reprocessing by modeling the changing isotopic composition of MSR fuel salt. This work demonstrates SaltProc capabilities for a full-core, high-fidelity model of the commercial Molten Salt Breeder Reactor (MSBR) concept and verifies these results to results in the literature from independent, lower-fidelity analyses. (C) 2019 Elsevier Ltd. All rights reserved. C1 [Rykhlevskii, Andrei; Bae, Jin Whan; Huff, Kathryn D.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. RP Huff, KD (corresponding author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. EM kdhuff@illinois.edu OI Huff, Katy/0000-0002-7075-6802; Rykhlevskii, Andrei/0000-0001-5786-3649 FU National Science FoundationNational Science Foundation (NSF) [OCI-0725070, ACI-1238993]; state of Illinois; DOE ARPA-E MEITNER programUnited States Department of Energy (DOE) [1798-1576]; DOE Nuclear Energy University Program [16-10512]; Nuclear Regulatory Commission Faculty Development Program; National Center for Supercomputing Applications; NNSA Office of Defense Nuclear Nonproliferation R&D through the Consortium for Verfication Technologies; NNSA Office of Defense Nuclear Nonproliferation R&D through the Consortium for Nonproliferation Enabling Capabilities; International Institute for Carbon Neutral Energy Research (WPI-I2CNER) - Japanese Ministry of Education, Culture, Sports, Science and Technology FX This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications; The authors contributed to this work as described below. Andrei Rykhlevskii conceived and designed the simulations, wrote the paper, prepared figures and/or tables, performed the computation work, contributed to the software product, and reviewed drafts of the paper. Jin Whan Bae conceived and designed the simulations, wrote the paper, contributed to the software product, and reviewed drafts of the paper. Andrei Rykhlevskii is supported by DOE ARPA-E MEITNER program award 1798-1576. Jin Whan Bae is supported by funding received from the DOE Nuclear Energy University Program (Project 16-10512) 'Demand-Driven Cycamore Archetypes'.; Kathryn D. Huff directed and supervised the work, conceived and designed the simulations, contributed to the software product, and reviewed drafts of the paper. Prof. Huff is supported by the Nuclear Regulatory Commission Faculty Development Program, the National Center for Supercomputing Applications, the NNSA Office of Defense Nuclear Nonproliferation R&D through the Consortium for Verfication Technologies and the Consortium for Nonproliferation Enabling Capabilities, the International Institute for Carbon Neutral Energy Research (WPI-I2CNER), sponsored by the Japanese Ministry of Education, Culture, Sports, Science and Technology, and DOE ARPA-E MEITNER program award 1798-1576. CR Ahmad A, 2015, ANN NUCL ENERGY, V75, P261, DOI 10.1016/j.anucene.2014.08.014 Alfonsi A., 2013, P M C2013 INT TOP M Ashraf O, 2018, J PHYS CONF SER, V1133, DOI 10.1088/1742-6596/1133/1/012026 Aufiero M, 2013, J NUCL MATER, V441, P473, DOI 10.1016/j.jnucmat.2013.06.026 Bauman H. F., 1971, ROD NUCL FUEL CYCLE, DOI [10.2172/4741221, DOI 10.2172/4741221] Betzler B. R., 2017, P M C 2017 INT C MAT Betzler B. R., 2016, P INT C PHYS Betzler BR, 2018, ANN NUCL ENERGY, V119, P396, DOI 10.1016/j.anucene.2018.04.043 Betzler BR, 2017, ANN NUCL ENERGY, V101, P489, DOI 10.1016/j.anucene.2016.11.040 Bowman SM, 2011, NUCL TECHNOL, V174, P126, DOI 10.13182/NT10-163 Croff A.G., 1980, ORNLTM7175 Derstine K., 1984, DIF3D CODE SOLVE ONE DoE U S, 2002, TECHN ROADM GEN 4 NU, P48 Doligez X, 2014, ANN NUCL ENERGY, V64, P430, DOI 10.1016/j.anucene.2013.09.009 Fiorina C, 2013, PROG NUCL ENERG, V68, P153, DOI 10.1016/j.pnucene.2013.06.006 Forget B., 2018, INTEGRAL FULL CORE M Gauld IC, 2011, NUCL TECHNOL, V174, P169, DOI 10.13182/NT11-3 Goluoglu S, 2011, NUCL TECHNOL, V174, P214, DOI 10.13182/NT10-124 Goorley J. T., 2013, LACP1300634 LOS AL L HAUBENREICH PN, 1970, NUCL APPL TECHNOL, V8, P118, DOI 10.13182/NT8-2-118 Heuer D, 2014, ANN NUCL ENERGY, V64, P421, DOI 10.1016/j.anucene.2013.08.002 Heuer D., 2010, REV GEN NUCL, P95, DOI [10.1051/rgn/20106095, DOI 10.1051/rgn/20106095] Jeong Y., 2014, PHYSOR 2014 Jeong Y, 2016, J NUCL SCI TECHNOL, V53, P529, DOI 10.1080/00223131.2015.1062812 Kee C. W., 1976, ORNLTM4210 LeBlanc D, 2010, NUCL ENG DES, V240, P1644, DOI 10.1016/j.nucengdes.2009.12.033 Leppanen J, 2015, ANN NUCL ENERGY, V82, P142, DOI 10.1016/j.anucene.2014.08.024 MCNP, 2004, GEN MONT CARL N PART Nuttin A, 2005, PROG NUCL ENERG, V46, P77, DOI 10.1016/j.pnucene.2004.11.001 O. D. Bank, 2014, 24 JEFF OECDNEA Park J, 2015, INT J ENERG RES, V39, P1673, DOI 10.1002/er.3371 Powers J. J., 2014, PHYSOR 2014 Powers J. J., 2013, NEW APPROACH MODELIN, P60526 Robertson R.C, 1971, ORNL4541 Ruggieri J., 2006, TECH REP, P60526 Rykhlevskii A., 2017, T AM NUCL SOC Scopatz A., 2012, T AM NUCL SOC, V107 Serp J, 2014, PROG NUCL ENERG, V77, P308, DOI 10.1016/j.pnucene.2014.02.014 Sheu RJ, 2013, ANN NUCL ENERGY, V53, P1, DOI 10.1016/j.anucene.2012.10.017 T. H. Group, 1997, HIER DAT FORM VER 5 Xu Z., 2008, TECH REP Zhou SC, 2018, ANN NUCL ENERGY, V114, P369, DOI 10.1016/j.anucene.2017.10.040 NR 42 TC 7 Z9 8 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD JUN PY 2019 VL 128 BP 366 EP 379 DI 10.1016/j.anucene.2019.01.030 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA HU1TM UT WOS:000465054700038 DA 2021-04-21 ER PT J AU Mehta, P Bukov, M Wang, CH Day, AGR Richardson, C Fisher, CK Schwab, DJ AF Mehta, Pankaj Bukov, Marin Wang, Ching-Hao Day, Alexandre G. R. Richardson, Clint Fisher, Charles K. Schwab, David J. TI A high-bias, low-variance introduction to Machine Learning for physicists SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS LA English DT Review ID BAYESIAN FEATURE-SELECTION; NEURAL-NETWORKS; INFORMATION-THEORY; DEEP; DIMENSIONALITY; ALGORITHM; MODELS; REGULARIZATION; TUTORIAL; CAPACITY AB Machine Learning (ML) is one of the most exciting and dynamic areas of modern research and application. The purpose of this review is to provide an introduction to the core concepts and tools of machine learning in a manner easily understood and intuitive to physicists. The review begins by covering fundamental concepts in ML and modern statistics such as the bias-variance tradeoff, overfitting, regularization, generalization, and gradient descent before moving on to more advanced topics in both supervised and unsupervised learning. Topics covered in the review include ensemble models, deep learning and neural networks, clustering and data visualization, energy-based models (including MaxEnt models and Restricted Boltzmann Machines), and variational methods. Throughout, we emphasize the many natural connections between ML and statistical physics. A notable aspect of the review is the use of Python Jupyter notebooks to introduce modern ML/statistical packages to readers using physics-inspired datasets (the Ising Model and Monte-Carlo simulations of supersymmetric decays of proton proton collisions). We conclude with an extended outlook discussing possible uses of machine learning for furthering our understanding of the physical world as well as open problems in ML where physicists may be able to contribute. (C) 2019 The Author(s). Published by Elsevier B.V. C1 [Mehta, Pankaj; Wang, Ching-Hao; Day, Alexandre G. R.; Richardson, Clint] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Bukov, Marin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Fisher, Charles K.] Unlearn AI, San Francisco, CA 94108 USA. [Schwab, David J.] CUNY, Grad Ctr, Initiat Theoret Sci, 365 Fifth Ave, New York, NY 10016 USA. RP Bukov, M (corresponding author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM pankajm@bu.edu; mgbukov@berkeley.edu OI Bukov, Marin/0000-0002-3688-9599 FU Simon's Foundation; NIH MIRA programUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [1R35GM119461]; Emergent Phenomena in Quantum Systems initiative of the Gordon and Betty Moore Foundation; ERC synergy grant UQUAM; U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Quantum Algorithm Teams ProgramUnited States Department of Energy (DOE); NIHUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [GM098875-02]; NSFNational Science Foundation (NSF) [PHYD1066293]; National Science FoundationNational Science Foundation (NSF) [NSF PHY-1748958]; NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCESUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of General Medical Sciences (NIGMS) [R35GM119461, R35GM119461, R35GM119461, R35GM119461] Funding Source: NIH RePORTER FX PM and DJS would like to thank Anirvan Sengupta, Justin Kinney, and Ilya Nemenman for useful conversations during the ACP working group. The authors are also grateful to all readers who provided valuable feedback on this manuscript while it was under peer review. We encourage readers to help keep the Notebooks which accompany the review up-to-date, by contributing to them on Github at https://github.com/drckf/mlreview_notebooks.PM, CHW, and AD were supported by Simon's Foundation in the form of a Simons Investigator in the MMLS and NIH MIRA program grant: 1R35GM119461. MB acknowledges support from the Emergent Phenomena in Quantum Systems initiative of the Gordon and Betty Moore Foundation, the ERC synergy grant UQUAM, and the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Quantum Algorithm Teams Program. DJS was supported as a Simons Investigator in the MMLS and by NIH K25 grant GM098875-02. PM and DJS would like to thank the NSF Grant: PHYD1066293 for supporting the Aspen Center for Physics (ACP) for facilitating discussions leading to this work. This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958. The authors are pleased to acknowledge that the computational work reported on in this paper was performed on the Shared Computing Cluster which is administered by Boston University's Research Computing Services. CR Abu-Mostafa Y. S., 2012, LEARNING FROM DATA, V4 Ackley D. H., 1987, READINGS COMPUTER VI, P522, DOI DOI 10.1016/B978-0-08-051581-6.50053-2 Adam A, 2006, ARTIFICIAL KNOWING G Advani M, 2016, PHYS REV X, V6, DOI 10.1103/PhysRevX.6.031034 Advani M, 2013, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2013/03/P03014 Aitchison L, 2016, PLOS COMPUT BIOL, V12, DOI 10.1371/journal.pcbi.1005110 Albarran-Arriagada F., 2018, ARXIV 1803 05340 Alemi A., 2017, ARXIV170507441 Alemi A. A., 2016, ARXIV161200410 Amit D. J., 1992, MODELING BRAIN FUNCT AMIT DJ, 1985, PHYS REV A, V32, P1007, DOI 10.1103/PhysRevA.32.1007 Andrieu C, 2003, MACH LEARN, V50, P5, DOI 10.1023/A:1020281327116 Arai Shunta, 2017, ARXIV171200371 ARIMOTO S, 1972, IEEE T INFORM THEORY, V18, P14, DOI 10.1109/TIT.1972.1054753 Arsenault LF, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.155136 Arunachalam S., 2017, ARXIV170106806 August M, 2018, ARXIV180204063 Aurisano A, 2016, J INSTRUM, V11, DOI 10.1088/1748-0221/11/09/P09001 Baireuther P, 2017, ARXIV170507855 Baity-Jesi M., 2018, ARXIV180306969 Baldassi C, 2018, J PHYS CONF SER, V955, DOI 10.1088/1742-6596/955/1/012001 Baldassi Carlo, 2017, ARXIV171009825 Baldi P, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5308 Barber D., 2012, BAYESIAN REASONING M BARNES J, 1986, NATURE, V324, P446, DOI 10.1038/324446a0 Barra A, 2012, NEURAL NETWORKS, V34, P1, DOI 10.1016/j.neunet.2012.06.003 Barra Adriano, 2017, ARXIV170205882 Barra Adriano, 2016, ARXIV161203132 BATTITI R, 1992, NEURAL COMPUT, V4, P141, DOI 10.1162/neco.1992.4.2.141 Benedetti Marcello, 2016, ARXIV160902542 Benedetti Marcello, 2017, ARXIV170809784 Bengio Yoshua, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P437, DOI 10.1007/978-3-642-35289-8_26 BENNETT RS, 1969, IEEE T INFORM THEORY, V15, P517, DOI 10.1109/TIT.1969.1054365 Beny C., 2018, ARXIV180205756 Berger JO., 1992, BAYESIAN STAT 4, P35 Bickel PJ, 2006, TEST-SPAIN, V15, P271, DOI 10.1007/BF02607055 BICKEL PJ, 1981, ANN STAT, V9, P1196, DOI 10.1214/aos/1176345637 Bishop C., 1995, NEURAL NETWORKS PATT BISHOP CM, 1995, NEURAL COMPUT, V7, P108, DOI 10.1162/neco.1995.7.1.108 Bishop CM., 2006, PATTERN RECOGN BLAHUT RE, 1972, IEEE T INFORM THEORY, V18, P460, DOI 10.1109/TIT.1972.1054855 Bottou Leon, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P421, DOI 10.1007/978-3-642-35289-8_25 Bowman S. R., 2015, ARXIV151106349 Boyd S., 2004, CONVEX OPTIMIZATION Bradde S, 2017, J STAT PHYS, V167, P462, DOI 10.1007/s10955-017-1770-6 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1007/bf00058655 Breuckmann Nikolas P., 2017, ARXIV171009489 Broecker P., 2017, ARXIV170700663 Bromley Thomas R., 2018, ARXIV180307039 Bukov M, 2018, PHYS REV X, V8, DOI 10.1103/PhysRevX.8.031086 Burges CJC, 1998, DATA MIN KNOWL DISC, V2, P121, DOI 10.1023/A:1009715923555 Caio M, 2019, ARXIV190103346 Caldeira J., 2018, ARXIV181001483 Canabarro Askery, 2018, ARXIV180807069 Cardenas -Lopez F. A., 2017, ARXIV170907848 Carleo G, 2017, SCIENCE, V355, P602, DOI 10.1126/science.aag2302 Carleo Giuseppe, 2018, COMMUNICATION Carleo Giuseppe, 2018, ARXIV180209558 Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/NPHYS4035, 10.1038/nphys4035] Carrasquilla Juan, 2018, ARXIV181010584 Ch'ng Kelvin, 2017, ARXIV170803350 Chalk M., 2016, ADV NEURAL INFORM PR, P1957 Chamberland C, 2018, ARXIV180206441 Nguyen HC, 2017, ADV PHYS, V66, P197, DOI 10.1080/00018732.2017.1341604 Chechik G, 2005, J MACH LEARN RES, V6, P165 Chen CL, 2014, IEEE T NEUR NET LEAR, V25, P920, DOI 10.1109/TNNLS.2013.2283574 Chen J, 2018, PHYS REV B, V97, DOI 10.1103/PhysRevB.97.085104 Chen Jun-Jie, 2019, ARXIV190108748 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Cheng Song, 2017, ARXIV171204144 Ciliberto Carlo, 2017, ARXIV170708561 Cohen N., 2016, C LEARN THEOR, P698 Colabrese S, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.158004 Cossu Guido, 2018, ARXIV181011503 Cox T. F., 2000, MULTIDIMENSIONAL SCA Cristoforetti M., 2017, ARXIV170509524 Dahl G, 2010, ADV NEURAL INFORM PR, P469 Daskin Ammar, 2018, QUANTA, P7, DOI DOI 10.12743/QUANTA.V7I1.65 Davaasuren A., 2018, ARXIV180104377 Day AGR, 2019, PHYS REV LETT, V122, DOI 10.1103/PhysRevLett.122.020601 Day Alexandre G. R., 2018, VALIDATED AGGL UNPUB Decelle Aurelien, 2018, ARXIV180301960 Decelle Aurelien, 2017, ARXIV170802917 DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1, DOI 10.1111/j.2517-6161.1977.tb01600.x Deng DL, 2017, PHYS REV X, V7, DOI 10.1103/PhysRevX.7.021021 Dietterich TG, 2000, LECT NOTES COMPUT SC, V1857, P1, DOI 10.1007/3-540-45014-9_1 Do CB, 2008, NAT BIOTECHNOL, V26, P897, DOI 10.1038/nbt1406 Domingos P, 2012, COMMUN ACM, V55, P78, DOI 10.1145/2347736.2347755 Donoho DL, 2006, IEEE T INFORM THEORY, V52, P1289, DOI 10.1109/TIT.2006.871582 Dreyfus HubertL., 1965, ALCHEMY ARTIFICIAL I Du Simon S, 2017, ARTICLE, V68, P1067 Duchi J, 2011, J MACH LEARN RES, V12, P2121 Dunjko V., 2017, ARXIV170902779 Dunjko V, 2017, ARXIV171011160 Efron B, 2004, ANN STAT, V32, P407, DOI 10.1214/009053604000000067 EFRON B, 1979, ANN STAT, V7, P1, DOI 10.1214/aos/1176344552 Eisen MB, 1998, P NATL ACAD SCI USA, V95, P14863, DOI 10.1073/pnas.95.25.14863 Elith J, 2011, DIVERS DISTRIB, V17, P43, DOI 10.1111/j.1472-4642.2010.00725.x Ernst Oliver K., 2018, ARXIV180301063 Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226 FADDEEV LD, 1967, PHYS LETT B, VB 25, P29, DOI 10.1016/0370-2693(67)90067-6 Fbsel Thomas, 2018, ARXIV180205267 Finol David, 2018, ARXIV180105733 Fisher CK, 2015, NEURAL COMPUT, V27, P2411, DOI 10.1162/NECO_a_00780 Fisher CK, 2015, BIOINFORMATICS, V31, P1754, DOI 10.1093/bioinformatics/btv037 Foreman S., 2017, ARXIV171002079 Freitas Nahuel, 2018, ARXIV180302118 Freund Y., 1999, Journal of Japanese Society for Artificial Intelligence, V14, P771 Freund Y, 1997, J COMPUT SYST SCI, V55, P119, DOI 10.1006/jcss.1997.1504 Friedman J. H., 2003, J MACHINE LEARNING R, P94305 Friedman Jerome., 2001, ELEMENTS STAT LEARNI, V1 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Friedman JH, 2002, COMPUT STAT DATA AN, V38, P367, DOI 10.1016/S0167-9473(01)00065-2 Fu MC, 2006, HBK OPERAT RES MANAG, V13, P575, DOI 10.1016/S0927-0507(06)13019-4 Funai S. S., 2018, ARXIV181008179 Gao Jun, 2017, ARXIV171200456 Gao Xun, 2017, ARXIV170105039 Gelman A., 2014, BAYESIAN DATA ANAL, V2 Gersho A., 2012, VECTOR QUANTIZATION, V159 Geurts P, 2006, MACH LEARN, V63, P3, DOI 10.1007/s10994-006-6226-1 Glorot X, 2010, P249, DOI DOI 10.1177/1753193409103364. Goldt Sebastian, 2017, ARXIV170609713 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Goodfellow Ian., 2016, ARXIV170100160 Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672 Greplova E., 2017, ARXIV171105238 Grisafi Andrea, 2017, ARXIV170906757 Han Zhao-Yu, 2017, ARXIV170901662 He KM, 2016, PROC CVPR IEEE, P770, DOI 10.1109/CVPR.2016.90 He KM, 2015, IEEE I CONF COMP VIS, P1026, DOI 10.1109/ICCV.2015.123 Heimel Theo, 2018, ARXIV180808979 Higgins I., 2016, BETA VAE LEARNING BA Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647 Hinton G. E, 2012, NEURAL NETWORKS TRIC, P599, DOI DOI 10.1007/978-3-642-35289-8_32 Hinton GE, 2002, NEURAL COMPUT, V14, P1771, DOI 10.1162/089976602760128018 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601 HOPFIELD JJ, 1982, P NATL ACAD SCI-BIOL, V79, P2554, DOI 10.1073/pnas.79.8.2554 Huang HP, 2017, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/aa6ddc Huang Haiping, 2017, ARXIV171001467 Huang Hengfeng, 2018, ARXIV180103334 HUBBARD J, 1959, PHYS REV LETT, V3, P77, DOI 10.1103/PhysRevLett.3.77 Huggins W, 2019, QUANTUM SCI TECHNOL, V4, DOI 10.1088/2058-9565/aaea94 Innocenti L., 2018, ARXIV180307119 Iso S., 2018, ARXIV180107172 James M, 2006, IMPROV LEARN TLRP, P14 Jarzynski C, 1997, PHYS REV LETT, V78, P2690, DOI 10.1103/PhysRevLett.78.2690 Jaynes Edwin T, 2003, PROBABILITY THEORY L JAYNES ET, 1957, PHYS REV, V106, P620, DOI 10.1103/PhysRev.106.620 JAYNES ET, 1968, IEEE T SYST SCI CYB, VSSC4, P227, DOI 10.1109/TSSC.1968.300117 JAYNES ET, 1957, PHYS REV, V108, P171, DOI 10.1103/PhysRev.108.171 Jaynes ET., 1996, PROBABILITY THEORY L JEFFREYS H, 1946, PROC R SOC LON SER-A, V186, P453, DOI 10.1098/rspa.1946.0056 Jin C., 2017, ARXIV171110456 Jordan MI, 1999, MACH LEARN, V37, P183, DOI 10.1023/A:1007665907178 Jordan Michael, 2018, ARTIFICIAL INTELLIGE Kalantre Sandesh S., 2017, ARXIV171204914 Katz Y., 2017, MANUFACTURING ARTIFI Kerenidis lordanis, 2017, ARXIV170404992 Keskar N., 2016, ARXIV160904836 Kingma D.P., 2014, ARXIV PREPRINT ARXIV Kingma D. P., 2017, THESIS Kingma Diederik P, 2013, ARXIV13126114 Kleijnen JPC, 1996, EUR J OPER RES, V88, P413, DOI 10.1016/0377-2217(95)00107-7 Kleinberg Jon, 2016, ARXIV160905807 Koch-Janusz Maciej, 2017, NEUROCOMPUTING Kong QK, 2019, SEISMOL RES LETT, V90, P3, DOI 10.1785/0220180259 Krastanov Stefan, 2017, ARXIV170509334 Kriegel HP, 2009, ACM T KNOWL DISCOV D, V3, DOI 10.1145/1497577.1497578 Krizhevsky Alex, 2012, ADV NEURAL INFORM PR, P1097, DOI DOI 10.1145/3065386 Krzakala F, 2012, PHYS REV X, V2, DOI 10.1103/PhysRevX.2.021005 Krzakala F, 2014, IEEE INT SYMP INFO, P1499, DOI 10.1109/ISIT.2014.6875083 Krzakala F, 2012, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2012/08/P08009 Lake B. M., 2017, BEHAV BRAIN SCI, V40 lakovlev I. A., 2018, ARXIV180306682 Lamata L, 2017, SCI REP, V7 Larsen B., 1999, P16, DOI DOI 10.1145/312129.312186 Le QV, 2013, INT CONF ACOUST SPEE, P8595, DOI 10.1109/ICASSP.2013.6639343 LeCun Y, 1998, LECT NOTES COMPUT SC, V1524, P9, DOI 10.1007/3-540-49430-8_2 Lecun Y, 1998, P IEEE, V86, P2278, DOI 10.1109/5.726791 LeCun Y, 1995, HDB BRAIN THEORY NEU, V3361 Lee Jason D, 2017, ARXIV171007406 Lehmann E.L., 2006, TESTING STAT HYPOTHE Lehmann E.L., 2006, THEORY POINT ESTIMAT Levine Y., 2017, ARXIV170401552 Li Bo, 2017, ARXIV170801422 Li Chian -De, 2017, ARXIV170302369 Li RY, 2018, NPJ QUANTUM INFORM, V4, DOI 10.1038/s41534-018-0060-8 Li S. -H., 2018, ARXIV180202840 Lim TS, 2000, MACH LEARN, V40, P203, DOI 10.1023/A:1007608224229 Lin HW, 2017, J STAT PHYS, V168, P1223, DOI 10.1007/s10955-017-1836-5 Linderman GC, 2017, ARXIV171209005 Liu Z., 2017, ARXIV171004987 Loh WY, 2011, WIRES DATA MIN KNOWL, V1, P14, DOI 10.1002/widm.8 Louppe G., 2014, ARXIV14077502 Lu SR, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.012315 MacKay DJ., 2003, INFORM THEORY INFERE Marin A, 2018, PHYS REV E, V97, DOI 10.1103/PhysRevE.97.021102 Marsland III R, 2019, ARXIV190109673 Maskara N, 2018, ARXIV180208680 Masson JB, 2009, J PHYS A-MATH THEOR, V42, DOI 10.1088/1751-8113/42/43/434009 Mattingly HH, 2018, P NATL ACAD SCI USA, V115, P1760, DOI 10.1073/pnas.1715306115 McDermott Drew, 1985, AI MAG, V6, P122 McInnes L., 2018, UMAP UNIFORM MANIFOL, P1 Mehta P., 2014, ARXIV14103831 Mehta P, 2011, J STAT PHYS, V142, P1187, DOI 10.1007/s10955-010-0102-x Mehta Pankaj, 2015, BIG DATAS RADICAL PO Melko R.G, 2017, ARXIV170804622 Melnikov Alexey A., 2017, ARXIV170600868 Metz Cade, 2017, MOVE CODERS PHYS WIL Mezard M., 2009, INFORM PHYS COMPUTAT Mhaskar H., 2016, ARXIV160300988 Milliner Daniel, 2011, ARXIV11092378 Mitarai K., 2018, ARXIV180300745 Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236 Muehlhauser L., 2016, WHAT SHOULD WE LEARN Murphy K.P, 2012, MACHINE LEARNING PRO Nagai Yuki, 2017, ARXIV170506724 Neal R. M., 2011, HDB MARKOV CHAIN MON, V2 Neal RM, 1998, NATO ADV SCI I D-BEH, V89, P355 Neal RM, 2001, STAT COMPUT, V11, P125, DOI 10.1023/A:1008923215028 Nesterov Y., 1983, SOV MATH DOKL, V27, P372 Neukart Florian, 2017, ARXIV170809354 Nielsen M.A., 2015, NEURAL NETWORKS DEEP Niu M. Y., 2018, ARXIV180301857 Nomura Yusuke, 2017, ARXIV170906475 O'Neil C., 2017, WEAPONS MATH DESTRUC Ohtsuki T, 2017, J PHYS SOC JPN, V86, DOI 10.7566/JPSJ.86.044708 Papanikolaou S., 2017, ARXIV170908225 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Perdomo-Ortiz Alejandro, 2017, ARXIV170809757 Polyak B.T., 1964, USSR COMPUT MATH MAT, V4, P1, DOI [10.1016/0041-5553(64)90137-5, DOI 10.1016/0041-5553(64)90137-5] Qian N, 1999, NEURAL NETWORKS, V12, P145, DOI 10.1016/S0893-6080(98)00116-6 RABINER LR, 1989, P IEEE, V77, P257, DOI 10.1109/5.18626 Radford Alec., 2015, ARXIV2015151106434 Raiko T., 2016, ADV NEURAL INFORM PR, P3738 Ramezanali Mohammad, 2015, ARXIV150908995 Ramezanpour A, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.052307 Rao Wen-Jia, 2017, ARXIV170902597 Ravanbakhsh S, 2017, THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1488 Rebentrost P, 2016, ARXIV161201789 Rebentrost Patrick, 2017, ARXIV171003599 Reddy G, 2016, P NATL ACAD SCI USA, V113, pE4877, DOI 10.1073/pnas.1606075113 Reddy G, 2016, J STAT PHYS, V163, P1454, DOI 10.1007/s10955-016-1521-0 Rem B S, 2018, ARXIV180905519 Rezende Danilo Jimenez, 2014, ICML Rocchetto A, 2017, ARXIV171200127 Rocchetto A, 2018, NPJ QUANTUM INFORM, V4, DOI 10.1038/s41534-018-0077-z Rockafellar R. T, 2015, CONVEX ANAL Rodriguez A, 2014, SCIENCE, V344, P1492, DOI 10.1126/science.1242072 Rokach L, 2005, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, P321, DOI 10.1007/0-387-25465-X_15 Roweis ST, 2000, SCIENCE, V290, P2323, DOI 10.1126/science.290.5500.2323 Rudelius T., 2018, ARXIV181005159 Ruder S., 2016, ARXIV160904747 RUMELHART DE, 1985, COGNITIVE SCI, V9, P75, DOI 10.1207/s15516709cog0901_5 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Ruscher Celine, 2018, ARXIV180906487 Saito Hiroki, 2017, ARXIV170905468 Salazar Domingos S. P., 2017, ARXIV170408724 Sander J, 1998, DATA MIN KNOWL DISC, V2, P169, DOI 10.1023/A:1009745219419 Saxe A. M., 2013, ARXIV13126120 Saxe AM, 2017, ARXIV171003667 Schapire R. E., 2012, BOOSTING FDN ALGORIT Schindler F, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.245134 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Schneidman E, 2006, NATURE, V440, P1007, DOI 10.1038/nature04701 Schoenholz Samuel S., 2017, ARXIV170908015 Schuld M., 2017, ARXIV170310793 Schuld M., 2018, ARXIV180307128 Schuld M, 2015, CONTEMP PHYS, V56, P172, DOI 10.1080/00107514.2014.964942 Schuld Maria, 2017, ARXIV170402146 Schwab DJ, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.068102 Shanahan Phiala E., 2018, ARXIV180105784 SHANNON CE, 1949, BELL SYST TECH J, V28, P656, DOI 10.1002/j.1538-7305.1949.tb00928.x Shen Huitao, 2018, ARXIV180101127 Shinjo Kazuya, 2019, ARXIV190107900 Shlens J, 2014, TUTORIAL PRINCIPAL C Sidky Hythem, 2017, ARXIV171202840 Simonite T., 2018, WIRED SINGH K, 1981, ANN STAT, V9, P1187, DOI 10.1214/aos/1176345636 Slonim N, 2005, ARXIVCS0502017 Springenberg Jost Tobias, 2014, ARXIV14126806 Sriarunothai T., 2017, ARXIV170901366 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Stoudenmire E., 2016, ADV NEURAL INFORM PR, P4799 Stoudenmire EM, 2012, ANNU REV CONDEN MA P, V3, P111, DOI 10.1146/annurev-conmatphys-020911-125018 Stoudenmire E. M., 2018, ARXIV180100315 Stratonovich R. L., 1957, SOV PHYS DOKL, V2, P416 Strouse DJ, 2017, NEURAL COMPUT, V29, P1611, DOI 10.1162/NECO_a_00961 Suchsland Philippe, 2018, ARXIV180209876 Sutskever I, 2013, INT C MACH LEARN, P1139 Sutton R. S., 1998, REINFORCEMENT LEARNI, V1 Swaddle Michael, 2017, ARXIV170310743 Sweke R., 2018, ARXIV181007207 Szekely G. J., 2003, TECHNICAL REPORT, V3, P1 Tanaka A., 2017, ARXIV171203893 Tanaka A, 2017, J PHYS SOC JPN, V86, DOI 10.7566/JPSJ.86.063001 Tenenbaum JB, 2000, SCIENCE, V290, P2319, DOI 10.1126/science.290.5500.2319 Tibshirani RJ, 2013, ELECTRON J STAT, V7, P1456, DOI 10.1214/13-EJS815 Tieleman T., 2012, MACH LEARN, V4, P26 Tieleman T., 2009, P 26 ANN INT C MACH, P1033, DOI DOI 10.1145/1553374.1553506 Tishby N, 2017, ARXIV170300810 Tishby N., 2000, ARXIVPHYS0004057 Tomczak P, 2018, PHYS REV B, V98, DOI 10.1103/PhysRevB.98.144415 Torgerson W. S., 1958, THEORY METHODS SCALI Torlai G, 2018, NAT PHYS, V14, P447, DOI 10.1038/s41567-018-0048-5 Torlai G, 2017, PHYS REV LETT, V119, DOI 10.1103/PhysRevLett.119.030501 Tramel Eric W., 2017, ARXIV170203260 Tubiana J, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.138301 van der Maaten L, 2014, J MACH LEARN RES, V15, P3221 van der Maaten L, 2008, J MACH LEARN RES, V9, P2579 van Nieuwenburg Evert, 2017, ARXIV171200450 van Nieuwenburg EPL, 2017, NAT PHYS, V13, P435, DOI [10.1038/nphys4037, 10.1038/NPHYS4037] Venderley Jordan, 2017, ARXIV171100020 Vergassola M, 2007, NATURE, V445, P406, DOI 10.1038/nature05464 Vidal G, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.220405 Wainwright MJ, 2008, FOUND TRENDS MACH LE, V1, P1, DOI 10.1561/2200000001 Wang Ce, 2018, ARXIV180301205 Wang Ce, 2017, ARXIV170607977 Wang Lei, 2017, ARXIV170208586 Wang Y. - N., 2018, ARXIV180407296 Wasserman L., 2013, ALL STAT CONCISE COU Wattenberg Martin, 2016, DISTILL, DOI [10.23915/DISTILL.00002, DOI 10.23915/DISTILL.00002, 10.23915/distill.00002] WEI Q, 2017, PHYS REV E, V95 Weigt M, 2009, P NATL ACAD SCI USA, V106, P67, DOI 10.1073/pnas.0805923106 Weinstein S., 2017, ARXIV170703114 Wetzel Sebastian Johann, 2017, ARXIV170505582 Wetzel SJ, 2017, ARXIV170302435 WHITE SR, 1992, PHYS REV LETT, V69, P2863, DOI 10.1103/PhysRevLett.69.2863 White T., 2016, ARXIV160904468 Wilson A.C., 2017, ARXIV170508292 Wilson K. G., 1974, Physics Reports. Physics Letters Section C, V12c, P75, DOI 10.1016/0370-1573(74)90023-4 Witte R.S., 2013, STATISTICS Wu Yadong, 2018, ARXIV180203930 Xie Junyuan, 2016, INT C MACH LEARN, P478 Yang T., 2006, IEEE WORKSH COMP INT Yang Xu-Chen, 2017, ARXIV170800238 Yedidia J. S., 2003, UNDERSTANDING BELIEF Yedidia JS, 2001, NEU INF PRO, P21 Yoshioka Nobuyuki, 2017, ARXIV170905790 You Yi-Zhuang, 2017, ARXIV170901223 Yu C.H., 2017, ARXIV170709524 Zdeborova L, 2016, ADV PHYS, V65, P453, DOI 10.1080/00018732.2016.1211393 Zeiler M. D., 2012, ARXIV12125701 Zhang Chengxian, 2018, ARXIV181007914 Zhang Chiyuan, 2016, ARXIV161103530 Zhang Pengfei, 2017, ARXIV170809401 Zhang Xiao-Ming, 2018, ARXIV180209248 Zhang Yi, 2017, ARXIV170501947 Zimek Arthur, 2012, Statistical Analysis and Data Mining, V5, P363, DOI 10.1002/sam.11161 Zou H, 2005, J R STAT SOC B, V67, P301, DOI 10.1111/j.1467-9868.2005.00503.x NR 352 TC 117 Z9 119 U1 15 U2 59 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0370-1573 EI 1873-6270 J9 PHYS REP JI Phys. Rep.-Rev. Sec. Phys. Lett. PD MAY 30 PY 2019 VL 810 BP 1 EP 124 DI 10.1016/j.physrep.2019.03.001 PG 124 WC Physics, Multidisciplinary SC Physics GA ID5TR UT WOS:000471739400001 PM 31404441 OA Other Gold, Green Accepted DA 2021-04-21 ER PT J AU Zhang, F AF Zhang, F. CA CMS Collaboration TI Development of the CMS Phase-1 Pixel Online Monitoring System and the Evolution of Pixel Leakage Current SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT 9th International Workshop on Semiconductor Pixel Detectors for Particles and Imaging (PIXEL) CY DEC 10-14, 2018 CL Activ Ctr Acad Sinica, Taipei, TAIWAN HO Activ Ctr Acad Sinica DE Performance of High Energy Physics Detectors; Detector cooling and thermo-stabilization; Simulation methods and programs; Software architectures (event data models frameworks and databases) AB A new pixel online monitoring system has been developed to give a fast and intuitive view of the detector performance both offline and online. The source script was written modularly in Python programming language in association with the SQLite and Java languages. It establishes a connection with the CMS detector monitoring database, and extracts and stores detector information into a local database. Among all of the monitored detector parameters, the pixel leakage current is one of the most interesting, as it reflects the accumulated radiation damage of the silicon sensors. The leakage currents obtained from different module positions in the pixel detector are highly correlated with the distance from the beam pipe. Based on the new monitoring system, we have analyzed the pixel detector leakage current evolution since the recent Phase-1 upgrade of the pixel detector and its dependence on the environmental temperature influenced by the cooling loop arrangement inside the pixel detector. The results provide a crucial reference on the detector performance for the re-design of the detector in the Phase-2 upgrade. C1 [Zhang, F.; CMS Collaboration] Univ Calif Davis, One Shields Ave, Davis, CA 95616 USA. RP Zhang, F (corresponding author), Univ Calif Davis, One Shields Ave, Davis, CA 95616 USA. EM fengwangdong.zhang@cern.ch CR CMS Collaboration, CERNLHCC2012016 CMS Moll M., 1999, THESIS Renner J., 2017, THESIS NR 3 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAY PY 2019 VL 14 AR C05008 DI 10.1088/1748-0221/14/05/C05008 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA HZ3CQ UT WOS:000468725500003 DA 2021-04-21 ER PT J AU Guzman, HV Tretyakov, N Kobayashi, H Fogarty, AC Kreis, K Krajniak, J Junghans, C Kremer, K Stuehn, T AF Guzman, Horacio V. Tretyakov, Nikita Kobayashi, Hideki Fogarty, Aoife C. Kreis, Karsten Krajniak, Jakub Junghans, Christoph Kremer, Kurt Stuehn, Torsten TI ESPResSo++2.0: Advanced methods for multiscale molecular simulation SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Molecular dynamics; Multiscale modeling; Coarse graining; Soft matter; Lattice Boltzmann; Molecular simulations; High performance computer; Computational physics ID SOFT MATTER; LATTICE BOLTZMANN; POLYMER MELTS; DYNAMICS; MODELS; PACKAGE; QUANTUM; EQUILIBRATION; ALGORITHMS; EFFICIENT AB Molecular simulation is a scientific tool used in many fields including material science and biology. This requires constant development and enhancement of algorithms within molecular simulation software packages. Here, we present computational tools for multiscale modeling developed and implemented within the ESPResSo++ package. These include the latest applications of the adaptive resolution scheme, the hydrodynamic interactions through a lattice Boltzmann solvent coupled to particle-based molecular dynamics, the implementation of the hierarchical strategy for equilibrating long-chained polymer melts and a heterogeneous spatial domain decomposition. The software design of ESPResSo++ has kept its highly modular C++ kernel with a Python user interface. Moreover, it has been enhanced by automatic scripts that parse configurations from other established packages, providing scientists with the ability to rapidly set up their simulations. (C) 2019 Elsevier B.V. All rights reserved. C1 [Guzman, Horacio V.; Tretyakov, Nikita; Kobayashi, Hideki; Fogarty, Aoife C.; Kreis, Karsten; Kremer, Kurt; Stuehn, Torsten] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. [Krajniak, Jakub] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Leuven, Belgium. [Junghans, Christoph] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. RP Stuehn, T (corresponding author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. EM stuehn@mpip-mainz.mpg.de RI Junghans, Christoph/G-4238-2010; Kremer, Kurt/G-5652-2011; Kobayashi, Hideki/P-2191-2017 OI Junghans, Christoph/0000-0003-0925-1458; Kremer, Kurt/0000-0003-1842-9369; Krajniak, Jakub/0000-0001-9372-6975; Kobayashi, Hideki/0000-0002-4024-1752; Vargas Guzman, Horacio Andres/0000-0003-2564-3005 FU Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [SFB-TRR146]; European Union's Horizon 2020 research and innovation program [676531]; European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2 013)/ERC [340906-MOLPROCOMP]; U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC52-06NA25396]; Los Alamos National LaboratoryUnited States Department of Energy (DOE)Los Alamos National Laboratory [LA-UR-18-24195] FX T. Stuehn, N. Tretyakov and H.V. Guzman acknowledge financial support under the project SFB-TRR146 of the Deutsche Forschungsgemeinschaft. H. Kobayashi acknowledges the European Union's Horizon 2020 research and innovation program under the grant agreement No. 676531(project E-CAM). A.C. Fogarty acknowledges research funding through the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2 013)/ERC grant agreement no. 340906-MOLPROCOMP. J. Krajniak acknowledges "Strategic Initiative Materials" in Flanders (SIM) under the InterPoCo program and VSC (Flemish Supercomputer Center; Hercules Foundation and the Flemish Government - department EWI). This work has been partially authored by an employee of Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this work for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce this work, or allow others to do so for United States Government purposes. C.J. thanks Los Alamos National Laboratory for a Director's Postdoctoral fellowship supporting the early stage of this work. Assigned: LA-UR-18-24195. CR Ahlrichs P, 1999, J CHEM PHYS, V111, P8225, DOI 10.1063/1.480156 Aidun CK, 2010, ANNU REV FLUID MECH, V42, P439, DOI 10.1146/annurev-fluid-121108-145519 [Anonymous], 2011, DOXYGEN DOCUMENTATIO Arnold A, 2005, ADV POLYM SCI, V185, P59, DOI 10.1007/b136793 Attig N., 2004, NIC LECT NOTES, V23 Auhl R, 2003, J CHEM PHYS, V119, P12718, DOI 10.1063/1.1628670 BENZI R, 1992, PHYS REP, V222, P145, DOI 10.1016/0370-1573(92)90090-M Booch G, 1991, BENJAMIN CUMMINGS SE D'Adamo G, 2013, J CHEM PHYS, V138, DOI 10.1063/1.4810881 d'Humieres D, 2002, PHILOS T ROY SOC A, V360, P437, DOI 10.1098/rsta.2001.0955 de Buyl P, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4916313 de Buyl P, 2014, COMPUT PHYS COMMUN, V185, P1546, DOI 10.1016/j.cpc.2014.01.018 DEGENNES PG, 1971, J CHEM PHYS, V55, P572, DOI 10.1063/1.1675789 Delgado-Buscalioni R, 2009, J CHEM PHYS, V131, DOI 10.1063/1.3272265 Delgado-Buscalioni R, 2008, J CHEM PHYS, V128, DOI 10.1063/1.2890729 Delle Site L, 2007, PHYS REV E, V76, DOI 10.1103/PhysRevE.76.047701 Delle Site L, 2017, PHYS REP, V693, P1, DOI 10.1016/j.physrep.2017.05.007 DOI M, 1978, J CHEM SOC FARAD T 2, V74, P1789, DOI 10.1039/f29787401789 Doi M., 1988, THEORY POLYM DYNAMIC, V73 Dunweg B, 2009, ADV POLYM SCI, V221, P89, DOI 10.1007/12_2008_4 Dunweg B, 2007, PHYS REV E, V76, DOI 10.1103/PhysRevE.76.036704 E WN, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.092101 Espanol P, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4907006 Feynman R. P., 1965, QUANTUM MECH PATH IN Fiorentini R, 2017, J CHEM PHYS, V146, DOI 10.1063/1.4989486 Fogarty AC, 2016, PROTEINS, V84, P1902, DOI 10.1002/prot.25173 Fogarty AC, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4921347 Fritsch S, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.170602 Fritsch S, 2012, J CHEM THEORY COMPUT, V8, P398, DOI 10.1021/ct200706f Guzman HV, 2017, PHYS REV E, V96, DOI 10.1103/PhysRevE.96.053311 Guzman HV, 2017, BEILSTEIN J NANOTECH, V8, P968, DOI 10.3762/bjnano.8.98 Halverson JD, 2013, COMPUT PHYS COMMUN, V184, P1129, DOI 10.1016/j.cpc.2012.12.004 Hess B, 2008, J CHEM THEORY COMPUT, V4, P435, DOI 10.1021/ct700301q Holm C, 2005, ADV POLYM SCI, V173, P1 Holm C., 2005, ADV POLYM SCI, V221 Jones E., 2001, SCIPY OPEN SOURCE SC Karlsson B., 2005, C PLUS PLUS STANDARD Kirkwood JG, 1935, J CHEM PHYS, V3, P300, DOI 10.1063/1.1749657 Krajniak J, 2018, J COMPUT CHEM, V39, P1764, DOI 10.1002/jcc.25348 Krajniak J, 2018, J COMPUT CHEM, V39, P648, DOI 10.1002/jcc.25129 Krajniak J, 2016, J CHEM THEORY COMPUT, V12, P5549, DOI 10.1021/acs.jctc.6b00595 Kreis K, 2015, EUR PHYS J-SPEC TOP, V224, P2289, DOI 10.1140/epjst/e2015-02412-1 Kreis K, 2017, J CHEM PHYS, V147, DOI 10.1063/1.5000701 Kreis K, 2016, J CHEM THEORY COMPUT, V12, P4067, DOI 10.1021/acs.jctc.6b00440 Kreis K, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4959169 Kreis K, 2016, J CHEM THEORY COMPUT, V12, P3030, DOI 10.1021/acs.jctc.6b00242 Kreis K, 2014, EPL-EUROPHYS LETT, V108, DOI 10.1209/0295-5075/108/30007 Kremer K, 2002, MOL SIMULAT, V28, P729, DOI 10.1080/0892702021000002458 KREMER K, 1990, J CHEM PHYS, V92, P5057, DOI 10.1063/1.458541 Lambeth BP, 2010, J CHEM PHYS, V133, DOI 10.1063/1.3522773 Lattner C., 2008, BSD C, P1 Lenz O., 2018, ESPRESSOPP ESPRESSO Li XZ, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.066102 Limbach HJ, 2006, COMPUT PHYS COMMUN, V174, P704, DOI 10.1016/j.cpc.2005.10.005 Liu AJ, 2015, SOFT MATTER, V11, P2326, DOI 10.1039/c4sm02344g Louis AA, 2002, J PHYS-CONDENS MAT, V14, P9187, DOI 10.1088/0953-8984/14/40/311 Lowe S., 2015, USING FORK AND BRANC Mashayak SY, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0131754 Meier K, 2013, ANGEW CHEM INT EDIT, V52, P2820, DOI 10.1002/anie.201205408 Millman J., 2010, P56, DOI DOI 10.1016/S0168-0102(02)00204-3 Moreira L A, 2015, THEORY SIMUL, V24, P419 Mukherji D, 2013, MACROMOLECULES, V46, P9158, DOI 10.1021/ma401877c Mukherji D, 2012, J CHEM THEORY COMPUT, V8, P375, DOI 10.1021/ct200709h Nagata Y, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.226101 Netz PA, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4972014 Oliphant T.E., 2006, A GUIDE TO NUMPY Pamuk B, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.193003 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Perez A, 2010, J AM CHEM SOC, V132, P11510, DOI 10.1021/ja102004b Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Peter C, 2010, FARADAY DISCUSS, V144, P9, DOI 10.1039/b919800h Peters JH, 2016, PHYS REV E, V94, DOI 10.1103/PhysRevE.94.023309 Phillips JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289 PLIMPTON S, 1995, J COMPUT PHYS, V117, P1, DOI 10.1006/jcph.1995.1039 Poblete S, 2010, J CHEM PHYS, V132, DOI 10.1063/1.3357982 Poma AB, 2011, PHYS CHEM CHEM PHYS, V13, P10510, DOI 10.1039/c0cp02865g Poma AB, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.250201 Potestio R, 2012, J CHEM PHYS, V136, DOI 10.1063/1.3678587 Potestio R, 2014, ENTROPY-SWITZ, V16, P4199, DOI 10.3390/e16084199 Potestio R, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.060601 Potestio R, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.108301 Praprotnik M, 2005, J CHEM PHYS, V123, DOI 10.1063/1.2132286 Praprotnik M, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.099801 Praprotnik M, 2008, ANNU REV PHYS CHEM, V59, P545, DOI 10.1146/annurev.physchem.59.032607.093707 Praprotnik M, 2008, COMPUT PHYS COMMUN, V179, P51, DOI 10.1016/j.cpc.2008.01.018 Praprotnik M, 2007, J PHYS-CONDENS MAT, V19, DOI 10.1088/0953-8984/19/29/292201 Praprotnik M, 2007, PHYS REV E, V75, DOI 10.1103/PhysRevE.75.017701 Praprotnik M, 2007, J PHYS A-MATH THEOR, V40, pF281, DOI 10.1088/1751-8113/40/15/F03 Praprotnik M, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.066701 Praprotnik M, 2011, J STAT PHYS, V145, P946, DOI 10.1007/s10955-011-0312-x Praprotnik M, 2009, J PHYS-CONDENS MAT, V21, DOI 10.1088/0953-8984/21/49/499801 QIAN YH, 1992, EUROPHYS LETT, V17, P479, DOI 10.1209/0295-5075/17/6/001 RAPAPORT DC, 1991, COMPUT PHYS COMMUN, V62, P198, DOI 10.1016/0010-4655(91)90095-3 Roehm D, 2015, COMPUT PHYS COMMUN, V192, P138, DOI 10.1016/j.cpc.2015.03.006 Sablic J, 2016, SOFT MATTER, V12, P2416, DOI 10.1039/c5sm02604k Scherer MK, 2015, J CHEM THEORY COMPUT, V11, P5525, DOI 10.1021/acs.jctc.5b00743 Shaw DE, 2005, J COMPUT CHEM, V26, P1318, DOI 10.1002/jcc.20267 Shaw DE., 2009, P C HIGH PERF COMP N, P1, DOI DOI 10.1145/1654059.1654099 Stillinger FH, 2002, J CHEM PHYS, V117, P288, DOI 10.1063/1.1480863 Succi S., 2001, LATTICE BOLTZMANN EQ The HDF Group, 1997, HIER DAT FORM VERS 5 Tom P. W., SEMANTIC VERSIONING Tretyakov N., 2017, COMPUT PHYS COMMUN, V216 TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990, DOI 10.1063/1.463137 Tuckerman M. E., 2010, STAT MECH THEORY MOL Vettorel T, 2010, SOFT MATTER, V6, P2282, DOI 10.1039/b921159d Voth G. A., 2008, COARSE GRAINING COND Wang H, 2013, PHYS REV X, V3, DOI 10.1103/PhysRevX.3.011018 Wang H, 2009, EUR PHYS J E, V28, P221, DOI 10.1140/epje/i2008-10413-5 Wang L, 2014, P NATL ACAD SCI USA, V111, P18454, DOI 10.1073/pnas.1417923111 Zavadlav J, 2015, J CHEM THEORY COMPUT, V11, P5035, DOI 10.1021/acs.jctc.5b00596 Zavadlav J, 2014, J CHEM PHYS, V140, DOI 10.1063/1.4863329 Zhang GJ, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4922538 Zhang GJ, 2014, ACS MACRO LETT, V3, P198, DOI 10.1021/mz5000015 2005, ADV POLYM SCI, V173, P1 NR 115 TC 5 Z9 5 U1 4 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAY PY 2019 VL 238 BP 66 EP 76 DI 10.1016/j.cpc.2018.12.017 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA HR0FD UT WOS:000462802800005 DA 2021-04-21 ER PT J AU Alden, B Hallman, EJ Rapetti, D Burns, JO Datta, A AF Alden, B. Hallman, E. J. Rapetti, D. Burns, J. O. Datta, A. TI The galaxy cluster Typeline' for X-ray temperature maps: ClusterPyXT SO ASTRONOMY AND COMPUTING LA English DT Article DE Galaxy clusters; ClusterPyXT; Chandra; X-ray; Python ID LARGE-SCALE STRUCTURE; SHOCK-WAVES; RADIO HALOS; EMISSION AB ClusterPyXT is a new software pipeline to generate spectral temperature, X-ray surface brightness, pressure, and density maps from X-ray observations of galaxy clusters. These data products help to elucidate the physics of processes occurring within clusters of galaxies, including turbulence, shock fronts, nonthermal phenomena, and the overall dynamics of cluster mergers. ClusterPyXT automates the creation of these data products with minimal user interaction, and allows for rapid analyses of archival data with user defined parameters and the ability to straightforwardly incorporate additional observations. In this paper, we describe in detail the use of this code and release it as an open source Python project on GitHub. (C) 2019 The Authors. Published by Elsevier B.V. C1 [Alden, B.; Hallman, E. J.; Rapetti, D.; Burns, J. O.; Datta, A.] Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, 389 UCB, Boulder, CO 80309 USA. [Rapetti, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Datta, A.] Indian Inst Technol, Indore, Madhya Pradesh, India. RP Alden, B (corresponding author), Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, 389 UCB, Boulder, CO 80309 USA. EM brian.alden@colorado.edu OI BURNS, JACK/0000-0002-4468-2117; Datta, Abhirup/0000-0002-5333-1095; Alden, Brian/0000-0003-0025-6762 FU NASA ADAP grant [NNX15AE17G]; US Department of Veterans Affairs Vocational Rehabilitation and Employment program; NASA Postdoctoral Program Senior Fellowship at NASA's Ames Research Center FX This research was supported by NASA ADAP grant NNX15AE17G. BA is supported by the US Department of Veterans Affairs Vocational Rehabilitation and Employment program. DR is supported by a NASA Postdoctoral Program Senior Fellowship at NASA's Ames Research Center, administered by the Universities Space Research Association under contract with NASA. CR BALUCINSKACHURCH M, 1992, ASTROPHYS J, V400, P699, DOI 10.1086/172032 Bruggen M, 2012, SPACE SCI REV, V166, P187, DOI 10.1007/s11214-011-9785-9 Burns JO, 1998, SCIENCE, V280, P400, DOI 10.1126/science.280.5362.400 Cassano R, 2010, ASTROPHYS J LETT, V721, pL82, DOI 10.1088/2041-8205/721/2/L82 Condon JJ, 1998, ASTRON J, V115, P1693, DOI 10.1086/300337 Datta A, 2014, ASTROPHYS J, V793, DOI 10.1088/0004-637X/793/2/80 Diehl S, 2006, MON NOT R ASTRON SOC, V368, P497, DOI 10.1111/j.1365-2966.2006.10125.x Dolag K, 2000, ASTRON ASTROPHYS, V362, P151 Ensslin TA, 1998, ASTRON ASTROPHYS, V332, P395 Feretti L, 2012, ASTRON ASTROPHYS REV, V20, DOI 10.1007/s00159-012-0054-z Freeman PE, 2001, PROC SPIE, V4477, P76, DOI 10.1117/12.447161 Fruscione A, 2006, PROC SPIE, V6270, DOI 10.1117/12.671760 Giacintucci S, 2014, ASTROPHYS J, V781, DOI 10.1088/0004-637X/781/1/9 Hallman EJ, 2018, ASTROPHYS J, V859, DOI 10.3847/1538-4357/aabf3a Kravtsov AV, 2012, ANNU REV ASTRON ASTR, V50, P353, DOI 10.1146/annurev-astro-081811-125502 Loewenstein M., 2004, ORIGIN EVOLUTION ELE, P422 Randall S, 2008, ASTROPHYS J, V688, P208, DOI 10.1086/592324 Randall SW, 2010, ASTROPHYS J, V722, P825, DOI 10.1088/0004-637X/722/1/825 ROETTIGER K, 1993, ASTROPHYS J, V407, pL53, DOI 10.1086/186804 Ryu D, 2003, ASTROPHYS J, V593, P599, DOI 10.1086/376723 Sanders JS, 2006, MON NOT R ASTRON SOC, V371, P829, DOI 10.1111/j.1365-2966.2006.10716.x SARAZIN CL, 1986, REV MOD PHYS, V58, P1, DOI 10.1103/RevModPhys.58.1 Schenck DE, 2014, ASTRON J, V148, DOI 10.1088/0004-6256/148/1/23 Skillman SW, 2013, ASTROPHYS J, V765, DOI 10.1088/0004-637X/765/1/21 Skillman SW, 2011, ASTROPHYS J, V735, DOI 10.1088/0004-637X/735/2/96 Smith RK, 2001, ASTROPHYS J, V556, pL91, DOI 10.1086/322992 van Weeren RJ, 2016, ASTROPHYS J, V818, DOI 10.3847/0004-637X/818/2/204 NR 27 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD APR PY 2019 VL 27 BP 147 EP 155 DI 10.1016/j.ascom.2019.04.001 PG 9 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA IB0VQ UT WOS:000469980300010 OA Other Gold DA 2021-04-21 ER PT J AU Asfandiyarov, R Bayes, R Blackmore, V Bogomilov, M Coiling, D Dobbs, AJ Drielsma, F Drews, M Ellis, M Fedorov, M Franchini, P Gardener, R Greis, JR Hanlet, PM Heidt, C Hunt, C Kafka, G Karadzhov, Y Kurup, A Kyberd, P Littlefield, M Liu, A Long, K Maletic, D Martyniak, J Middleton, S Mohayai, T Nebrensky, JJ Nugent, JC Overton, E Pec, V Pidcott, CE Rajaram, D Rayner, M Reid, ID Rogers, CT Santos, E Savic, M Taylor, I Torun, Y Tunnell, CD Uchida, MA Verguilov, V Walaron, K Winter, M Wilbur, S AF Asfandiyarov, R. Bayes, R. Blackmore, V Bogomilov, M. Coiling, D. Dobbs, A. J. Drielsma, F. Drews, M. Ellis, M. Fedorov, M. Franchini, P. Gardener, R. Greis, J. R. Hanlet, P. M. Heidt, C. Hunt, C. Kafka, G. Karadzhov, Y. Kurup, A. Kyberd, P. Littlefield, M. Liu, A. Long, K. Maletic, D. Martyniak, J. Middleton, S. Mohayai, T. Nebrensky, J. J. Nugent, J. C. Overton, E. Pec, V Pidcott, C. E. Rajaram, D. Rayner, M. Reid, I. D. Rogers, C. T. Santos, E. Savic, M. Taylor, I Torun, Y. Tunnell, C. D. Uchida, M. A. Verguilov, V. Walaron, K. Winter, M. Wilbur, S. TI MAUS: the MICE analysis user software SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Data reduction methods; Simulation methods and programs; Software architectures (event data models, frameworks and databases); Accelerator modelling and simulations (multiparticle dynamics; single-particle dynamics) ID SIMULATION; GEOMETRY; PHYSICS AB The Muon Ionization Cooling Experiment (MICE) collaboration has developed the MICE Analysis User Software (MAUS) to simulate and analyze experimental data. It serves as the primary codebase for the experiment, providing for offline batch simulation and reconstruction as well as online data quality checks. The software provides both traditional particle-physics functionalities such as track reconstruction and particle identification, and accelerator physics functions, such as calculating transfer matrices and emittances. The code design is object orientated, but has a top-level structure based on the Map-Reduce model. This allows for parallelization to support live data reconstruction during data-taking operations. MAUS allows users to develop in either Python or C++ and provides APIs for both. Various software engineering practices from industry are also used to ensure correct and maintainable code, including style, unit and integration tests, continuous integration and load testing, code reviews, and distributed version control. The software framework and the simulation and reconstruction capabilities are described. C1 [Asfandiyarov, R.; Drielsma, F.; Karadzhov, Y.; Verguilov, V.] Univ Geneva, Sect Phys, DPNC, Geneva, Switzerland. [Bayes, R.; Nugent, J. C.; Walaron, K.] Univ Glasgow, Sch Phys & Astron, Kelvin Bldg, Glasgow, Lanark, Scotland. [Blackmore, V; Coiling, D.; Dobbs, A. J.; Ellis, M.; Hunt, C.; Kurup, A.; Long, K.; Martyniak, J.; Middleton, S.; Santos, E.; Uchida, M. A.] Imperial Coll London, Dept Phys, Blackett Lab, London, England. [Bogomilov, M.] St Kliment Ohridski Univ Sofia, Dept Atom Phys, Sofia, Bulgaria. [Fedorov, M.] Radboud Univ Nijmegen, Nijmegen, Netherlands. [Franchini, P.; Greis, J. R.; Pidcott, C. E.; Taylor, I] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Gardener, R.; Kyberd, P.; Littlefield, M.; Nebrensky, J. J.; Reid, I. D.] Brunel Univ, Uxbridge, Middx, England. [Drews, M.; Hanlet, P. M.; Kafka, G.; Mohayai, T.; Rajaram, D.; Torun, Y.; Winter, M.] IIT, Dept Phys, Chicago, IL 60616 USA. [Heidt, C.] Univ Calif Riverside, Riverside, CA 92521 USA. [Liu, A.; Mohayai, T.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Maletic, D.; Savic, M.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Overton, E.; Pec, V; Wilbur, S.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Rayner, M.; Tunnell, C. D.] Univ Oxford, Dept Phys, Denys Wilkinson Bldg, Oxford, England. [Long, K.; Rogers, C. T.] STFC Rutherford Appleton Lab, Didcot, Oxon, England. RP Rajaram, D (corresponding author), IIT, Dept Phys, Chicago, IL 60616 USA. EM durga@fnal.gov OI Nugent, John/0000-0002-2210-8480; Nebrensky, Henry/0000-0002-8412-4259; Tunnell, Christopher/0000-0001-8158-7795; Long, Kenneth/0000-0002-3181-0351; Franchini, Paolo/0000-0002-1419-1368; Pidcott, Celeste/0000-0001-5598-5685 FU Department of Energy (U.S.A.)United States Department of Energy (DOE); National Science Foundation (U.S.A.)National Science Foundation (NSF); Instituto Nazionale di Fisica Nucleare (Italy); Science and Technology Facilities Council (U.K.)UK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC); European Community under the European Commission Framework Programme 7 (AIDA project) [262025]; Japan Society for the Promotion of ScienceMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; Swiss National Science FoundationSwiss National Science Foundation (SNSF)European Commission; European Community under the European Commission Framework Programme 7 (TIARA project) [261905]; European Community under the European Commission Framework Programme 7 (EuCARD) FX The work described here was made possible by grants from Department of Energy and National Science Foundation (U.S.A.), the Instituto Nazionale di Fisica Nucleare (Italy), the Science and Technology Facilities Council (U.K.), the European Community under the European Commission Framework Programme 7 (AIDA project, grant agreement no. 262025, TIARA project, grant agreement no. 261905, and EuCARD), the Japan Society for the Promotion of Science and the Swiss National Science Foundation, in the framework of the SCOPES programme. We gratefully acknowledge all sources of support. We are grateful to the support given to us by the staff of the STFC Rutherford Appleton and Daresbury Laboratories. We acknowledge the use of Grid computing resources deployed and operated by GridPP [41] in the U.K. CR Adams D, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-6674-y Adams D, 2013, EUR PHYS J C, V73, DOI 10.1140/epjc/s10052-013-2582-8 Adinolfi M, 2002, NUCL INSTRUM METH A, V494, P326, DOI 10.1016/S0168-9002(02)01488-2 Agostinelli S, 2003, NUCL INSTRUM METH A, V506, P250, DOI 10.1016/S0168-9002(03)01368-8 Ambrosino F, 2009, NUCL INSTRUM METH A, V598, P239, DOI 10.1016/j.nima.2008.08.097 Apostolakis J, 2009, RADIAT PHYS CHEM, V78, P859, DOI 10.1016/j.radphyschem.2009.04.026 Asfandiyarov R, 2016, J INSTRUM, V11, DOI 10.1088/1748-0221/11/10/T10007 Bertoni R, 2010, NUCL INSTRUM METH A, V615, P14, DOI 10.1016/j.nima.2009.12.065 Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Chytracek R, 2006, IEEE T NUCL SCI, V53, P2892, DOI 10.1109/TNS.2006.881062 Dean J, 2004, P OSDI 04, V04, P137 Dobbs A, 2016, J INSTRUM, V11, DOI 10.1088/1748-0221/11/12/T12001 Fernow R. C., 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366), P3020, DOI 10.1109/PAC.1999.792132 Geer S, 2009, ANNU REV NUCL PART S, V59, P347, DOI 10.1146/annurev.nucl.010909.083736 IDS- NF collaboration, 2011, INT DES STUD NEUTR F MICE collaboration, 2016, J I, V11 MICE collaboration, 2012, JINST, V7 MICE collaboration, 2015, J I, V10 MICE collaboration, 2018, P INT PART ACC C VAN, P5035 Middleton S. C., 2018, THESIS Penn G, 2000, PHYS REV LETT, V85, P764, DOI 10.1103/PhysRevLett.85.764 Roberts Thomas J, 2007, 2007 IEEE Particle Accelerator Conference, P3468, DOI 10.1109/PAC.2007.4440461 Rogers CT, 2013, PHYS REV SPEC TOP-AC, V16, DOI 10.1103/PhysRevSTAB.16.040104 Ryne R., 2015, MICENOTE461 Ryne R. D., 2006, P 2006 INT COMP ACC, P157 2011, NUCL INSTRUM METH A, V659, P136, DOI DOI 10.1016/J.NIMA.2011.04.041 2009, IEEE T NUCL SCI, V56, P1475, DOI DOI 10.1109/TNS.2009.2021266 NR 27 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2019 VL 14 AR T04005 DI 10.1088/1748-0221/14/04/T04005 PG 23 WC Instruments & Instrumentation SC Instruments & Instrumentation GA HW9KK UT WOS:000467009500001 DA 2021-04-21 ER PT J AU Louboutin, M Lange, M Luporini, F Kukreja, N Witte, PA Herrmann, FJ Velesko, P Gorman, GJ AF Louboutin, Mathias Lange, Michael Luporini, Fabio Kukreja, Navjot Witte, Philipp A. Herrmann, Felix J. Velesko, Paulius Gorman, Gerard J. TI Devito (v3.1.0): an embedded domain-specific language for finite differences and geophysical exploration SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID WAVE-FORM INVERSION; ADJOINT; IMPLEMENTATION AB We introduce Devito, a new domain-specific language for implementing high-performance finite-difference partial differential equation solvers. The motivating application is exploration seismology for which methods such as full-waveform inversion and reverse-time migration are used to invert terabytes of seismic data to create images of the Earth's subsurface. Even using modern supercomputers, it can take weeks to process a single seismic survey and create a useful subsurface image The computational cost is dominated by the numerical solution of wave equations and their corresponding adjoints. Therefore, a great deal of effort is invested in aggressively optimizing the performance of these wave-equation propagators for different computer architectures. Additionally, the actual set of partial differential equations being solved and their numerical discretization is under constant innovation as increasingly realistic representations of the physics are developed, further ratcheting up the cost of practical solvers. By embedding a domain-specific language within Python and making heavy use of SymPy, a symbolic mathematics library, we make it possible to develop finite-difference simulators quickly using a syntax that strongly resembles the mathematics. The Devito compiler reads this code and applies a wide range of analysis to generate highly optimized and parallel code. This approach can reduce the development time of a verified and optimized solver from months to days. C1 [Louboutin, Mathias; Witte, Philipp A.; Herrmann, Felix J.] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA. [Lange, Michael] ECMWF, Reading, Berks, England. [Luporini, Fabio; Kukreja, Navjot; Velesko, Paulius; Gorman, Gerard J.] Imperial Coll London, Earth Sci & Engn, London, England. RP Louboutin, M (corresponding author), Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA. EM mlouboutin3@gatech.edu RI Witte, Philipp/AAA-1287-2021 OI Herrmann, Felix/0000-0003-1180-2167; Louboutin, Mathias/0000-0002-1255-2107; Kukreja, Navjot/0000-0003-0016-3785 FU Imperial College London Intel Parallel Computing Centre; SINBAD II project; EPSRCUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/M011054/1, EP/L000407/1]; SINBAD Consortium FX The development of Devito was primarily supported through the Imperial College London Intel Parallel Computing Centre. We would also like to acknowledge support from the SINBAD II project and support from the member organizations of the SINBAD Consortium as well as EPSRC grants EP/M011054/1 and EP/L000407/1. CR Alnaes MS, 2014, ACM T MATH SOFTWARE, V40, DOI 10.1145/2566630 Andreolli C., 2015, HIGH PERFORMANCE PAR, P377 Arbona A, 2018, COMPUT PHYS COMMUN, V229, P170, DOI 10.1016/j.cpc.2018.03.015 Asanovic K., 2006, LANDSCAPE PARALLEL C Backus J, ACM SIGPLAN NOTICES, V13, P165 Barba L. A, 2018, J OPEN SOURCE ED, V9, P21, DOI [10.21105/jose.00021, DOI 10.21105/JOSE.00021] Bondhugula U, 2008, PLDI'08: PROCEEDINGS OF THE 2008 SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN & IMPLEMENTATION, P101, DOI 10.1145/1375581.1375595 CARDENAS AF, 1970, COMMUN ACM, V13, P184, DOI 10.1145/362052.362059 Cauchy A. Me, 1847, COMP REND SCI PARIS, P536 Christen M., 2011, Proceedings of the 25th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2011), P676, DOI 10.1109/IPDPS.2011.70 CLAYTON R, 1977, B SEISMOL SOC AM, V67, P1529 Colella P., 2004, DEFINING SOFTWARE RE Cook Jr G. O, 1988, TECH REP DONGARRA JJ, 1988, LECT NOTES COMPUT SC, V297, P456 Farrell PE, 2013, SIAM J SCI COMPUT, V35, pC369, DOI 10.1137/120873558 Fomel S., 2013, J OPEN RES SOFTWARE, V1, pE8, DOI [10.5334/jors.ag, DOI 10.5334/JORS.AG, DOI 10.5334/J0RS.AG] Griewank A, 2000, ACM T MATH SOFTWARE, V26, P19, DOI 10.1145/347837.347846 Haber E, 2012, SIAM J OPTIMIZ, V22, P739, DOI 10.1137/11081126X Hawick K. A, 2013, 11 INT C SOFTW ENG R Henretty T., 2013, P 27 INT ACM C INT C, P13 Hopper G M, 1952, P 1952 ACM NAT M PIT, P243 Igel H., 2016, COMPUTATIONAL SEISMO Intel Corporation, 2016, INT VTUNE PERF AN Iverson KE, 1962, PROGRAMMING LANGUAGE Jacobs C. T, 2016, ABS160901277 CORR Jones J. L., 1954, THESIS Kim S, 2007, APPL NUMER MATH, V57, P402, DOI 10.1016/j.apnum.2006.05.003 Koster M, 2014, P 1 INT WORKSH HIGH, P1 Kukreja N., 2018, ARXIV180202474 Kumar R, 2015, GEOPHYSICS, V80, pWD73, DOI 10.1190/GEO2015-0108.1 Lange M, 2017, PYTH SCI C P, P89 Lions J. L, OPTIMAL CONTROL SYST Liu Y, 2011, GEOPHYSICS, V76, pV69, DOI [10.1190/geo2010-0231.1, 10.1190/GEO2010-0231.1] Logg A, 2012, AUTOMATED SOLUTION D, V84, DOI [10.1007/978-3-642-23099-8, DOI 10.1007/978-3-642-23099-8] Louboutin M, 2017, LEADING EDGE, V36, P1033, DOI [10.1190/tle36121033.1, DOI 10.1190/TLE36121033.1] Louboutin M, 2017, COMPUT GEOSCI-UK, V105, P148, DOI 10.1016/j.cageo.2017.04.014 Luporini F., 2018, ABS180703032 CORR Luporini F, 2014, ACM T ARCHIT CODE OP, V11, DOI 10.1145/2687415 McCalpin J. D., 1991, TECH REP MCMECHAN GA, 1983, GEOPHYS PROSPECT, V31, P413, DOI 10.1111/j.1365-2478.1983.tb01060.x Membarth R, 2012, 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC), P1133, DOI 10.1109/SC.Companion.2012.136 Meurer A, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.103 MITTET R, 1994, GEOPHYSICS, V59, P1894, DOI 10.1190/1.1443576 Naghizadeh M, 2009, GEOPHYSICS, V74, pV9, DOI 10.1190/1.3008547 Osuna C, 2014, PLATF ADV SCI COMP P Patterson D. A., 2007, COMPUTER ORG DESIGN Peters Bas, 2017, Leading Edge, V36, P94, DOI 10.1190/tle36010094.1 Plessix RE, 2006, GEOPHYS J INT, V167, P495, DOI 10.1111/j.1365-246X.2006.02978.x Raknes EB, 2016, GEOPHYSICS, V81, pR45, DOI 10.1190/GEO2015-0185.1 Rathgeber F, 2015, ABS150101809 CORR Schmidt M., 2009, ARTIFICIAL INTELLIGE, V5, P456 Sun D., 2010, 1006 RIC U DEP COMP Symes W. W, 2015, ACOUSTIC STAGGERED G, P141 Symes W. W, 2015, IWAVE STRUCTURE BASI, P85 Symes WW, 2011, GEOPHYS PROSPECT, V59, P814, DOI 10.1111/j.1365-2478.2011.00977.x Tang Y, 2011, SPAA 11: PROCEEDINGS OF THE TWENTY-THIRD ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, P117, DOI 10.1145/1989493.1989508 TARANTOLA A, 1984, GEOPHYSICS, V49, P1259, DOI 10.1190/1.1441754 Umetani Y., 1985, P IFIP TC2 WG22, V5, P147 Unat Didem, 2011, P INT C SUP, P214, DOI DOI 10.1145/1995896.1995932 Van Engelen Robert, 1996, P 10 INT C SUP NEW Y, P86 van Leeuwen T, 2016, INVERSE PROBL, V32, DOI 10.1088/0266-5611/32/1/015007 Versteeg R., 1994, LEADING EDGE, V13, P927, DOI [10.1190/1.1437051, DOI 10.1190/1.1437051] Virieux J, 2009, GEOPHYSICS, V74, pWCC1, DOI 10.1190/1.3238367 VIRIEUX J, 1986, GEOPHYSICS, V51, P889, DOI 10.1190/1.1442147 Wang S, 2017, COMPUTING RES REPOSI Warner M., 2014, ADAPTIVE WAVEFORM IN, P1089, DOI 10.1190/segam2014-0371.1 Wason H, 2017, GEOPHYSICS, V82, pP15, DOI 10.1190/GEO2016-0252.1 Watanabe K., 2015, GREENS FUNCTIONS LAP, P33, DOI DOI 10.1007/978-3-319-17455-6_2 Weiss RM, 2013, GEOPHYSICS, V78, pF7, DOI 10.1190/GEO2012-0063.1 Williams S, 2009, COMMUN ACM, V52, P65, DOI 10.1145/1498765.1498785 Witte Philipp, 2018, Leading Edge, V37, P142, DOI 10.1190/tle37020142.1 Witte PA, 2019, GEOPHYSICS, V84, pF57, DOI 10.1190/GEO2018-0174.1 Yount C, 2015, IEEE I C EMBED SOFTW, P865, DOI 10.1109/HPCC-CSS-ICESS.2015.27 Zhang YY, 2012, INT SYM COMPUT INTEL, P155, DOI 10.1109/ISCID.2012.191 NR 74 TC 9 Z9 9 U1 0 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD MAR 27 PY 2019 VL 12 IS 3 BP 1165 EP 1187 DI 10.5194/gmd-12-1165-2019 PG 23 WC Geosciences, Multidisciplinary SC Geology GA HQ7JR UT WOS:000462596800001 OA DOAJ Gold DA 2021-04-21 ER PT J AU Vicentini, F Minganti, F Biella, A Orso, G Ciuti, C AF Vicentini, Filippo Minganti, Fabrizio Biella, Alberto Orso, Giuliano Ciuti, Cristiano TI Optimal stochastic unraveling of disordered open quantum systems: Application to driven-dissipative photonic lattices SO PHYSICAL REVIEW A LA English DT Article ID PYTHON FRAMEWORK; DYNAMICS; SIMULATION; INSULATOR; STATES; QUTIP; JULIA AB We propose an efficient numerical method to compute configuration averages of observables in disordered open quantum systems whose dynamics can be unraveled via stochastic trajectories. We prove that the optimal sampling of trajectories and disorder configurations is simply achieved by considering one random disorder configuration for each individual trajectory. As a first application, we exploit the present method to study the role of disorder on the physics of the driven-dissipative Bose-Hubbard model in two different regimes: (i) for strong interactions, we explore the dissipative physics of fermionized bosons in disordered one-dimensional chains; (ii) for weak interactions, we investigate the role of on-site inhomogeneities on a first-order dissipative phase transition in a two-dimensional square lattice. C1 [Vicentini, Filippo; Minganti, Fabrizio; Biella, Alberto; Orso, Giuliano; Ciuti, Cristiano] Univ Paris Diderot, Lab Mat & Phenomenes Quant, CNRS, UMR7162, F-75013 Paris, France. RP Vicentini, F (corresponding author), Univ Paris Diderot, Lab Mat & Phenomenes Quant, CNRS, UMR7162, F-75013 Paris, France. RI Ciuti, Cristiano/K-7248-2012; Biella, Alberto/Q-6998-2016; Minganti, Fabrizio/AAX-4108-2020 OI Ciuti, Cristiano/0000-0002-1134-7013; Minganti, Fabrizio/0000-0003-4850-1130; Orso, Giuliano/0000-0002-0816-9084; Vicentini, Filippo/0000-0003-3333-3648 FU ERC (via Consolidator CORPHO) [616233] FX We thank N. Bartolo, N. Carlon-Zambon, and I. Carusotto for stimulating discussions. We acknowledge support from ERC (via Consolidator CORPHO Grant No. 616233). This work was granted access to the HPC resources of TGCC under the allocations 2018-AP010510493 and 2018-A0050510601 attributed by GENCI ("Grand Equipement National de Calcul Intensif"). CR Albert VV, 2014, PHYS REV A, V89, DOI 10.1103/PhysRevA.89.022118 Aspelmeyer M, 2014, REV MOD PHYS, V86, P1391, DOI 10.1103/RevModPhys.86.1391 Bardyn CE, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/8/085001 Basko DM, 2006, ANN PHYS-NEW YORK, V321, P1126, DOI 10.1016/j.aop.2005.11.014 Bezanson J, 2017, SIAM REV, V59, P65, DOI 10.1137/141000671 Biella A, 2013, EPL-EUROPHYS LETT, V103, DOI 10.1209/0295-5075/103/57009 Biella A, 2018, PHYS REV B, V97, DOI 10.1103/PhysRevB.97.035103 Biella A, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.023839 Biella A, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.053815 Breuer H.-P., 2007, THEORY OPEN QUANTUM Carmichael H. J, 1998, STAT METHODS QUANTUM Carmichael H.J, 2008, STAT METHODS QUANTUM CARMICHAEL HJ, 1993, PHYS REV LETT, V70, P2273, DOI 10.1103/PhysRevLett.70.2273 Carusotto I, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.125335 Carusotto I, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.033601 Carusotto I, 2013, REV MOD PHYS, V85, DOI 10.1103/RevModPhys.85.299 Casteels W, 2018, PHYS REV A, V97, DOI 10.1103/PhysRevA.97.062107 Celardo GL, 2013, FORTSCHR PHYS, V61, P250, DOI 10.1002/prop.201200082 Celardo G. L., ARXIV170204506 Cui J, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.220601 Daley AJ, 2014, ADV PHYS, V63, P77, DOI 10.1080/00018732.2014.933502 DALIBARD J, 1992, PHYS REV LETT, V68, P580, DOI 10.1103/PhysRevLett.68.580 Diehl S, 2008, NAT PHYS, V4, P878, DOI 10.1038/nphys1073 Finazzi S, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.080604 Fitzpatrick M, 2017, PHYS REV X, V7, DOI 10.1103/PhysRevX.7.011016 Foss-Feig M, 2017, PHYS REV A, V95, DOI 10.1103/PhysRevA.95.043826 Gambetta J, 2008, PHYS REV A, V77, DOI 10.1103/PhysRevA.77.012112 Gardiner C.W., 2004, SPRINGER SERIES SYNE Georgescu IM, 2014, REV MOD PHYS, V86, P153, DOI 10.1103/RevModPhys.86.153 GIRARDEAU M, 1960, J MATH PHYS, V1, P516, DOI 10.1063/1.1703687 Grujic T, 2012, NEW J PHYS, V14, DOI 10.1088/1367-2630/14/10/103025 Hartmann MJ, 2016, J OPTICS-UK, V18, DOI 10.1088/2040-8978/18/10/104005 Houck AA, 2012, NAT PHYS, V8, P292, DOI [10.1038/NPHYS2251, 10.1038/nphys2251] Hrahsheh F, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.214204 Ilievski E, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.157201 IMRY Y, 1979, PHYS REV B, V19, P3580, DOI 10.1103/PhysRevB.19.3580 IMRY Y, 1975, PHYS REV LETT, V35, P1399, DOI 10.1103/PhysRevLett.35.1399 Jacqmin T, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.116402 Jager SB, 2017, PHYS REV A, V95, DOI 10.1103/PhysRevA.95.063852 Jaschke D, 2019, QUANTUM SCI TECHNOL, V4, DOI 10.1088/2058-9565/aae724 Jin JS, 2018, PHYS REV B, V98, DOI 10.1103/PhysRevB.98.241108 Jin JS, 2016, PHYS REV X, V6, DOI 10.1103/PhysRevX.6.031011 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Kapit E, 2017, QUANTUM SCI TECHNOL, V2, DOI 10.1088/2058-9565/aa7e5d Kenney J. F., 1947, MATH STAT, V1 Kramer S, 2018, COMPUT PHYS COMMUN, V227, P109, DOI 10.1016/j.cpc.2018.02.004 Kshetrimayum A, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01511-6 Kulaitis G, 2013, PHYS REV A, V87, DOI 10.1103/PhysRevA.87.013840 Labouvie R, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.235302 Langen T, 2015, SCIENCE, V348, P207, DOI 10.1126/science.1257026 Le Boite A, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.233601 Lebreuilly J, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.033828 Lee TE, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.257204 Ma RC, 2019, NATURE, V566, P51, DOI 10.1038/s41586-019-0897-9 Maghrebi MF, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.174304 Maghrebi MF, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.014307 Marino J, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.070407 Mascarenhas E., ARXIV171200987 Mascarenhas E, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.022116 Maximo CE, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.062702 Minganti F, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.042118 MOLMER K, 1993, J OPT SOC AM B, V10, P524, DOI 10.1364/JOSAB.10.000524 Muller M, 2012, ADV ATOM MOL OPT PHY, V61, P1, DOI 10.1016/B978-0-12-396482-3.00001-6 Nagy A, 2018, PHYS REV A, V97, DOI 10.1103/PhysRevA.97.052129 Nandkishore R, 2015, ANNU REV CONDEN MA P, V6, P15, DOI 10.1146/annurev-conmatphys-031214-014726 Nigro D., ARXIV180306279 Noh C, 2017, REP PROG PHYS, V80, DOI 10.1088/0034-4885/80/1/016401 Oganesyan V, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.155111 Orus R, 2014, ANN PHYS-NEW YORK, V349, P117, DOI 10.1016/j.aop.2014.06.013 Plenio MB, 1998, REV MOD PHYS, V70, P101, DOI 10.1103/RevModPhys.70.101 Proctor TC, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.097201 Rackauckas C., 2017, THE J, V5, P15, DOI [10.5334/jors.151, DOI 10.5334/JORS.151] Rackauckas C., ARXIV180404344 Rackauckas C, 2017, DISCRETE CONT DYN-B, V22, P2731, DOI 10.3934/dcdsb.2017133 Rodriguez SRK, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.247402 Roncaglia M, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.096803 Rota R, 2018, NEW J PHYS, V20, DOI 10.1088/1367-2630/aab703 Rota R, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.134431 Rota R., PHYS REV LETT Sachdev S, 2001, QUANTUM PHASE TRANSI Saffman M, 2010, REV MOD PHYS, V82, P2313, DOI 10.1103/RevModPhys.82.2313 Santos LF, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.250402 Scarlatella O, 2019, PHYS REV B, V99, DOI 10.1103/PhysRevB.99.064511 Schiro M, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.143603 Schutz S, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.083001 See T. F., PHYS REV A Shammah N, 2018, PHYS REV A, V98, DOI 10.1103/PhysRevA.98.063815 Sieberer LM, 2016, REP PROG PHYS, V79, DOI 10.1088/0034-4885/79/9/096001 Vakulchyk I, 2018, PHYS REV B, V98, DOI 10.1103/PhysRevB.98.020202 Verstraelen W, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8091427 Vicentini F, 2018, PHYS REV A, V97, DOI 10.1103/PhysRevA.97.013853 Viteau M, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.053002 VOGEL K, 1989, PHYS REV A, V39, P4675, DOI 10.1103/PhysRevA.39.4675 VOGEL K, 1988, PHYS REV A, V38, P2409, DOI 10.1103/PhysRevA.38.2409 Werner AH, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.237201 Wilson RM, 2016, PHYS REV A, V94, DOI 10.1103/PhysRevA.94.033801 Wolf A, 2011, EPL-EUROPHYS LETT, V95, DOI 10.1209/0295-5075/95/60008 Xu XS, 2018, PHYS REV B, V97, DOI 10.1103/PhysRevB.97.140201 NR 99 TC 4 Z9 4 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD MAR 14 PY 2019 VL 99 IS 3 AR 032115 DI 10.1103/PhysRevA.99.032115 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA HP7UU UT WOS:000461896700007 OA Green Accepted DA 2021-04-21 ER PT J AU Linga, G Bolet, A Mathiesen, J AF Linga, Gaute Bolet, Asger Mathiesen, Joachim TI Bernaise: A Flexible Framework for Simulating Two-Phase Electrohydrodynamic Flows in Complex Domains SO FRONTIERS IN PHYSICS LA English DT Article DE electrokinectic; electrohydrodynamics (EHD); porous flow; phase field method; capillarity; numerical simulation; finite element method (FEM) ID DIFFUSE INTERFACE MODELS; BENCHMARK COMPUTATIONS; FLUID-DYNAMICS; STABLE SCHEMES; SALINITY; DROP AB Bernaise (Binary Electrohydrodynamic Solver) is a flexible high-level finite element solver of two-phase electrohydrodynamic flow in complex geometries. Two-phase flow with electrolytes is relevant across a broad range of systems and scales, from "lab-on-a-chip" devices for medical diagnostics to enhanced oil recovery at the reservoir scale. For the strongly coupled multi-physics problem, we employ a recently developed thermodynamically consistent model which combines a generalized Nernst-Planck equation for ion transport, the Poisson equation for electrostatics, the Cahn-Hilliard equation for the phase field (describing the interface separating the phases), and the Navier-Stokes equations for fluid flow. We present an efficient linear, decoupled numerical scheme which sequentially solves the three sets of equations. The scheme is validated by comparison to cases where analytical solutions are available, benchmark cases, and by the method of manufactured solution. The solver operates on unstructured meshes and is therefore well suited to handle arbitrarily shaped domains and problem set-ups where, e.g., very different resolutions are required in different parts of the domain. Bernaise is implemented in Python via the FEniCS framework, which effectively utilizes MPI and domain decomposition. Further, new solvers and problem set-ups can be specified and added with ease to the Bernaise framework by experienced Python users. C1 [Linga, Gaute; Bolet, Asger; Mathiesen, Joachim] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. RP Linga, G (corresponding author), Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. EM linga@nbi.dk RI ; Linga, Gaute/J-5699-2015; Bolet, Asger Johannes Skjode/E-6342-2015 OI Mathiesen, Joachim/0000-0002-5621-5487; Linga, Gaute/0000-0002-0987-8704; Bolet, Asger Johannes Skjode/0000-0002-3394-7159 FU European Union's Horizon 2020 research and innovation program through a Marie Curie initial training networks [642976]; Villum Fonden through the grant Earth Patterns FX This project has received funding from the European Union's Horizon 2020 research and innovation program through a Marie Curie initial training networks under grant agreement no. 642976 (NanoHeal), and from the Villum Fonden through the grant Earth Patterns. CR Abels H, 2012, MATH MOD METH APPL S, V22, DOI 10.1142/S0218202511500138 Aland S, 2012, INT J NUMER METH FL, V69, P747, DOI 10.1002/fld.2611 Anderson DM, 1998, ANNU REV FLUID MECH, V30, P139, DOI 10.1146/annurev.fluid.30.1.139 Balay S., 2017, PETSC WEB PAGE BENI G, 1981, J APPL PHYS, V52, P6011, DOI 10.1063/1.329822 BENI G, 1981, APPL PHYS LETT, V38, P207, DOI 10.1063/1.92322 BENI G, 1982, APPL PHYS LETT, V40, P912, DOI 10.1063/1.92952 Berry JD, 2013, J COMPUT PHYS, V251, P209, DOI 10.1016/j.jcp.2013.05.026 Bolet A, 2018, PHYS REV E, V97, DOI 10.1103/PhysRevE.97.043114 Bonn D, 2009, REV MOD PHYS, V81, P739, DOI 10.1103/RevModPhys.81.739 Brenner S., 2007, MATH THEORY FINITE E, V15 Campillo-Funollet E, 2012, SIAM J APPL MATH, V72, P1899, DOI 10.1137/120861333 Carlson A, 2012, PHYS REV E, V85, DOI 10.1103/PhysRevE.85.045302 Chorin A.J., 1967, Journal of Computational Physics, V2, P12, DOI 10.1016/0021-9991(67)90037-X CHORIN AJ, 1968, MATH COMPUT, V22, P745, DOI 10.2307/2004575 DEGENNES PG, 1985, REV MOD PHYS, V57, P827, DOI 10.1103/RevModPhys.57.827 Eck C, 2009, INTERFACE FREE BOUND, V11, P259 Ervik A, 2016, J COMPUT PHYS, V327, P576, DOI 10.1016/j.jcp.2016.09.039 Fiorentino EA, 2017, GEOPHYS J INT, V208, P1139, DOI 10.1093/gji/ggw417 Fiorentino EA, 2016, GEOPHYS J INT, V205, P648, DOI 10.1093/gji/ggw041 Fylladitakis ED, 2014, IEEE T PLASMA SCI, V42, P358, DOI 10.1109/TPS.2013.2297173 Grun G, 2014, J COMPUT PHYS, V257, P708, DOI 10.1016/j.jcp.2013.10.028 Grun G, 2016, COMMUN COMPUT PHYS, V19, P1473, DOI 10.4208/cicp.scpde14.39s Guermond JL, 2006, COMPUT METHOD APPL M, V195, P6011, DOI 10.1016/j.cma.2005.10.010 Guillen-Gonzalez F, 2014, J COMPUT MATH, V32, P643, DOI 10.4208/jcm.1405-m4410 Hassenkam T, 2011, COLLOID SURFACE A, V390, P179, DOI 10.1016/j.colsurfa.2011.09.025 Hayes RA, 2003, NATURE, V425, P383, DOI 10.1038/nature01988 Hilner E, 2015, SCI REP-UK, V5, DOI 10.1038/srep09933 HOHENBERG PC, 1977, REV MOD PHYS, V49, P435, DOI 10.1103/RevModPhys.49.435 Huang JJ, 2015, INT J NUMER METH FL, V77, P123, DOI 10.1002/fld.3975 Hysing S, 2009, INT J NUMER METH FL, V60, P1259, DOI 10.1002/fld.1934 Langtangen H.P., 2017, SOLVING PDES PYTHON, VI, DOI [10.1007/978-3-319-52462-7., DOI 10.1007/978-3-319-52462-7, 10.1007/978-3-319-52462-7] Langtangen HP, 2002, ADV WATER RESOUR, V25, P1125, DOI 10.1016/S0309-1708(02)00052-0 Lee J, 2000, J MICROELECTROMECH S, V9, P171, DOI 10.1109/84.846697 Lin Y, 2012, INT J MULTIPHAS FLOW, V45, P1, DOI 10.1016/j.ijmultiphaseflow.2012.04.002 Linga G, 2018, BERNAISE GIT REPOSIT Linga G, 2018, PHYS REV E, V98, DOI 10.1103/PhysRevE.98.013101 Lippmann G., 1875, RELATIONS ENTRE PHEN Logg A, 2010, ACM T MATH SOFTWARE, V37, DOI 10.1145/1731022.1731030 Logg Anders, 2012, AUTOMATED SOLUTION D, V84 Lopez-Herrera JM, 2011, J COMPUT PHYS, V230, P1939, DOI 10.1016/j.jcp.2010.11.042 Lowengrub J, 1998, P ROY SOC A-MATH PHY, V454, P2617, DOI 10.1098/rspa.1998.0273 Lu HW, 2007, J FLUID MECH, V590, P411, DOI 10.1017/S0022112007008154 MELCHER JR, 1969, ANNU REV FLUID MECH, V1, P111, DOI 10.1146/annurev.fl.01.010169.000551 Metzger Stefan, 2015, Proceedings in Applied Mathematics and Mechanics, V15, P715, DOI 10.1002/pamm.201510346 Metzger S, 2019, NUMER ALGORITHMS, V80, P1361, DOI 10.1007/s11075-018-0530-2 Mitscha-Baude G, 2017, J COMPUT PHYS, V338, P452, DOI 10.1016/j.jcp.2017.02.072 Monroe CW, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.136102 Monroe CW, 2006, J PHYS-CONDENS MAT, V18, P2837, DOI 10.1088/0953-8984/18/10/009 Mortensen M, 2015, COMPUT PHYS COMMUN, V188, P177, DOI 10.1016/j.cpc.2014.10.026 Mugele F, 2007, J PHYS-CONDENS MAT, V19, DOI 10.1088/0953-8984/19/37/375112 Mugele F, 2005, J PHYS-CONDENS MAT, V17, pR705, DOI 10.1088/0953-8984/17/28/R01 Mugele F, 2010, ADV COLLOID INTERFAC, V161, P115, DOI 10.1016/j.cis.2009.11.002 Mugele F, 2009, NATURE, V461, P356, DOI 10.1038/461356a Nelson WC, 2012, J ADHES SCI TECHNOL, V26, P1747, DOI 10.1163/156856111X599562 Nielsen CP, 2014, PHYS REV E, V90, DOI 10.1103/PhysRevE.90.043020 Nochetto RH, 2014, MATH MOD METH APPL S, V24, DOI 10.1142/S0218202513500474 Nurnberg R, 2017, EUR J APPL MATH, V28, P470, DOI 10.1017/S0956792516000395 Pedersen NR, 2016, ENERG FUEL, V30, P3768, DOI 10.1021/acs.energyfuels.5b02562 Pillai R, 2015, PHYS REV E, V92, DOI 10.1103/PhysRevE.92.013007 Plumper O, 2017, NAT GEOSCI, V10, P685, DOI [10.1038/ngeo3009, 10.1038/NGEO3009] Pollack MG, 2002, LAB CHIP, V2, P96, DOI 10.1039/b110474h PRIDE SR, 1991, GEOPHYSICS, V56, P914, DOI 10.1190/1.1443125 Prosperetti A., 2009, COMPUTATIONAL METHOD Qian TZ, 2006, J FLUID MECH, V564, P333, DOI 10.1017/S0022112006001935 Qian TZ, 2003, PHYS REV E, V68, DOI 10.1103/PhysRevE.68.016306 RezaeiDoust A, 2009, ENERG FUEL, V23, P4479, DOI 10.1021/ef900185q Ristenpart WD, 2009, NATURE, V461, P377, DOI 10.1038/nature08294 Saville DA, 1997, ANNU REV FLUID MECH, V29, P27, DOI 10.1146/annurev.fluid.29.1.27 Schnitzer O, 2015, J FLUID MECH, V773, P1, DOI 10.1017/jfm.2015.242 Schoch RB, 2008, REV MOD PHYS, V80, P839, DOI 10.1103/RevModPhys.80.839 Shen J, 2015, SIAM J NUMER ANAL, V53, P279, DOI 10.1137/140971154 Siria A, 2017, NAT REV CHEM, V1, DOI 10.1038/s41570-017-0091 Snoeijer JH, 2013, ANNU REV FLUID MECH, V45, P269, DOI 10.1146/annurev-fluid-011212-140734 Squires TM, 2005, REV MOD PHYS, V77, P977, DOI 10.1103/RevModPhys.77.977 Srinivasan V, 2004, LAB CHIP, V4, P310, DOI 10.1039/b403341h Sui Y, 2014, ANNU REV FLUID MECH, V46, P97, DOI 10.1146/annurev-fluid-010313-141338 TAYLOR G, 1966, PROC R SOC LON SER-A, V291, P159, DOI 10.1098/rspa.1966.0086 Teigen KE, 2011, J COMPUT PHYS, V230, P375, DOI 10.1016/j.jcp.2010.09.020 Teigen KE, 2010, PHYS FLUIDS, V22, DOI 10.1063/1.3504271 Tomar G, 2007, J COMPUT PHYS, V227, P1267, DOI 10.1016/j.jcp.2007.09.003 Walker SW, 2006, J MICROELECTROMECH S, V15, P986, DOI 10.1109/JMEMS.2006.878876 Walker SW, 2009, PHYS FLUIDS, V21, DOI 10.1063/1.3254022 Yang C, 1996, COLLOID SURFACE A, V113, P51, DOI 10.1016/0927-7757(96)03544-3 Yang QZ, 2014, INT J HEAT MASS TRAN, V78, P820, DOI 10.1016/j.ijheatmasstransfer.2014.07.039 Yang QZ, 2013, INT J MULTIPHAS FLOW, V57, P1, DOI 10.1016/j.ijmultiphaseflow.2013.06.006 Zeng J, 2011, INT J MOL SCI, V12, P1633, DOI 10.3390/ijms12031633 Zholkovskij EK, 2002, J FLUID MECH, V472, P1, DOI 10.1017/S0022112002001441 NR 88 TC 2 Z9 2 U1 1 U2 5 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND SN 2296-424X J9 FRONT PHYS-LAUSANNE JI Front. Physics PD MAR 4 PY 2019 VL 7 AR 21 DI 10.3389/fphy.2019.00021 PG 25 WC Physics, Multidisciplinary SC Physics GA HN7EU UT WOS:000460352500001 OA DOAJ Gold DA 2021-04-21 ER PT J AU D'Urso, F Santoro, C Santoro, FF AF D'Urso, Fabio Santoro, Corrado Santoro, Federico Fausto TI An integrated framework for the realistic simulation of multi-UAV applications SO COMPUTERS & ELECTRICAL ENGINEERING LA English DT Article DE UAV; Flock; Swarm; Simulation framework; Autonomous UAV simulation; Multi-UAV; Network simulation; MANET; FANET; Internet-of-Things AB This paper describes the software architecture of an integrated simulator for the realistic simulation of multi Unmanned aerial vehicle applications. The integrated simulator exploits some already existing tools to simulate a specific part of the overall Unmanned aerial vehicle hardware and software structure: a 3D visualization engine, a physics simulator, a flight control stack and a network simulator to handle communications among Unmanned aerial vehicles. These features are provided by the tools Gazebo, ArduCopter and ns-3 that, however, are not designed to work together in an integrated manner. The solution proposed in this paper is based on a software middleware that coordinates all of these tools, which may optionally be run on multiple interconnected computers, and lets them have a common notion of simulated time during the simulation; moreover, the middleware coordinates the activities of the High-level Logic, which is the software part that implements the strategy and control of the multi Unmanned aerial vehicle application. A Python API is provided to allow developers to write their Unmanned aerial vehicle application (cooperative missions, flocking, etc.) in such a way as to be first simulated and then run onto the real platform with no or few modifications. (C) 2019 Elsevier Ltd. All rights reserved. C1 [D'Urso, Fabio; Santoro, Corrado; Santoro, Federico Fausto] Univ Catania, Dept Math & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy. RP Santoro, FF (corresponding author), Univ Catania, Dept Math & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy. EM durso@dmi.unict.it; santoro@dmi.unict.it; federico.sanroto@unict.it FU Italian MIURMinistry of Education, Universities and Research (MIUR) [CLARA SCN_00451] FX This work is supported by project CLARA SCN_00451 funded by the Italian MIUR. CR Bouragadi N, 2009, P 4 NAT C CONTR ARCH Cai GW, 2014, UNMANNED SYST, V2, P175, DOI 10.1142/S2301385014300017 Cavalcante TRF, 2017, 2017 VII BRAZILIAN SYMPOSIUM ON COMPUTING SYSTEMS ENGINEERING (SBESC), P9, DOI 10.1109/SBESC.2017.8 Chmaj G, 2015, ADV INTELL SYST, V366, P449, DOI 10.1007/978-3-319-08422-0_66 Ciarletta L, 2014, INT CONF UNMAN AIRCR, P95, DOI 10.1109/ICUAS.2014.6842244 De Benedetti M, 2017, J NETW COMPUT APPL, V96, P14, DOI 10.1016/j.jnca.2017.08.004 De Benedetti M, 2017, 18 WORKSH DAGL OGG A De Benedetti M, 2015, 2015 10TH INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING (3PGCIC), P248, DOI 10.1109/3PGCIC.2015.78 Furrer F, 2016, STUD COMPUT INTELL, V625, P595, DOI 10.1007/978-3-319-26054-9_23 Gomes C., 2017, CORR Hauert S., 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), P5015, DOI 10.1109/IROS.2011.6048729 Hayat S, 2016, IEEE COMMUN SURV TUT, V18, P2624, DOI 10.1109/COMST.2016.2560343 Koenig N., 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), P2149 Kudelski M, 2013, ROBOT AUTON SYST, V61, P483, DOI 10.1016/j.robot.2013.01.003 Kudelski M, 2012, IEEE INT C INT ROBOT, P5018, DOI 10.1109/IROS.2012.6385998 Luke S, 2005, SIMUL-T SOC MOD SIM, V81, P517, DOI 10.1177/0037549705058073 Madey AG, 2013, P AG DIR SIM S ADSS Marconato EA, 2017, AVENS ANOVEL FLYING Meier L, 2015, ROB AUT ICRA 2015 IE Nethi S, 2007, WORLD WIR MOB MULT N, P1 Pace P, 2016, MOBILE NETW APPL, V21, P708, DOI 10.1007/s11036-016-0726-4 Reynolds C., 1987, SIGGRAPH COMPUT GRAP, V21, P25, DOI DOI 10.1145/37402.37406 Riley G.F., 2010, NS 3 NETWORK SIMULAT, P15, DOI DOI 10.1007/978-3-642-12331-3_2 Schmittle M, 2018, P 9 ACM IEEE INT C C, P130 Sklar E, 2007, ARTIF LIFE, V13, P303, DOI 10.1162/artl.2007.13.3.303 TATARA E, 2006, P AG 2006 C SOC AG R Varga A., 2008, P 1 INT C SIM TOOLS, V60, P1, DOI [DOI 10.4108/ICST.SIMUT00LS20083027, DOI 10.1109/ITSC.2002.1041322] Vasarhelyi G, 2014, IEEE INT C INT ROBOT, P3866, DOI 10.1109/IROS.2014.6943105 Viragh C, 2014, BIOINSPIR BIOMIM, V9, DOI 10.1088/1748-3182/9/2/025012 Wei Y, 2013, PROCEDIA COMPUT SCI, V18, P1949, DOI 10.1016/j.procs.2013.05.364 NR 30 TC 5 Z9 5 U1 2 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7906 EI 1879-0755 J9 COMPUT ELECTR ENG JI Comput. Electr. Eng. PD MAR PY 2019 VL 74 BP 196 EP 209 DI 10.1016/j.compeleceng.2019.01.016 PG 14 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic SC Computer Science; Engineering GA IH7GO UT WOS:000474672200015 DA 2021-04-21 ER PT J AU Liu, ZQ Zhao, ZL Yang, YW Gao, YC Meng, HY Gao, QY AF Liu, Zhao-Qing Zhao, Ze-Long Yang, Yong-Wei Gao, Yu-Cui Meng, Hai-Yan Gao, Qing-Yu TI Development and validation of depletion code system IMPC-Burnup for ADS SO NUCLEAR SCIENCE AND TECHNIQUES LA English DT Article DE ADS-coupled proton-neutron transport; Burnup calculation; IMPC-Burnup; FLUKA; OpenMC; ORIGEN2 AB Depletion calculation is important for studying the transmutation efficiency of minor actinides and long-life fission products in accelerator-driven subcritical reactor system (ADS). Herein the Python language is used to develop a burnup code system called IMPC-Burnup by coupling FLUKA, OpenMC, and ORIGEN2. The program is preliminarily verified by OECD-NEA pin cell and IAEA-ADS benchmarking by comparison with experimental values and calculated results from other studies. Moreover, the physics design scheme of the CIADS subcritical core is utilized to test the feasibility of IMPC-Burnup program in the burnup calculation of ADS system. Reference results are given by the COUPLE3.0 program. The results of IMPC-Burnup show good agreement with those of COUPLE3.0. In addition, since the upper limit of the neutron transport energy for OpenMC is 20 MeV, neutrons with energies greater than 20 MeV in the CIADS subcritical core cannot be transported; thus, an equivalent flux method has been proposed to consider neutrons above 20 MeV in the OpenMC transport calculation. The results are compared to those that do not include neutrons greater than 20 MeV. The conclusion is that the accuracy of the actinide nuclide mass in the burnup calculation is improved when the equivalent flux method is used. Therefore, the IMPC-Burnup code is suitable for burnup analysis of the ADS system. C1 [Liu, Zhao-Qing; Zhao, Ze-Long; Yang, Yong-Wei; Gao, Yu-Cui; Meng, Hai-Yan; Gao, Qing-Yu] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China. [Liu, Zhao-Qing; Zhao, Ze-Long; Yang, Yong-Wei; Gao, Qing-Yu] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 100049, Peoples R China. RP Zhao, ZL; Yang, YW (corresponding author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China.; Zhao, ZL; Yang, YW (corresponding author), Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 100049, Peoples R China. EM zhaozelong@impcas.ac.cn; yangyongwei@impcas.ac.cn FU "Strategic Priority Research Program" of Chinese Academy of Sciences [XDA03030102] FX This work was supported by the "Strategic Priority Research Program" of Chinese Academy of Sciences (No. XDA03030102). CR Croff A.G., 1980, ORNLTM7175 DEHART MD, 1996, ORNL6901 Fasso A., 2005, LANCET, DOI [10.2172/877507, DOI 10.2172/877507] Gul A, 2017, ANN NUCL ENERGY, V99, P321, DOI 10.1016/j.anucene.2016.09.016 Hong S, 2016, CHINESE PHYS C, V40, DOI 10.1088/1674-1137/40/11/114102 Jiang XF, 2004, ANN NUCL ENERGY, V31, P213, DOI 10.1016/S0306-4549(03)00205-6 Leppanen J, 2014, SNA + MC 2013 - JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, DOI 10.1051/snamc/201406021 Li Gang, 2013, High Power Laser and Particle Beams, V25, P158, DOI 10.3788/HPLPB20132501.0178 Li H. Q., 2004, C CHIN REACT PHYS QI Li JY, 2017, NUCL ENG DES, V324, P360, DOI 10.1016/j.nucengdes.2017.09.012 Li XZ, 2015, ATOM ENERGY SCI TECH, V49, P371, DOI DOI 10.7538/YZK.2015.49.S0.0371 Martin WR, 2012, NUCL ENG TECHNOL, V44, P151, DOI 10.5516/NET.01.2012.502 Moore R.L., 1995, INEL950523 Pelowitz D., 2011, MCNPX USERS MANUAL 2 Romano PK, 2015, ANN NUCL ENERGY, V82, P90, DOI 10.1016/j.anucene.2014.07.048 Romano PK, 2013, ANN NUCL ENERGY, V51, P274, DOI 10.1016/j.anucene.2012.06.040 Slessarev I., 1997, IAEA ADS BENCHMARK R Stanculescu A, 2013, ANN NUCL ENERGY, V62, P607, DOI 10.1016/j.anucene.2013.02.006 Stankovskiy A., 2012, PHYSOR 2012 C ADV RE Talamo A, 2006, ANN NUCL ENERGY, V33, P1176, DOI 10.1016/j.anucene.2006.08.006 Wang K, 2015, ANN NUCL ENERGY, V82, P121, DOI 10.1016/j.anucene.2014.08.048 [ Yu Ganglin], 2003, [, Atomic Energy Science and Technology], V37, P250 NR 22 TC 5 Z9 5 U1 1 U2 9 PU SPRINGER SINGAPORE PTE LTD PI SINGAPORE PA #04-01 CENCON I, 1 TANNERY RD, SINGAPORE 347719, SINGAPORE SN 1001-8042 EI 2210-3147 J9 NUCL SCI TECH JI Nucl. Sci. Tech. PD MAR PY 2019 VL 30 IS 3 AR 44 DI 10.1007/s41365-019-0560-z PG 10 WC Nuclear Science & Technology; Physics, Nuclear SC Nuclear Science & Technology; Physics GA HQ3CF UT WOS:000462284000009 DA 2021-04-21 ER PT J AU Landour, M El Bardouni, T Chakir, E Benaalilou, K Mohammed, M Bougueniz, H El Yaakoubi, H AF M Landour El Bardouni, T. Chakir, E. Benaalilou, K. Mohammed, M. Bougueniz, H. El Yaakoubi, H. TI NTP-ERSN: A new package for solving the multigroup neutron transport equation in a slab geometry SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Package; NTP-ERSN; Neutron transport equation; FORTRAN90; GUI; Python; CP; SN; MOC; Eigenvalue calculation AB The package, called NTP-ERSN (N eutron T ransport P ackage from the R adiations and N uclear S ystems G roup), is an open-source code written in FORTRAN90 for a pedagogical purpose to solve the steady-state multigroup neutron transport equation. This package is based on three classical methods, namely the collision probability (CP) method, the discrete ordinates (S-N) method and the method of characteristics (MOC). These methods are employed to obtain scalar and angular flux distributions in homogeneous and heterogeneous slab geometry with isotropic and anisotropic scattering. The source code algorithms are very simple to be comprehensive by engineering students. In addition, NTP-ERSN is a simple framework to add and test new algorithms. On the other hand, a graphical user interface written in Python programing language has been developed to simplify the use of NTP-ERSN. Numerical results are given to illustrate the NTP-ERSN code's accuracy. Finally, the present software can be useful as an academic tool for teaching reactor physics. It is freely available for download on GitHub (https://github.com/mohamedlandour/NTP-ERSN). C1 [M Landour; El Bardouni, T.; Benaalilou, K.; Mohammed, M.; Bougueniz, H.; El Yaakoubi, H.] Univ Abdelmalek Essaadi, Fac Sci Tetuan, Radiat & Nucl Syst Lab, Tetouan, Morocco. [Chakir, E.] Ibn Tofail Univ, Fac Sci, SIMO LAB, Kenitra, Morocco. RP Landour, M (corresponding author), Univ Abdelmalek Essaadi, Fac Sci Tetuan, Radiat & Nucl Syst Lab, Tetouan, Morocco. EM mlandour@uae.ac.ma OI LAHDOUR, Mohamed/0000-0003-3347-132X; Chakir, El Mahjoub/0000-0002-1653-4635 CR Abbate Maximo J., 1983, METHODS STEADY STATE Batistela CHF, 1999, ANN NUCL ENERGY, V26, P761, DOI 10.1016/S0306-4549(98)00096-6 Boyd W, 2014, ANN NUCL ENERGY, V68, P43, DOI 10.1016/j.anucene.2013.12.012 Bray T., 2017, 8259 RFC Brinkley F. W., 1995, DIFFUSION ACCELERATE Caldeira AD, 2001, ANN NUCL ENERGY, V28, P1563, DOI 10.1016/S0306-4549(00)00119-5 Clark Melville, 1964, ELSEVIER SCI Dahl J. A., 2000, PHYS 2000 INT TOP M Hebert A., 2009, APPL REACTOR PHYS Hebert A, 2006, NUCL SCI ENG, V154, P134, DOI 10.13182/NSE06-A2623 Hebert A, 2016, NUCL SCI ENG, V184, P591, DOI 10.13182/NSE16-82 Hebert A, 2011, NUCL SCI ENG, V169, P81, DOI 10.13182/NSE10-39 Kornreich DE, 2004, ANN NUCL ENERGY, V31, P1477, DOI 10.1016/j.anucene.2004.03.012 Lathrop K. D., 1969, Journal of Computational Physics, V4, P475, DOI 10.1016/0021-9991(69)90015-1 Lewis E.E., 1984, COMPUTATIONAL METHOD Mazumdar T, 2015, ANN NUCL ENERGY, V77, P522, DOI 10.1016/j.anucene.2014.12.029 Peterson P, 2009, INT J COMPUT SCI ENG, V4, P296, DOI 10.1504/IJCSE.2009.029165 Roseman Mark, 2012, MODERN TKINTER BUSY Samuel Glasstone, 1970, NUCL REACTOR THEORY Sentis Remi, 1997, MATH APPL Sood A, 2003, PROG NUCL ENERG, V42, P55, DOI 10.1016/S0149-1970(02)00098-7 Suslov Igor R, 1997, P INT C MATH METH SU, V5 Tosi S., 2009, MATPLOTLIB PYTHON DE NR 23 TC 3 Z9 3 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD MAR PY 2019 VL 145 BP 73 EP 84 DI 10.1016/j.apradiso.2018.12.004 PG 12 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA HP1ED UT WOS:000461407300012 PM 30583139 DA 2021-04-21 ER PT J AU Weik, F Weeber, R Szuttor, K Breitsprecher, K de Graaf, J Kuron, M Landsgesell, J Menke, H Sean, D Holm, C AF Weik, Florian Weeber, Rudolf Szuttor, Kai Breitsprecher, Konrad de Graaf, Joost Kuron, Michael Landsgesell, Jonas Menke, Henri Sean, David Holm, Christian TI ESPResSo 4.0-an extensible software package for simulating soft matter systems SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Article; Proceedings Paper CT Concerence of the Collaborative-Research-Center (SFB) 716 on Particle Methods in Natural Science and Engineering CY SEP 24-26, 2018 CL Heidelberg, GERMANY ID CALCULATING ELECTROSTATIC INTERACTIONS; LATTICE BOLTZMANN SIMULATIONS; MOLECULAR-DYNAMICS; MONTE-CARLO; PHASE-TRANSITION; WEAK POLYELECTROLYTES; COLLOIDAL SYSTEMS; POLARIZABLE MODEL; CHARGE REGULATION; SUMMATION METHOD AB ESPResSo is an extensible simulation package for research on soft matter. This versatile molecular dynamics program was originally developed for coarse-grained simulations of charged systems [H.J. Limbach et al., Comput. Phys. Commun. 174, 704 (2006)]. The scope of the software has since broadened considerably: ESPResSo can now be used to simulate systems with length scales spanning from the molecular to the colloidal. Examples include, self-propelled particles in active matter, membranes in biological systems, and the aggregation of soot particles in process engineering. ESPResSo also includes solvers for hydrodynamic and electrokinetic problems, both on the continuum and on the explicit particle level. Since our last description of version 3.1 [A. Arnold et al., Meshfree methods for partial di_erential equations VI, Lect. Notes Comput. Sci. Eng. 89, 1 (2013)], the software has undergone considerable restructuring. The biggest change is the replacement of the Tcl scripting interface with a much more powerful Python interface. In addition, many new simulation methods have been implemented. In this article, we highlight the changes and improvements made to the interface and code, as well as the new simulation techniques that enable a user of ESPResSo 4.0 to simulate physics that is at the forefront of soft matter research. C1 [Weik, Florian; Weeber, Rudolf; Szuttor, Kai; Breitsprecher, Konrad; Kuron, Michael; Landsgesell, Jonas; Menke, Henri; Sean, David; Holm, Christian] Univ Stuttgart, Inst Comp Phys, Allmandring 3, D-70569 Stuttgart, Germany. [de Graaf, Joost] Univ Utrecht, Inst Theoret Phys, Ctr Extreme Matter & Emergent Phenomena, Princetonpl 5, NL-3584 CC Utrecht, Netherlands. [Menke, Henri] Univ Otago, Dept Phys, POB 56, Dunedin 9054, New Zealand. RP Weik, F (corresponding author), Univ Stuttgart, Inst Comp Phys, Allmandring 3, D-70569 Stuttgart, Germany. EM fweik@icp.uni-stuttgart.de; holm@icp.uni-stuttgart.de RI Holm, Christian/C-2134-2009 OI Holm, Christian/0000-0003-2739-310X; Menke, Henri/0000-0001-5245-5400; Kuron, Michael/0000-0002-3231-3330 FU German Science Foundation (DFG) through the collaborative research centerGerman Research Foundation (DFG) [SFB 716]; SimTech cluster of excellence [EXC 310]; DFGGerman Research Foundation (DFG)European Commission [SPP 1726]; NWO Rubicon Grant [680501210]; Marie Sklodowska-Curie Intra European Fellowship within Horizon 2020 [654916]; Ministry of Science, Research and Arts; Universities of the State of Baden-Wurttemberg, Germany; [HO 1108/25-1]; [HO 1108/26-1]; [AR 593/7-1]; [HO 1108/28-1] FX We would like to acknowledge more than 100 researchers who contributed over the last fifteen years to the ESPResSo software, and whose names can be found on our website http://espressomd.org or in the AUTHORS file distributed with ESPResSo. We are also grateful to our colleagues of the SFB 716 for numerous suggestions for extending the capabilities of ESPResSo and in helping us to improve our software. As part of a collaboration [108], Milena Smiljanic contributed code to the cluster analysis framework, particularly to the analysis routines on the single cluster level. CH, KS, and FW gratefully acknowledge funding by the German Science Foundation (DFG) through the collaborative research center SFB 716 within TP C5, the SimTech cluster of excellence (EXC 310), and grants HO 1108/25-1, HO 1108/26-1, AR 593/7-1, HO 1108/28-1. MK, JdG, and CH thank the DFG for funding through the SPP 1726 Microswimmers-From Single Particle Motion to Collective Behavior. JdG further acknowledges funding from an NWO Rubicon Grant (#680501210) and a Marie Sklodowska-Curie Intra European Fellowship (G.A. No. 654916) within Horizon 2020. The simulations were partially performed on the bwUniCluster funded by the Ministry of Science, Research and Arts and the Universities of the State of Baden-Wurttemberg, Germany, within the framework program bwHPC. CR Ahlrichs P, 1999, J CHEM PHYS, V111, P8225, DOI 10.1063/1.480156 ALDER BJ, 1962, PHYS REV, V127, P359, DOI 10.1103/PhysRev.127.359 ALDER BJ, 1957, J CHEM PHYS, V27, P1208, DOI 10.1063/1.1743957 Arnold A, 2006, LECT NOTES PHYS, V703, P193, DOI 10.1007/3-540-35273-2_6 Arnold A, 2005, J CHEM PHYS, V123, DOI 10.1063/1.2052647 Arnold A, 2005, ADV POLYM SCI, V185, P59, DOI 10.1007/b136793 Arnold A, 2002, CHEM PHYS LETT, V354, P324, DOI 10.1016/S0009-2614(02)00131-8 Arnold A, 2002, J CHEM PHYS, V117, P2496, DOI 10.1063/1.1491955 Arnold A, 2002, COMPUT PHYS COMMUN, V148, P327, DOI 10.1016/S0010-4655(02)00586-6 Arnold A., 2013, MESHFREE METHODS PAR, P1, DOI DOI 10.1007/978-3-642-32979-1_1 Arnold A, 2013, PHYS REV E, V88, DOI 10.1103/PhysRevE.88.063308 Arnold A, 2013, ENTROPY-SWITZ, V15, P4569, DOI 10.3390/e15114569 Attili A, 2014, COMBUST FLAME, V161, P1849, DOI 10.1016/j.combustflame.2014.01.008 Ayachit U, 2015, PARAVIEW GUIDE PARAL Bacher C, 2017, PHYS REV FLUIDS, V2, DOI 10.1103/PhysRevFluids.2.013102 Ballerini M, 2008, P NATL ACAD SCI USA, V105, P1232, DOI 10.1073/pnas.0711437105 Barrat J.-L., 2003, BASIC CONCEPTS FO SI Bates MA, 1998, J CHEM PHYS, V109, P6193, DOI 10.1063/1.477248 BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43, DOI 10.1016/0010-4655(95)00042-E Berg J. M., 2015, BIOCHEMISTRY Bordin JR, 2016, EUR PHYS J-SPEC TOP, V225, P1693, DOI 10.1140/epjst/e2016-60150-1 Breitsprecher K, 2018, ACS NANO, V12, P9733, DOI 10.1021/acsnano.8b04785 Brodka A, 2004, CHEM PHYS LETT, V400, P62, DOI 10.1016/j.cplett.2004.10.086 Butter K, 2003, NAT MATER, V2, P88, DOI 10.1038/nmat811 Camp PJ, 2000, PHYS REV LETT, V84, P115, DOI 10.1103/PhysRevLett.84.115 Campbell A.I., 2018, ARXIV180204600 Case DA, 2005, J COMPUT CHEM, V26, P1668, DOI 10.1002/jcc.20290 Castelnovo M, 2000, EUR PHYS J E, V1, P115, DOI 10.1007/PL00014591 Cates ME, 2012, REP PROG PHYS, V75, DOI 10.1088/0034-4885/75/4/042601 Cerda JJ, 2008, J PHYS-CONDENS MAT, V20, DOI 10.1088/0953-8984/20/20/204125 Cerda JJ, 2008, J CHEM PHYS, V129, DOI 10.1063/1.3000389 Chandrasekhar S., 1992, LIQUID CRYSTALS Chatterji A, 2005, J CHEM PHYS, V122, DOI 10.1063/1.1890905 Chollet F., 2017, DEEP LEARNING PYTHON Cimrak I, 2014, COMPUT PHYS COMMUN, V185, P900, DOI 10.1016/j.cpc.2013.12.013 Cimrak I, 2012, COMPUT MATH APPL, V64, P278, DOI 10.1016/j.camwa.2012.01.062 Cimrak I., 2013, 3 INT C PART BAS MET, V2013, P133 Colby RH, 2003, POLYM PHYS Collette A, 2013, PYTHON AND HDF5 de Buyl P, 2014, COMPUT PHYS COMMUN, V185, P1546, DOI 10.1016/j.cpc.2014.01.018 de Graaf J., 2016, J CHEM PHYS, V1440, P134106, DOI [10.1063/1.4944962, DOI 10.1063/1.4944962] de Graaf J., 2017, COMMUNICATION de Graaf J, 2017, PHYS REV E, V95, DOI 10.1103/PhysRevE.95.023302 de Graaf J, 2016, SOFT MATTER, V12, P4704, DOI 10.1039/c6sm00939e de Graaf J, 2015, J CHEM PHYS, V143, DOI 10.1063/1.4928503 de Paula, 2010, PHYS CHEM DEGENNES PG, 1992, REV MOD PHYS, V64, P645, DOI 10.1103/RevModPhys.64.645 Deserno M, 1998, J CHEM PHYS, V109, P7694, DOI 10.1063/1.477415 Deserno M, 1998, J CHEM PHYS, V109, P7678, DOI 10.1063/1.477414 Dobrynin AV, 1996, MACROMOLECULES, V29, P2974, DOI 10.1021/ma9507958 Doi M., 1988, THEORY POLYM DYNAMIC, V73 Doi M., 2013, SOFT MATTER PHYS Dommert F, 2013, PHYS CHEM CHEM PHYS, V15, P2037, DOI 10.1039/c2cp43698a Dommert F, 2012, CHEMPHYSCHEM, V13, P1625, DOI 10.1002/cphc.201100997 Donaldson JG, 2015, NANOSCALE, V7, P3217, DOI 10.1039/c4nr07101h Drescher K, 2011, P NATL ACAD SCI USA, V108, P10940, DOI 10.1073/pnas.1019079108 Drescher K, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.168101 Dunweg B, 2009, ADV POLYM SCI, V221, P89, DOI 10.1007/12_2008_4 Ebeling W, 1999, BIOSYSTEMS, V49, P17, DOI 10.1016/S0303-2647(98)00027-6 Fahrenberger F, 2014, PHYS REV E, V90, DOI 10.1103/PhysRevE.90.063304 Fischer LP, 2015, J CHEM PHYS, V143, DOI 10.1063/1.4928502 Fletcher M., 2005, PYOPENGL PYTHON OPEN Fodor E, 2018, PHYSICA A, V504, P106, DOI 10.1016/j.physa.2017.12.137 Frenkel D, 2002, SCIENCE, V296, P65, DOI 10.1126/science.1070865 Frenkel D., 1996, UNDERSTANDING MOL SI Frey E, 2005, ANN PHYS-BERLIN, V14, P20, DOI 10.1002/andp.200410132 Geyer VF, 2013, P NATL ACAD SCI USA, V110, P18058, DOI 10.1073/pnas.1300895110 Guckenberger A, 2016, COMPUT PHYS COMMUN, V207, P1, DOI 10.1016/j.cpc.2016.04.018 Guzman H. V., 2018, ARXIV180610841 Hamley I. V., 2003, INTRO SOFT MATTER Harris E.H., 2013, CHLAMYDOMONAS SOURCE Helbing D, 2000, NATURE, V407, P487, DOI 10.1038/35035023 Hockney R.W., 1988, COMPUTER SIMULATION Howse JR, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.048102 Humphrey W, 1996, J MOL GRAPH MODEL, V14, P33, DOI 10.1016/0263-7855(96)00018-5 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Ilse SE, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4963804 Inci G, 2017, FLOW TURBUL COMBUST, V98, P1065, DOI 10.1007/s10494-016-9797-3 Inci G, 2014, AEROSOL SCI TECH, V48, P842, DOI 10.1080/02786826.2014.932942 JOHNSON JK, 1994, MOL PHYS, V81, P717, DOI 10.1080/00268979400100481 Jones E., 2001, SCIPY OPEN SOURCE SC Kantsler V, 2013, P NATL ACAD SCI USA, V110, P1187, DOI 10.1073/pnas.1210548110 Katz Y, 2011, P NATL ACAD SCI USA, V108, P18720, DOI 10.1073/pnas.1107583108 Klapp SHL, 2004, J MOL LIQ, V109, P55, DOI 10.1016/j.molliq.2003.08.003 Klinkigt M, 2013, SOFT MATTER, V9, P3535, DOI 10.1039/c2sm27290c Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 Kohagen M, 2016, J PHYS CHEM B, V120, P1454, DOI 10.1021/acs.jpcb.5b05221 Kratzer K, 2015, SOFT MATTER, V11, P2174, DOI 10.1039/c4sm02365j Kratzer K, 2014, COMPUT PHYS COMMUN, V185, P1875, DOI 10.1016/j.cpc.2014.03.013 Kratzer K, 2013, J CHEM PHYS, V138, DOI 10.1063/1.4801866 Kummel F, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.198302 Lamoureux G, 2006, CHEM PHYS LETT, V418, P245, DOI 10.1016/j.cplett.2005.10.135 Lamoureux G, 2003, J CHEM PHYS, V119, P3025, DOI 10.1063/1.1589749 Landsgesell J, 2017, EUR PHYS J-SPEC TOP, V226, P725, DOI 10.1140/epjst/e2016-60324-3 Landsgesell J, 2017, J CHEM THEORY COMPUT, V13, P852, DOI 10.1021/acs.jctc.6b00791 Lechner W, 2008, J CHEM PHYS, V129, DOI 10.1063/1.2977970 Leontyev I, 2011, PHYS CHEM CHEM PHYS, V13, P2613, DOI 10.1039/c0cp01971b Leunissen ME, 2005, NATURE, V437, P235, DOI 10.1038/nature03946 Levental I, 2007, SOFT MATTER, V3, P299, DOI 10.1039/b610522j Limbach HJ, 2006, COMPUT PHYS COMMUN, V174, P704, DOI 10.1016/j.cpc.2005.10.005 Limbach HJ, 2002, EUROPHYS LETT, V60, P566, DOI 10.1209/epl/i2002-00256-8 Lobaskin V, 2004, NEW J PHYS, V6, DOI 10.1088/1367-2630/6/1/054 Lowen H, 2001, J PHYS-CONDENS MAT, V13, pR415, DOI 10.1088/0953-8984/13/24/201 Lund M, 2005, BIOCHEMISTRY-US, V44, P5722, DOI 10.1021/bi047630o Lund M, 2013, Q REV BIOPHYS, V46, P265, DOI 10.1017/S003358351300005X Ma R, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.048101 Maggi C, 2016, SMALL, V12, P446, DOI 10.1002/smll.201502391 Mann BA, 2004, EUROPHYS LETT, V67, P786, DOI 10.1209/epl/i2004-10121-x Martys NS, 1999, PHYS REV E, V59, P3733, DOI 10.1103/PhysRevE.59.3733 Meurer A, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.103 Micka U, 1999, LANGMUIR, V15, P4033, DOI 10.1021/la981191a Millman J., 2010, P56, DOI DOI 10.1016/S0168-0102(02)00204-3 MITCHELL PJ, 1993, J PHYS-CONDENS MAT, V5, P1031, DOI 10.1088/0953-8984/5/8/006 Morozov K, 2009, PHYS REV E, V79, DOI 10.1103/PhysRevE.79.040801 Nash RW, 2008, PHYS REV E, V77, DOI 10.1103/PhysRevE.77.026709 Nash R. W., 2010, THESIS Nelson MT, 1996, INT J SUPERCOMPUT AP, V10, P251, DOI 10.1177/109434209601000401 Nelson P.C., 2004, BIOL PHYS ENERGY INF Nestler F, 2016, APPL NUMER MATH, V105, P25, DOI 10.1016/j.apnum.2016.01.003 Palacci J, 2013, SCIENCE, V339, P936, DOI 10.1126/science.1230020 Paszke A, 2017, NEURAL INFORM PROCES Paxton WF, 2004, J AM CHEM SOC, V126, P13424, DOI 10.1021/ja047697z PEARLMAN DA, 1995, COMPUT PHYS COMMUN, V91, P1, DOI 10.1016/0010-4655(95)00041-D Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Phillips J. C., 2014, P 1 1 WORKSH HIGH PE, P6 Phillips JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289 PLIMPTON S, 1995, J COMPUT PHYS, V117, P1, DOI 10.1006/jcph.1995.1039 Polarz S, 2002, CHEM COMMUN, P2593, DOI 10.1039/b205708p Polin M, 2009, SCIENCE, V325, P487, DOI 10.1126/science.1172667 Pronk S, 2013, BIOINFORMATICS, V29, P845, DOI 10.1093/bioinformatics/btt055 PUSEY PN, 1994, J PHYS-CONDENS MAT, V6, pA29, DOI 10.1088/0953-8984/6/23A/004 Radu M, 2014, EPL-EUROPHYS LETT, V105, DOI 10.1209/0295-5075/105/26001 Raikher YL, 2003, J MAGN MAGN MATER, V258, P477, DOI 10.1016/S0304-8853(02)01102-2 Ramachandran P, 2011, COMPUT SCI ENG, V13, P40, DOI 10.1109/MCSE.2011.35 REED CE, 1992, J CHEM PHYS, V96, P1609, DOI 10.1063/1.462145 Reith D, 2003, J COMPUT CHEM, V24, P1624, DOI 10.1002/jcc.10307 Rempfer G, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4958950 Reufer M, 2014, BIOPHYS J, V106, P37, DOI 10.1016/j.bpj.2013.10.038 Riedel IH, 2005, SCIENCE, V309, P300, DOI 10.1126/science.1110329 Roehm D, 2012, EUR PHYS J-SPEC TOP, V210, P89, DOI 10.1140/epjst/e2012-01639-6 Roehm D, 2014, SOFT MATTER, V10, P5503, DOI 10.1039/c4sm00686k Rohm D., 2011, THESIS Samin S, 2013, PHYS REV E, V87, DOI 10.1103/PhysRevE.87.052128 Schmidt J, 2010, J PHYS CHEM B, V114, P6150, DOI 10.1021/jp910771q Schneider S, 2002, EUR PHYS J E, V8, P457, DOI 10.1140/epje/i2002-10043-y Schober C., 2016, P 7 INT C COUPL PROB Schwarz-Linek J, 2016, COLLOID SURFACE B, V137, P2, DOI 10.1016/j.colsurfb.2015.07.048 Seifert U, 2012, REP PROG PHYS, V75, DOI 10.1088/0034-4885/75/12/126001 Shi CY, 2012, BIOPHYS J, V102, P1590, DOI 10.1016/j.bpj.2012.02.021 Shreiner D., 1999, OPENGL REFERENCE MAN Silverberg JL, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.228701 Smiljanic M., EUR PHYS J SPE UNPUB SMITH ER, 1994, J STAT PHYS, V77, P449, DOI 10.1007/BF02186852 Sokolov A, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.158102 Stein W., 2005, SIGSAM Bulletin, V39, P61 Stenhammar J, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.145702 STEVENS MJ, 1993, PHYS REV LETT, V71, P2228, DOI 10.1103/PhysRevLett.71.2228 The HDF Group, HIER DAT FORM VERS 5 Theurkauff I, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.268303 THOLE BT, 1981, CHEM PHYS, V59, P341, DOI 10.1016/0301-0104(81)85176-2 Turner CH, 2008, MOL SIMULAT, V34, P119, DOI 10.1080/08927020801986564 Tyagi S, 2007, J CHEM PHYS, V127, DOI 10.1063/1.2790428 Tyagi S, 2010, J CHEM PHYS, V132, DOI 10.1063/1.3376011 Tyagi S, 2008, J CHEM PHYS, V129, DOI 10.1063/1.3021064 Ubbink J, 2008, SOFT MATTER, V4, P1569, DOI 10.1039/b802183j Van der Spoel D, 2005, J COMPUT CHEM, V26, P1701, DOI 10.1002/jcc.20291 van Roij R, 1999, PHYS REV E, V59, P2010, DOI 10.1103/PhysRevE.59.2010 Verwey E., 1948, THEORY STABILITY LYO VICSEK T, 1995, PHYS REV LETT, V75, P1226, DOI 10.1103/PhysRevLett.75.1226 Wang FG, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.056101 Wang ZW, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.021405 Weeber R., 2018, ARXIV180810341 Weeber R, 2018, J PHYS-CONDENS MAT, V30, DOI 10.1088/1361-648X/aaa344 Weeber R, 2013, J CHEM PHYS, V139, DOI 10.1063/1.4832239 Weeber R, 2012, SOFT MATTER, V8, P9923, DOI 10.1039/c2sm26097b WEEKS JD, 1971, J CHEM PHYS, V54, P5237, DOI 10.1063/1.1674820 Wensink HH, 2014, PHYS REV E, V89, DOI 10.1103/PhysRevE.89.010302 Wong JE, 2006, PROG COLL POL SCI S, V133, P45, DOI 10.1007/2882_056 Woolley DM, 2003, REPRODUCTION, V126, P259, DOI 10.1530/rep.0.1260259 Yan QL, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.018301 Yu HB, 2003, J CHEM PHYS, V118, P221, DOI 10.1063/1.1523915 Zhang J., 2013, TRAFFIC GRANULAR FLO, P241, DOI DOI 10.1007/978-3-642-39669-4_23 Zheng X, 2013, PHYS REV E, V88, DOI 10.1103/PhysRevE.88.032304 NR 183 TC 41 Z9 41 U1 3 U2 11 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1951-6355 EI 1951-6401 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD MAR PY 2019 VL 227 IS 14 BP 1789 EP 1816 DI 10.1140/epjst/e2019-800186-9 PG 28 WC Physics, Multidisciplinary SC Physics GA HO3LZ UT WOS:000460825700022 DA 2021-04-21 ER PT J AU Reuter, K Kofinger, J AF Reuter, Klaus Koefinger, Juergen TI CADISHI: Fast parallel calculation of particle-pair distance histograms on CPUs and GPUs SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Radial distribution function; Pair-distance distribution function; Two-point correlation function; Distance histogram; GPU; CUDA ID MOLECULAR-DYNAMICS AB We report on the design, implementation, optimization, and performance of the CADISHI software package, which calculates histograms of pair-distances of ensembles of particles on CPUs and GPUs. These histograms represent 2-point spatial correlation functions and are routinely calculated from simulations of soft and condensed matter, where they are referred to as radial distribution functions, and in the analysis of the spatial distributions of galaxies and galaxy clusters. Although conceptually simple, the calculation of radial distribution functions via distance binning requires the evaluation of O(N-2)particle pair distances where N is the number of particles under consideration. CADISHI provides fast parallel implementations of the distance histogram algorithm for the CPU and the GPU, written in templated C++ and CUDA. Orthorhombic and general triclinic periodic boxes are supported, in addition to the non periodic case. The CPU kernels feature cache blocking, vectorization and thread-parallelization to obtain high performance. The GPU kernels are tuned to exploit the memory and processor features of current GPUs, demonstrating histogramming rates of up to a factor 40 higher than on a high-end multi-core CPU. To enable high-throughput analyses of molecular dynamics trajectories, the compute kernels are driven by the Python-based CADISHI engine. It implements a producer-consumer data processing pattern and thereby enables the complete utilization of all the CPU and GPU resources available on a specific computer, independent of special libraries such as MPI, covering commodity systems up to high-end high-performance computing nodes. Data input and output are performed efficiently via HDF5. In addition, our CPU and GPU kernels can be compiled into a standard C library and used with any application, independent from the CADISHI engine or Python. The CADISHI software is freely available under the MIT license. Program summary Program Title: CADISHI Program Files doi: http://dx.doi.org/10.17632/82b8sdft79.1 Licensing provisions: MIT Programming language: C++, CUDA, Python Nature of problem: Radial distribution functions are of fundamental importance in soft and condensed matter physics and astrophysics. However, the calculation of distance histograms scales quadratically with the particle number. To be able to analyze large data sets, fast and efficient implementations of distance histogramming are crucial. Solution method: CADISHI provides parallel, highly optimized implementations of distance histogramming. On the CPU, high performance is achieved via an advanced cache blocking scheme in combination with vectorization and threading. On the GPU, the problem is decomposed via a tiling scheme to exploit the GPU's massively parallel architecture and hierarchy of global, constant, and shared memory efficiently, resulting in significant speedups compared to the CPU. Moreover, CADISHI exploits all the resources (GPUs, CPUs) available on a compute node in parallel. Additional comments including restrictions and unusual features: Additionally to the non-periodic case CADISHI implements the minimum image convention for orthorhombic and general triclinic periodic boxes. We provide Python interfaces and the option to compile the kernels into a plain C library. (C) 2018 The Authors. Published by Elsevier B.V. C1 [Reuter, Klaus] Max Planck Comp & Data Facil, Giessenbachstr 2, D-85748 Garching, Germany. [Koefinger, Juergen] Max Planck Inst Biophys, Max von Laue Str 3, D-60438 Frankfurt, Germany. RP Reuter, K (corresponding author), Max Planck Comp & Data Facil, Giessenbachstr 2, D-85748 Garching, Germany. EM klaus.reuter@mpcdf.mpg.de; juergen.koefinger@biophys.mpg.de OI Kofinger, Jurgen/0000-0001-8367-1077 FU Max Planck Society, GermanyMax Planck Society FX We thank Dr. Joseph Curtis, Prof. Gerhard Hummer, Max Linke, Dr. Markus Rampp, and Dr. Hailiang Zhang for fruitful discussions. We thank Prof. Kei-ichi Okazaki for providing an initial NAMD setup for F1-ATPase. We acknowledge financial support by the Max Planck Society, Germany. CR Anandakrishnan A, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.055005 [Anonymous], 2011, CURR BIOL, V21, pR68, DOI [10.1016/J.CUB.2010.11.062, DOI 10.1016/J.CUB.2010.11.062] Augonnet C, 2011, CONCURR COMP-PRACT E, V23, P187, DOI 10.1002/cpe.1631 Caldeira A.B., 2016, IBM POWER SYSTEM S82 DEBYE P, 1947, J PHYS COLLOID CHEM, V51, P18, DOI 10.1021/j150451a002 Frenkel D., 2002, UNDERSTANDING MOL SI, P63, DOI [10.1016/B978-012267351-1/50006-7., DOI 10.1016/B978-012267351-1/50006-7, 10.1016/B978-012267351-1/50006-7] Gowers R., 2016, P 15 PYTH SCI C, P98 Hansen J.P., 2013, THEORY SIMPLE LIQUID, V4th Humphrey W, 1996, J MOL GRAPH MODEL, V14, P33, DOI 10.1016/0263-7855(96)00018-5 Intel Corporation, 2017, INT XEON PLAT 8164 P Kerscher M, 2000, ASTROPHYS J, V535, pL13, DOI 10.1086/312702 Kofinger J., 2018, CAPRIQORN SOFTWARE P Kutzner C, 2015, J COMPUT CHEM, V36, P1990, DOI 10.1002/jcc.24030 Levine BG, 2011, J CHEM THEORY COMPUT, V7, P4135, DOI 10.1021/ct2005193 Levine BG, 2011, J COMPUT PHYS, V230, P3556, DOI 10.1016/j.jcp.2011.01.048 Likos CN, 2001, PHYS REP, V348, P267, DOI 10.1016/S0370-1573(00)00141-1 McQuarrie D.A., 1975, STAT MECH, P641 Michaud-Agrawal N, 2011, J COMPUT CHEM, V32, P2319, DOI 10.1002/jcc.21787 NVIDIA Corporation,, 2018, CUDA C PROGRAMMING G NVIDIA Corporation, 2017, NVIDIA TESL V100 GPU NVIDIA Corporation, 2017, NVIDIA DGX 1 TESL V1 NVIDIA Corporation, 2016, NVIDIA GEFORCE GTX 1 NVIDIA Corporation, 2016, NVIDIA TESL P100 Ornstein LS, 1914, P K AKAD WET-AMSTERD, V17, P793 Phillips JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289 Python Software Foundation, 2018, PYTH STAND LIB Reuter K., 2018, CADISHI SOFTWARE PAC Springel V, 2005, NATURE, V435, P629, DOI 10.1038/nature03597 The HDF Group, 1997, HIER DAT FORM VERS 5 Tuckerman M., 2011, STAT MECH THEORY MOL Volkov Vasily, 2010, BETTER PERFORMANCE L Wassenaar T. A., 2006, THESIS NR 32 TC 1 Z9 1 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAR PY 2019 VL 236 BP 274 EP 284 DI 10.1016/j.cpc.2018.10.018 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA HK8GJ UT WOS:000458227100025 OA Other Gold DA 2021-04-21 ER PT J AU Blanchard, JB Damblin, G Martinez, JM Arnaud, G Gaudier, F AF Blanchard, Jean-Baptiste Damblin, Guillaume Martinez, Jean-Marc Arnaud, Gilles Gaudier, Fabrice TI The Uranie platform: an open-source software for optimisation, meta-modelling and uncertainty analysis SO EPJ NUCLEAR SCIENCES & TECHNOLOGIES LA English DT Article ID GLOBAL SENSITIVITY-ANALYSIS; SMALL FAILURE PROBABILITIES; IMPLEMENTATION; CALIBRATION; PREDICTION; INDEXES; DESIGNS; MODELS AB The high-performance computing resources and the constant improvement of both numerical simulation accuracy and the experimental measurements with which they are confronted bring a new compulsory step to strengthen the credence given to the simulation results: uncertainty quantification. This can have different meanings, according to the requested goals (rank uncertainty sources, reduce them, estimate precisely a critical threshold or an optimal working point), and it could request mathematical methods with greater or lesser complexity. This paper introduces the Uranie platform, an open-source framework developed at the Alternative Energies and Atomic Energy Commission (CEA), in the nuclear energy division, in order to deal with uncertainty propagation, surrogate models, optimisation issues, code calibration, etc. This platform benefits from both its dependencies and from personal developments, to offer an efficient data handling model, a C++ and Python interface, advanced graphi graphical tools, several parallelisation solutions, etc. These methods can then be applied to many kinds of code (considered as black boxes by Uranie) so to many fields of physics as well. In this paper, the example of thermal exchange between a plate-sheet and a fluid is introduced to show how Uranie can be used to perform a large range of analysis. C1 [Blanchard, Jean-Baptiste; Damblin, Guillaume; Martinez, Jean-Marc; Arnaud, Gilles; Gaudier, Fabrice] Univ Paris Saclay, CEA, Den Serv Thermohydraul & Mecan Fluides STMF, F-91191 Gif Sur Yvette, France. RP Blanchard, JB (corresponding author), Univ Paris Saclay, CEA, Den Serv Thermohydraul & Mecan Fluides STMF, F-91191 Gif Sur Yvette, France. EM jean.blanchard@cea.fr CR Adams B. M., SAND20102183 SAND NA ANDERSON TW, 1952, ANN MATH STAT, V23, P193, DOI 10.1214/aoms/1177729437 ANDERSON TW, 1962, ANN MATH STAT, V33, P1148, DOI 10.1214/aoms/1177704477 Au SK, 2001, PROBABILIST ENG MECH, V16, P263, DOI 10.1016/S0266-8920(01)00019-4 Bachoc F., 2013, THESIS, P7 Bachoc F, 2014, NUCL SCI ENG, V176, P81, DOI 10.13182/NSE12-55 Baudin M., 2010, 42 JOURN STAT MARS F Baudin M., HDB UNCERTAINTY QUAN, P2001, DOI [10.1007/978-3-319-12385-1_64, DOI 10.1007/978-3-319-12385-1_64] Bayarri MJ, 2007, TECHNOMETRICS, V49, P138, DOI 10.1198/004017007000000092 Bettonvil B, 1997, EUR J OPER RES, V96, P180, DOI 10.1016/S0377-2217(96)00156-7 Blanchard J.-B., DENDANSDM2SSTMFLGLSR Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Bucher C. G., 1991, COMPUTATIONAL STOCHA, P301 CAMERON RH, 1947, ANN MATH, V48, P385, DOI 10.2307/1969178 CASELLA G, 1992, AM STAT, V46, P167, DOI 10.2307/2685208 CHIB S, 1995, AM STAT, V49, P327, DOI 10.2307/2684568 Da Veiga S, 2015, J STAT COMPUT SIM, V85, P1283, DOI 10.1080/00949655.2014.945932 Damblin G, 2013, J SIMUL, V7, P276, DOI 10.1057/jos.2013.16 de Crecy A, 2001, DETERMINATION UNCERT De Rocquigny E., 2008, UNCERTAINTY IND PRAC Drepper U, 2007, WHAT EVERY PROGRAMME Fang K.-T., 2005, COMPUTER SCI DATA AN Feathers M., 2002, CPPUNIT COOKBOOK Frigo M, 2005, P IEEE, V93, P216, DOI 10.1109/JPROC.2004.840301 Gabriel E, 2004, LECT NOTES COMPUT SC, V3241, P97 GHANEM R., 2017, SPRINGER HDB UNCERTA Ghanem R., 1991, STOCHASTIC FINITE EL HALTON JH, 1964, COMMUN ACM, V7, P701, DOI 10.1145/355588.365104 HASOFER AM, 1974, J ENG MECH DIV-ASCE, V100, P111 Hinton GE, 2007, PROG BRAIN RES, V165, P535, DOI 10.1016/S0079-6123(06)65034-6 Homma T, 1996, RELIAB ENG SYST SAFE, V52, P1, DOI 10.1016/0951-8320(96)00002-6 Huang XX, 2016, STRUCT SAF, V59, P86, DOI 10.1016/j.strusafe.2015.12.003 Iman R.L.S., 1985, FORTRAN 77 PROGRAM U IMAN RL, 1982, COMMUN STAT B-SIMUL, V11, P311, DOI 10.1080/03610918208812265 Iooss B., 2015, UNCERTAINTY MANAGEME, P101, DOI DOI 10.1007/978-1-4899-7547-8_5 Johnson S. G., 2008, NLOPT NONLINEAR OPTI Jones DR, 1998, J GLOBAL OPTIM, V13, P455, DOI 10.1023/A:1008306431147 Kennedy MC, 2001, J R STAT SOC B, V63, P425, DOI 10.1111/1467-9868.00294 Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 Kolmogoroff A, 1933, GIORNALE DELLISTITUT, V4, P83, DOI DOI 10.1016/J.SAB.2008.10.045 Lemaitre P, 2015, J STAT COMPUT SIM, V85, P1200, DOI 10.1080/00949655.2013.873039 Mara TA, 2008, J STAT COMPUT SIM, V78, P167, DOI 10.1080/10629360600964454 Marelli Stefano, 2014, Vulnerability, Uncertainty, and Risk. Quantification, Mitigation, and Management. Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty Modeling and Analysis (ISUMA). Proceedings, P2554 Martin Abadi, 2015, TENSORFLOW LARGE SCA Martin K, 2007, IEEE SOFTWARE, V24, P46, DOI 10.1109/MS.2007.5 Martinez J, 2011, TECHNICAL REPORT Matheron G., CAHIERS CTR MORPHOLO Mcculloch W S, 1943, B MATH BIOPHYS, V5, P115, DOI DOI 10.1007/BF02478259 McKay MD, 1999, COMPUT PHYS COMMUN, V117, P44, DOI 10.1016/S0010-4655(98)00155-6 Mckay MD, 2000, TECHNOMETRICS, V42, P55, DOI 10.2307/1271432 MCRAE GJ, 1982, COMPUT CHEM ENG, V6, P15, DOI 10.1016/0098-1354(82)80003-3 Meza JC, 2007, ACM T MATH SOFTWARE, V33, DOI 10.1145/1236463.1236467 Monod H, 2006, WORKING DYNAMIC CROP MORRIS MD, 1995, J STAT PLAN INFER, V43, P381, DOI 10.1016/0378-3758(94)00035-T Nanty S, 2017, COMPUTATION STAT, V32, P559, DOI 10.1007/s00180-016-0676-0 Neal R. M., HDB MARKOV CHAIN MON, V2 Nvidia C., 2011, NVIDIA CORPORATION, V120 Owen AB, 2014, SIAM-ASA J UNCERTAIN, V2, P245, DOI 10.1137/130936233 Petras K, 2001, NUMER ALGORITHMS, V26, P93, DOI 10.1023/A:1016676624575 Pronzato L, 2012, STAT COMPUT, V22, P681, DOI 10.1007/s11222-011-9242-3 Rasmussen C. E., 2006, GAUSSIAN PROCESS MAC Robinson T., 1991, Computer Speech and Language, V5, P259, DOI 10.1016/0885-2308(91)90010-N Rosenblatt F., 1962, PRINCIPLES NEURODYNA Saltelli A, 1998, COMPUT STAT DATA AN, V26, P445, DOI 10.1016/S0167-9473(97)00043-1 Saltelli A, 2002, COMPUT PHYS COMMUN, V145, P280, DOI 10.1016/S0010-4655(02)00280-1 Saltelli A., 2008, GLOBAL SENSITIVITY A Saltelli A., 2004, SENSITIVITY ANAL PRA Saltelli A., 2008, SENSITIVITY ANAL Sobol I.M., 1967, COMP MATH MATH PHYS+, V7, P86, DOI [10.1016/0041-5553(67)90144-9, DOI 10.1016/0041-5553(67)90144-9] Tarantola S, 2006, RELIAB ENG SYST SAFE, V91, P717, DOI 10.1016/j.ress.2005.06.003 Tissot JY, 2012, RELIAB ENG SYST SAFE, V107, P205, DOI 10.1016/j.ress.2012.06.010 van Heesch D., 2008, DOXYGEN SOURCE CODE Wiener N, 1938, AM J MATH, V60, P897, DOI 10.2307/2371268 Zhang QF, 2007, IEEE T EVOLUT COMPUT, V11, P712, DOI 10.1109/TEVC.2007.892759 Zhang XY, 2015, IEEE T EVOLUT COMPUT, V19, P761, DOI 10.1109/TEVC.2014.2378512 Zhao YG, 1999, STRUCT SAF, V21, P95, DOI 10.1016/S0167-4730(99)00008-9 Zitzler E, 2004, LECT NOTES COMPUT SC, V3242, P832 NR 77 TC 2 Z9 2 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 2491-9292 J9 EPJ NUCL SCI TECHNOL JI EPJ Nucl. Sci. Technol. PD FEB 28 PY 2019 VL 5 AR 4 DI 10.1051/epjn/2018050 PG 32 WC Nuclear Science & Technology SC Nuclear Science & Technology GA HQ2CQ UT WOS:000462207500001 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Edwards, TDP Kavanagh, BJ Weniger, C Baum, S Drukier, AK Freese, K Gorski, M Stengel, P AF Edwards, Thomas D. P. Kavanagh, Bradley J. Weniger, Christoph Baum, Sebastian Drukier, Andrzej K. Freese, Katherine Gorski, Maciej Stengel, Patrick TI Digging for dark matter: Spectral analysis and discovery potential of paleo-detectors SO PHYSICAL REVIEW D LA English DT Article ID MAGNETIC MONOPOLES; TRACKS; SCATTERING; PHYSICS; SEARCH; PYTHON; MICA AB Paleo-detectors are a recently proposed method for the direct detection of dark matter (DM). In such detectors, one would search for the persistent damage features left by DM-nucleus interactions in ancient minerals. Initial sensitivity projections have shown that paleo-detectors could probe much of the remaining weakly interacting massive particle (WIMP) parameter space. In this paper, we improve upon the cut-and-count approach previously used to estimate the sensitivity by performing a full spectral analysis of the background-and DM-induced signal spectra. We consider two scenarios for the systematic errors on the background spectra: (i) systematic errors on the normalization only, and (ii) systematic errors on the shape of the backgrounds. We find that the projected sensitivity is rather robust to imperfect knowledge of the backgrounds. Finally, we study how well the parameters of the true WIMP model could be reconstructed in the hypothetical case of a WIMP discovery. C1 [Edwards, Thomas D. P.; Kavanagh, Bradley J.; Weniger, Christoph] Univ Amsterdam, Inst Theoret Phys Amsterdam, Gravitat Astroparticle Phys Amsterdam GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Edwards, Thomas D. P.; Kavanagh, Bradley J.; Weniger, Christoph] Univ Amsterdam, Delta Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands. [Baum, Sebastian; Drukier, Andrzej K.; Freese, Katherine; Stengel, Patrick] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Baum, Sebastian; Freese, Katherine] NORDITA, KTH Royal Inst Technol, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Baum, Sebastian; Freese, Katherine] Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Freese, Katherine] Univ Michigan, Leinweber Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Gorski, Maciej] Natl Ctr Nucl Res, PL-05400 Otwock, Swierk, Poland. RP Edwards, TDP; Kavanagh, BJ; Weniger, C (corresponding author), Univ Amsterdam, Inst Theoret Phys Amsterdam, Gravitat Astroparticle Phys Amsterdam GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands.; Edwards, TDP; Kavanagh, BJ; Weniger, C (corresponding author), Univ Amsterdam, Delta Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands.; Baum, S; Drukier, AK; Freese, K; Stengel, P (corresponding author), Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden.; Baum, S; Freese, K (corresponding author), NORDITA, KTH Royal Inst Technol, Roslagstullsbacken 23, S-10691 Stockholm, Sweden.; Baum, S; Freese, K (corresponding author), Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden.; Freese, K (corresponding author), Univ Michigan, Leinweber Ctr Theoret Phys, Ann Arbor, MI 48109 USA.; Gorski, M (corresponding author), Natl Ctr Nucl Res, PL-05400 Otwock, Swierk, Poland. EM t.d.p.edwards@uva.nl; b.j.kavanagh@uva.nl; c.weniger@uva.nl; sbaum@fysik.su.se; adrukier@gmail.com; ktfreese@umich.edu; maciej.gorski@ncbj.gov.pl; patrick.stengel@fysik.su.se RI Kavanagh, Bradley/AAB-1239-2021; Stengel, Patrick/ABB-9455-2020 OI Kavanagh, Bradley/0000-0002-3634-4679; Baum, Sebastian/0000-0001-6792-9381; Gorski, Maciej/0000-0003-2146-187X FU NWO through the VIDI research program "Probing the Genesis of Dark Matter" [680-47-532]; Vetenskapsradet (Swedish Research Council)Swedish Research Council [638-2013-8993]; Oskar Klein Centre for Cosmoparticle Physics; DoEUnited States Department of Energy (DOE) [DE-SC007859]; LCTP at the University of MichiganUniversity of Michigan System FX We thank Niki Klop and Adri Duivenvoorden for bringing this wonderful collaboration together. S. B. would like to thank GRAPPA and the University of Amsterdam, where part of this work was completed, for hospitality. This research is partially funded by NWO through the VIDI research program "Probing the Genesis of Dark Matter" (680-47-532; T. E., B. K., C. W.). S. B., A. K. D., K. F., and P. S. acknowledge support by the Vetenskapsradet (Swedish Research Council) through Contract No. 638-2013-8993 and the Oskar Klein Centre for Cosmoparticle Physics. S. B., K. F., and P. S. also acknowledge support from DoE Grant No. DE-SC007859 and the LCTP at the University of Michigan. We also greatly thank the makers of WINE, for making it possible for us to run SRIM. Finally, we acknowledge the use of a number of packages for scientific computing in PYTHON [115-121]. CR AALBERS J, 2016, J COSMOL ASTROPART P Aalseth CE, 2018, EUR PHYS J PLUS, V133, DOI 10.1140/epjp/i2018-11973-4 Agnes P, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.102006 Agnese R, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.022002 Agnese R, 2017, PHYS REV D, V95, DOI 10.1103/PhysRevD.95.082002 Agnese R., ARXIV180809098 SUPER Agostini M., ARXIV170900756 BOR C Akerib DS, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.021303 Akerib D. S., ARXIV180206039 LUXZE Algeri S., ARXIV180709273 Amaudruz PA, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.071801 Angloher G, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-5223-9 Angloher G, 2014, PHYS DARK UNIVERSE, V3, P41, DOI 10.1016/j.dark.2014.03.004 Aprile E, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.111302 Aprile E, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/04/027 Baltz E. A., 1998, PHYS REV D, V59 Baum S., ARXIV180605991 Baum S, 2019, PHYS LETT B, V789, P262, DOI 10.1016/j.physletb.2018.12.036 Beacom JF, 2010, ANNU REV NUCL PART S, V60, P439, DOI 10.1146/annurev.nucl.010909.083331 Bernabei R, 2008, EUR PHYS J C, V56, P333, DOI 10.1140/epjc/s10052-008-0662-y Bernabei R, 2013, EUR PHYS J C, V73, DOI 10.1140/epjc/s10052-013-2648-7 Bernabei R, 2018, UNIVERSE-BASEL, V4, DOI 10.3390/universe4110116 Billard J, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.023524 Billard J, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.035006 Bottino A, 2008, PHYS REV D, V78, DOI 10.1103/PhysRevD.78.083520 Bovy J, 2012, ASTROPHYS J, V759, DOI 10.1088/0004-637X/759/2/131 Bozorgnia N, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/12/013 Catena R, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/05/039 Cerdefio D.G., 2010, PARTICLE DARK MATTER, P347 Chang S, 2009, PHYS REV D, V79, DOI 10.1103/PhysRevD.79.115011 COLLAR JI, 1995, NUCL INSTRUM METH B, V95, P349, DOI 10.1016/0168-583X(94)00543-5 Cowan G, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1554-0 Cui XY, 2017, PHYS REV LETT, V119, DOI 10.1103/PhysRevLett.119.181302 de Jonge N, 2010, ULTRAMICROSCOPY, V110, P1114, DOI 10.1016/j.ultramic.2010.04.001 DRUKIER A, 1984, PHYS REV D, V30, P2295, DOI 10.1103/PhysRevD.30.2295 Drukier A. K., ARXIV181106844 DRUKIER AK, 1986, PHYS REV D, V33, P3495, DOI 10.1103/PhysRevD.33.3495 Duda G, 2007, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2007/04/012 Echlin MP, 2015, MATER CHARACT, V100, P1, DOI 10.1016/j.matchar.2014.10.023 Edwards T.D.P., ARXIV171205401 Edwards TDP, 2018, PHYS REV LETT, V121, DOI 10.1103/PhysRevLett.121.181101 Edwards TDP, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/02/021 ENGEL J, 1995, PHYS REV C, V52, P2216, DOI 10.1103/PhysRevC.52.2216 Evans N. Wyn, ARXIV181011468 Fairbairn M, 2009, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2009/01/037 Feldstein B, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/08/065 FLEISCHER RL, 1964, PHYS REV A-GEN PHYS, V133, P1443, DOI 10.1103/PhysRev.133.A1443 FLEISCHER RL, 1965, ANN REV NUCL SCI, V15, P1, DOI 10.1146/annurev.ns.15.120165.000245 FLEISCHER RL, 1965, SCIENCE, V149, P383, DOI 10.1126/science.149.3682.383 Fox PJ, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.103514 Freese K, 2013, REV MOD PHYS, V85, P1561, DOI 10.1103/RevModPhys.85.1561 Gallagher K, 1998, ANNU REV EARTH PL SC, V26, P519, DOI 10.1146/annurev.earth.26.1.519 Gelmini GB, 2017, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2017/12/039 Gondolo P, 2005, PHYS REV D, V71, DOI 10.1103/PhysRevD.71.123520 GOODMAN MW, 1985, PHYS REV D, V31, P3059, DOI 10.1103/PhysRevD.31.3059 Gradstein JG., 2012, GEOLOGIC TIME SCALE Green A. M., 2008, P SCI IDM IDM2008, V2008, P108 Green AM, 2008, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2008/07/005 Green AM, 2007, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2007/08/022 Green AM, 2017, J PHYS G NUCL PARTIC, V44, DOI 10.1088/1361-6471/aa7819 Green AM, 2012, MOD PHYS LETT A, V27, DOI 10.1142/S0217732312300042 Gutlein A, 2010, ASTROPART PHYS, V34, P90, DOI 10.1016/j.astropartphys.2010.06.002 Guo S.-L., 2012, HDB RADIOACTIVITY AN, P233, DOI [10.1016/B978-0-12-384873-4.00004-9, DOI 10.1016/B978-0-12-384873-4.00004-9] Hehn L, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-4388-y HELM RH, 1956, PHYS REV, V104, P1466, DOI 10.1103/PhysRev.104.1466 Herrero-Garcia J, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.123007 Hill R, 2012, ADV IMAG ELECT PHYS, V170, P65, DOI 10.1016/B978-0-12-394396-5.00002-6 Holler M, 2014, SCI REP-UK, V4, DOI 10.1038/srep03857 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Ibarra A, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/12/018 Joens MS, 2013, SCI REP-UK, V3, DOI 10.1038/srep03514 KANG S, 2018, J COSMOL ASTROPART P, DOI DOI 10.1088/1475-7516/2018/07/016 Kavanagh BJ, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.031302 KIRZ J, 1985, REV SCI INSTRUM, V56, P1, DOI 10.1063/1.1138464 Koposov SE, 2010, ASTROPHYS J, V712, P260, DOI 10.1088/0004-637X/712/1/260 Lewin JD, 1996, ASTROPART PHYS, V6, P87, DOI 10.1016/S0927-6505(96)00047-3 Lider VV, 2017, PHYS-USP+, V60, P187, DOI [10.3367/UFNe.2016.06.037830, 10.3367/UFNr.2016.06.037830] Lombardo JJ, 2012, J SYNCHROTRON RADIAT, V19, P789, DOI 10.1107/S0909049512027252 Madland D. G., 1999, LA13639MS LOS AL NAT, DOI [10.2172/15215, DOI 10.2172/15215] McCabe C, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.043525 Millman KJ, 2011, COMPUT SCI ENG, V13, P9, DOI 10.1109/MCSE.2011.36 Monroe J, 2007, PHYS REV D, V76, DOI 10.1103/PhysRevD.76.033007 O'Hare CAJ, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.083011 O'Hare CAJ, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.063527 Oliphant T.E., 2015, GUIDE NUMPY Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Peter AHG, 2014, PHYS DARK UNIVERSE, V5-6, P45, DOI 10.1016/j.dark.2014.10.006 Peter AHG, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.125029 Petricca F., ARXIV171107692 CRESS Petriello FJ, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/09/047 Pfeifenberger MJ, 2017, MATER DESIGN, V121, P109, DOI 10.1016/j.matdes.2017.02.012 Piffl T, 2014, ASTRON ASTROPHYS, V562, DOI 10.1051/0004-6361/201322531 PRICE PB, 1984, PHYS REV LETT, V52, P1265, DOI 10.1103/PhysRevLett.52.1265 PRICE PB, 1986, PHYS REV LETT, V56, P1226, DOI 10.1103/PhysRevLett.56.1226 Randolph SJ, 2018, J VAC SCI TECHNOL B, V36, DOI 10.1116/1.5047806 Read JI, 2014, J PHYS G NUCL PARTIC, V41, DOI 10.1088/0954-3899/41/6/063101 Rodriguez MD, 2014, NUCL INSTRUM METH B, V326, P150, DOI 10.1016/j.nimb.2013.10.076 Savage C, 2009, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2009/09/036 Savage C, 2009, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2009/04/010 Savage C, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.055002 Schaff F, 2015, NATURE, V527, P353, DOI 10.1038/nature16060 SNOWDENIFFT DP, 1995, NUCL INSTRUM METH B, V101, P247, DOI 10.1016/0168-583X(95)00483-1 SnowdenIfft DP, 1997, PHYS REV LETT, V78, P1628, DOI 10.1103/PhysRevLett.78.1628 SNOWDENIFFT DP, 1995, PHYS REV LETT, V74, P4133, DOI 10.1103/PhysRevLett.74.4133 SPERGEL DN, 1988, PHYS REV D, V37, P1353, DOI 10.1103/PhysRevD.37.1353 Stevens SM, 2008, CHEM COMMUN, P3894, DOI 10.1039/b804440f Strege C, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.023507 Strigari LE, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.103534 Strigari LE, 2009, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2009/11/019 Strigari LE, 2009, NEW J PHYS, V11, DOI 10.1088/1367-2630/11/10/105011 Undagoitia TM, 2016, J PHYS G NUCL PARTIC, V43, DOI 10.1088/0954-3899/43/1/013001 Urban KW, 2009, NAT MATER, V8, P260, DOI 10.1038/nmat2407 van den Haute P., 1998, ADV FISSION TRACK GE van Gastel R, 2012, MICROELECTRON RELIAB, V52, P2104, DOI 10.1016/j.microrel.2012.06.130 Wilks SS, 1938, ANN MATH STAT, V9, P60, DOI 10.1214/aoms/1177732360 WILSON WD, 1977, PHYS REV B, V15, P2458, DOI 10.1103/PhysRevB.15.2458 Ziegler J.F., 1985, STOPPING RANGE IONS Ziegler JF, 2010, NUCL INSTRUM METH B, V268, P1818, DOI 10.1016/j.nimb.2010.02.091 NR 120 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 27 PY 2019 VL 99 IS 4 AR 043541 DI 10.1103/PhysRevD.99.043541 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA HN0XZ UT WOS:000459913000001 OA Green Published, Other Gold DA 2021-04-21 ER PT J AU Angelopoulos, V Cruce, P Drozdov, A Grimes, EW Hatzigeorgiu, N King, DA Larson, D Lewis, JW McTiernan, JM Roberts, DA Russell, CL Hori, T Kasahara, Y Kumamoto, A Matsuoka, A Miyashita, Y Miyoshi, Y Shinohara, I Teramoto, M Faden, JB Halford, AJ McCarthy, M Millan, RM Sample, JG Smith, DM Woodger, LA Masson, A Narock, AA Asamura, K Chang, TF Chiang, CY Kazama, Y Keika, K Matsuda, S Segawa, T Seki, K Shoji, M Tam, SWY Umemura, N Wang, BJ Wang, SY Redmon, R Rodriguez, JV Singer, HJ Vandegriff, J Abe, S Nose, M Shinbori, A Tanaka, YM UeNo, S Andersson, L Dunn, P Fowler, C Halekas, JS Hara, T Harada, Y Lee, CO Lillis, R Mitchell, DL Argall, MR Bromund, K Burch, JL Cohen, IJ Galloy, M Giles, B Jaynes, AN Le Contel, O Oka, M Phan, TD Walsh, BM Westlake, J Wilder, FD Bale, SD Livi, R Pulupa, M Whittlesey, P DeWolfe, A Harter, B Lucas, E Auster, U Bonnell, JW Cully, CM Donovan, E Ergun, RE Frey, HU Jackel, B Keiling, A Korth, H McFadden, JP Nishimura, Y Plaschke, F Robert, P Turner, DL Weygand, JM Candey, RM Johnson, RC Kovalick, T Liu, MH McGuire, RE Breneman, A Kersten, K Schroeder, P AF Angelopoulos, V. Cruce, P. Drozdov, A. Grimes, E. W. Hatzigeorgiu, N. King, D. A. Larson, D. Lewis, J. W. McTiernan, J. M. Roberts, D. A. Russell, C. L. Hori, T. Kasahara, Y. Kumamoto, A. Matsuoka, A. Miyashita, Y. Miyoshi, Y. Shinohara, I. Teramoto, M. Faden, J. B. Halford, A. J. McCarthy, M. Millan, R. M. Sample, J. G. Smith, D. M. Woodger, L. A. Masson, A. Narock, A. A. Asamura, K. Chang, T. F. Chiang, C. -Y. Kazama, Y. Keika, K. Matsuda, S. Segawa, T. Seki, K. Shoji, M. Tam, S. W. Y. Umemura, N. Wang, B. -J. Wang, S. -Y. Redmon, R. Rodriguez, J. V. Singer, H. J. Vandegriff, J. Abe, S. Nose, M. Shinbori, A. Tanaka, Y. -M. UeNo, S. Andersson, L. Dunn, P. Fowler, C. Halekas, J. S. Hara, T. Harada, Y. Lee, C. O. Lillis, R. Mitchell, D. L. Argall, M. R. Bromund, K. Burch, J. L. Cohen, I. J. Galloy, M. Giles, B. Jaynes, A. N. Le Contel, O. Oka, M. Phan, T. D. Walsh, B. M. Westlake, J. Wilder, F. D. Bale, S. D. Livi, R. Pulupa, M. Whittlesey, P. DeWolfe, A. Harter, B. Lucas, E. Auster, U. Bonnell, J. W. Cully, C. M. Donovan, E. Ergun, R. E. Frey, H. U. Jackel, B. Keiling, A. Korth, H. McFadden, J. P. Nishimura, Y. Plaschke, F. Robert, P. Turner, D. L. Weygand, J. M. Candey, R. M. Johnson, R. C. Kovalick, T. Liu, M. H. McGuire, R. E. Breneman, A. Kersten, K. Schroeder, P. TI The Space Physics Environment Data Analysis System (SPEDAS) SO SPACE SCIENCE REVIEWS LA English DT Review DE Space plasmas; Magnetospheric physics; Planetary magnetospheres; Solarwind; Ionospheric physics; Geospace science ID MISSION; SCIENCE; SUPERDARN AB With the advent of the Heliophysics/Geospace System Observatory (H/GSO), acomplement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), agrass-roots software development platform (www.spedas.org), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have crib-sheets, user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer's Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its modes of use with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans. C1 [Angelopoulos, V.; Cruce, P.; Drozdov, A.; Grimes, E. W.; Russell, C. L.; Weygand, J. M.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. [Angelopoulos, V.; Cruce, P.; Drozdov, A.; Grimes, E. W.; Russell, C. L.; Weygand, J. M.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. [Hatzigeorgiu, N.; King, D. A.; Larson, D.; Lewis, J. W.; McTiernan, J. M.; Dunn, P.; Hara, T.; Lee, C. O.; Lillis, R.; Mitchell, D. L.; Oka, M.; Phan, T. D.; Bale, S. D.; Livi, R.; Pulupa, M.; Whittlesey, P.; Bonnell, J. W.; Frey, H. U.; Keiling, A.; McFadden, J. P.; Schroeder, P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Roberts, D. A.; Bromund, K.; Giles, B.; Candey, R. M.; McGuire, R. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Hori, T.; Miyoshi, Y.; Teramoto, M.; Chang, T. F.; Matsuda, S.; Segawa, T.; Shoji, M.; Umemura, N.; Nose, M.; Shinbori, A.] Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi, Japan. [Kasahara, Y.] Kanazawa Univ, Kanazawa, Ishikawa, Japan. [Kumamoto, A.] Tohoku Univ, Aoba Ku, 6-3 Aoba, Sendai, Miyagi 9808578, Japan. [Matsuoka, A.; Shinohara, I.; Asamura, K.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan. [Miyashita, Y.] Korea Astron & Space Sci Inst, Daejeon, South Korea. [Faden, J. B.] Cottage Syst, Iowa City, IA USA. [Halford, A. J.] Aerosp Corp, Space Sci Dept, Chantilly, VA USA. [McCarthy, M.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Millan, R. M.; Woodger, L. A.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Sample, J. G.] Montana State Univ, Dept Phys, Bozeman, MT USA. [Smith, D. M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Smith, D. M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Masson, A.] SCI OPD, ESAC, European Space Agcy, Madrid, Spain. [Narock, A. A.; Johnson, R. C.; Kovalick, T.; Liu, M. H.] NASA, ADNET Syst Inc, Goddard Space Flight Ctr, Greenbelt, MD USA. [Chiang, C. -Y.; Tam, S. W. Y.] Natl Cheng Kung Univ, Inst Space & Plasma Sci, Tainan, Taiwan. [Kazama, Y.; Wang, B. -J.; Wang, S. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei, Taiwan. [Keika, K.; Seki, K.] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Tokyo, Japan. [Wang, B. -J.] Natl Cent Univ, Grad Inst Space Sci, Taoyuan, Taiwan. [Redmon, R.; Rodriguez, J. V.] Natl Ocean & Atmospher Adm, Natl Ctr Environm Informat, Boulder, CO USA. [Rodriguez, J. V.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Singer, H. J.] Natl Ocean & Atmospher Adm, Space Weather Predict Ctr, Boulder, CO USA. [Vandegriff, J.; Cohen, I. J.; Westlake, J.; Korth, H.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Abe, S.] Kyushu Univ, Int Ctr Space Weather Sci & Educ, Fukuoka, Fukuoka, Japan. [Nose, M.] Kyoto Univ, Kyoto Data Anal Ctr Geomagnetism & Space Magnetis, World Data Ctr Geomagnetism, Kyoto, Japan. [Tanaka, Y. -M.] Natl Inst Polar Res, Tokyo, Japan. [UeNo, S.] Kyoto Univ, Hida Observ, Kyoto, Japan. [Andersson, L.; Fowler, C.; Wilder, F. D.; DeWolfe, A.; Harter, B.; Lucas, E.; Ergun, R. E.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO USA. [Halekas, J. S.; Jaynes, A. N.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Harada, Y.] Kyoto Univ, Dept Geophys, Kyoto, Japan. [Argall, M. R.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Argall, M. R.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Burch, J. L.] Southwest Res Inst, San Antonio, TX USA. [Galloy, M.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Le Contel, O.; Robert, P.] Univ Paris Sud, Sorbonne Univ, Observ Paris, Lab Phys Plasmas,CNRS,Ecole Polytech, Paris, France. [Walsh, B. M.] Boston Univ, Ctr Space Phys, Dept Mech Engn, Boston, MA 02215 USA. [Auster, U.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, Braunschweig, Germany. [Cully, C. M.; Donovan, E.; Jackel, B.] Univ Calgary, Calgary, ON, Canada. [Nishimura, Y.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Nishimura, Y.] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. [Plaschke, F.] Karl Franzens Univ Graz, Inst Phys, Austrian Acad Sci, Space Res Inst, Graz, Austria. [Turner, D. L.] Aerosp Corp, El Segundo, CA 90245 USA. [Breneman, A.; Kersten, K.] Univ Minnesota, Minneapolis, MN USA. RP Angelopoulos, V (corresponding author), Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA. EM vassilis@ucla.edu RI JAYNES, ALLISON N/F-7876-2018; Cohen, Ian/P-1710-2019; Miyoshi, Yoshizumi/B-5834-2015; Drozdov, Alexander/Y-2161-2019; Nose, Masahito/S-3086-2019; Candey, Robert M/D-4639-2012; Tam, Sunny W. Y./AAP-2715-2020; Turner, Drew L/G-3224-2012; Wong, Dixon/E-3370-2019; Shoji, Masafumi/S-8304-2019; Giles, Barbara L/J-7393-2017; , Shiang-Yu Wang/AAZ-2695-2020; Halford, Alexa Jean/AAH-2098-2019; Westlake, Joseph/AAZ-9404-2020; Walsh, Brian/C-4899-2016 OI JAYNES, ALLISON N/0000-0002-1470-4266; Cohen, Ian/0000-0002-9163-6009; Miyoshi, Yoshizumi/0000-0001-7998-1240; Drozdov, Alexander/0000-0002-5334-2026; Nose, Masahito/0000-0002-2789-3588; Turner, Drew L/0000-0002-2425-7818; Wong, Dixon/0000-0002-0654-3431; Giles, Barbara L/0000-0001-8054-825X; , Shiang-Yu Wang/0000-0001-6491-1901; Westlake, Joseph/0000-0003-0472-8640; Harada, Yuki/0000-0002-4001-6352; Halford, Alexa/0000-0002-5383-4602; Narock, Ayris/0000-0001-6746-7455; Sample, John/0000-0002-9516-9292; Harter, Bryan/0000-0002-3908-9001; Plaschke, Ferdinand/0000-0002-5104-6282; Masson, Arnaud/0000-0002-5602-1957; Cully, Christopher/0000-0001-7242-8872; Hori, Tomoaki/0000-0001-8451-6941; Donovan, Eric/0000-0002-8557-4155; Walsh, Brian/0000-0001-7426-5413; Ware, Alexandria/0000-0003-4647-9718; Teramoto, Mariko/0000-0001-5983-1149; Vandegriff, Jon/0000-0002-0781-1565; Seki, Kanako/0000-0001-5557-9062 FU NASANational Aeronautics & Space Administration (NASA) [NNG17PZ01C, NNG04EB99C, NAS5-02099, NNX16AP95G, NNN06AA01C, NNX08AM58G, NNX17AL22G]; German Ministry for Economy and Technology; German Center for Aviation and Space (DLR)Helmholtz AssociationGerman Aerospace Centre (DLR) [50 OC 0302]; JSPS KAKENHIMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [JP15H05816]; GEMSIS project of ISEE at Nagoya University; Japan's JSPS KAKENHI [15H05815, 15H05747, 16H06286, 16H04056]; Taiwan grant [MOST 105-3111-Y-001-042, MOST 106-2111-M-001-011, MOST 107-2111-M006-003]; NSFNational Science Foundation (NSF) [AGS-1737823, AGS-1004736, AGS-1004814] FX The core SPEDAS team acknowledges support from NASA contract NNG17PZ01C (for SPEDAS community support) to UCLA, contract NNG04EB99C (as subcontract from SwRI for MMS SPEDAS plug-in development) to UCLA, and contract NAS5-02099 (THEMIS support of TDAS maintenance and SPEDAS infrastructure) to UCB, UCLA and BU. UCB also acknowledges support from NASA grant NNX16AP95G (for WIND 3DP work), NASA contract NNN06AA01C (for PSP/FIELDS work).; The THEMIS team also acknowledges contributions from F. S. Mozer for use of the EFI data; S. Mende for use of the ASI data, the Canadian Space Agency for logistical support in fielding and data retrieval from the GBO stations; K. H. Glassmeier and W. Baumjohann for the use of the FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302.; The IUGONET team acknowledges support from JSPS KAKENHI grant JP15H05816.; ERG work was done by the ERG-Science Center operated by ISAS/JAXA and at ISEE/Nagoya University. ERG work was also partially supported by the GEMSIS project of ISEE (formerly STEL) at Nagoya University. Y. Miyoshi acknowledges support from Japan's JSPS KAKENHI grants 15H05815, 15H05747, and 16H06286. Y. Kasahara acknowledges support from Japan's JSPS KAKENHI grant 16H04056. S.-Y. Wang acknowledges support from Taiwan grants MOST 105-3111-Y-001-042, and MOST 106-2111-M-001-011, and C.-Y. Chiang and S.W.Y. Tam acknowledge support from Taiwan grant MOST 107-2111-M006-003.; BARREL authors acknowledge NASA grant NNX08AM58G and the BARREL team for development of the BDAS software. BARREL data and software can be obtained through the SPEDAS software package distribution as well as from the CDAWeb website.; Y. Nishimura acknowledges grants NASA NNX17AL22G and NSF AGS-1737823.; GIMNAST work for SPEDAS was supported by NSF's AGS-1004736 and AGS-1004814. CR Allen AJ, 2010, ASTROPHYSICS SPACE, P225, DOI 10.1007/978-90-481-3499-1_14 Angelopoulos V, 2008, SPACE SCI REV, V141, P453, DOI 10.1007/s11214-008-9378-4 Angelopoulos V., 1998, PREFACE SCI CLOSURE Angelopoulos V., 2009, THE THEMIS MISSION [Anonymous], 2013, SOL SPAC PHYS SCI TE Baker M, 2016, NATURE, V533, P452, DOI 10.1038/533452a Burch JL, 2016, SPACE SCI REV, V199, P5, DOI 10.1007/s11214-015-0164-9 Delory G.T., 1998, SCI CLOSURE ENABLING, P22 Donovan E., 2017, AM GEOPH UN M Escoubet CP, 2001, ANN GEOPHYS-GERMANY, V19, P1197, DOI 10.5194/angeo-19-1197-2001 Faden JB, 2010, EARTH SCI INFORM, V3, P41, DOI 10.1007/s12145-010-0049-0 Fanelli D, 2018, P NATL ACAD SCI USA, V115, P2628, DOI 10.1073/pnas.1708272114 Fox NJ, 2016, SPACE SCI REV, V204, P7, DOI 10.1007/s11214-015-0211-6 Fox N.J., 2013, PREFACE VANALLEN PRO, P1 GREENWALD RA, 1995, SPACE SCI REV, V71, P761, DOI 10.1007/BF00751350 Hayashi H, 2013, DATA SCI J, V12, DOI [10.2481/dsj.WDS-030, DOI 10.2481/DSJ.WDS-030] Hori T, 2015, J SPACE SCI INFO JPN, V4, P75 Hori Tomoaki, 2013, Advances in Polar Science, V24, P69, DOI 10.3724/SP.J.1085.2013.00069 Immel TJ, 2018, SPACE SCI REV, V214, DOI 10.1007/s11214-017-0449-2 Jakosky BM, 2015, SPACE SCI REV, V195, P3, DOI 10.1007/s11214-015-0139-x Kato M, 2010, SPACE SCI REV, V154, P3, DOI 10.1007/s11214-010-9678-3 Keika K, 2017, EARTH PLANETS SPACE, V69, DOI 10.1186/s40623-017-0761-9 LIN RP, 1995, SPACE SCI REV, V71, P125, DOI 10.1007/BF00751328 Mauk BH, 2016, SPACE SCI REV, V199, P471, DOI 10.1007/s11214-014-0055-5 McFadden J.P., 2009, THE THEMIS MISSION McFadden JP, 2001, SPACE SCI REV, V98, P169, DOI 10.1023/A:1013179624253 Mende SB, 2008, SPACE SCI REV, V141, P357, DOI 10.1007/s11214-008-9380-x Millan RM, 2011, J ATMOS SOL-TERR PHY, V73, P1425, DOI 10.1016/j.jastp.2011.01.006 Miyoshi Y., 2016, VARIABILITY SUN ITS, P2 Miyoshi Y, 2018, EARTH PLANETS SPACE, V70, DOI 10.1186/s40623-018-0862-0 Miyoshi Y, 2018, EARTH PLANETS SPACE, V70, DOI 10.1186/s40623-018-0867-8 Morley S.K., 2010, P 9 PYTH SCI C SCIPY OGAWARA Y, 1991, SOL PHYS, V136, P1, DOI 10.1007/BF00151692 Pfaff R, 2001, SPACE SCI REV, V98, P1, DOI 10.1023/A:1013187826070 Reme H, 1997, SPACE SCI REV, V79, P303, DOI 10.1023/A:1004929816409 RUSSELL CT, 1995, SPACE SCI REV, V71, P1, DOI 10.1007/BF00751322 Siscoe G., 1998, SCI CLOSURE ENABLING, P1 Tsyganenko NA, 2013, ANN GEOPHYS-GERMANY, V31, P1745, DOI 10.5194/angeo-31-1745-2013 Umemura N, 2017, J SPACE SCI INF JPN, V6, P25, DOI [10.20637/JAXA-RR-16-007/0003, DOI 10.20637/JAXA-RR-16-007/0003] Williams D.J., 1980, SOLAR INTERPLANETARY Wiltberger M., 2015, THE GEM MESSENGER, V25, P30 Wolkovitch D.Y., 1997, EOS T AGU, V78, P5301 Woodger LA, 2015, J GEOPHYS RES-SPACE, V120, P4922, DOI 10.1002/2014JA020874 Yumoto K., 2012, 2012 AM GEOPH UN FAL NR 44 TC 107 Z9 107 U1 3 U2 32 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD FEB PY 2019 VL 215 IS 1 AR 9 DI 10.1007/s11214-018-0576-4 PG 46 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA HI5CS UT WOS:000456470700001 PM 30880847 OA Green Published, Other Gold DA 2021-04-21 ER PT J AU Gripaios, B Sutherland, D AF Gripaios, Ben Sutherland, Dave TI DEFT: a program for operators in EFT SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Effective Field Theories; Beyond Standard Model AB We describe a Python-based computer program, DEFT, for manipulating operators in effective field theories (EFTs). In its current incarnation, DEFT can be applied to 4-dimensional, Poincare invariant theories with gauge group SU(3) x SU(2) x U(1), such as the Standard Model (SM), but a variety of extensions (e.g. to lower dimensions or to an arbitrary product of unitary gauge groups) are possible. Amongst other features, the program is able to: (i) check whether an input list of Lagrangian operators (of a given dimension in the EFT expansion) is a basis for the space of operators contributing to S-matrix elements, once redundancies (such as Fierz-Pauli identities, integration by parts, and equations of motion) are taken into account; (ii) generate such a basis (where possible) from an input algorithm; (iii) carry out a change of basis. We describe applications to the SM (where we carry out a number of non-trivial cross-checks) and extensions thereof, and outline how the program may be of use in precision tests of the SM and in the ongoing search for new physics at the LHC and elsewhere. The code and instructions can be downloaded from http://web.physics.ucsb.edu/dwsuth/DEFT/. C1 [Gripaios, Ben] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Sutherland, Dave] Univ Calif Santa Barbara, UCSB Broida Hall, Santa Barbara, CA 93106 USA. RP Gripaios, B (corresponding author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. EM gripaios@hep.phy.cam.ac.uk; dwsuth@ucsb.edu FU STFCUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) [ST/L000385/1, ST/P000681/1]; King's College, Cambridge; Science and Technology Facilities CouncilUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC); Emmanuel College, Cambridge; Department of EnergyUnited States Department of Energy (DOE) [DE-SC0014129]; Center for Scientific Computing from the CNSI, MRL: an NSF MRSEC [DMR-1121053]; NSFNational Science Foundation (NSF) [CNS-0960316] FX We thank T. You and other members of the Cambridge SUSY Working group for discussions. BG was supported by STFC grants ST/L000385/1 and ST/P000681/1 and King's College, Cambridge. DS acknowledges support from the Science and Technology Facilities Council; Emmanuel College, Cambridge; the Department of Energy (DE-SC0014129), and the Center for Scientific Computing from the CNSI, MRL: an NSF MRSEC (DMR-1121053) and NSF CNS-0960316. CR ARZT C, 1995, PHYS LETT B, V342, P189, DOI 10.1016/0370-2693(94)01419-D BUCHMULLER W, 1986, NUCL PHYS B, V268, P621, DOI 10.1016/0550-3213(86)90262-2 Cheung C, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.071601 Criado JC, 2018, COMPUT PHYS COMMUN, V227, P42, DOI 10.1016/j.cpc.2018.02.016 Dreiner HK, 2010, PHYS REP, V494, P1, DOI 10.1016/j.physrep.2010.05.002 Einhorn MB, 2013, NUCL PHYS B, V876, P556, DOI 10.1016/j.nuclphysb.2013.08.023 Falkowski A., 2015, LHCHXSWGINT2015001 C Falkowski A, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3806-x Gripaios B, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2016)103 Grzadkowski B, 2010, J HIGH ENERGY PHYS, DOI [10.1007/JHEP10(2010)85, 10.1007/JHEP10(2010)085] Henning B, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2017)199 Henning B, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2017)016 Henning B, 2016, COMMUN MATH PHYS, V347, P363, DOI 10.1007/s00220-015-2518-2 Lehman L, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2016)081 Lehman L, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.105014 Meurer A, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.103 NR 16 TC 19 Z9 19 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JAN 15 PY 2019 IS 1 AR 128 DI 10.1007/JHEP01(2019)128 PG 21 WC Physics, Particles & Fields SC Physics GA HJ9EM UT WOS:000457501600001 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Imtiaz, B Wan, YP Cai, YF AF Imtiaz, Batool Wan, Youping Cai, Yi-Fu TI Two-field cosmological phase transitions and gravitational waves in the singlet Majoron model SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID FALSE VACUUM; RADIATION; SCALE; CONSTRAINTS; FATE AB In the singlet Majoron model, we study cosmological phase transitions (PTs) and their resulting gravitational waves (GWs), in the two-field phase space, without freezing any of the field directions. We first calculate the effective potential, at one loop and at finite temperature, of the Standard Model Higgs doublet together with one extra Higgs singlet. We make use of the public available Python package CosmoTransitions' to simulate the two-dimensional (2D) cosmological PTs and evaluate the gravitational waves generated by first-order PTs. With the full 2D simulation, we are able not only to confirm the PTs' properties previously discussed in the literature, but also we find new patterns, such as strong first-order PTs tunneling from a vacuum located on one axis to another vacuum located on the second axis. The two-field phase space analysis presents a richer panel of cosmological PT patterns compared to analysis with a single-field approximation. The PTGW amplitudes turn out to be out of the reach for the space-borne gravitational wave interferometers such as LISA, DECIGO, BBO, TAIJI and TianQin when constraints from colliders physics are taken into account. C1 [Imtiaz, Batool; Wan, Youping; Cai, Yi-Fu] Univ Sci & Technol China, Sch Phys Sci, Dept Astron, Hefei 230026, Anhui, Peoples R China. [Imtiaz, Batool; Wan, Youping; Cai, Yi-Fu] Univ Sci & Technol China, CAS Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China. [Imtiaz, Batool; Wan, Youping; Cai, Yi-Fu] Univ Sci & Technol China, Sch Astron & Space Sci, Hefei 230026, Anhui, Peoples R China. RP Cai, YF (corresponding author), Univ Sci & Technol China, Sch Phys Sci, Dept Astron, Hefei 230026, Anhui, Peoples R China.; Cai, YF (corresponding author), Univ Sci & Technol China, CAS Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China.; Cai, YF (corresponding author), Univ Sci & Technol China, Sch Astron & Space Sci, Hefei 230026, Anhui, Peoples R China. EM yifucai@ustc.edu.cn RI Cai, Yi-Fu/M-8162-2013 OI Cai, Yi-Fu/0000-0003-0706-8465 FU NSFCNational Natural Science Foundation of China (NSFC) [11722327, 11653002, 11421303, J1310021]; CAST Young Elite Scientists Sponsorship Program [2016QNRC001]; National Youth Thousand Talents Program of China; Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities; Postdoctoral Science Foundation of ChinaChina Postdoctoral Science Foundation [2017M621999] FX We are grateful to Andrea Addazi, Jim Cline, Ryusuke Jinno, Antonino Marciano and Pierre Zhang for valuable comments. We also thank two reviewers for insightful suggestions on the manuscript. YPW would like to thank Carroll L. Wainwright for useful discussions of the package of CosmoTransitions. This work is supported in part by the NSFC (nos. 11722327, 11653002, 11421303, J1310021), by CAST Young Elite Scientists Sponsorship Program (2016QNRC001), by the National Youth Thousand Talents Program of China, by the Fundamental Research Funds for the Central Universities, and by the Postdoctoral Science Foundation of China (2017M621999). All numerical simulations are operated on the computer clusters Linda & Judy in the particle cosmology group at USTC. CR Aad G, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2016)172 Abbott B. P., 2016, PHYS REV LETT, V116 Addazi A, 2018, PHYS LETT B, V782, P732, DOI 10.1016/j.physletb.2018.06.015 Addazi A, 2018, CHINESE PHYS C, V42, DOI 10.1088/1674-1137/42/2/023105 AKHMEDOV EK, 1993, PHYS LETT B, V299, P90, DOI 10.1016/0370-2693(93)90887-N ANDERSON GW, 1992, PHYS REV D, V45, P2685, DOI 10.1103/PhysRevD.45.2685 Apreda R, 2002, NUCL PHYS B, V631, P342, DOI 10.1016/S0550-3213(02)00264-X ARNOLD P, 1994, PHYS REV D, V50, P6662, DOI 10.1103/PhysRevD.50.6662.2 ARNOLD P, 1993, PHYS REV D, V47, P3546, DOI 10.1103/PhysRevD.47.3546 Audley H, ARXIV170200786ASTROP Basler P, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2018)061 Basler P, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2017)121 BEREZHIANI ZG, 1992, PHYS LETT B, V291, P99, DOI 10.1016/0370-2693(92)90126-O Berezhiani Z, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-4564-0 Bodeker D, 2009, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2009/05/009 Cai R. G., 2017, J COSMOL ASTROPART P, V1708 Cai YF, 2007, PHYS LETT B, V657, P1, DOI 10.1016/j.physletb.2007.09.068 Cai YF, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.103513 Cai YF, 2016, SCI CHINA PHYS MECH, V59, DOI 10.1007/s11433-016-0178-x Cai YF, 2015, NUCL PHYS B, V900, P517, DOI 10.1016/j.nuclphysb.2015.09.025 CALLAN CG, 1977, PHYS REV D, V16, P1762, DOI 10.1103/PhysRevD.16.1762 Caprini C, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/04/001 Caprini C, 2008, PHYS REV D, V77, DOI 10.1103/PhysRevD.77.124015 Chao W, 2017, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2017/09/009 Chen YD, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2018)178 CHIKASHIGE Y, 1981, PHYS LETT B, V98, P265, DOI 10.1016/0370-2693(81)90011-3 Clarke JD, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2014)123 Cline JM, 1993, ASTROPART PHYS, V1, P387, DOI 10.1016/0927-6505(93)90005-X Cline JM, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/07/040 Cline JM, 1997, PHYS REV D, V55, P3873, DOI 10.1103/PhysRevD.55.3873 COLEMAN S, 1977, PHYS REV D, V16, P1248, DOI 10.1103/PhysRevD.16.1248 COLEMAN S, 1977, PHYS REV D, V15, P2929, DOI 10.1103/PhysRevD.15.2929 Corbin V, 2006, CLASSICAL QUANT GRAV, V23, P2435, DOI 10.1088/0264-9381/23/7/014 Cutting D, 2018, PHYS REV D, V97, DOI 10.1103/PhysRevD.97.123513 DELAUNAY C, 2008, J HIGH ENERGY PHYS Dev PSB, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.104001 Dorsch GC, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2017)086 Dorsch GC, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2013)029 Ellis J., ARXIV180908242HEPPH ENQVIST K, 1993, NUCL PHYS B, V403, P749, DOI 10.1016/0550-3213(93)90369-Z Espinosa JR, 2012, NUCL PHYS B, V854, P592, DOI 10.1016/j.nuclphysb.2011.09.010 Espinosa JR, 2008, PHYS REV D, V78, DOI 10.1103/PhysRevD.78.123528 Espinosa JR, 2010, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2010/06/028 Espinosa JR, 2007, PHYS REV D, V76, DOI 10.1103/PhysRevD.76.076004 ESPINOSA JR, 1993, PHYS LETT B, V305, P98, DOI 10.1016/0370-2693(93)91111-Y Ezquiaga J. M., ARXIV180709241ASTROP Falkowski A, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2015)057 FODOR Z, 1995, NUCL PHYS B, V439, P147, DOI 10.1016/0550-3213(95)00038-T FUKUGITA M, 1990, PHYS REV D, V42, P1285, DOI 10.1103/PhysRevD.42.1285 GELMINI GB, 1981, PHYS LETT B, V99, P411, DOI 10.1016/0370-2693(81)90559-1 Gong XF, 2015, J PHYS CONF SER, V610, DOI 10.1088/1742-6596/610/1/012011 Grojean C, 2005, PHYS REV D, V71, DOI 10.1103/PhysRevD.71.036001 Hashino K., ARXIV180904994HEPPH Hindmarsh M, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.103520 Hindmarsh M, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.123009 Hindmarsh M, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.041301 HOGAN CJ, 1986, MON NOT R ASTRON SOC, V218, P629, DOI 10.1093/mnras/218.4.629 Hu XC, 2018, CLASSICAL QUANT GRAV, V35, DOI 10.1088/1361-6382/aab52f Huang FP, 2019, PHYS LETT B, V788, P288, DOI 10.1016/j.physletb.2018.11.024 Huang FP, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.041702 Huang FP, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.103515 Huang FP, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.075014 Huang P., 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.075008 Huber SJ, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/03/036 Huber SJ, 2008, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2008/09/022 Huber SJ, 2008, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2008/05/017 Jinno R., ARXIV170703111HEPPH Jinno R, 2017, PHYS REV D, V95, DOI 10.1103/PhysRevD.95.024009 Kajantie K, 1996, NUCL PHYS B, V466, P189, DOI 10.1016/0550-3213(96)00052-1 KAJANTIE K, 1993, NUCL PHYS B, V407, P356, DOI 10.1016/0550-3213(93)90062-T KAMIONKOWSKI M, 1994, PHYS REV D, V49, P2837, DOI 10.1103/PhysRevD.49.2837 Kawamura S, 2006, CLASSICAL QUANT GRAV, V23, pS125, DOI 10.1088/0264-9381/23/8/S17 Kawamura S, 2011, CLASSICAL QUANT GRAV, V28, DOI 10.1088/0264-9381/28/9/094011 Khachatryan V, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2017)135 KONDO Y, 1991, PHYS LETT B, V263, P93, DOI 10.1016/0370-2693(91)91712-5 KOSOWSKY A, 1992, PHYS REV D, V45, P4514, DOI 10.1103/PhysRevD.45.4514 Kudoh H, 2006, PHYS REV D, V73, DOI 10.1103/PhysRevD.73.064006 KUZMIN VA, 1985, PHYS LETT B, V155, P36, DOI 10.1016/0370-2693(85)91028-7 LI C, 2018, JCAP, V1810, P1 Li H., 2018, NATL SCI REV Luo J, 2016, CLASSICAL QUANT GRAV, V33, DOI 10.1088/0264-9381/33/3/035010 Nicolis A, 2004, CLASSICAL QUANT GRAV, V21, pL27, DOI 10.1088/0264-9381/21/4/L05 PARWANI RR, 1993, PHYS REV D, V48, P5965, DOI 10.1103/PhysRevD.48.5965.2 PARWANI RR, 1992, PHYS REV D, V45, P4695, DOI 10.1103/PhysRevD.45.4695 Patrignani C, 2016, CHINESE PHYS C, V40, DOI 10.1088/1674-1137/40/10/100001 Profumo S, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/08/010 Queiroz FS, 2014, PHYS LETT B, V735, P69, DOI 10.1016/j.physletb.2014.06.016 Robens T, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3323-y Schwaller P, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.181101 SEI N, 1993, PHYS LETT B, V299, P286, DOI 10.1016/0370-2693(93)90261-F Seto N, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.221103 Wainwright CL, 2012, COMPUT PHYS COMMUN, V183, P2006, DOI 10.1016/j.cpc.2012.04.004 WITTEN E, 1984, PHYS REV D, V30, P272, DOI 10.1103/PhysRevD.30.272 ZHANG XM, 1993, PHYS REV D, V47, P3065, DOI 10.1103/PhysRevD.47.3065 NR 94 TC 2 Z9 2 U1 0 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN 14 PY 2019 VL 79 IS 1 AR 25 DI 10.1140/epjc/s10052-019-6532-y PG 15 WC Physics, Particles & Fields SC Physics GA HH4DL UT WOS:000455670800002 OA DOAJ Gold DA 2021-04-21 ER PT S AU Bevan, A Charman, T Hays, J AF Bevan, Adrian Charman, Thomas Hays, Jonathan BE Forti, A Betev, L Litmaath, M Smirnova, O Hristov, P TI A Python package for particle physics analyses SO 23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018) SE EPJ Web of Conferences LA English DT Proceedings Paper CT 23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY JUL 09-13, 2018 CL Sofia, BULGARIA SP Inst Adv Phys Studies, Sofia Univ, Plovdiv Univ, New Bulgarian Univ , IICT-BAS, Burgas Free Univ, BAS, INRNE, BAS, IICT, RHEA Grp, T Syst, Intel, Chaos Grp ID NEURAL-NETWORKS; MODEL AB HIPSTER (Heavily Ionising Particle Standard Toolkit for Event Recognition) is an open source Python package designed to facilitate the use of TensorFlow in a high energy physics analysis context. The core functionality of the software is presented, with images from the MoEDAL experiment Nuclear Track Detectors (NTDs) serving as an example dataset. Convolutional neural networks are selected as the classification algorithm for this dataset and the process of training a variety of models with different hyper-parameters is detailed. Next the results are shown for the MoEDAL problem demonstrating the rich information output by HIPSTER that enables the user to probe the performance of their model in detail. C1 [Bevan, Adrian; Charman, Thomas; Hays, Jonathan] Queen Mary Univ London, Sch Phys & Astron, GO Jones Bldg,327 Mile End Rd, London E1 4NS, England. RP Charman, T (corresponding author), Queen Mary Univ London, Sch Phys & Astron, GO Jones Bldg,327 Mile End Rd, London E1 4NS, England. EM t.p.charman@qmul.ac.uk OI Charman, Thomas/0000-0001-6288-5236 FU Alfred P Sloan FoundationAlfred P. Sloan Foundation; Global Impact Award from Google; Science and Technology Facilities Council (UK)UK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) FX This publication uses data generated via the Zooniverse.org platform, development of which is funded by generous support, including a Global Impact Award from Google, and by a grant from the Alfred P Sloan Foundation. This authors would specifically like to thank the following University ofAlabama undergraduate students Zach Buckley, Sarah Deutsch, Thomas (Hank) Richards, Cameron Roberts, Andie Wall and Alex Watts, for their work in labelling data. The authors would like to thank the Nvidia corporation for providing hardware that was used to carry out this research. The authors would like to thank the Science and Technology Facilities Council (UK) for providing funding for this research. CR Abadi M., 2015, ARXIV160304467 Adam-Bourdarios C., 2015, J MACHINE LEARNING R, V42, P19, DOI DOI 10.1088/1742-6596/664/7/072015 Albertsson K., 2018, CISC VIS NETW IND GL, DOI [10.1088/1742-6596/1085/2/022008, DOI 10.1088/1742-6596/1085/2/022008] Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Chollet F., 2015, KERAS ELMAN JL, 1990, COGNITIVE SCI, V14, P179, DOI 10.1207/s15516709cog1402_1 Evans L, 2008, J INSTRUM, V3, DOI 10.1088/1748-0221/3/08/S08001 Fisher RA, 1936, ANN EUGENIC, V7, P179, DOI 10.1111/j.1469-1809.1936.tb02137.x FUKUSHIMA K, 1980, BIOL CYBERN, V36, P193, DOI 10.1007/BF00344251 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI 10.1162/neco.1997.9.8.1735 Hoecker A., 2007, POS ACAT, V040 HOPFIELD JJ, 1982, P NATL ACAD SCI-BIOL, V79, P2554, DOI 10.1073/pnas.79.8.2554 Jordan M.I., 1997, ADV PSYCHOL, V121, P471, DOI [10.1016/s0166-4115(97)80111-2, DOI 10.1016/S0166-4115(97)80111-2] LeCun Y., 1999, OBJECT RECOGNITION G, P319, DOI DOI 10.1007/3-540-46805-6_19 Pinfold J, 2017, EPJ WEB CONF, V145, DOI 10.1051/epjconf/201714512002 Reeve A., NPTDMS ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Sutskever I., 2014, ADV NEURAL INFORM PR, P3104, DOI DOI 10.1007/S10107-014-0839-0 Travis E O, 2006, A GUIDE TO NUMPY NR 20 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2019 VL 214 AR 06027 DI 10.1051/epjconf/201921406027 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Physics, Nuclear; Physics, Particles & Fields SC Computer Science; Physics GA BP9PI UT WOS:000570241300291 OA DOAJ Gold DA 2021-04-21 ER PT S AU Pivarski, J Nandi, J Lange, D Elmer, P AF Pivarski, Jim Nandi, Jaydeep Lange, David Elmer, Peter BE Forti, A Betev, L Litmaath, M Smirnova, O Hristov, P TI Columnar data processing for HEP analysis SO 23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018) SE EPJ Web of Conferences LA English DT Proceedings Paper CT 23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY JUL 09-13, 2018 CL Sofia, BULGARIA SP Inst Adv Phys Studies, Sofia Univ, Plovdiv Univ, New Bulgarian Univ , IICT-BAS, Burgas Free Univ, BAS, INRNE, BAS, IICT, RHEA Grp, T Syst, Intel, Chaos Grp AB In the last stages of data analysis, physicists are often forced to choose between simplicity and execution speed. In High Energy Physics (HEP), high-level languages like Python are known for ease of use but also very slow execution. However, Python is used in speed-critical data analysis in other fields of science and industry. In those fields, most operations are performed on Numpy arrays in an array programming style; this style can be adopted for HEP by introducing variable-sized, nested data structures. We describe how array programming may be extended for HEP use-cases and an implementation known as awkward-array. We also present integration with ROOT, Apache Arrow, and Parquet, as well as preliminary performance results. C1 [Pivarski, Jim; Lange, David; Elmer, Peter] Princeton Univ, Princeton, NJ 08544 USA. [Nandi, Jaydeep] Natl Inst Technol, Silchar, India. RP Pivarski, J (corresponding author), Princeton Univ, Princeton, NJ 08544 USA. FU National Science FoundationNational Science Foundation (NSF) [ACI1450377, PHY-1624356] FX This work was supported by the National Science Foundation under grants ACI1450377 and PHY-1624356. CR Arrow Development Team, AP ARR Brun Rene, 1996, ROOT OBJECT I O SYST Dask Development Team, 2016, DASK LIB DYN TASK SC Griffith Blake, 2017, NEP 13 MECH OVERRIDI Iverson KE, 1962, PROGRAMMING LANGUAGE Le Dem Julien, 2015, APACHE PARQUET Millman J., 2010, P56, DOI DOI 10.1016/S0168-0102(02)00204-3 Nandi Jaydeep, 2018, VECTORIZED PROOF CON Okuta R., 2017, P WORKSH MACH LEARN Pivarski Jim, 2018, AWKWARD ARRAY SOFTWA Pivarski Jim, 2018, UPROOT SOFTWARE RELE Saad Youcef, 1990, TECHNICAL REPORT Travis E O, 2006, A GUIDE TO NUMPY NR 13 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2019 VL 214 AR 06026 DI 10.1051/epjconf/201921406026 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Physics, Nuclear; Physics, Particles & Fields SC Computer Science; Physics GA BP9PI UT WOS:000570241300290 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT S AU Rodrigues, E AF Rodrigues, Eduardo BE Forti, A Betev, L Litmaath, M Smirnova, O Hristov, P TI The Scikit-HEP Project SO 23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018) SE EPJ Web of Conferences LA English DT Proceedings Paper CT 23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY JUL 09-13, 2018 CL Sofia, BULGARIA SP Inst Adv Phys Studies, Sofia Univ, Plovdiv Univ, New Bulgarian Univ , IICT-BAS, Burgas Free Univ, BAS, INRNE, BAS, IICT, RHEA Grp, T Syst, Intel, Chaos Grp AB The Scikit-HEP project is a community-driven and community oriented effort with the aim of providing Particle Physics at large with a Python scientific toolset containing core and common tools. The project builds on five pillars that embrace the major topics involved in a physicist's analysis work: datasets, data aggregations, modelling, simulation and visualisation. The vision is to build a user and developer community engaging collaboration across experiments, to emulate scikit-learn's unified interface with Astropy's embrace of third-party packages, and to improve discoverability of relevant tools. C1 [Rodrigues, Eduardo] Univ Cincinnati, Cincinnati, OH 45221 USA. RP Rodrigues, E (corresponding author), Univ Cincinnati, Cincinnati, OH 45221 USA. EM eduardo.rodrigues@uc.edu CR Cacciari M, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1896-2 Jones E., SCIPY OPEN SOURCE SC Robitaille TP, 2013, ASTRON ASTROPHYS, V558, DOI 10.1051/0004-6361/201322068 VanderPlas Jake, 2017, PYCON 2017 NR 4 TC 3 Z9 3 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2019 VL 214 AR 06005 DI 10.1051/epjconf/201921406005 PG 6 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods; Physics, Nuclear; Physics, Particles & Fields SC Computer Science; Physics GA BP9PI UT WOS:000570241300269 OA DOAJ Gold DA 2021-04-21 ER PT S AU Reininghaus, M Ulrich, R AF Reininghaus, Maximilian Ulrich, Ralf CA CORSIKA 8 Developers BE LhenryYvon, I Biteau, J Deligny, O Ghia, P TI CORSIKA 8-Towards a modern framework for the simulation of extensive air showers SO ULTRA HIGH ENERGY COSMIC RAYS 2018 (UHECR 2018) SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on Ultra High Energy Cosmic Rays (UHECR) CY OCT 08-12, 2018 CL Paris, FRANCE AB Current and future challenges in astroparticle physics require novel simulation tools to achieve higher precision and more flexibility. For three decades the FORTRAN version of CORSIKA served the community in an excellent way. However, the effort to maintain and further develop this complex package is getting increasingly difficult. To overcome existing limitations, and designed as a very open platform for all particle cascade simulations in astroparticle physics, we are developing CORSIKA 8 based on modern C++ and Python concepts. Here, we give a brief status report of the project. C1 [Reininghaus, Maximilian; Ulrich, Ralf] Karlsruher Inst Technol KIT, Inst Kernphys, Karlsruhe, Germany. [Reininghaus, Maximilian] Karlsruher Inst Technol KIT, Inst Expt Teilchenphys, Karlsruhe, Germany. RP Reininghaus, M (corresponding author), Karlsruher Inst Technol KIT, Inst Kernphys, Karlsruhe, Germany.; Reininghaus, M (corresponding author), Karlsruher Inst Technol KIT, Inst Expt Teilchenphys, Karlsruhe, Germany. OI Ulrich, Ralf/0000-0002-2535-402X FU DFGGerman Research Foundation (DFG)European Commission FX M.R. acknowledges support by the DFG-funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology". CR Agostinelli S, 2003, NUCL INSTRUM METH A, V506, P250, DOI 10.1016/S0168-9002(03)01368-8 Allison J, 2006, IEEE T NUCL SCI, V53, P270, DOI 10.1109/TNS.2006.869826 Allison J, 2016, NUCL INSTRUM METH A, V835, P186, DOI 10.1016/j.nima.2016.06.125 Baack D., 2016, TECH REP, DOI [10.17877/DE290R-19158, DOI 10.17877/DE290R-19158] Capdevielle J.N., 1992, KFK4998 Engel Ralph, 2019, Computing and Software for Big Science, V3, DOI 10.1007/s41781-018-0013-0 GILS HJ, 1989, COMPUT PHYS COMMUN, V56, P105, DOI 10.1016/0010-4655(89)90011-8 Heck D., 2009, FZKA7495 Heck D., 1998, FZKA6019 Klages HO, 1997, NUCL PHYS B, P92, DOI 10.1016/S0920-5632(96)00852-3 Nievergelt Y, 1996, SIAM REV, V38, P136, DOI 10.1137/1038007 Ulrich R., 2006, COAST Zwart SP, 2018, SCIENCE, V361, P979, DOI 10.1126/science.aau3206 NR 13 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2019 VL 210 AR 02011 DI 10.1051/epjconf/201921002011 PG 4 WC Astronomy & Astrophysics; Physics, Applied; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA BP9QE UT WOS:000570466200021 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT S AU Cristiano, KL Triana, DA Ortiz, R Pico, M Estupinan, AF AF Cristiano, K. L. Triana, D. A. Ortiz, R. Pico, M. Estupinan, A. F. GP IOP TI Analytical and experimental determination of gravity and moment of inertia using a physical pendulum SO 5TH INTERNATIONAL MEETING FOR RESEARCHERS IN MATERIALS AND PLASMA TECHNOLOGY (5TH IMRMPT) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 5th International Meeting for Researchers in Materials and Plasma Technology (IMRMPT) CY MAY 28-31, 2019 CL San Jose de Cucuta, COLOMBIA SP Fdn Researchers Sci & Technol Mat, Univ Francisco Paula Santander AB Searching to encourage and increase the desire of students to seek a vocation in the study of engineering and science, we wanted to implement and validate experimentally and numerically, the study of the movement of a mechanical oscillator using, in this case, a physical pendulum, formed by a bar and a disk. In this article has done the study the physical pendulum, combining a methodology that involves an experimental arrangement and the implementation of simulations developed in Python, with the aim objective of offering to students a visual and interactive experience, so that they can understand in a simpler way topics covered in the theoretical physics course, in such a way that is different from the typical physical-mathematical formalism. This study was carried out with low cost materials and easy access, in addition to the great social impact that I had against the acceptance and assessment by the students with whom this work was applied. This work was developed in three phases: first, to measure the period of oscillation of a physical pendulum experimentally. Second, the approach of the analytical model to compare with the experimental results. Third, the development of a dynamic simulator according to the predictions of the theoretical model. The students found a didactic and different way of studying the physical pendulum. Finally, it was possible to demonstrate a self-consistency between the experimental and numerical results of the system studied in this work. C1 [Cristiano, K. L.; Triana, D. A.] Univ Ind Santander, Escuela Fis, Bucaramanga, Colombia. [Ortiz, R.; Pico, M.] Univ Autonoma Bucaramanga, Bucaramanga, Colombia. [Estupinan, A. F.] Univ Invest & Desarrollo, Bucaramanga, Colombia. RP Triana, DA (corresponding author), Univ Ind Santander, Escuela Fis, Bucaramanga, Colombia. EM dantrica@saber.uis.edu.co RI Lopez, Alex Francisco Estupinan/ABH-9945-2020 OI Lopez, Alex Francisco Estupinan/0000-0003-3067-6821; Triana Camacho, Daniel Andres/0000-0001-6852-6277 FU Universidad Industrial de Santander FX We want give special thanks at the Universidad Industrial de Santander for the funds to show this work. Also, we give thanks the Physics Department and his Director, Jorge Martinez Tellez. We would like to thank the Universidad Autonoma de Bucaramanga, for lend us the installations and materials for carry to this experiment with which the analytical model presented in this paper could be validated. CR Angel Duarte Jesus Sanchez J A R O, 2019, ICONIC RES ENG J, V3, P6 Backer A, 2007, COMPUT SCI ENG, V9, P30, DOI 10.1109/MCSE.2007.48 Baker GL., 2005, PENDULUM CASE STUDY Cristiano KL, 2019, J PHYS CONF SER, V1247, DOI 10.1088/1742-6596/1247/1/012044 Cristiano KL, 2019, J PHYS CONF SER, V1161, DOI 10.1088/1742-6596/1161/1/012020 Giancoli D.C., 2005, PHYS PRINCIPLES APPL Janert P.K., 2010, GNUPLOT ACTION UNDER Landau RH, 2015, COMPUTATIONAL PHYS P Monteiro M, 2014, PHYS TEACH, V52, P180, DOI 10.1119/1.4865529 NELSON RA, 1986, AM J PHYS, V54, P112, DOI 10.1119/1.14703 Rodriguez R, 2019, TEACHER ED CURRICULU, V4, P33 Sears FW, 1987, U PHYS Serway R A, 2005, FISICA CIENCIAS INGE, V1 Tipler P A, 2003, FISICA CIENCIA TEC A, V1A VanderPlas J, 2016, PYTHON DATA SCI HDB WATTERS A, 1996, INTERNET PROGRAMMING Zill D G, 2013, MATEMATICAS AVANZADA, V1 NR 17 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2019 VL 1386 AR 012139 DI 10.1088/1742-6596/1386/1/012139 PG 7 WC Materials Science, Multidisciplinary; Physics, Fluids & Plasmas SC Materials Science; Physics GA BP7HU UT WOS:000562059600138 OA Bronze DA 2021-04-21 ER PT S AU Jatmiko, ATP Yusuf, M Putra, M AF Jatmiko, Agus T. P. Yusuf, M. Putra, M. BE Natalia, D Basar, K Neswan, O Arifyanto, MI Mujahidin, D TI Light curve analyses of eclipsing binary system ASAS 172533-1221.4 SO 6TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 6th International Conference on Mathematics and Natural Sciences (CMNS) - On the Road Towards Sustainable Development CY NOV 02-03, 2016 CL Bandung, INDONESIA SP ITB, Fac Math & Nat Sci AB Using the data taken from our 0.36 m f/7.2 robotic telescope, we performed a very first light curve (LC) analyses of eclipsing binary ASAS 172533-1221.4, one of target stars which is part of program stars in our variable star survey project. The LC of this star was constructed by using LEMON, a semi-automatic photometric pipeline written in Python. We refined a Time of Minima (ToM, T-0) and variability period of this system, P and updated its ephemerides as HJD(min I) = 2457200.255578 + 0.678861 *phi. The LC modeling of the system was conducted with the PHOEBE (PHysics Of Eclipsing BinariEs) software built on top of the widely used WD program. The assorted LC modeling solutions are shown as follows. mass ratio q = 0.811 +/- 0.009, inclination i = 70.62 +/- 0.01 degrees, temperature of primary and secondary component T-1 = 5559.23 +/- 83.51 K and T-2 = 3871.64 +/- 43.66 K, respectively, and modified Kopal potentials which are a function of primary's and secondary's radii Omega(1) = 3.436 +/- 0.018 and Omega 2 = Omega(cr) = 2.980, respectively. It is concluded that ASAS 1725533-1221.4 is found to be near-contact system with almost similar size between primary and secondary components, with its secondary component is already filling its Roche lobe. C1 [Jatmiko, Agus T. P.; Yusuf, M.; Putra, M.] Inst Teknol Bandung, Bosscha Observ, Jl Peneropongan Bintang, Bandung, West Java, Indonesia. [Putra, M.] Inst Teknol Bandung, Astron Study Program, Jl Ganesha 10, Bandung, West Java, Indonesia. RP Jatmiko, ATP (corresponding author), Inst Teknol Bandung, Bosscha Observ, Jl Peneropongan Bintang, Bandung, West Java, Indonesia. EM agustrionopj@alumni.itb.ac.id CR EGGLETON PP, 1983, ASTROPHYS J, V268, P368, DOI 10.1086/160960 Hidayat T, 2014, EXP ASTRON, V37, P85, DOI 10.1007/s10686-013-9369-7 Pojmanski G, 1997, ACTA ASTRONOM, V47, P467 Prsa A, 2005, ASTROPHYS J, V628, P426, DOI 10.1086/430591 STELLINGWERF RF, 1978, ASTROPHYS J, V224, P953, DOI 10.1086/156444 Terron V, 2011, HIGHLIGHTS SPANISH A, P755 VANHAMME W, 1993, ASTRON J, V106, P2096, DOI 10.1086/116788 WILSON RE, 1971, ASTROPHYS J, V166, P605, DOI 10.1086/150986 Yusuf M., 2016, 6 ICMNS UNPUB NR 9 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2019 VL 1127 AR 012048 DI 10.1088/1742-6596/1127/1/012048 PG 5 WC Mathematics, Applied SC Mathematics GA BP6OF UT WOS:000560237900046 OA Bronze DA 2021-04-21 ER PT B AU Behzadan, V Minton, J Munir, A AF Behzadan, Vahid Minton, James Munir, Arslan GP Assoc Comp Machinery TI TrolleyMod v1.0: An Open-Source Simulation and Data Collection Platform for Ethical Decision-Making in Autonomous Vehicles SO AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY LA English DT Proceedings Paper CT 2nd AAAI/ACM Conference on AI, Ethics, and Society (AIES) CY JAN 27-28, 2019 CL Honolulu, HI SP AAAI, Assoc Comp Machinery, ACM SIGAI, Berkeley Existential Risk Initiat, DeepMind Eth & Soc, Google, Natl Sci Fdn, IBM Res, Facebook, Amazon, PricewaterhouseCoopers, Future Life Inst, Partnership AI DE Ethical Decision-Making; Autonomous Vehicles; Social Choice; Artificial Intelligence; Simulation AB This paper presents TrolleyMod v1.0, an open-source platform based on the CARLA simulator for the collection of ethical decision making data for autonomous vehicles. This platform is designed to facilitate experiments aiming to observe and record human decisions and actions in high-fidelity simulations of ethical dilemmas that occur in the context of driving. Targeting experiments in the class of trolley problems, TrolleyMod provides a seamless approach to creating new experimental settings and environments with the realistic physics-engine and the high-quality graphical capabilities of CARLA and the Unreal Engine. Also, TrolleyMod provides a straightforward interface between the CARLA environment and Python to enable the implementation of custom controllers, such as deep reinforcement learning agents. The results of such experiments can be used for sociological analyses, as well as the training and tuning of value-aligned autonomous vehicles based on social values that are inferred from observations. C1 [Behzadan, Vahid; Minton, James; Munir, Arslan] Kansas State Univ, Manhattan, KS 66506 USA. RP Behzadan, V (corresponding author), Kansas State Univ, Manhattan, KS 66506 USA. EM behzadan@ksu.edu; jzm@ksu.edu; amunir@ksu.edu RI Behzadan, Vahid/AAZ-5344-2020 OI Behzadan, Vahid/0000-0002-6229-9365 CR Abel David, 2016, AAAI WORKSH AI ETH S, V92 Arnold Thomas, 2017, 3 INT WORKSH AI ETH Awad Edmond, 2018, NATURE, P1 Dosovitskiy A., 2017, ARXIV171103938 Frison AK, 2016, AUTOMOTIVEUI 2016: 8TH INTERNATIONAL CONFERENCE ON AUTOMOTIVE USER INTERFACES AND INTERACTIVE VEHICULAR APPLICATIONS, P117, DOI 10.1145/3004323.3004336 GENANDER JACOB, CONTROL SELF DRIVING Goodall NJ, 2014, LECT N MOBIL, P93, DOI 10.1007/978-3-319-05990-7_9 Greene J, 2016, THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4147 Kasenberg Daniel, 2018, P 1 AAAI ACM C ART I Kim Richard, 2017, COMPUTATIONAL MODEL Kim Richard, 2018, ARXIV180104346 Leonard Thomas C, 2008, NUDGE IMPROVING DECI Liang Xiaodan, 2018, ARXIV180703776, P1 Noothigattu Ritesh, 2017, ARXIV170906692 Taylor J., 2016, ALIGNMENT ADV MACHIN THOMSON JJ, 1985, YALE LAW J, V94, P1395, DOI 10.2307/796133 Wallach W., 2008, MORAL MACHINES TEACH Wang Yijia, 2017, ARXIV171105905 NR 18 TC 0 Z9 0 U1 1 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-6324-2 PY 2019 BP 391 EP 395 DI 10.1145/3306618.3314239 PG 5 WC Computer Science, Artificial Intelligence SC Computer Science GA BP5KP UT WOS:000556121100054 DA 2021-04-21 ER PT B AU Rupe, A Kumar, N Epifanov, V Kashinath, K Pavlyk, O Schlimbach, F Patwary, M Maidanov, S Lee, V Prabhat Crutchfield, JP AF Rupe, Adam Kumar, Nalini Epifanov, Vladislav Kashinath, Karthik Pavlyk, Oleksandr Schlimbach, Frank Patwary, Mostofa Maidanov, Sergey Lee, Victor Prabhat Crutchfield, James P. GP IEEE TI DisCo: Physics-Based Unsupervised Discovery of Coherent Structures in Spatiotemporal Systems SO PROCEEDINGS OF 2019 5TH IEEE/ACM WORKSHOP ON MACHINE LEARNING IN HIGH PERFORMANCE COMPUTING ENVIRONMENTS (MLHPC 2019) LA English DT Proceedings Paper CT 5th IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC) CY NOV 17-22, 2019 CL Denver, CO SP IEEE, ACM, IEEE Comp Soc, TCHPC, SIGHPC ID BIG DATA; INTENSITY AB Extracting actionable insight from complex unlabeled scientific data is an open challenge and key to unlocking data-driven discovery in science. Complementary and alternative to supervised machine learning approaches, unsupervised physics-based methods based on behavior-driven theories hold great promise. Due to computational limitations, practical application on real-world domain science problems has lagged far behind theoretical development. We present our first step towards bridging this divide - DisCo - a high-performance distributed workflow for the behavior-driven local causal state theory. DisCo provides a scalable unsupervised physics-based representation learning method that decomposes spatiotemporal systems into their structurally relevant components, which are captured by the latent local causal state variables. Complex spatiotemporal systems are generally highly structured and organize around a lower-dimensional skeleton of coherent structures, and in several firsts we demonstrate the efficacy of DisCo in capturing such structures from observational and simulated scientific data. To the best of our knowledge, DisCo is also the first application software developed entirely in Python to scale to over 1000 machine nodes, providing good performance along with ensuring domain scientists' productivity. We developed scalable, performant methods optimized for Intel many-core processors that will be upstreamed to open-source Python library packages. Our capstone experiment, using newly developed DisCo workflow and libraries, performs unsupervised spacetime segmentation analysis of CAM5.1 climate simulation data, processing an unprecedented 89.5 TB in 6.6 minutes end-to-end using 1024 Intel Haswell nodes on the Cori supercomputer obtaining 91% weak-scaling and 64% strong-scaling efficiency. C1 [Rupe, Adam; Crutchfield, James P.] Univ Calif Davis, Complex Sci Ctr, One Shields Ave, Davis, CA 95616 USA. [Rupe, Adam; Crutchfield, James P.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Kumar, Nalini; Epifanov, Vladislav; Pavlyk, Oleksandr; Schlimbach, Frank; Maidanov, Sergey; Lee, Victor] Intel Corp, 3600 Juliette Ln, Santa Clara, CA 95035 USA. [Kashinath, Karthik; Prabhat] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,M-S 59R4010A, Berkeley, CA 94720 USA. [Patwary, Mostofa] Baidu Res, 1195 Bordeaux Dr, Sunnyvale, CA 94089 USA. RP Rupe, A (corresponding author), Univ Calif Davis, Complex Sci Ctr, One Shields Ave, Davis, CA 95616 USA.; Rupe, A (corresponding author), Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. FU Intel(R); Intel(R) Big Data Center; U.S. Army Research LaboratoryUnited States Department of DefenseUS Army Research Laboratory (ARL); U.S. Army Research Office [W911NF-13-1-0390, W911NF-18-1-0028]; Office of Science of the U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC02-05CH11231] FX AR and JPC would like to acknowledge Intel (R) for supporting the IPCC at UC Davis. KK and P were supported by the Intel (R) Big Data Center. This research is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U.S. Army Research Office under contracts W911NF-13-1-0390 and W911NF-18-1-0028, and used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. CR ANDERSON PW, 1972, SCIENCE, V177, P393, DOI 10.1126/science.177.4047.393 Ankerst M, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P49 Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027 Bell G, 2009, SCIENCE, V323, P1297, DOI 10.1126/science.1170411 Bhimji W, 2018, J PHYS CONF SER, V1085, DOI 10.1088/1742-6596/1085/4/042034 Butler KT, 2018, NATURE, V559, P547, DOI 10.1038/s41586-018-0337-2 Carleo G, 2017, SCIENCE, V355, P602, DOI 10.1126/science.aag2302 Chahin M., 2017, BIG DATA ADV PHYS Chivers T., 2018, BIG DATA IS CHANGING Chiyu M. J., 2019, INT C LEARN REPR Crutchfield JP, 2014, WILEY INTERDISCIP RE, V6, P75, DOI 10.1002/wics.1290 Crutchfield JP, 2012, NAT PHYS, V8, P17 Emanuel K, 2003, ANNU REV EARTH PL SC, V31, P75, DOI 10.1146/annurev.earth.31.100901.141259 EMANUEL KA, 1987, NATURE, V326, P483, DOI 10.1038/326483a0 Epps B, 2017, 55 AIAA AER SCI M, P0989 Ester M., 1996, KDD, V96, P226 Faghmous JH, 2014, BIG DATA-US, V2, P155, DOI 10.1089/big.2014.0026 Farazmand M, 2016, J FLUID MECH, V795, P278, DOI 10.1017/jfm.2016.203 Gillet LC, 2016, ANNU REV ANAL CHEM, V9, P449, DOI 10.1146/annurev-anchem-071015-041535 Goerg G., 2012, ARXIV12062398 Gotz M., 2015, P WORKSH MACH LEARN, P2 GRASSBERGER P, 1986, INT J THEOR PHYS, V25, P907, DOI 10.1007/BF00668821 Guo Y., 2002, FAST PARALLEL CLUSTE Hadjighasem A, 2017, CHAOS, V27, DOI 10.1063/1.4982720 Hadjighasem A, 2016, SIAM REV, V58, P69, DOI 10.1137/140983665 Haller G, 2016, J FLUID MECH, V795, P136, DOI 10.1017/jfm.2016.151 Holmes P, 2012, CAMB MG MEC, P1, DOI 10.1017/CBO9780511919701 Hu X, 2017, ARXIV171101034 Intel, FAST SCAL EAS MACH L Jaenicke H, 2007, IEEE T VIS COMPUT GR, V13, P1384, DOI 10.1109/TVCG.2007.70615 Jolliffe Ian, 2011, PRINCIPAL COMPONENT Jones N, 2017, NATURE, V548, P379, DOI 10.1038/548379a Kurth T, 2018, P INT C HIGH PERF CO, P51 Larranaga P, 2006, BRIEF BIOINFORM, V7, P86, DOI 10.1093/bib/bbk007 Lee S, 2016, 2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), P2251, DOI 10.1109/BigData.2016.7840856 Liandeng Li, 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis. Proceedings, P160, DOI 10.1109/SC.2018.00016 Maidanov S., PERFORMING NUMERICAL MARIMONT RB, 1979, J I MATH APPL, V24, P59 Mathuriya Amrita, 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis. Proceedings, P819, DOI 10.1109/SC.2018.00068 McInnes L., 2017, J OPEN SOURCE SOFTWA, V2, P205, DOI [DOI 10.21105/joss.00205, 10.21105/joss.00205] Min S, 2017, BRIEF BIOINFORM, V18, P851, DOI 10.1093/bib/bbw068 Mjolsness E, 2001, SCIENCE, V293, P2051, DOI 10.1126/science.293.5537.2051 Montanez G. D., 2015, ARXIV150602686 Mudigonda Mayur, 2017, DEEP LEARN PHYS SCI NASA, JUP CLOUD SEQ CASS Overpeck JT, 2011, SCIENCE, V331, P700, DOI 10.1126/science.1197869 Patwary M. A., 2013, P INT C HIGH PERF CO, P49 Patwary M.M.A., 2015, INT C HIGH PERF COMP, P1 Patwary M. M. A., 2015, PDSDBSCAN SOURCE COD Prabhat, 2012, PROCEDIA COMPUT SCI, V9, P866, DOI 10.1016/j.procs.2012.04.093 Reichstein M, 2019, NATURE, V566, P195, DOI 10.1038/s41586-019-0912-1 Ronaghi Z., 2017, P 7 WORKSH PYTH HIGH, P4 Runge J, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9502 Rupe A., 2018, ARXIV181211597 Rupe A, 2018, CHAOS, V28, DOI 10.1063/1.5021130 Salakhutdinov R., 2019, P 36 INT C MACH LEAR, V97, P1321 Sejnowski TJ, 2014, NAT NEUROSCI, V17, P1440, DOI 10.1038/nn.3839 Shadden SC, 2012, TRANSPORT AND MIXING IN LAMINAR FLOWS: FROM MICROFLUIDICS TO OCEANIC CURRENTS, P59 Shalizi C., 2003, DISCRETE MATH THEORE Shalizi CR, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.036104 Shalizi CR, 2001, J STAT PHYS, V104, P817, DOI 10.1023/A:1010388907793 Shields CA, 2018, GEOSCI MODEL DEV, V11, P2455, DOI 10.5194/gmd-11-2455-2018 Tantet A, 2015, CHAOS, V25, DOI 10.1063/1.4908174 Tu Jonathan H., 2014, J COMPUT DYNAM, V1, P391, DOI DOI 10.3934/JCD.2014.1.391 Venderley J, 2018, PHYS REV LETT, V120, DOI 10.1103/PhysRevLett.120.257204 Vesselinov V. V., 2019, J COMPUTATIONAL PHYS Webster PJ, 2005, SCIENCE, V309, P1844, DOI 10.1126/science.1116448 Wehner MF, 2014, J ADV MODEL EARTH SY, V6, P980, DOI 10.1002/2013MS000276 Wehner MF, 2010, ADV METEOROL, V2010, DOI 10.1155/2010/915303 Williams MO, 2015, J NONLINEAR SCI, V25, P1307, DOI 10.1007/s00332-015-9258-5 WOLFRAM S, 1984, COMMUN MATH PHYS, V96, P15, DOI 10.1007/BF01217347 Ye H, 2015, P NATL ACAD SCI USA, V112, pE1569, DOI 10.1073/pnas.1417063112 Zenil H, 2019, NAT MACH INTELL, V1, P58, DOI 10.1038/s42256-018-0005-0 Zimek Arthur, 2012, Statistical Analysis and Data Mining, V5, P363, DOI 10.1002/sam.11161 NR 74 TC 2 Z9 2 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-1-7281-5985-0 PY 2019 BP 75 EP 87 DI 10.1109/MLHPC49564.2019.00013 PG 13 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods SC Computer Science GA BO9CE UT WOS:000530690500008 DA 2021-04-21 ER PT S AU Chrin, J Aiba, M Snuverink, J AF Chrin, J. Aiba, M. Snuverink, J. GP IOP TI A Channel Access Software Platform for Beam Dynamics Applications in Scripting Languages SO 10TH INTERNATIONAL PARTICLE ACCELERATOR CONFERENCE SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 10th International Particle Accelerator Conference (IPAC) CY MAY 19-24, 2019 CL Melbourne, AUSTRALIA AB To facilitate the seamless integration of EPICS (Experimental Physics and Industrial Control System) into high-level applications in particle accelerators, a dedicated modern C++ Channel Access interface library, CAFE, provides a comprehensive and user-friendly interface to the underlying control system. Functionality is provided for synchronous and asynchronous interaction of single and composite groups of channels, coupled with an abstract layer tailored towards beam dynamics applications and complex modelling of virtual accelerators. Equivalent consumable solutions in scripting and domain-specific languages can then be accelerated by providing bindings to the relevant methods of the interface platform. This is exemplified by CAFE's extensive MATLAB (R) interface, incarnated through a single MATLAB executable (MEX) file, and a high performance Python interface written in the Cython programming language. A number of gratifying particularities specific to these language extension modules are revealed. C1 [Chrin, J.; Aiba, M.; Snuverink, J.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Chrin, J (corresponding author), Paul Scherrer Inst, CH-5232 Villigen, Switzerland. EM jan.chrin@psi.ch CR Aiba M, 2013, PHYS REV SPEC TOP-AC, V16, DOI 10.1103/PhysRevSTAB.16.012802 Boge M, 2000, P 7 EUR PART ACC C V, P1354 Chen J, 1995, P 1995 INT C ACC LAR Chrin J, 2015, P 15 INT C ACC LARG, P1013 Chrin J, 2013, P 14 INT C ACC LARG, P453 Chrin J, 2016, P 11 INT WORKSH PERS, P21, DOI [10.18429/JACoW-PCAPAC2016-WEUIPLCO04, DOI 10.18429/JACOW-PCAPAC2016-WEUIPLCO04] Fuchsberger K, 2011, P IPAC2011 SAN SEB S, P2289 Hill JO, 2009, EPICS R3 14 CHANNEL Portmann G, 2005, P PAC05 KNOXV MAY 16, P4009 Schietinger T, 2016, PHYS REV ACCEL BEAMS, V19, DOI 10.1103/PhysRevAccelBeams.19.100702 Streun A, 2018, J SYNCHROTRON RADIAT, V25, P631, DOI 10.1107/S1600577518002722 Terebilo T, 2001, P 8 INT C ACC LARG E, P543 Yamamoto N, 1998, PROCEEDINGS OF THE 1997 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-3, P2455, DOI 10.1109/PAC.1997.751238 Zimoch D, 2009, CHANNEL ACCESS CLIEN NR 14 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2019 VL 1350 AR 012155 DI 10.1088/1742-6596/1350/1/012155 PG 6 WC Physics, Particles & Fields SC Physics GA BO7YR UT WOS:000526100000154 OA Green Accepted, Bronze DA 2021-04-21 ER PT J AU Gautier, G Polito, G Bardenet, R Valko, M AF Gautier, Guillaume Polito, Guillermo Bardenet, Remi Valko, Michal TI DPPy: DPP Sampling with Python SO JOURNAL OF MACHINE LEARNING RESEARCH LA English DT Article DE determinantal point processes; sampling; MCMC; random matrices; Python AB Determinantal point processes (DPPs) are specific probability distributions over clouds of points that are used as models and computational tools across physics, probability, statistics, and more recently machine learning. Sampling from DPPs is a challenge and therefore we present DPPy, a Python toolbox that gathers known exact and approximate sampling algorithms for both finite and continuous DPPs. The project is hosted on GitHubc) and equipped with an extensive documentation. C1 [Gautier, Guillaume; Polito, Guillermo; Bardenet, Remi; Valko, Michal] Univ Lille, CNRS, UMR 9189, Cent Lille,CRIStAL, F-59651 Villeneuve Dascq, France. [Gautier, Guillaume; Polito, Guillermo; Valko, Michal] Inria Lille Nord Europe, 40 Ave Halley, F-59650 Villeneuve Dascq, France. [Valko, Michal] DeepMind Paris, 14 Rue Londres, F-75009 Paris, France. RP Gautier, G (corresponding author), Univ Lille, CNRS, UMR 9189, Cent Lille,CRIStAL, F-59651 Villeneuve Dascq, France.; Gautier, G (corresponding author), Inria Lille Nord Europe, 40 Ave Halley, F-59650 Villeneuve Dascq, France. EM G.GAUTIER@INRIA.FR; GUILLERMO.POLITO@UNIV-LILLE.FR; REMI.BARDENET@GMAIL.COM; VALKOM@DEEPMIND.COM FU European CHIST-ERA project DELTA; French Ministry of Higher Education and Research; Nord-Pas-de-Calais Regional CouncilRegion Hauts-de-France; Inria; Otto-von-Guericke-Universitat Magdeburg associated-team north-European project Allocate; French National Research Agency project BoBFrench National Research Agency (ANR) [ANR-16-CE23-0003] FX We acknowledge funding by European CHIST-ERA project DELTA, the French Ministry of Higher Education and Research, the Nord-Pas-de-Calais Regional Council, Inria and Otto-von-Guericke-Universitat Magdeburg associated-team north-European project Allocate, and French National Research Agency project BoB (n.ANR-16-CE23-0003). CR Affandi R. H., 2013, INT C ART INT STAT A Anari N., 2016, C LEARN THEOR COLT Baddeley A., 2005, J STAT SOFTWARE Bardenet R., 2019, ANN APPL PROBABILITY Borodin A, 2010, B AM MATH SOC Burt D, 2019, INT C MACH LEARN ICM Derezinski M., 2019, ADV NEURAL INFORM PR Dumitriu I, 2002, J MATH PHYS Dupuy C, 2018, INT C ART INT STAT A Gartrell M., 2019, ARXIV190512962 Gartrell M, 2016, AAAI C ART INT Gautier G., 2019, ADV NEURAL INFORM PR Gautier G, 2017, INT C MACH LEARN ICM Gillenwater J., 2014, THESIS Hough J. B., 2006, PROBABILITY SURVEYS Kammoun M. S., 2018, ELECT J PROBABILITY Kathuria Tarun, 2016, ADV NEURAL INFORM PR Killip R, 2004, INT MATH RES NOTICES Konig W, 2004, PROBABILITY SURVEYS Kulesza A, 2012, FDN TRENDS MACHINE L Launay Claire, 2018, ARXIV180208429 Lavancier F, 2012, J ROYAL STAT SOC B Li C., 2016, ADV NEURAL INFORM PR Macchi O., 1975, ADV APPL PROBABILITY Mazoyer A, 2019, ARXIV190102099 Moller J., 2004, STAT INFERENCE SIMUL Pathria R., 2011, STAT MECH Poulson J., 2019, ARXIV190500165 Propp J. G, 1998, J ALGORITHMS Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1 Soshnikov A, 2000, RUSSIAN MATH SURVEYS Tremblay N., 2018, ARXIV180208471 NR 32 TC 4 Z9 4 U1 0 U2 1 PU MICROTOME PUBL PI BROOKLINE PA 31 GIBBS ST, BROOKLINE, MA 02446 USA SN 1532-4435 J9 J MACH LEARN RES JI J. Mach. Learn. Res. PY 2019 VL 20 AR 180 PG 7 WC Automation & Control Systems; Computer Science, Artificial Intelligence SC Automation & Control Systems; Computer Science GA KB3ME UT WOS:000506403100020 DA 2021-04-21 ER PT S AU Lazar, Z Bidaux, Y Roos, M Close, GF AF Lazar, Zsombor Bidaux, Yves Roos, Markus Close, Gael F. GP IEEE TI Model-Based Engineering of Magnetic Sensors SO 2019 16TH INTERNATIONAL CONFERENCE ON SYNTHESIS, MODELING, ANALYSIS AND SIMULATION METHODS AND APPLICATIONS TO CIRCUIT DESIGN (SMACD 2019) SE International Conference on Synthesis Modeling Analysis and Simulation Methods and Applications to Circuit Design LA English DT Proceedings Paper CT 16th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD) CY JUL 15-18, 2019 CL Lausanne, SWITZERLAND SP Dialog Semicond, Ams AG, Cadence Acad Network, Coilcraft, Melexis Inspired Engn, Springer, IEEE, IEEE Circuits & Syst Soc, IEEE Council Elect Design Automat, EPFL, Tecnico Lisboa, Inst Telecomunicacoes, Univ Lisbon, Inst Super Tecnico DE multiphysics system modeling; magnetic position sensors; automotive electronics AB A modern car contains about 30 magnetic sensors on average. Their performances depend on the readout circuit imperfections, the magnetic environment, and mechanical assembly tolerances. For angle sensors, this yields a complex physics with magnet tilt and off-axis rotation. Traditionally these effects are studied separately in finite-element-method (FEM) simulators, separated from traditional system and circuit design simulation tools. This creates a simulation gap. A new modeling method for physical modeling of magnetic position sensors is presented. The method is based on spherical harmonic decomposition, and is implemented in Matlab. In this representation, any rigid-body 3-D motion of the magnet and sensor is modeled by matrix operations. Critical physical effects for the sensor accuracy can then be explored directly in system simulation tools such as Matlab, Simulink, Python or even in an integrated circuit simulator. The method maintains FEM accuracy. It represents a paradigm shift in magnetic position sensor design, and brings FEM accuracy to a much wider range of users. C1 [Lazar, Zsombor; Bidaux, Yves; Close, Gael F.] Melexis, CH-2022 Bevaix, Switzerland. [Roos, Markus] NM Numer Modelling GmbH, CH-6300 Zug, Switzerland. RP Close, GF (corresponding author), Melexis, CH-2022 Bevaix, Switzerland. EM lzs@melexis.com; ybi@melexis.com; markus.roos@nmtec.ch; gcl@melexis.com CR Bronzan J. B., 1982, Electromagnetism. Paths to research, P171 Fummi F, 2005, DES AUT TEST EUROPE, P798, DOI 10.1109/DATE.2005.327 Hackner M., 2009, SENS TEST C 2009 P A, VII, P23 Halder Abhishek, 2017, 2017 IEEE Power & Energy Society General Meeting, DOI 10.1109/PESGM.2017.8274310 Heinssen S., 2017, 14 INT C SYNTH MOD A, P1 Leroy S, 2017, ESSCIRC 2017 - 43RD IEEE EUROPEAN SOLID STATE CIRCUITS CONFERENCE, P360, DOI 10.1109/ESSCIRC.2017.8094600 Schwarz P, 2001, PROC SPIE, V4407, P10, DOI 10.1117/12.425295 Yole, 2017, MAGN SENS MARK TECHN NR 8 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2575-4874 EI 2575-4890 BN 978-1-7281-1201-5 J9 INT C SYNTH MODEL AN PY 2019 BP 105 EP 108 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BO1YP UT WOS:000503265100027 DA 2021-04-21 ER PT S AU Cristiano, KL Estupinan, A Triana, DA AF Cristiano, K. L. Estupinan, A. Triana, D. A. BE PerezTaborda, JA Bernal, AGA TI Python script used as a simulator for the teaching of the electric field in electromagnetism course SO 6TH NATIONAL CONFERENCE ON ENGINEERING PHYSICS AND THE 1ST INTERNATIONAL CONFERENCE ON APPLIED PHYSICS ENGINEERING & INNOVATION SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 6th National Conference on Engineering Physics (VICNIF) / 1st International Conference on Applied Physics Engineering and Innovation (APEI) CY OCT 22-26, 2018 CL Univ Ind Santander, Bucaramanga, COLOMBIA SP Colombian Soc Engn Phys, Univ EAFIT, Univ Natl Colombia, Univ Andes, Fac Ingn, Dept Ingn Electrica & Electronica, Vortex Co, Andina Tecnologias, Bruker, Horiba, Rigaku, Tescan, JEOL, S & S Ingn, A P P Machines, Newport, Inst Nacl Metrologia Colombia, Opt Soc, SPIE, Aust Nt, Spectra Phys HO Univ Ind Santander AB We present in this article a Python script, based on a methodology to obtain the electric field produced by n electric charges. This tool was implemented in courses of electromagnetism and its laboratory in three institutions of higher education. The aim of this work was to incorporate information and communication technologies (ICTs) at the physics subjects, in accordance with the programs promoted by the Colombian Ministry of Education. We wanted to connect the students with sensory experiences of the physical phenomena that allow them to improve their experience of learning of subjects traditionally studied through the board. Finally, in this work, an interactive computational code was obtained, in which the electric field of the discrete and continuous charge distributions can be calculated, for the classical problems that are shown in an electrical physics course. C1 [Cristiano, K. L.; Triana, D. A.] UIS, Escuela Fis, CIMBIOS, Bucaramanga, Colombia. [Estupinan, A.] Univ Santander UDES, Fac Ciencias Exactas Nat & Agr, Dept Matemat Fis, Bucaramanga, Colombia. [Estupinan, A.; Triana, D. A.] Univ Auntonoma Bucaramanga UNAB, Dept Matemat, Bucaramanga, Colombia. RP Triana, DA (corresponding author), UIS, Escuela Fis, CIMBIOS, Bucaramanga, Colombia. EM dantrica@saber.uis.edu.co RI Lopez, Alex Francisco Estupinan/ABH-9945-2020 OI Lopez, Alex Francisco Estupinan/0000-0003-3067-6821; Triana Camacho, Daniel Andres/0000-0001-6852-6277 CR Bassi S, 2007, PLOS COMPUT BIOL, V3, P2052, DOI 10.1371/journal.pcbi.0030199 Burbano de Ercilla S, 1993, FISICA GEN Caraballo Clavijo S V, 2012, THESIS De Ercilla S B, 2003, FISICA GEN Furio-Mas C, 1998, ENSEN CIENC, V16, P131 Giancoli D C, 2002, FISICA U, P530 Langtangen H. P., 2009, PRIMER SCI PROGRAMMI, V2 Miranda DA, 2017, J PHYS CONF SER, V850, DOI 10.1088/1742-6596/850/1/012015 Pollack G.L, 2005, ELECTROMAGNETISM Serway R A, 2005, FISICA CIENCIAS INGE, V6 Wieman C E, 2008, OERSTED MEDAL LECT 2 Young HD, 2006, SEARS ZEMANSKYS U PH, V1 NR 12 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2019 VL 1247 AR 012044 DI 10.1088/1742-6596/1247/1/012044 PG 6 WC Engineering, Multidisciplinary; Physics, Multidisciplinary SC Engineering; Physics GA BN3OD UT WOS:000480435000044 OA Bronze DA 2021-04-21 ER PT J AU Steppa, C Holch, TL AF Steppa, Constantin Holch, Tim L. TI HexagDLy-Processing hexagonally sampled data with CNNs in PyTorch SO SOFTWAREX LA English DT Article DE Convolutional neural networks; Hexagonal grid; PyTorch; Astroparticle physics AB HexagDLy is a Python-library extending the PyTorch deep learning framework with convolution and pooling operations on hexagonal grids. It aims to ease the access to convolutional neural networks for applications that rely on hexagonally sampled data as, for example, commonly found in ground-based astroparticle physics experiments. (C) 2019 The Authors. Published by Elsevier B.V. C1 [Steppa, Constantin] Univ Potsdam, Dept Phys & Astron, Expt Astroparticle Phys, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany. [Holch, Tim L.] Humboldt Univ, Dept Phys, Expt Particle Phys, Newtonstr 15, D-12489 Berlin, Germany. RP Steppa, C (corresponding author), Univ Potsdam, Dept Phys & Astron, Expt Astroparticle Phys, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany. EM steppa@uni-potsdam.de; holchtim@physik.hu-berlin.de OI Holch, Tim Lukas/0000-0001-5161-1168 CR Aartsen MG, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3713-1 Birch CPD, 2007, ECOL MODEL, V206, P347, DOI 10.1016/j.ecolmodel.2007.03.041 Cherenkov T., 2017, ARXIV170907997 Cohen Taco S., 2018, INT C LEARN REPR Erdmann M, 2018, ASTROPART PHYS, V97, P46, DOI 10.1016/j.astropartphys.2017.10.006 Feng Q, 2016, P INT ASTRONOMICAL U, V12 Holch TL, POS ICRC2017 FLUOR D, P795, DOI [10.22323/1.301.0795,arXiv:1711.06298, DOI 10.22323/1.301.0795,ARXIV:1711.06298] Hoogeboom E., 2018, ARXIV180302108 Huennefeld M, 2017, POS ICRC2017, P1057, DOI [10.22323/1.301.1057, DOI 10.22323/1.301.1057] LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Mangano S, 2018, LECT NOTES ARTIF INT, V11081, P243, DOI 10.1007/978-3-319-99978-4_19 Masci J, 2015, SHAPENET CONVOLUTION Paszke A., 2017, NIPS W Perraudin N., 2018, ARXIV181012186 Richard C., 1990, P SOC PHOTO-OPT INS, V1194 Sahr K., 2011, ARCH, V22, P363 Satoh M, 2014, PROG EARTH PLANET SC, V1, DOI 10.1186/s40645-014-0018-1 Shilon I, 2019, ASTROPART PHYS, V105, P44, DOI 10.1016/j.astropartphys.2018.10.003 STAUNTON RC, 1989, IMAGE VISION COMPUT, V7, P162, DOI 10.1016/0262-8856(89)90040-1 1979, P IEEE, V67, P930, DOI DOI 10.1109/PROC.1979.11356 2009, ASTROPART PHYS, V31, P383, DOI DOI 10.1016/J.ASTROPARTPHYS.2009.04.001 NR 21 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2352-7110 J9 SOFTWAREX JI SoftwareX PD JAN-JUN PY 2019 VL 9 BP 193 EP 198 DI 10.1016/j.softx.2019.02.010 PG 6 WC Computer Science, Software Engineering SC Computer Science GA HW6RS UT WOS:000466818600030 OA DOAJ Gold DA 2021-04-21 ER PT J AU Tian, L Li, L Ding, J Mousseau, N AF Tian, Liang Li, Lin Ding, Jun Mousseau, Normand TI ART_data_analyzer: Automating parallelized computations to study the evolution of materials SO SOFTWAREX LA English DT Article DE Activation and relaxation techniques; Kinetics; Automation and parallelization; Machine learning ID RELAXATION; ORDER AB The kinetics and dynamic evolution of material structures need a comprehensive understanding of the potential energy landscape at current sample state. The Activation-Relaxation Technique (ART) is an efficient way to probe the potential energy landscape by sampling a large amount of events (a single event involves initial, saddle and final state) from which a statistical distribution of activation energy barrier can be extracted. However, there has been a lack of a user-friendly toolkit to automate the parallelization of running of ART simulations and post-processing of data from ART simulations to extract useful physics information and insights. The ART_data_analyzer Python package has been developed to serve this purpose and fill in this gap for the broad community of scientific researchers interested in the kinetics and dynamic transitions of material structures. As a demo, we utilized this software package to demonstrate the user-friendly workflow of studying ZrCuAl metallic glass sample prepared by molecular dynamics. (C) 2019 The Authors. Published by Elsevier B.V. C1 [Tian, Liang; Li, Lin] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35404 USA. [Tian, Liang] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Ding, Jun] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Mousseau, Normand] Univ Montreal, Dept Phys, CP 6128,Succ Ctr Ville, Montreal, PQ, Canada. RP Tian, L (corresponding author), 1024 North Engn Res Ctr, Tuscaloosa, AL 35404 USA. EM liangtianisu@gmail.com RI Tian, Liang/R-8452-2019 OI Tian, Liang/0000-0003-4876-968X FU U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES), USAUnited States Department of Energy (DOE) [DE-SC0016164] FX LT and LL acknowledge the financial support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES), USA, by Award no. DE-SC0016164. LT and LL appreciate the valuable discussions with Dr Yue Fan at University of Michigan, Ann Arbor. CR Andreas H., 2008, J PHYS CONDENS MATT, V20 Athenes M, 2012, J CHEM PHYS, V137, DOI 10.1063/1.4766458 Barkema GT, 1996, PHYS REV LETT, V77, P4358, DOI 10.1103/PhysRevLett.77.4358 Cheng YQ, 2008, ACTA MATER, V56, P5263, DOI 10.1016/j.actamat.2008.07.011 Fan Y, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15417 Fan Y, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6083 Khoddam S, 2018, ADV ENG MATER, V20, DOI 10.1002/adem.201800048 Li F, 2018, J APPL PHYS, V123, DOI 10.1063/1.5008841 Li J., 2005, LEAST SQUARE ATOMIC Ma E, 2015, NAT MATER, V14, P547, DOI 10.1038/nmat4300 Machado-Charry E, 2011, J CHEM PHYS, V135, DOI 10.1063/1.3609924 Malek R, 2000, PHYS REV E, V62, P7723, DOI 10.1103/PhysRevE.62.7723 Ong SP, 2013, COMP MATER SCI, V68, P314, DOI 10.1016/j.commatsci.2012.10.028 Pedregosa F, 2011, SCIKIT LEARN MACHINE PLIMPTON S, 1995, J COMPUT PHYS, V117, P1, DOI 10.1006/jcph.1995.1039 Rycroft CH, 2009, CHAOS, V19, DOI 10.1063/1.3215722 Stukowski A, 2010, MODEL SIMUL MATER SC, V18, DOI 10.1088/0965-0393/18/1/015012 Tian L, 2018, INT J CURR ENG TECHN, V8, P236, DOI DOI 10.14741/IJCET/V.8.2.7 Wang BB, 2018, NPJ COMPUT MATER, V4, DOI 10.1038/s41524-018-0097-4 NR 19 TC 4 Z9 4 U1 1 U2 5 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2352-7110 J9 SOFTWAREX JI SoftwareX PD JAN-JUN PY 2019 VL 9 BP 238 EP 243 DI 10.1016/j.softx.2019.03.002 PG 6 WC Computer Science, Software Engineering SC Computer Science GA HW6RS UT WOS:000466818600037 OA DOAJ Gold DA 2021-04-21 ER PT S AU Pinzon, EF Lizcano, AR Martinez, JH Patino, GA Miranda, DA AF Pinzon, E. F. Lizcano, A. R. Martinez, J. H. Patino, G. A. Miranda, D. A. GP IOP TI Student perception of the implementation of a teaching strategy based on Just in Time mediated learning and the use of information and communications technologies in the physics I laboratory course SO FIRST INTERNATIONAL CONFERENCE ON VIRTUAL EDUCATION: CHALLENGES AND OPPORTUNITIES SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 1st International Conference on Virtual Education - Challenges and Opportunities (ViEduc) CY OCT 08-12, 2018 CL Bucaramanga, COLOMBIA SP Inst Reg Project & Distance Educ, iPred, Acad Vice Chancellorship, Sch Educ, Univ Ind Santander, CEDEDUIS, Ctr Dev Teaching AB A Teaching strategy based on Just in Time Teaching, mediated learning techniques and the use of information and communication technologies was implemented in physics I laboratory courses to improve research skills of second-level engineering students. In this work, a study into student's perception of application of this strategy was carried out through statistical analysis of the responses given by students in perception surveys applied at the end of each semester. The study consisted of two parts: a quantitative analysis of closed test answers (questions with predefined answers) and a qualitative analysis of open answers (answers written by students). Programming codes in Python language were developed to perform the descriptive analysis of student responses from the first academic semester of 2016 (2016/I) to the first academic semester of 2018 (2018/I). Student percentage who answered "yes, they are enough" to the question if tools available in the Moodle virtual learning platform are useful for verification of the physical concepts, presented a tendency to rise (65% to 80%) along academic semesters. Also, qualitative analysis of the responses showed the need to train students in use of new technological tools (data collection software and devices) implemented in the laboratory projects in the last semesters. The above was concluded from the increased percentage of students who expressed difficulties in handling laboratory tools and devices (3.0% in 2016/I to 29% in 2018/I). C1 [Pinzon, E. F.; Lizcano, A. R.; Martinez, J. H.; Patino, G. A.; Miranda, D. A.] Univ Ind Santander, CIMBIOS, Bucaramanga, Colombia. RP Miranda, DA (corresponding author), Univ Ind Santander, CIMBIOS, Bucaramanga, Colombia. EM dalemir@uis.edu.co RI Mercado, David Alejandro Miranda/P-5560-2016 OI Mercado, David Alejandro Miranda/0000-0003-3130-3314; Pinzon Nieto, Edgar Fabian/0000-0001-7782-1462; Lizcano, Adriana/0000-0001-6135-1662 CR Deslauriers L, 2011, SCIENCE, V332, P862, DOI 10.1126/science.1201783 Driscoll M, 2002, SCI RES, V332, P862 Hakkarainen K, 2009, INT J COMP-SUPP COLL, V4, P213, DOI 10.1007/s11412-009-9064-x McParland M, 2004, MED EDUC, V38, P859, DOI 10.1111/j.1365-2929.2004.01818.x Miranda DA, 2017, J PHYS CONF SER, V850, DOI 10.1088/1742-6596/850/1/012015 Prince M, 2001, J ENG EDUC, V93, P223 Simkins S, 2004, SOC SCI COMPUT REV, V22, P444, DOI 10.1177/0894439304268643 Torres V, 2005, TEACH PROF DEV, V6, P177 Trujillo F., 2011, ENFOQUE COMPETENCIAS Universidad Industrial de Santander, AUT I Valek J, 2012, PROCD SOC BEHV, V69, P1866, DOI 10.1016/j.sbspro.2012.12.139 Woods DR, 2014, IND ENG CHEM RES, V53, P5337, DOI 10.1021/ie401202k NR 12 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2019 VL 1161 AR 012013 DI 10.1088/1742-6596/1161/1/012013 PG 7 WC Computer Science, Interdisciplinary Applications; Education & Educational Research SC Computer Science; Education & Educational Research GA BM5YN UT WOS:000465687000013 OA Bronze DA 2021-04-21 ER PT S AU Kimm, H Chaffers, A AF Kimm, Haklin Chaffers, Alexander GP IEEE TI Interdisciplinary Internship Projects Utilizing Legacy Robotic Equipment under Budget Constraints at a Small-sized Institution SO 2019 9TH IEEE INTEGRATED STEM EDUCATION CONFERENCE (ISEC) SE Integrated STEM Education Conference LA English DT Proceedings Paper CT 9th IEEE Integrated STEM Education Conference (ISEC) CY MAR 16, 2019 CL Princeton, NJ SP IEEE DE Image Processing; Python; Raspberry Pi; Robotic Vision; STEM AB In this paper we would like to share interdisciplinary project experiences with other small universities who intend or hold an interest in participating interdisciplinary STEM projects with their students. The interdisciplinary science and engineering projects attract students from various disciplines and backgrounds such as computer science, electrical engineering, physics, mathematics, and others. When initiating a robotic vision project at East Stroudsburg University, it began with open discussions upon what resources were available to us, what topics we were interested in, and and what we might be albe to accomplish. The students participating in the project were exposed to diverse challenging problems which were hardly seen in their class course works, and to encounter technical difficulties related to the project. The students were encouraged to workfirst upon their interests and specialties such as hardware, software, and programming languages. The students routinely presented their understanding of possible problems and solutions to other team members because the projects require sharing the knowledge and helping each other to achieve a common goal of the project success. All the team members including faculty adviser were generally in discussions upon finding and solving the problems, with self-motivated learning and helping each other, and in playing their roles for the project development, management, and technological entrepreneurship of rebuilding the old robot arms within university budget constraints. The projects using robot arms seemed to have outperformed in the students' learning outcomes, motivated the students to enhance their career interests into research fields, and prepared them to an advanced science and technology level in solving practical problems. C1 [Kimm, Haklin; Chaffers, Alexander] East Stroudsburg Univ, Comp Sci Dept, East Stroudsburg, PA 18301 USA. RP Kimm, H (corresponding author), East Stroudsburg Univ, Comp Sci Dept, East Stroudsburg, PA 18301 USA. EM hkimm@esu.edu; achaffers@live.esu.edu CR Fagin B., SIGCSE 03 P 34 SIGCS, P307 Koski M., 2008, KOLI 08 P 8 INT C CO McCartney R, 1996, COMPUT SCI ED, V7, P135 NR 3 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2330-331X BN 978-1-7281-1502-3 J9 INTEGR STEM EDU CONF PY 2019 BP 177 EP 182 PG 6 WC Education, Scientific Disciplines; Engineering, Multidisciplinary SC Education & Educational Research; Engineering GA BQ6AD UT WOS:000609974500040 DA 2021-04-21 ER PT J AU Aebischer, J Kumar, J Straub, DM AF Aebischer, Jason Kumar, Jacky Straub, David M. TI : a Python package for the running and matching of Wilson coefficients above and below the electroweak scale SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID MODEL AB wilson is a Python library for matching and running Wilson coefficients of higher-dimensional operators beyond the Standard Model. Provided with the numerical values of the Wilson coefficients at a high new physics scale, it automatically performs the renormalization group evolution within the Standard Model effective field theory (SMEFT), matching onto the weak effective theory (WET) at the electroweak scale, and QCD/QED renormalization group evolution below the electroweak scale down to hadronic scales relevant for low-energy precision tests. The matching and running encompasses the complete set of dimension-six operators in both SMEFT and WET. The program builds on the Wilson coefficient exchange format (WCxf) and can thus be easily combined with a number of existing public codes. C1 [Aebischer, Jason; Straub, David M.] TUM, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Kumar, Jacky] Indian Inst Sci Educ & Res, Dept Phys, Mohali 140036, Punjab, India. RP Aebischer, J (corresponding author), TUM, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. EM jason.aebischer@tum.de; jkumar@iisermohali.ac.in; david.straub@tum.de OI Kumar, Jacky/0000-0001-9053-0731; Straub, David/0000-0001-5762-7339 FU DFG cluster of excellence "Origin and Structure of the Universe"German Research Foundation (DFG) FX The work of D.S. and J.A. is supported by the DFG cluster of excellence "Origin and Structure of the Universe". We thank Xuanyou Pan and Matthias Schoffel for important technical support in the development phase. J.K. thanks Michael Paraskevas for discussions. CR Aaij R, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2017)055 Aaij R, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.159901 Aaij R, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.111803 Aaij R, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.151601 Abdesselam A., 2016, ARXIV160806391 Aebischer J., 2018, ARXIV181007698 Aebischer J., 2018, ARXIV180702520 Aebischer J., 2018, ARXIV180800466 Aebischer J., 2018, ARXIV180701709 Aebischer J, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2016)037 Aebischer J, 2018, COMPUT PHYS COMMUN, V232, P71, DOI 10.1016/j.cpc.2018.05.022 Aebischer J, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2017)158 Alok AK, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.095009 Alonso R, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2014)159 Altmannshofer W, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.055008 APPELQUIST T, 1975, PHYS REV D, V11, P2856, DOI 10.1103/PhysRevD.11.2856 BARDEEN WA, 1978, PHYS REV D, V18, P3998, DOI 10.1103/PhysRevD.18.3998 Bhattacharya B, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2017)015 Buchalla G, 1996, REV MOD PHYS, V68, P1125, DOI 10.1103/RevModPhys.68.1125 BUCHMULLER W, 1986, NUCL PHYS B, V268, P621, DOI 10.1016/0550-3213(86)90262-2 Buras A. J., 2011, ARXIV11025650 Calibbi L, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.181801 CALLAN CG, 1969, PHYS REV, V177, P2247, DOI 10.1103/PhysRev.177.2247 Capdevila B, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2018)093 Celis A, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-4967-6 Ciuchini M, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-5270-2 COLEMAN S, 1969, PHYS REV, V177, P2239, DOI 10.1103/PhysRev.177.2239 Cornella C, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2018)012 Dedes A, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2017)143 Ellis J., 2018, YOU, V2018, P146, DOI [10. 1007/JHEP06(2018)146, DOI 10.1007/JHEP06(2018)146] Feruglio F, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2017)061 Feruglio F, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.011801 Geng LS, 2017, PHYS REV D, V96, DOI 10.1103/PhysRevD.96.093006 GLASHOW SL, 1961, NUCL PHYS, V22, P579, DOI 10.1016/0029-5582(61)90469-2 Gonzalez-Alonso M, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2016)052 Grzadkowski B, 2010, J HIGH ENERGY PHYS, DOI [10.1007/JHEP10(2010)85, 10.1007/JHEP10(2010)085] Herren F, 2018, COMPUT PHYS COMMUN, V224, P333, DOI 10.1016/j.cpc.2017.11.014 Huschle M, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.072014 Jenkins EE, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2018)016 Jenkins EE, 2018, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2018)084 Jenkins EE, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2014)035 Jenkins EE, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2013)087 Jung M., 2018, ARXIV180101112 Kniehl BA, 2016, COMPUT PHYS COMMUN, V206, P84, DOI 10.1016/j.cpc.2016.04.017 Kumar J, 2018, ARXIV180607403 Lees JP, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.072012 Salam A, 1968, C P C, V680519, P367, DOI DOI 10.1142/9789812795915_0034 Straub D. M., 2018, ARXIV181008132 WEINBERG S, 1980, PHYS LETT B, V91, P51, DOI 10.1016/0370-2693(80)90660-7 WEINBERG S, 1967, PHYS REV LETT, V19, P1264, DOI 10.1103/PhysRevLett.19.1264 WILSON KG, 1983, REV MOD PHYS, V55, P583, DOI 10.1103/RevModPhys.55.583 NR 51 TC 32 Z9 33 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD DEC 19 PY 2018 VL 78 IS 12 AR 1026 DI 10.1140/epjc/s10052-018-6492-7 PG 8 WC Physics, Particles & Fields SC Physics GA HF1OO UT WOS:000453936200002 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Yan, HP Bromley, BP Dugal, C Colton, AV AF Yan, Huiping Bromley, Blair Patrick Dugal, Cliff Colton, Ashlea, V TI MODELING STUDIES AND CODE-TO-CODE COMPARISONS FOR PRESSURE TUBE HEAVY WATER REACTOR CORES SO CNL NUCLEAR REVIEW LA English DT Article DE PT-HWR; MCNP; RFSP; modeling; benchmark; thorium ID THORIUM; FUELS AB Preliminary, conceptual studies have been performed previously using deterministic lattice physics (WIMS-AECL) and core physics codes (RFSP) to estimate performance and safety characteristics of various thorium-based fuels and uranium-based fuels augmented by small amounts of thorium for use in pressure tube heavy-water reactors (PT-HWRs). To confirm the validity of the results, the WIMS-AECL/RFSP results are compared against predictions made with the stochastic neutron transport code MCNP. This paper describes the development of a method for setting up an MCNP core model of at PT-HWR for comparison with WIMS-AECL/ RFSP results, using a core with 37-element natural uranium fuel bundles as a test case for sensitivity studies. These studies included evaluating the sensitivity of the bias of the effective neutron multiplication factor (k(eff) ) , a source convergence study, uncertainties correction with multiple independent simulations, the impact of irradiation map binning methods, and the impact of reflector models. A Python-based software scripting tool was developed to automate the creation, execution, and post-processing of reactor physics data from the MCNP models. The software tool and algorithm for creating an MCNP core model using data from the WIMS-AECL and RFSP models are described in this paper. Based on the preliminary evaluations of the simulation parameters with the base model, reactor physics analyses were performed for PT-HWR cores with thorium-based fuels in a 35-element bundle type. Code-to-code results demonstrate good agreement between MCNP and RFSP, giving confidence in the method developed and its applicability to other fuels and core types. C1 [Yan, Huiping; Bromley, Blair Patrick; Dugal, Cliff; Colton, Ashlea, V] Canadian Nucl Labs, Chalk River, ON K0J 1J0, Canada. RP Bromley, BP (corresponding author), Canadian Nucl Labs, Chalk River, ON K0J 1J0, Canada. EM blair.bromley@cnl.ca FU Canadian Nuclear Laboratory's Federal Science and Technology program FX The authors acknowledge the following staff at CNL for their assistance: Fred Adams, Jeremy Pencer, Tina Wilson, Darren Radford, and Brock Sanderson. Funding for this work was provided by the Canadian Nuclear Laboratory's Federal Science and Technology program, which is administered by Atomic Energy of Canada Limited (AECL) on behalf of the Government of Canada. CR AINSCOUGH JB, 1983, NUCL TECHNOL, V61, P521, DOI 10.13182/NT83-A33177 ALTIPARMAKOV D.V., 2008, P PHYSOR 2008 INT SW ALTIPARMAKOV D.V., 2010, P PHYSOR 2010 PITTSB [Anonymous], 2002, IAEA TECHNICAL REPOR, V407 [Anonymous], 2014, UR 2014 RES PROD DEM Bromley BP, 2014, NUCL TECHNOL, V186, P17, DOI 10.13182/NT13-86 Brown F. B., 2009, P ANS NCSD 2009 RICH Brown F. B., 2006, P PHYSOR 2006 VANC B Chow J. C., 2015, 7 INT C MOD SIM NUCL Collette A., 2013, OREILLY MEDIA Colton A. V, 2016, ANS T, V115, P1101 Colton AV, 2018, NUCL TECHNOL, V203, P146, DOI 10.1080/00295450.2018.1444898 Colton AV, 2017, NUCL SCI ENG, V186, P48, DOI 10.1080/00295639.2016.1273021 Colton AV, 2016, NUCL TECHNOL, V196, P1, DOI 10.13182/NT16-70 Griffiths J., 1983, AECL7615 Hendricks J.S., 2008, LAUR082216 LOS AL NA Liang T., 2008, P 29 ANN C CAN NUCL Mao J., 2009, P ADV NUCL FUEL MANA McDonald M, 2018, CNL NUCL REV, V7, P147, DOI 10.12943/CNR.2017.00009 Milgram M.S., 1984, AECL8326 MILGRAM M. S., 1982, AECL7516 Oliphant T.E., 2006, A GUIDE TO NUMPY, VVolume 1 Ovanes M., 2012, P PHYSOR 2012 KNOXV Romano PK, 2015, ANN NUCL ENERGY, V82, P90, DOI 10.1016/j.anucene.2014.07.048 Rouben B, 2003, CANDU FUEL MANAGEMEN ROUBEN B., 2002, P 13 PAC BAS NUCL C SciPy Team, 2017, SCI COMP TOOLS PYTH Shen W., 2016, DEV PRODUCTION MCNP, P531 The Matplotlib Development Team, 2017, MATPL INTR Trellue H. R., 2012, LAUR1225804 LOS AL N Ueki T, 2003, NUCL SCI ENG, V145, P279, DOI 10.13182/NSE03-04 X-5 Monte Carlo Team, 2005, LAUR031987 LOS AL NA, V1-3 Xia L., 2012, ELECT THESIS DISSERT, V898 Yan HP, 2018, ANN NUCL ENERGY, V120, P642, DOI 10.1016/j.anucene.2018.06.036 NR 34 TC 0 Z9 0 U1 0 U2 1 PU CANADIAN NUCLEAR LABORATORIES PI CHALK RIVER PA CHALK RIVER LABORATORIES, CHALK RIVER, ON K0J 1J0, CANADA SN 2369-6923 EI 2369-6931 J9 CNL NUCL REV JI CNL Nucl. Rev. PD DEC PY 2018 VL 7 IS 2 BP 177 EP 200 DI 10.12943/CNR.2018.00003 PG 24 WC Nuclear Science & Technology SC Nuclear Science & Technology GA HB1SG UT WOS:000450805300005 DA 2021-04-21 ER PT J AU Consiglio, R de Salas, PF Mangano, G Miele, G Pastor, S Pisanti, O AF Consiglio, R. de Salas, P. F. Mangano, G. Miele, G. Pastor, S. Pisanti, O. TI PArthENoPE reloaded SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Primordial nucleosynthesis; Cosmology; Neutrino physics ID NUCLEOSYNTHESIS; ELEMENTS; COMPILATION; RATES AB We describe the main features of a new and updated version of the program PArthENoPE, which computes the abundances of light elements produced during Big Bang Nucleosynthesis. As the previous first release in 2008, the new one, PArthENoPE2.0, is publicly available and distributed from the code site, http://parthenope.na.infn.it . Apart from minor changes, which will be also detailed, the main improvements are as follows. The powerful, but not freely accessible, NAG routines have been substituted by ODEPACK libraries, without any significant loss in precision. Moreover, we have developed a Graphical User Interface (GUI) which allows a friendly use of the code and a simpler implementation of running for grids of input parameters. New Version program summary Program Title: PArthENoPE2.0 Program Files doi : http://dx.doi.org/10.17632/wvgr7d8yt9.1 Licensing provisions: GPLv3 Programming language: Fortran 77 and Python Supplementary material: User Manual available on the web page http://parthenope.na.infn.it Journal reference of previous version: Comput. Phys. Commun. 178 (2008) 956 971 Does the new version supersede the previous version?: Yes Reasons for the new version: Make the code more versatile and user friendly Summary of revisions: (1) Publicly available libraries (2) GUI for configuration Nature of problem: Computation of yields of light elements synthesized in the primordial universe Solution method: Livermore Solver for Ordinary Differential Equations (LSODE) for stiff and nonstiff systems (C) 2018 Elsevier B.V. All rights reserved. C1 [Consiglio, R.; Miele, G.; Pisanti, O.] Univ Napoli Federico II, Dipartimento Fis E Pancini, Via Cintia, I-80126 Naples, Italy. [de Salas, P. F.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Valencia, Spain. [Mangano, G.; Miele, G.; Pisanti, O.] INFN, Sez Napoli, Via Cintia, I-80126 Naples, Italy. RP Pisanti, O (corresponding author), Univ Napoli Federico II, Dipartimento Fis E Pancini, Via Cintia, I-80126 Naples, Italy. EM pisanti@na.infn.it RI Pastor, Sergio/J-6902-2014; de Salas, Pablo Fernandez/U-5544-2017; Miele, Gennaro/AAG-6782-2020 OI Pastor, Sergio/0000-0003-0933-7710; de Salas, Pablo Fernandez/0000-0003-3890-6441; Miele, Gennaro/0000-0002-2028-0578 FU INFN, under grant Iniziativa Specifica TASP; Fondi della regione Campania, "L.R. num. 5/2002 - annualita 2007"; MINECO [FPA2017-85216-P, SEV-2014-0398]; Generalitat ValencianaGeneralitat ValencianaEuropean Commission [PROMETEOII/2014/084]; MECD [FPU13/03729] FX We are grateful to many users of PArthENoPE, who during these years, gave important feedbacks and suggestions to improve the code. This work was supported by INFN, under grant Iniziativa Specifica TASP, and by Fondi della regione Campania, "L.R. num. 5/2002 - annualita 2007". P.F.d.S. and S.P. were supported by the Spanish grants FPA2017-85216-P and SEV-2014-0398 (MINECO), PROMETEOII/2014/084 (Generalitat Valenciana) and FPU13/03729 (MECD). CR Abazajian K. N., ARXIV12045379HEPPH Ade PAR, 2016, ASTRON ASTROPHYS, V594, DOI 10.1051/0004-6361/201525830 Adelberger EG, 2011, REV MOD PHYS, V83, P195, DOI 10.1103/RevModPhys.83.195 Angulo C, 1999, NUCL PHYS A, V656, P3, DOI 10.1016/S0375-9474(99)00030-5 Arbey A, 2012, COMPUT PHYS COMMUN, V183, P1822, DOI 10.1016/j.cpc.2012.03.018 Birrell J, 2015, NUCL PHYS B, V890, P481, DOI 10.1016/j.nuclphysb.2014.11.020 Capozzi F, 2017, PHYS REV D, V95, DOI 10.1103/PhysRevD.95.096014 Castorina E, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.023517 Cyburt RH, 2004, PHYS REV D, V70, DOI 10.1103/PhysRevD.70.023505 de Salas PF, 2018, PHYS LETT B, V782, P633, DOI 10.1016/j.physletb.2018.06.019 de Salas PF, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/07/051 Dolgov AD, 1997, NUCL PHYS B, V503, P426, DOI 10.1016/S0550-3213(97)00479-3 Esposito S, 1999, NUCL PHYS B, V540, P3, DOI 10.1016/S0550-3213(98)00757-3 Esteban I, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2017)087 Grohs E, 2017, NUCL PHYS B, V923, P222, DOI 10.1016/j.nuclphysb.2017.07.019 HANNESTAD S, 1995, PHYS REV D, V52, P1764, DOI 10.1103/PhysRevD.52.1764 Hinshaw G, 2013, ASTROPHYS J SUPPL S, V208, DOI 10.1088/0067-0049/208/2/19 Iocco F, 2007, PHYS REV D, V75, DOI 10.1103/PhysRevD.75.087304 Iocco F, 2009, PHYS REP, V472, P1, DOI 10.1016/j.physrep.2009.02.002 KAWANO L, FERMILABPUB88034A Lopez RE, 1999, PHYS REV D, V59, DOI 10.1103/PhysRevD.59.103502 Mangano G, 2005, NUCL PHYS B, V729, P221, DOI 10.1016/j.nuclphysb.2005.09.041 Mangano G, 2012, PHYS LETT B, V708, P1, DOI 10.1016/j.physletb.2012.01.015 Pisanti O, 2008, COMPUT PHYS COMMUN, V178, P956, DOI 10.1016/j.cpc.2008.02.015 Pitrou C., ARXIV180108023ASTROP, DOI [10.1016/j.physrep.2018.04.005, DOI 10.1016/J.PHYSREP.2018.04.005] PRESS WH, NUMERICAL RECIPES FO, V77 Sbordone L, 2010, ASTRON ASTROPHYS, V522, DOI 10.1051/0004-6361/200913282 Serpico PD, 2004, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2004/12/010 SMITH MS, 1993, ASTROPHYS J SUPPL S, V85, P219, DOI 10.1086/191763 Tanabashi M, 2018, PHYS REV D, V98, DOI 10.1103/PhysRevD.98.030001 WAGONER RV, 1969, ASTROPHYS J SUPPL S, V18, P247, DOI 10.1086/190191 WAGONER RV, 1973, ASTROPHYS J, V179, P343, DOI 10.1086/151873 WAGONER RV, 1967, ASTROPHYS J, V148, P3, DOI 10.1086/149126 Xu Y, 2013, NUCL PHYS A, V918, P61, DOI 10.1016/j.nuclphysa.2013.09.007 NR 34 TC 22 Z9 22 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD DEC PY 2018 VL 233 BP 237 EP 242 DI 10.1016/j.cpc.2018.06.022 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA GT6YP UT WOS:000444667100020 DA 2021-04-21 ER PT J AU Carnall, AC McLure, RJ Dunlop, JS Dave, R AF Carnall, A. C. McLure, R. J. Dunlop, J. S. Dave, R. TI Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; galaxies: evolution; galaxies: star formation ID STELLAR POPULATION SYNTHESIS; FORMATION RATES; FORMING GALAXIES; MASSES; DUST; EVOLUTION; EMISSION; SEQUENCE; COLORS; ULTRAVIOLET AB We present Bayesian Analysis of Galaxies for Physical Inference and Parameter EStimation, or BAGPIPES, a new PYTHON tool that can be used to rapidly generate complex model galaxy spectra and to fit these to arbitrary combinations of spectroscopic and photometric data using the MULTINEST nested sampling algorithm. We extensively test our ability to recover realistic star formation histories (SFHs) by fitting mock observations of quiescent galaxies from the MUFASA simulation. We then perform a detailed analysis of the SFHs of a sample of 9289 quiescent galaxies from UltraVISTA with stellar masses, M-* > 10(10) M-circle dot and redshifts 0.25 < z < 3.75. The majority of our sample exhibit SFHs that rise gradually then quench relatively rapidly over 1 -2 Gyr. This behaviour is consistent with recent cosmological hydrodynamic simulations, where AGN-driven feedback in the low-accretion (jet) mode is the dominant quenching mechanism. At z > 1, we also find a class of objects with SFHs that rise and fall very rapidly, with quenching time-scales of <1 Gyr, consistent with quasar-mode AGN feedback. Finally, at z < 1 we find a population with SFHs which quench more slowly than they rise, over >3 Gyr, which we speculate to be the result of diminishing overall cosmic gas supply. We confirm the mass-accelerated evolution (downsizing) trend, and a trend towards more rapid quenching at higher stellar masses. However, our results suggest that the latter is a natural consequence of mass-accelerated evolution, rather than a change in quenching physics with stellar mass. We find 61 +/- 8 per cent of z > 1.5 massive-quenched galaxies undergo significant further evolution by z = 0.5. BAGPIPES is available at bagpipes.readthedocs.io. C1 [Carnall, A. C.; McLure, R. J.; Dunlop, J. S.; Dave, R.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. RP Carnall, AC (corresponding author), Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. EM adamc@roe.ac.uk OI Dave, Romeel/0000-0003-2842-9434 FU UK Science and Technology Facilities CouncilUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC); ESO Telescopes at La Silla Paranal Observatory under ESO programme [179. A2005] FX The authors all acknowledge the support of the UK Science and Technology Facilities Council. This work is based on data products from observations made with ESO Telescopes at La Silla Paranal Observatory under ESO programme ID 179. A2005, and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a NASA contract. This research made use of ASTROPY, a community-developed core PYTHON package for Astronomy (Astropy Collaboration et al. 2013). CR Abramson LE, 2016, ASTROPHYS J, V832, DOI 10.3847/0004-637X/832/1/7 ANDERS E, 1989, GEOCHIM COSMOCHIM AC, V53, P197, DOI 10.1016/0016-7037(89)90286-X Ashby MLN, 2013, ASTROPHYS J, V769, DOI 10.1088/0004-637X/769/1/80 Baldry IK, 2006, MON NOT R ASTRON SOC, V373, P469, DOI 10.1111/j.1365-2966.2006.11081.x BALDWIN JA, 1981, PUBL ASTRON SOC PAC, V93, P5, DOI 10.1086/130766 Barro G, 2013, ASTROPHYS J, V765, DOI 10.1088/0004-637X/765/2/104 Behroozi PS, 2013, ASTROPHYS J, V770, DOI 10.1088/0004-637X/770/1/57 Bell EF, 2004, ASTROPHYS J, V608, P752, DOI 10.1086/420778 BELL EF, 2012, ASTROPHYS J, V753 Brammer GB, 2009, ASTROPHYS J LETT, V706, pL173, DOI 10.1088/0004-637X/706/1/L173 Brinchmann J, 2013, MON NOT R ASTRON SOC, V432, P2112, DOI 10.1093/mnras/stt551 Bruzual G, 2003, MON NOT R ASTRON SOC, V344, P1000, DOI 10.1046/j.1365-8711.2003.06897.x Buchner J, 2014, ASTRON ASTROPHYS, V564, DOI 10.1051/0004-6361/201322971 Byler N, 2017, ASTROPHYS J, V840, DOI 10.3847/1538-4357/aa6c66 Calzetti D, 2000, ASTROPHYS J, V533, P682, DOI 10.1086/308692 CARDELLI JA, 1989, ASTROPHYS J, V345, P245, DOI 10.1086/167900 Carson DP, 2010, MON NOT R ASTRON SOC, V408, P213, DOI 10.1111/j.1365-2966.2010.17151.x Casey CM, 2012, MON NOT R ASTRON SOC, V425, P3094, DOI 10.1111/j.1365-2966.2012.21455.x Charlot S, 2000, ASTROPHYS J, V539, P718, DOI 10.1086/309250 Charlot S, 2001, MON NOT R ASTRON SOC, V323, P887, DOI 10.1046/j.1365-8711.2001.04260.x Chevallard J, 2016, MON NOT R ASTRON SOC, V462, P1415, DOI 10.1093/mnras/stw1756 Choi J, 2014, ASTROPHYS J, V792, DOI 10.1088/0004-637X/792/2/95 Chuter RW, 2011, MON NOT R ASTRON SOC, V413, P1678, DOI 10.1111/j.1365-2966.2011.18241.x Citro A, 2016, ASTRON ASTROPHYS, V592, DOI 10.1051/0004-6361/201527772 Croton DJ, 2006, MON NOT R ASTRON SOC, V365, P11, DOI 10.1111/j.1365-2966.2005.09675.x Cullen F, 2018, MON NOT R ASTRON SOC, V476, P3218, DOI 10.1093/mnras/sty469 Cullen F, 2017, MON NOT R ASTRON SOC, V470, P3006, DOI 10.1093/mnras/stx1451 Dave R, 2017, MNRAS, V471, P1671 Dave R, 2016, MON NOT R ASTRON SOC, V462, P3265, DOI 10.1093/mnras/stw1862 Diemer B, 2017, ASTROPHYS J, V839, DOI 10.3847/1538-4357/aa68e5 Dopita MA, 2000, ASTROPHYS J, V542, P224, DOI 10.1086/309538 Eldridge JJ, 2009, MON NOT R ASTRON SOC, V400, P1019, DOI 10.1111/j.1365-2966.2009.15514.x Faber SM, 2007, ASTROPHYS J, V665, P265, DOI 10.1086/519294 FALCONBARROSO J, 2011, A A, V532 Fang JJ, 2018, ASTROPHYS J, V858, DOI 10.3847/1538-4357/aabcba Ferland GJ, 2017, REV MEX ASTRON ASTR, V53, P385 Fernandes RC, 2005, MON NOT R ASTRON SOC, V358, P363, DOI 10.1111/j.1365-2966.2005.08752.x Feroz F, 2008, MON NOT R ASTRON SOC, V384, P449, DOI 10.1111/j.1365-2966.2007.12353.x Feroz F, 2009, MON NOT R ASTRON SOC, V398, P1601, DOI 10.1111/j.1365-2966.2009.14548.x Feroz F., 2013, ARXIV13062144 Foreman-Mackey D., 2016, J OPEN SOURCE SOFTW, V24 Foreman-Mackey D, 2013, PUBL ASTRON SOC PAC, V125, P306, DOI 10.1086/670067 Forster Schreiber N.M, 2014, APJ, V787, P38 Fumagalli M, 2016, ASTROPHYS J, V822, DOI 10.3847/0004-637X/822/1/1 Furusawa H, 2016, ASTROPHYS J, V822, DOI 10.3847/0004-637X/822/1/46 Gabor JM, 2015, MON NOT R ASTRON SOC, V447, P374, DOI 10.1093/mnras/stu2399 Gabor JM, 2011, MON NOT R ASTRON SOC, V417, P2676, DOI 10.1111/j.1365-2966.2011.19430.x Gabor JM, 2010, MON NOT R ASTRON SOC, V407, P749, DOI 10.1111/j.1365-2966.2010.16961.x Gallazzi A, 2014, ASTROPHYS J, V788, DOI 10.1088/0004-637X/788/1/72 Gladders MD, 2013, ASTROPHYS J, V770, DOI 10.1088/0004-637X/770/1/64 Goodman J, 2010, COMM APP MATH COM SC, V5, P65, DOI 10.2140/camcos.2010.5.65 Hartley WG, 2010, MON NOT R ASTRON SOC, V407, P1212, DOI 10.1111/j.1365-2966.2010.16972.x Heavens A, 2004, NATURE, V428, P625, DOI 10.1038/nature02474 Heavens AF, 2000, MON NOT R ASTRON SOC, V317, P965, DOI 10.1046/j.1365-8711.2000.03692.x HILDEBRAND RH, 1983, Q J ROY ASTRON SOC, V24, P267 Hogg D.W., 2010, ARXIV10084686 Hudelot P., 2012, VIZIER ONLINE DATA C Inoue AK, 2014, MON NOT R ASTRON SOC, V442, P1805, DOI 10.1093/mnras/stu936 Jorgensen I, 2013, ASTRON J, V145, DOI 10.1088/0004-6256/145/3/77 Kennicutt RC, 2012, ANNU REV ASTRON ASTR, V50, P531, DOI 10.1146/annurev-astro-081811-125610 Kewley LJ, 2013, ASTROPHYS J, V774, DOI 10.1088/0004-637X/774/2/100 Kriek M, 2013, ASTROPHYS J LETT, V775, DOI 10.1088/2041-8205/775/1/L16 Kroupa P, 2002, MON NOT R ASTRON SOC, V336, P1188, DOI 10.1046/j.1365-8711.2002.05848.x Law-Smith J, 2017, ASTROPHYS J, V836, DOI 10.3847/1538-4357/836/1/87 Leja J, 2017, ASTROPHYS J, V837, DOI 10.3847/1538-4357/aa5ffe Lonoce I, 2014, MON NOT R ASTRON SOC, V444, P2048, DOI 10.1093/mnras/stu1593 Lotz JM, 2011, ASTROPHYS J, V742, DOI 10.1088/0004-637X/742/2/103 MADAU P, 1995, ASTROPHYS J, V441, P18, DOI 10.1086/175332 Maiolino R, 2012, MON NOT R ASTRON SOC, V425, pL66, DOI 10.1111/j.1745-3933.2012.01303.x Maraston C, 2010, MON NOT R ASTRON SOC, V407, P830, DOI 10.1111/j.1365-2966.2010.16973.x McCracken HJ, 2012, ASTRON ASTROPHYS, V544, DOI 10.1051/0004-6361/201219507 McLure RJ, 2018, MON NOT R ASTRON SOC, V479, P25, DOI 10.1093/mnras/sty1213 McLure RJ, 2018, MON NOT R ASTRON SOC, V476, P3991, DOI 10.1093/mnras/sty522 McLure RJ, 2013, MON NOT R ASTRON SOC, V428, P1088, DOI 10.1093/mnras/sts092 McLure RJ, 2011, MON NOT R ASTRON SOC, V418, P2074, DOI 10.1111/j.1365-2966.2011.19626.x Mobasher B, 2015, ASTROPHYS J, V808, DOI 10.1088/0004-637X/808/1/101 Moresco M, 2010, ASTRON ASTROPHYS, V524, DOI 10.1051/0004-6361/201014044 Mortlock A, 2017, MON NOT R ASTRON SOC, V465, P672, DOI 10.1093/mnras/stw2728 Moustakas J, 2006, ASTROPHYS J, V642, P775, DOI 10.1086/500964 Nelson D, 2018, MON NOT R ASTRON SOC, V475, P624, DOI 10.1093/mnras/stx3040 Nogueira-Cavalcante JP, 2018, MON NOT R ASTRON SOC, V473, P1346, DOI 10.1093/mnras/stx2399 Onodera M, 2015, ASTROPHYS J, V808, DOI 10.1088/0004-637X/808/2/161 Onodera M, 2012, ASTROPHYS J, V755, DOI 10.1088/0004-637X/755/1/26 Pacifici C, 2016, ASTROPHYS J, V832, DOI 10.3847/0004-637X/832/1/79 Pacifici C, 2012, MON NOT R ASTRON SOC, V421, P2002, DOI 10.1111/j.1365-2966.2012.20431.x Panter B, 2007, MON NOT R ASTRON SOC, V378, P1550, DOI 10.1111/j.1365-2966.2007.11909.x Papovich C, 2012, ASTROPHYS J, V750, DOI 10.1088/0004-637X/750/2/93 Peng Y, 2015, NATURE, V521, P192, DOI 10.1038/nature14439 Peng YJ, 2012, ASTROPHYS J, V757, DOI 10.1088/0004-637X/757/1/4 Pentericci L, 2018, ARXIV180307373 Pforr J, 2012, MON NOT R ASTRON SOC, V422, P3285, DOI 10.1111/j.1365-2966.2012.20848.x Reddy NA, 2012, ASTROPHYS J, V754, DOI 10.1088/0004-637X/754/1/25 Robitaille TP, 2013, ASTRON ASTROPHYS, V558, DOI 10.1051/0004-6361/201322068 Schawinski K, 2014, MON NOT R ASTRON SOC, V440, P889, DOI 10.1093/mnras/stu327 Siudek M, 2017, ASTRON ASTROPHYS, V597, DOI 10.1051/0004-6361/201628951 Skilling J, 2006, BAYESIAN ANAL, V1, P833, DOI 10.1214/06-BA127 Smethurst RJ, 2018, MON NOT R ASTRON SOC, V473, P2679, DOI 10.1093/mnras/stx2547 Steinhardt CL, 2014, ASTROPHYS J LETT, V791, DOI 10.1088/2041-8205/791/2/L25 Straatman CMS, 2016, ASTROPHYS J, V830, DOI 10.3847/0004-637X/830/1/51 Straatman CMS, 2014, ASTROPHYS J LETT, V783, DOI 10.1088/2041-8205/783/1/L14 Strateva I, 2001, ASTRON J, V122, P1861, DOI 10.1086/323301 Strazzullo V, 2013, ASTROPHYS J, V772, DOI 10.1088/0004-637X/772/2/118 Thomas D, 2010, MON NOT R ASTRON SOC, V404, P1775, DOI 10.1111/j.1365-2966.2010.16427.x THOMAS R, 2017, ASTRON ASTROPHYS, V602 Tomczak AR, 2014, ASTROPHYS J, V783, DOI 10.1088/0004-637X/783/2/85 van der Wel A, 2014, ASTROPHYS J, V788, DOI 10.1088/0004-637X/788/1/28 Vogelsberger M, 2014, MON NOT R ASTRON SOC, V444, P1518, DOI 10.1093/mnras/stu1536 Whitaker KE, 2013, ASTROPHYS J LETT, V770, DOI 10.1088/2041-8205/770/2/L39 Whitaker KE, 2011, ASTROPHYS J, V735, DOI 10.1088/0004-637X/735/2/86 Wilkinson DM, 2017, MON NOT R ASTRON SOC, V472, P4297, DOI 10.1093/mnras/stx2215 Williams RJ, 2009, ASTROPHYS J, V691, P1879, DOI 10.1088/0004-637X/691/2/1879 WORTHEY G, 1994, ASTROPHYS J SUPPL S, V94, P687, DOI 10.1086/192087 Wuyts S, 2011, ASTROPHYS J, V738, DOI 10.1088/0004-637X/738/1/106 Younger JD, 2009, MON NOT R ASTRON SOC, V394, P1685, DOI 10.1111/j.1365-2966.2009.14455.x NR 114 TC 44 Z9 44 U1 1 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2018 VL 480 IS 4 BP 4379 EP 4401 DI 10.1093/mnras/sty2169 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA GZ6XX UT WOS:000449617100009 OA Green Published DA 2021-04-21 ER PT J AU Krischer, L Aiman, YA Bartholomaus, T Donner, S van Driel, M Duru, K Garina, K Gessele, K Gunawan, T Hable, S Hadziioannou, C Koymans, M Leeman, J Lindner, F Ling, A Megies, T Nunn, C Rijal, A Salvermoser, J Soza, ST Tape, C Taufiqurrahman, T Vargas, D Wassermann, J Wolfl, F Williams, M Wollherr, S Igel, H AF Krischer, Lion Aiman, Yongki Andita Bartholomaus, Timothy Donner, Stefanie van Driel, Martin Duru, Kenneth Garina, Kristina Gessele, Kilian Gunawan, Tomy Hable, Sarah Hadziioannou, Celine Koymans, Mathijs Leeman, John Lindner, Fabian Ling, Angel Megies, Tobias Nunn, Ceri Rijal, Ashim Salvermoser, Johannes Soza, Sujania Talavera Tape, Carl Taufiqurrahman, Taufiq Vargas, David Wassermann, Joachim Woelfl, Florian Williams, Mitch Wollherr, Stephanie Igel, Heiner TI seismo-live: An Educational Online Library of Jupyter Notebooks for Seismology SO SEISMOLOGICAL RESEARCH LETTERS LA English DT Article ID PYTHON PACKAGE; DATABASE; OBSPY AB Efficient computer programming is becoming a central requirement in quantitative Earth science education. This applies not only to the early career stage but-due to the rapid evolution of programming paradigms-also throughout professional life. At universities, workshops, or any software training events, efficient practical programming exercises are hampered by the heterogeneity of hardware and software setups of participants. Jupyter notebooks offer an attractive solution by providing a platform-independent concept and allowing the combination of text-editing, program execution, and plotting. Here, we document a growing library with dozens of Jupyter notebooks for training in seismology. The library is made "live" through a server that allows accessing and running the notebooks in the browser on any system (PC, laptop, tablet, smartphone), provided there is internet access. The library seismo-live contains notebooks on many aspects of seismology, including data processing, computational seismology, and earthquake physics, as well as reproducible papers and graphics. It is a community effort and is intended to benefit from continuous interaction with seismologists around the world. C1 [Krischer, Lion; Aiman, Yongki Andita; Donner, Stefanie; Duru, Kenneth; Garina, Kristina; Gunawan, Tomy; Hable, Sarah; Hadziioannou, Celine; Lindner, Fabian; Ling, Angel; Megies, Tobias; Nunn, Ceri; Rijal, Ashim; Salvermoser, Johannes; Soza, Sujania Talavera; Taufiqurrahman, Taufiq; Vargas, David; Wassermann, Joachim; Woelfl, Florian; Williams, Mitch; Wollherr, Stephanie; Igel, Heiner] Ludwig Maximilians Univ Munchen, Dept Earth & Environm Sci, Theresienstr 41, D-80333 Munich, Bavaria, Germany. [Bartholomaus, Timothy] Univ Idaho, Moscow, ID 83843 USA. [Krischer, Lion; van Driel, Martin; Lindner, Fabian] Eidgenoss Tech Hsch Zurich, Zurich, Switzerland. [Koymans, Mathijs] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands. [Leeman, John] Leeman Geophys LLC, Mead, CO USA. [Tape, Carl] Univ Alaska, Fairbanks, AK 99701 USA. [Donner, Stefanie] Bundesanstalten Geowissensch & Rohstoffe, Hannover, Germany. [Hadziioannou, Celine] Univ Hamburg, Ctr Earth Syst Res & Sustainabil CEN, Hamburg, Germany. [Soza, Sujania Talavera] Univ Utrecht, Utrecht, Netherlands. RP Krischer, L (corresponding author), Ludwig Maximilians Univ Munchen, Dept Earth & Environm Sci, Theresienstr 41, D-80333 Munich, Bavaria, Germany.; Krischer, L (corresponding author), Eidgenoss Tech Hsch Zurich, Zurich, Switzerland. EM lion.krischer@erdw.ethz.ch; yongki.aiman@gmail.com; tbartholomaus@uidaho.edu; stefanie.donner@bgr.de; vandriel@erdw.ethz.ch; kenneth.c.duru@gmail.com; kristinagarina@gmail.com; kilian@gessele.de; gunawantomy.pgr3@gmail.com; shable@geophysik.uni-muenchen.de; celine.hadziioannou@uni-hamburg.de; koymans@knmi.nl; jleeman@ucar.edu; lindner@vaw.baug.ethz.ch; okling92@gmail.com; megies@geophysik.uni-muenchen.de; ceri.nunn@gmail.com; rijalashim@gmail.com; salv_johannes@gmx.de; sujaniaasereth@gmail.com; ctape@alaska.edu; taufiqurrahman@hotmail.com; davofis123@gmail.com; joachim.wassermann@geophysik.uni-muenchen.de; flo.woelfl@web.de; mcbw00@gmail.com; wollherr@geophysik.uni-muenchen.de; heiner.igel@lmu.de RI Igel, Heiner/AAF-2865-2019; Igel, Heiner/E-9580-2010; Igel, Heiner/AAK-2038-2021 OI Igel, Heiner/0000-0002-7242-6399; Donner, Stefanie/0000-0001-7351-8079; Duru, Kenneth/0000-0002-5260-7942; Hadziioannou, Celine/0000-0002-5312-2226; Talavera-Soza, Sujania/0000-0003-0947-917X FU European Science FoundationEuropean Science Foundation (ESF)European Commission; EU FP7 VERCE; EU H2020 EPOS project; European Research Council (ERC-ADV Grant ROMY) FX The authors gratefully acknowledge the European Science Foundation for funding the TIme DEpendent Seismology (TIDES) project (coordinated by Andrea Morelli, University of Bologna). The idea for the seismo-live platform originated at the TIDES Meeting in Bertinoro 2015. The authors also gratefully acknowledge the support of the Leibniz Supercomputing Centre Munich (Anton Frank, Dieter Kranzlmuller) for their continuous support and the provision of computational resources. Additionally the authors are grateful for fruitful discussions and support in seismo-live's early phase within the EU FP7 VERCE and the EU H2020 EPOS project. H.I. acknowledges support from the European Research Council (ERC-ADV Grant ROMY). The authors acknowledge the contribution of Lane Johnson providing his original code solving Lamb's problem. CR Achterberg H, 2017, SOFTWARE CARPENTRY P Aiken JM, 2018, SEISMOL RES LETT, V89, P1165, DOI 10.1785/0220170246 Aki K., 2002, QUANTITATIVE SEISMOL [Anonymous], 2016, NATURE, V533, P437, DOI 10.1038/533437a Beyreuther M, 2010, SEISMOL RES LETT, V81, P530, DOI 10.1785/gssrl.81.3.530 Chamberlain CJ, 2018, SEISMOL RES LETT, V89, P173, DOI 10.1785/0220170151 Chen C, 2016, SEISMOL RES LETT, V87, P1384, DOI 10.1785/0220160019 Durand S, 2018, SEISMOL RES LETT, V89, P658, DOI 10.1785/0220170142 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Igel H., 2016, COMPUTATIONAL SEISMO Igel H., 2015, ENCY COMPLEXITY SYST JOHNSON LR, 1974, GEOPHYS J ROY ASTR S, V37, P99, DOI 10.1111/j.1365-246X.1974.tb02446.x Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 Krischer Lion, 2015, Computational Science and Discovery, V8, DOI 10.1088/1749-4699/8/1/014003 Krischer L, 2017, SEISMOL RES LETT, V88, P1127, DOI 10.1785/0220160210 Krischer L, 2016, GEOPHYS J INT, V207, P1003, DOI 10.1093/gji/ggw319 Krischer L, 2015, SEISMOL RES LETT, V86, P1198, DOI 10.1785/0220140248 Lecocq T, 2014, SEISMOL RES LETT, V85, P715, DOI 10.1785/0220130073 MacCarthy JK, 2014, SEISMOL RES LETT, V85, P905, DOI 10.1785/0220140013 Megies T, 2011, ANN GEOPHYS-ITALY, V54, P47, DOI 10.4401/ag-4838 Nissen-Meyer T, 2014, SOLID EARTH, V5, P425, DOI 10.5194/se-5-425-2014 Perkel JM, 2015, NATURE, V518, P125, DOI 10.1038/518125a Salvermoser J, 2017, SEISMOL RES LETT, V88, P935, DOI 10.1785/0220160184 Schmelzbach C, 2018, GEOPHYSICS, V83, pWC53, DOI 10.1190/GEO2017-0492.1 Shen H, 2014, NATURE, V515, P151, DOI 10.1038/515151a van Driel M, 2015, SOLID EARTH, V6, P701, DOI 10.5194/se-6-701-2015 van Rossum Jr G, 2011, PYTHON LANGUAGE REFE NR 27 TC 5 Z9 5 U1 4 U2 13 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0895-0695 EI 1938-2057 J9 SEISMOL RES LETT JI Seismol. Res. Lett. PD NOV-DEC PY 2018 VL 89 IS 6 BP 2413 EP 2419 DI 10.1785/0220180167 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA GY7HX UT WOS:000448780200046 DA 2021-04-21 ER PT J AU Aebischer, J Brivio, I Celis, A Evans, JA Jiang, Y Kumar, J Pan, XY Porod, W Rosiek, J Shih, D Staub, F Straub, DM van Dyk, D Vicente, A AF Aebischer, Jason Brivio, Ilaria Celis, Alejandro Evans, Jared A. Jiang, Yun Kumar, Jacky Pan, Xuanyou Porod, Werner Rosiek, Janusz Shih, David Staub, Florian Straub, David M. van Dyk, Danny Vicente, Avelino TI WCxf : An exchange format for Wilson coefficients beyond the Standard Model SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE High energy physics and computing; Models beyond the standard model ID EFFECTIVE-FIELD THEORY; LOOP CALCULATIONS; FLAVOR; FEYNARTS; PROGRAM; SPHENO; MSSM AB We define a data exchange format for numerical values of Wilson coefficients of local operators parameterising low-energy effects of physics beyond the Standard Model. The format facilitates interfacing model-specific Wilson coefficient calculators, renormalisation group (RG) runners, and observable calculators. It is designed to be unambiguous (defining a non-redundant set of operators with fixed normalisation in each basis), extensible (allowing the addition of new EFTs or bases by the user), and robust (being based on industry standard file formats with parsers implemented in many programming languages). We have implemented the format for the Standard Model EFT (SMEFT) and for the weak effective theory (WET) below the electroweak scale and have added interfaces to a number of public codes dealing with SMEFT or WET. We also provide command-line utilities and a Python module for convenient manipulation of WCxf files, including translation between different bases and matching from SMEFT to WET. (C) 2018 Elsevier B.V. All rights reserved. C1 [Aebischer, Jason; Pan, Xuanyou; Straub, David M.] TUM, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Brivio, Ilaria; Jiang, Yun] Univ Copenhagen, Niels Bohr Inst, Niels Bohr Int Acad & Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark. [Celis, Alejandro] Ludwig Maximilians Univ Munchen, Fak Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany. [Evans, Jared A.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Porod, Werner] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany. [Rosiek, Janusz] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland. [Shih, David] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. [Staub, Florian] Karlsruhe Inst Technol, ITP, Engesserstr 7, D-76128 Karlsruhe, Germany. [Staub, Florian] Karlsruhe Inst Technol, IKP, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. [van Dyk, Danny] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85748 Garching, Germany. [Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain. [Kumar, Jacky] Harish Chandra Res Inst, Chhatnag Rd, Allahabad 211019, Uttar Pradesh, India. RP Straub, DM (corresponding author), TUM, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. EM david.straub@tum.de RI Brivio, Ilaria/ABD-6976-2020; Vicente, Avelino/A-6905-2017; Jiang, Yun/E-4869-2015 OI Brivio, Ilaria/0000-0002-0396-5866; Vicente, Avelino/0000-0002-1137-4695; Staub, Florian/0000-0001-5911-5804; Straub, David/0000-0001-5762-7339; Jiang, Yun/0000-0002-4898-0787; Kumar, Jacky/0000-0001-9053-0731; Porod, Werner/0000-0002-0248-6556; Rosiek, Janusz/0000-0002-1653-1274 FU DFG cluster of excellence "Origin and Structure of the Universe"German Research Foundation (DFG); DFGGerman Research Foundation (DFG)European Commission [BU 1391/2-1, PO 1337-7/1]; Villum Foundation, NBIA; Discovery Centre at Copenhagen University; Danish National Research Foundation (DNRF91); "Juan de la Cierva" program - Spanish MINECO [27-13-463B-731]; MINECO [FPA2014-58183-P, FPA2017-85216-P, SEV-2014-0398]; Generalitat ValencianaGeneralitat ValencianaEuropean Commission [PROMETEOII/ 2014/084]; Deutsche Forschungsgemeinschaft (DFG) within the Emmy Noether programmeGerman Research Foundation (DFG) [DY 130/1-1]; DFG Collaborative Research Center 110 "Symmetries and the Emergence of Structure in QCD"; National Science Center, PolandNational Science Centre, Poland [DEC-2015/19/13/ST2/02848, DEC-2015/18/M/ST2/00054]; ERC Recognition Award of the Helmholtz Association [ERC-RA-0008] FX The work of D.S., J.A., and X.P. was supported by the DFG cluster of excellence "Origin and Structure of the Universe". The work of A.C. was supported by the DFG grant BU 1391/2-1. I.B. and Y.J. were supported by the Villum Foundation, NBIA, the Discovery Centre at Copenhagen University and the Danish National Research Foundation (DNRF91). A.V. acknowledges financial support from the "Juan de la Cierva" program (27-13-463B-731) funded by the Spanish MINECO as well as from the grants FPA2014-58183-P, FPA2017-85216-P and SEV-2014-0398 (MINECO), and PROMETEOII/ 2014/084 (Generalitat Valenciana). D.v.D. is supported by the Deutsche Forschungsgemeinschaft (DFG) within the Emmy Noether programme under grant DY 130/1-1 and through the DFG Collaborative Research Center 110 "Symmetries and the Emergence of Structure in QCD". The work of J.R. was supported in part by the National Science Center, Poland, under research grants DEC-2015/19/13/ST2/02848 and DEC-2015/18/M/ST2/00054. W.P. was supported by the DFG, project no. PO 1337-7/1. F.S. was supported by the ERC Recognition Award ERC-RA-0008 of the Helmholtz Association. I.B. and Y.J. also thank Michael Trott for valuable discussions and suggestions in designing the SMEFTsim interface. A.C. and A.V. thank Javier Fuentes-Martin and Javier Virto for their collaboration in the development of DsixTools. D.S. thanks Alex Arbey, Christoph Bobeth, Nazila Mahmoudi, Ayan Paul, and Mauro Valli for useful discussions. CR ABBOTT LF, 1980, PHYS REV D, V22, P2208, DOI 10.1103/PhysRevD.22.2208 Aebischer J., 2018, ARXIV180405033HEPPH Aebischer J, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2016)037 Aebischer J, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2017)158 Allanach BC, 2009, COMPUT PHYS COMMUN, V180, P8, DOI 10.1016/j.cpc.2008.08.004 Alloul A, 2014, COMPUT PHYS COMMUN, V185, P2250, DOI 10.1016/j.cpc.2014.04.012 Alonso R, 2014, PHYS LETT B, V734, P302, DOI 10.1016/j.physletb.2014.05.065 Alonso R, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2014)159 Alwall J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)079 Bishara F., 2017, ARXIV170802678HEPPH Bjornson Z., MYAML Brivio I., 2017, ARXIV170608945HEPPH Brivio I., SMEFTSIM Brivio I., 2017, ARXIV170906492HEPPH BUCHMULLER W, 1986, NUCL PHYS B, V268, P621, DOI 10.1016/0550-3213(86)90262-2 Celis A., DSIXTOOLS Celis A, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-4967-6 Christensen ND, 2009, COMPUT PHYS COMMUN, V180, P1614, DOI 10.1016/j.cpc.2009.02.018 Criado JC, 2018, COMPUT PHYS COMMUN, V227, P42, DOI 10.1016/j.cpc.2018.02.016 D'Ambrosio G, 2002, NUCL PHYS B, V645, P155, DOI 10.1016/S0550-3213(02)00836-2 de Blas J., 2017, ARXIV171110391HEPPH de Florian D., 2016, HDB LHC HIGGS CROSS, DOI [10.23731/CYRM-2017-002, DOI 10.23731/CYRM-2017-002] Dedes A, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2017)143 Dedes A., SMEFT FEYNMAN RULES Degrande C, 2012, COMPUT PHYS COMMUN, V183, P1201, DOI 10.1016/j.cpc.2012.01.022 Evans J. A., FORMFLAVO Evans J. A., 2016, ARXIV160600003HEPPH Falkowski A, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3806-x Grzadkowski B, 2010, J HIGH ENERGY PHYS, DOI [10.1007/JHEP10(2010)85, 10.1007/JHEP10(2010)085] Hahn T, 1999, COMPUT PHYS COMMUN, V118, P153, DOI 10.1016/S0010-4655(98)00173-8 Hahn T, 2004, NUCL PHYS B-PROC SUP, V135, P333, DOI 10.1016/j.nuclphysbps.2004.09.018 Hahn T, 2001, COMPUT PHYS COMMUN, V140, P418, DOI 10.1016/S0010-4655(01)00290-9 Hahn T, 2000, NUCL PHYS B-PROC SUP, V89, P231, DOI 10.1016/S0920-5632(00)00848-3 Hahn T., 2005, 2005 INT LIN COLL WO Henning B., 2017, J HIGH ENERGY PHYS, V8, DOI [10.1007/JHEP08(2017)016, DOI 10.1007/JHEP08(2017)016] Jenkins E. E., 2017, ARXIV171105270HEPPH Jenkins E. E., 2017, ARXIV170904486HEPPH Jenkins EE, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2014)035 Jenkins EE, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2013)087 Lehman L, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.125023 Mahmoudi F, 2008, COMPUT PHYS COMMUN, V178, P745, DOI 10.1016/j.cpc.2007.12.006 Mahmoudi F, 2012, COMPUT PHYS COMMUN, V183, P285, DOI 10.1016/j.cpc.2011.10.006 Nejad BC, 2014, J PHYS CONF SER, V523, DOI 10.1088/1742-6596/523/1/012050 Patrignani C, 2016, CHINESE PHYS C, V40, DOI 10.1088/1674-1137/40/10/100001 Porod W, 2003, COMPUT PHYS COMMUN, V153, P275, DOI 10.1016/S0010-4655(03)00222-4 Porod W, 2012, COMPUT PHYS COMMUN, V183, P2458, DOI 10.1016/j.cpc.2012.05.021 Porod W., FLAVORKIT Porod W, 2014, EUR PHYS J C, V74, P1, DOI 10.1140/epjc/s10052-014-2992-2 Skands P. Z., 2004, HIGH ENERG PHYS, V7, DOI 10.1088/1126-6708/2004/07/036 Staub F., 2008, ARXIV08060538HEPPH Staub F, 2014, COMPUT PHYS COMMUN, V185, P1773, DOI 10.1016/j.cpc.2014.02.018 Staub F, 2013, COMPUT PHYS COMMUN, V184, P1792, DOI 10.1016/j.cpc.2013.02.019 Staub F, 2011, COMPUT PHYS COMMUN, V182, P808, DOI 10.1016/j.cpc.2010.11.030 Staub F, 2010, COMPUT PHYS COMMUN, V181, P1077, DOI 10.1016/j.cpc.2010.01.011 Straub D.M., FLAVIO FLAVOUR PHENO, DOI [10.5281/zenodo.594587, DOI 10.5281/ZENODO.594587] van Dyk D., EOS HEP PROGRAMM FLA WEINBERG S, 1979, PHYS REV LETT, V43, P1566, DOI 10.1103/PhysRevLett.43.1566 NR 57 TC 36 Z9 36 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV PY 2018 VL 232 BP 71 EP 83 DI 10.1016/j.cpc.2018.05.022 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA GR0FQ UT WOS:000442190200006 DA 2021-04-21 ER PT J AU Lian, C Hu, SQ Guan, MX Meng, S AF Lian, Chao Hu, Shi-Qi Guan, Meng-Xue Meng, Sheng TI Momentum-resolved TDDFT algorithm in atomic basis for real time tracking of electronic excitation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ORDER HARMONIC-GENERATION; CHARGE-TRANSFER DYNAMICS; SOLAR-CELLS; 1ST-PRINCIPLES ELECTRON; NONADIABATIC DYNAMICS; MOLECULAR-DYNAMICS; PYTHON FRAMEWORK; LASER FIELDS; APPROXIMATION AB Ultrafast electronic dynamics in solids lies at the core of modern condensed matter and materials physics. To build up a practical ab initio method for studying solids under photoexcitation, we develop a momentum-resolved real-time time dependent density functional theory (rt-TDDFT) algorithm using numerical atomic basis, together with the implementation of both the length and vector gauge of the electromagnetic field. When applied to simulate elementary excitations in two-dimensional materials such as graphene, different excitation modes, only distinguishable in momentum space, are observed. The momentum-resolved rt-TDDFT is important and computationally efficient for the study of ultrafast dynamics in extended systems. Published by AIP Publishing. C1 [Lian, Chao; Hu, Shi-Qi; Guan, Meng-Xue; Meng, Sheng] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Lian, Chao; Hu, Shi-Qi; Guan, Meng-Xue; Meng, Sheng] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Meng, Sheng] Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China. RP Meng, S (corresponding author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.; Meng, S (corresponding author), Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.; Meng, S (corresponding author), Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China. EM smeng@iphy.ac.cn RI Lian, Chao/N-5909-2016; Meng, Sheng/A-7171-2010 OI Lian, Chao/0000-0002-2583-9334; Meng, Sheng/0000-0002-1553-1432 FU MOST [2016YFA0300902, 2015CB921001]; NSFCNational Natural Science Foundation of China (NSFC) [11774396, 11474328, 91850120]; CASChinese Academy of Sciences [XDB07030100] FX We acknowledge partial financial support from MOST (Grant Nos. 2016YFA0300902 and 2015CB921001), NSFC (Grant Nos. 11774396, 11474328, and 91850120), and CAS (Grant No. XDB07030100). CR Agostini F, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4908133 Andrade X, 2015, PHYS CHEM CHEM PHYS, V17, P31371, DOI 10.1039/c5cp00351b Barbry M, 2015, NANO LETT, V15, P3410, DOI 10.1021/acs.nanolett.5b00759 BECKE AD, 1988, PHYS REV A, V38, P3098, DOI 10.1103/PhysRevA.38.3098 Bertsch GF, 2000, PHYS REV B, V62, P7998, DOI 10.1103/PhysRevB.62.7998 Bruner A, 2016, J CHEM THEORY COMPUT, V12, P3741, DOI 10.1021/acs.jctc.6b00511 Castro A, 2006, PHYS STATUS SOLIDI B, V243, P2465, DOI 10.1002/pssb.200642067 Chapman CT, 2013, J PHYS CHEM A, V117, P2687, DOI 10.1021/jp312525j Chapman CT, 2011, J PHYS CHEM LETT, V2, P1189, DOI 10.1021/jz200339y Ding FZ, 2015, J CHEM PHYS, V143, DOI 10.1063/1.4930985 Ding FZ, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4906083 Ding FZ, 2014, J CHEM PHYS, V140, DOI 10.1063/1.4884388 Dion M, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.246401 Donati G, 2018, J PHYS CHEM C, V122, P10621, DOI 10.1021/acs.jpcc.8b02425 Donati G, 2017, J PHYS CHEM LETT, V8, P5283, DOI 10.1021/acs.jpclett.7b02320 Donati G, 2017, J PHYS CHEM C, V121, P15368, DOI 10.1021/acs.jpcc.7b04451 Donati G, 2016, J PHYS CHEM A, V120, P7255, DOI 10.1021/acs.jpca.6b06419 Elliott P, 2016, NEW J PHYS, V18, DOI 10.1088/1367-2630/18/1/013014 Elliott P, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.266404 Fernando RG, 2015, J CHEM THEORY COMPUT, V11, P646, DOI 10.1021/ct500943m Fischer SA, 2015, J CHEM THEORY COMPUT, V11, P4294, DOI 10.1021/acs.jctc.5b00473 Ganeev RA, 2015, J APPL PHYS, V117, DOI 10.1063/1.4905902 Gao SW, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4922490 Gao Y, 2011, SOLID STATE COMMUN, V151, P1009, DOI 10.1016/j.ssc.2011.05.001 Goings JJ, 2018, WIRES COMPUT MOL SCI, V8, DOI 10.1002/wcms.1341 Goings JJ, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4962422 Hack MD, 2000, J PHYS CHEM A, V104, P7917, DOI 10.1021/jp001629r Haruyama J, 2012, PHYS REV A, V85, DOI 10.1103/PhysRevA.85.062511 Haruyama J, 2012, PHYS REV A, V85, DOI 10.1103/PhysRevA.85.012516 Heslar J, 2007, INT J QUANTUM CHEM, V107, P3159, DOI 10.1002/qua.21491 Hu CP, 2013, PHYS REV B, V87, DOI 10.1103/PhysRevB.87.035421 Isborn CM, 2007, J CHEM PHYS, V126, DOI 10.1063/1.2713391 Jiao Y, 2013, CHEM PHYS LETT, V586, P97, DOI 10.1016/j.cplett.2013.09.008 Jiao Y, 2011, PHYS CHEM CHEM PHYS, V13, P13196, DOI 10.1039/c1cp20540d Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Kasper JM, 2018, J CHEM THEORY COMPUT, V14, P1998, DOI 10.1021/acs.jctc.7b01279 Krasheninnikov AV, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.016104 Krausz F, 2009, REV MOD PHYS, V81, P163, DOI 10.1103/RevModPhys.81.163 Krieger K, 2015, J CHEM THEORY COMPUT, V11, P4870, DOI 10.1021/acs.jctc.5b00621 Kruchinin SY, 2018, REV MOD PHYS, V90, DOI 10.1103/RevModPhys.90.021002 LEE CT, 1988, PHYS REV B, V37, P785, DOI 10.1103/PhysRevB.37.785 Lestrange PJ, 2015, J CHEM PHYS, V143, DOI 10.1063/1.4937410 Li XS, 2005, PHYS CHEM CHEM PHYS, V7, P233, DOI 10.1039/b415849k Li XS, 2005, J CHEM PHYS, V123, DOI 10.1063/1.2008258 LIAN C, 2016, PHYS REV B, V94, DOI DOI 10.1103/PHYSREVB.94.184310 Liang W, 2012, J PHYS CHEM A, V116, P1884, DOI 10.1021/jp2123899 Lion C, 2018, ADV THEOR SIMUL, V1, DOI 10.1002/adts.201800055 Lopata K, 2012, J CHEM THEORY COMPUT, V8, P3284, DOI 10.1021/ct3005613 Lopata K, 2013, J CHEM THEORY COMPUT, V9, P4939, DOI 10.1021/ct400569s Lopata K, 2011, J CHEM THEORY COMPUT, V7, P1344, DOI 10.1021/ct200137z Ma J, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms10107 Ma W, 2014, J PHYS CHEM C, V118, P16447, DOI 10.1021/jp410982e Ma W, 2013, PHYS CHEM CHEM PHYS, V15, P17187, DOI 10.1039/c3cp52458b Maitra NT, 2005, INT J QUANTUM CHEM, V102, P573, DOI 10.1002/qua.20465 Maitra NT, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.023002 Manjavacas A, 2014, ACS NANO, V8, P7630, DOI 10.1021/nn502445f Marques M. A. L., 2012, LECT NOTES PHYS, V837 Marques MAL, 2003, COMPUT PHYS COMMUN, V151, P60, DOI 10.1016/S0010-4655(02)00686-0 Meng S, 2008, J CHEM PHYS, V129, DOI 10.1063/1.2960628 Meng S, 2008, NANO LETT, V8, P3266, DOI 10.1021/nl801644d Meng S, 2010, NANO LETT, V10, P1238, DOI 10.1021/nl100442e Miyamoto Y, 2007, PHYS STATUS SOLIDI A, V204, P1925, DOI 10.1002/pssa.200675331 Miyamoto Y, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.126104 Miyamoto Y, 2013, APPL PHYS LETT, V103, DOI 10.1063/1.4820781 Miyamoto Y, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.208302 Miyamoto Y, 2007, APPL PHYS LETT, V91, DOI 10.1063/1.2785952 MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI 10.1103/PhysRevB.13.5188 Nguyen PD, 2012, J PHYS CHEM LETT, V3, P2898, DOI 10.1021/jz301042f Nguyen TS, 2015, J CHEM THEORY COMPUT, V11, P2918, DOI 10.1021/acs.jctc.5b00262 Nobusada K, 2004, PHYS REV A, V70, DOI 10.1103/PhysRevA.70.043411 Ordejon P, 1996, PHYS REV B, V53, P10441, DOI 10.1103/PhysRevB.53.R10441 Otobe T, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.045124 Otobe T, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.165104 Otobe T, 2009, J PHYS-CONDENS MAT, V21, DOI 10.1088/0953-8984/21/6/064224 Ozaki T, 2003, PHYS REV B, V67, DOI 10.1103/PhysRevB.67.155108 Parandekar PV, 2006, J CHEM THEORY COMPUT, V2, P229, DOI 10.1021/ct050213k Pellegrini C, 2016, REV MOD PHYS, V88, DOI 10.1103/RevModPhys.88.015006 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 PERDEW JP, 1981, PHYS REV B, V23, P5048, DOI 10.1103/PhysRevB.23.5048 Petrone A, 2014, PHYS CHEM CHEM PHYS, V16, P24457, DOI 10.1039/c4cp04000g Provorse MR, 2015, J CHEM THEORY COMPUT, V11, P4791, DOI 10.1021/acs.jctc.5b00559 Qian XF, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.035408 Raghunathan S, 2012, J CHEM THEORY COMPUT, V8, P806, DOI 10.1021/ct200905z Ren J, 2010, MOL PHYS, V108, P1829, DOI 10.1080/00268976.2010.491489 Repisky M, 2015, J CHEM THEORY COMPUT, V11, P980, DOI 10.1021/ct501078d Rohringer N, 2006, PHYS REV A, V74, DOI 10.1103/PhysRevA.74.042512 Roman-Perez G, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.096102 RUNGE E, 1984, PHYS REV LETT, V52, P997, DOI 10.1103/PhysRevLett.52.997 Sato SA, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.205413 Sato SA, 2015, J CHEM PHYS, V143, DOI 10.1063/1.4937379 Schlegel HB, 2001, J CHEM PHYS, V114, P9758, DOI 10.1063/1.1372182 Schleife A, 2012, J CHEM PHYS, V137, DOI 10.1063/1.4758792 Shinohara Y, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.155110 Shinohara Y, 2010, J PHYS-CONDENS MAT, V22, DOI 10.1088/0953-8984/22/38/384212 Silaeva EP, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.155401 Soler JM, 2002, J PHYS-CONDENS MAT, V14, P2745, DOI 10.1088/0953-8984/14/11/302 Song P, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.121410 Song P, 2011, J CHEM PHYS, V134, DOI 10.1063/1.3554420 Tong XM, 2001, PHYS REV A, V64, DOI 10.1103/PhysRevA.64.013417 Tong XM, 1998, PHYS REV A, V57, P452, DOI 10.1103/PhysRevA.57.452 Tong XM, 1997, CHEM PHYS, V217, P119, DOI 10.1016/S0301-0104(97)00063-3 Townsend E, 2012, NANO LETT, V12, P429, DOI 10.1021/nl2037613 TROULLIER N, 1991, PHYS REV B, V43, P8861, DOI 10.1103/PhysRevB.43.8861 Tsolakidis A, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.235416 TULLY JC, 1990, J CHEM PHYS, V93, P1061, DOI 10.1063/1.459170 Tussupbayev S, 2015, J CHEM THEORY COMPUT, V11, P1102, DOI 10.1021/ct500763y Ullrich CA, 2006, J CHEM PHYS, V125, DOI 10.1063/1.2406069 Wachter G, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.087401 Williams-Young D, 2016, J CHEM THEORY COMPUT, V12, P5333, DOI 10.1021/acs.jctc.6b00693 Yabana K, 2006, PHYS STATUS SOLIDI B, V243, P1121, DOI 10.1002/pssb.200642005 Yabana K, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.045134 Yabana K, 1996, PHYS REV B, V54, P4484, DOI 10.1103/PhysRevB.54.4484 Yamamoto T, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.121409 Yan J, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.235430 Yan J, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.216602 Yan L, 2016, ACS NANO, V10, P5452, DOI 10.1021/acsnano.6b01840 Yost DC, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.115134 Zhang H, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.201409 Zhang H, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.033402 Zhang H, 2009, APPL PHYS LETT, V95, DOI 10.1063/1.3196317 Zhang JF, 2017, ADV SCI, V4, DOI 10.1002/advs.201600343 Zheng J, 2016, J PHYS CHEM C, V120, P1375, DOI 10.1021/acs.jpcc.5b09921 NR 123 TC 6 Z9 6 U1 5 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2018 VL 149 IS 15 AR 154104 DI 10.1063/1.5036543 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA GY0NB UT WOS:000448216600006 PM 30342439 DA 2021-04-21 ER PT J AU Jonsson, M AF Jonsson, Marius TI Standard error estimation by an automated blocking method SO PHYSICAL REVIEW E LA English DT Article ID BOOTSTRAP AB The sample mean (X) over bar is probably the most popular estimator of the expected value in all sciences and var((X) over bar) measures the error (standard- and mean-square-errors). Here, an alternative approach to estimation of var(X) for time series data is presented. The method has an accuracy similar to dependent bootstrapping, but scales in O(n) time, and applies to stationary time series, including stationary Markov chains. The computational complexity is bounded by 12n floating point operations, but this can be reduced to n + O(1) in large computations. Convergence in relative error squared is faster than n(-1/2) and the method is insensitive to the probability distribution of the observations. It is proven that a small part of the correlation structure is relevant to the convergence rate of the method. From this, proof of the Blocking method [Flyvbjerg and Petersen, J. Chem. Phys. 91, 461 (1989)] follows as a corollary. The result is also used to propose a hypothesis test surveying the relevant part of the correlation structure. It yields a fully automatic method which is sufficiently robust to operate without supervision. An algorithm and sample code showing the implementation is available for PYTHON, C++, and R [www.github.com/computative/block]. Method validation using autoregressive AR(1) and AR(2) processes and physics applications is included. Method self-evaluation is provided by bias and mean-square-error statistics. The method is easily adapted to multithread applications and data larger than computing cluster memory, such as ultralong time series or data streams. This way, the paper provides a stringent and modern treatment of the Blocking method using rigorous linear algebra, multivariate probability theory, real analysis, and Fisherian statistical inference. C1 [Jonsson, Marius] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. RP Jonsson, M (corresponding author), Univ Oslo, Dept Phys, N-0316 Oslo, Norway. CR Agresti A, 2015, FDN LINEAR GEN LINEA [Anonymous], 2011, PHYS REV A, V83 Borowski Ephraim J., 1989, DICT MATH BRADLEY RC, 1987, ROCKY MT J MATH, V17, P95, DOI 10.1216/RMJ-1987-17-1-95 Brockwell P. J., 2016, INTRO TIME SERIES FO DeGroot M.H., 2014, PROBABILITY STAT Devore JL, 2012, MODERN MATH STAT APP EFRON B, 1986, AM STAT, V40, P1, DOI 10.2307/2683111 FLYVBJERG H, 1989, J CHEM PHYS, V91, P461, DOI 10.1063/1.457480 Gardiner C.W., 1985, HDB STOCHASTIC METHO, V2nd Gelman A., 2014, BAYESIAN DATA ANAL Hazewinkel M., 1989, ENCY MATH Hazewinkel M., 1993, ENCY MATH IBRAGIMOV IA, 1975, TEOR VER PRIM, V20, P134 Jones G.L., 2004, PROBAB SURVEY, V1, P299, DOI [DOI 10.1214/154957804100000051, 10.1214/154957804100000051] Lay D., 2012, LINEAR ALGEBRA ITS A Lee RM, 2011, PHYS REV E, V83, DOI 10.1103/PhysRevE.83.066706 Mathai A., 1992, QUADRATIC FORMS RAND McDonald J. N., 2013, COURSE REAL ANAL METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114 PARR WC, 1985, STAT PROBABIL LETT, V3, P97, DOI 10.1016/0167-7152(85)90033-1 Plischke M., 2006, EQUILIBRIUM STAT PHY Politis D. N., 2006, ECON REV, V23, P53 POLITIS DN, 1994, J AM STAT ASSOC, V89, P1303, DOI 10.2307/2290993 Riley K. F., 2011, ESSENTIAL MATH METHO Schafer J, 2005, STAT APPL GENET MO B, V4, DOI 10.2202/1544-6115.1175 Shumway R. H., 2017, TIME SERIES ANAL ITS Stein C., 1956, P 3 BERK S MATH STAT, V1, P197 Wolff U, 2004, COMPUT PHYS COMMUN, V156, P143, DOI 10.1016/S0010-4655(03)00467-3 NR 29 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD OCT 15 PY 2018 VL 98 IS 4 AR 043304 DI 10.1103/PhysRevE.98.043304 PG 17 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA GW9KM UT WOS:000447305400011 OA Green Published DA 2021-04-21 ER PT J AU Li, L Lange, CF Xu, Z Jiang, PY Ma, YS AF Li, Lei Lange, Carlos F. Xu, Zhen Jiang, Pingyu Ma, Yongsheng TI Feature-based intelligent system for steam simulation using computational fluid dynamics SO ADVANCED ENGINEERING INFORMATICS LA English DT Article DE Artificial intelligence; Feature-based modeling; Computational fluid dynamics; Robust simulation; Information consistency ID DESIGN; MODEL AB In the development of products involving fluids, computational fluid dynamics (CFD) has been increasingly applied to investigate the flow associated with various product operating conditions or product designs. The batch simulation is usually conducted when CFD is heavily used, which is not able to respond to the changes in flow regime when the fluid domain changes. In order to overcome this defect, a rule-based intelligent CFD simulation system for steam simulation is proposed to analyze the specific product design and generate the corresponding robust simulation model with accurate results. The rules used in the system are based on physical knowledge and CFD best practices which make this system easy to be applied in other application scenarios by changing the relevant knowledge base. Fluid physics features and dynamic physics features are used to model the intelligent functions of the system. Incorporating CAE boundary features, the CFD analysis view is fulfilled, which maintains the information consistency in a multi-view feature modeling environment. The prototype software tool is developed by Python 3 with separated logics and settings. The effectiveness of the proposed system is proven by the case study of a disk-type gate valve and a pipe reducer in a piping system. C1 [Li, Lei; Lange, Carlos F.; Ma, Yongsheng] Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada. [Xu, Zhen] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB, Canada. [Jiang, Pingyu] Xi An Jiao Tong Univ, Sch Mech Engn, Xian, Shaanxi, Peoples R China. RP Ma, YS (corresponding author), Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada. EM yongsheng.ma@ualberta.ca RI Ma, Yongsheng/ABE-8840-2020 OI Ma, Yongsheng/0000-0002-6155-0167; Li, Lei/0000-0002-5259-407X FU Natural Sciences and Engineering Research Council of Canada (NSERC)Natural Sciences and Engineering Research Council of Canada (NSERC); China Scholarship Council (CSC)China Scholarship Council; University of AlbertaUniversity of Alberta; Alberta Innovates Technology Futures (AITF); RGL Reservoir Management FX The authors would like to thank Natural Sciences and Engineering Research Council of Canada (NSERC), RGL Reservoir Management, China Scholarship Council (CSC), University of Alberta and Alberta Innovates Technology Futures (AITF) for the financial support. CR Ahmed AQ, 2017, APPL THERM ENG, V110, P821, DOI 10.1016/j.applthermaleng.2016.08.217 Bathe KJ, 2009, COMPUT STRUCT, V87, P604, DOI 10.1016/j.compstruc.2009.01.017 Blevins RD, 1992, APPL FLUID DYNAMICS Bonte MHA, 2008, STRUCT MULTIDISCIP O, V35, P571, DOI 10.1007/s00158-007-0206-3 Bronsvoort WF, 2004, COMPUT AIDED DESIGN, V36, P929, DOI 10.1016/j.cad.2003.09.008 C. ANSYS, 2013, ANSYS CFX SOLV MOD G Cao Y, 2016, COMPUT FLUIDS, V137, P36, DOI 10.1016/j.compfluid.2016.07.013 Casey M., 2000, BEST PRACTICE GUIDEL Cengel Y., 2014, HEAT MASS TRANSFER F Chan CK, 2003, COMPUT AIDED DESIGN, V35, P1315, DOI 10.1016/S0010-4485(03)00062-9 Cheng ZR, 2017, ADV ENG INFORM, V33, P1, DOI 10.1016/j.aei.2017.04.003 Deng YM, 2002, ENG COMPUT-GERMANY, V18, P80, DOI 10.1007/s003660200007 Ferziger JH., 2002, COMPUTATIONAL METHOD, V3rd, DOI [10.1007/978-3-642-56026-2, DOI 10.1007/978-3-642-56026-2] Gao SM, 2010, COMPUT AIDED DESIGN, V42, P1178, DOI 10.1016/j.cad.2010.05.010 Garcia M, 2015, INT J INTERACT DES M, V9, P235, DOI 10.1007/s12008-014-0236-1 GOMES AJP, 1991, COMPUT GRAPH, V15, P217, DOI 10.1016/0097-8493(91)90075-S Gross C, 2011, BASIN FUTURES: WATER REFORM IN THE MURRAY-DARLING BASIN, P149 Hamri O, 2010, ADV ENG SOFTW, V41, P1211, DOI 10.1016/j.advengsoft.2010.07.003 Salvador FJ, 2014, INT J MULTIPHAS FLOW, V65, P108, DOI 10.1016/j.ijmultiphaseflow.2014.06.003 Khabbazi MR, 2018, ASSEMBLY AUTOM, V38, P97, DOI 10.1108/AA-07-2016-084 Lee SH, 2005, COMPUT AIDED DESIGN, V37, P941, DOI 10.1016/j.cad.2004.09.021 Li L, 2016, COMPUT AIDED DESIGN, V13, P208, DOI DOI 10.1080/ Li L., 2018, COMPUT AIDED DES APP, V15, P643, DOI [10.1080/16864360.2018, DOI 10.1080/16864360.2018] Li LL, 2017, ANN OTO RHINOL LARYN, V126, P236, DOI 10.1177/0003489416672476 Liu JK, 2017, STRUCT MULTIDISCIP O, V55, P1281, DOI 10.1007/s00158-016-1565-4 Liu JK, 2017, COMPUT METHOD APPL M, V324, P595, DOI 10.1016/j.cma.2017.06.021 Liu JK, 2015, STRUCT MULTIDISCIP O, V52, P563, DOI 10.1007/s00158-015-1263-7 Liu JL, 2016, STOCH ENV RES RISK A, V30, P713, DOI 10.1007/s00477-015-1141-2 Ma YS, 2008, J INTELL MANUF, V19, P625, DOI 10.1007/s10845-008-0128-y Montgomery DC., 2012, DESIGN ANAL EXPT, V8 Mun DW, 2003, COMPUT AIDED DESIGN, V35, P1171, DOI 10.1016/S0010-4485(03)00022-8 Murena F, 2009, ATMOS ENVIRON, V43, P2303, DOI 10.1016/j.atmosenv.2009.01.038 Oberkampf WL, 2002, PROG AEROSP SCI, V38, P209, DOI 10.1016/S0376-0421(02)00005-2 Phillips TS, 2017, J COMPUT PHYS, V330, P46, DOI 10.1016/j.jcp.2016.11.002 Rezaeiha A, 2017, RENEW ENERG, V107, P373, DOI 10.1016/j.renene.2017.02.006 Sanfilippo EM, 2016, COMPUT AIDED DESIGN, V80, P9, DOI 10.1016/j.cad.2016.07.001 Shah J. J., 1991, Research in Engineering Design, V2, P93, DOI 10.1007/BF01579254 Shah J.J., 1995, PARAMETRIC FEATURE B Shah MS, 2012, CHEM ENG SCI, V71, P300, DOI 10.1016/j.ces.2011.11.022 Shephard MS, 2004, FINITE ELEM ANAL DES, V40, P1575, DOI 10.1016/j.finel.2003.11.004 Skousen PL., 2011, VALVE HDB, V3rd ed. Su J, 2017, DISCRETE CONT DYN-B, V22, P3421, DOI 10.3934/dcdsb.2017173 Tang S.-H., 2013, SEMANTIC MODELING IN, DOI [10.1007/978-1-4471-5073-2_4, DOI 10.1007/978-1-4471-5073-2_4] Tonomura O, 2004, CHEM ENG J, V101, P397, DOI 10.1016/j.cej.2003.10.022 Venkatakrishnan V., 1998, BARRIERS CHALLENGES, DOI [10.1007/978-94-011-5169-6, DOI 10.1007/978-94-011-5169-6] Versteeg H K, 2007, INTRO COMPUTATIONAL White FM., 2011, FLUID MECH-SOV RES Xia ZH, 2015, ADV ENG SOFTW, V87, P68, DOI 10.1016/j.advengsoft.2015.05.005 Yan X, 2000, COMPUT AIDED DESIGN, V32, P605, DOI 10.1016/S0010-4485(00)00045-2 Yin CG, 2012, ADV ENG INFORM, V26, P539, DOI 10.1016/j.aei.2012.02.010 NR 50 TC 4 Z9 4 U1 0 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1474-0346 EI 1873-5320 J9 ADV ENG INFORM JI Adv. Eng. Inform. PD OCT PY 2018 VL 38 BP 357 EP 369 DI 10.1016/j.aei.2018.08.011 PG 13 WC Computer Science, Artificial Intelligence; Engineering, Multidisciplinary SC Computer Science; Engineering GA HF6WJ UT WOS:000454378700027 DA 2021-04-21 ER PT J AU Xu, SK Morel, P Gurcan, OD AF Xu, Shaokang Morel, P. Gurcan, O. D. TI Logarithmically discretized model of bounce averaged gyrokinetics and its implications on tokamak turbulence SO PHYSICS OF PLASMAS LA English DT Article ID TRAPPED-ELECTRON; NUMERICAL-SIMULATION; DRIVEN TURBULENCE; ENERGY CASCADE; ZONAL FLOWS; ION MODES; PLASMAS; INSTABILITIES; PYTHON AB A logarithmically discretized model, which consists of writing the system in log polar coordinates in wave-number domain and reducing the nonlinear interactions to a sum over neighboring scales that satisfy the triad conditions, is proposed for bounce averaged gyrokinetics, where the energy dependence is kept over a semi-regular grid that allows quadrature calculations in order to guarantee quasi-neutrality. The resulting model is a cheaper implementation of nonlinear multi-scale physics involving trapped electron modes, trapped ion modes, and zonal flows, which can handle anisotropy. The resulting wave-number spectrum is anisotropic at large scales, where the energy injection is clearly anisotropic, but is isotropised rapidly, leading generally towards an isotropic k(-4) spectrum for spectral potential energy density for fully kinetic system and a k(-5) spectrum for the system with one adiabatic species. Zonal flow damping, which is necessary for reaching a steady state in this model, plays an important role along with electron adiabaticity. Interesting dynamics akin to predator-prey evolution is observed among zonal flows and similarly large scale but radially elongated structures. Published by AIP Publishing. C1 [Xu, Shaokang; Morel, P.; Gurcan, O. D.] UPMC Univ Paris 06, Univ Paris Sud, Univ Paris Saclay,PSL Res Univ, LPP,CNRS,Ecole Polytech,Observ Paris,Sorbonne Uni, F-91128 Palaiseau, France. RP Xu, SK (corresponding author), UPMC Univ Paris 06, Univ Paris Sud, Univ Paris Saclay,PSL Res Univ, LPP,CNRS,Ecole Polytech,Observ Paris,Sorbonne Uni, F-91128 Palaiseau, France. EM shaokang.xu@lpp.polytechnique.fr RI Gurcan, Ozgur D/A-1362-2013 OI Gurcan, Ozgur D/0000-0002-2278-1544 FU Chinese Scholarship Council (CSC)China Scholarship Council FX The authors would like to thank Professor E. Gravier, Dr. M. Lesur, Professor P.H. Diamond, and Professor T.S. Hahm for stimulating discussions and the participants and organizers of the 2017 Festival de Theorie in Aix en Provence. Mr. Shaokang Xu would like to thank the Chinese Scholarship Council (CSC) for the financial support that they provided for his Ph.D. studies, which this paper is a part of. CR Biferale L, 2003, ANNU REV FLUID MECH, V35, P441, DOI 10.1146/annurev.fluid.35.101101.161122 BIGLARI H, 1989, PHYS FLUIDS B-PLASMA, V1, P109, DOI 10.1063/1.859206 Brizard AJ, 2007, REV MOD PHYS, V79, P421, DOI 10.1103/RevModPhys.79.421 Citrin J, 2012, PHYS PLASMAS, V19, DOI 10.1063/1.4719697 COHEN BI, 1976, NUCL FUSION, V16, P971, DOI 10.1088/0029-5515/16/6/009 Dagum L, 1998, IEEE COMPUT SCI ENG, V5, P46, DOI 10.1109/99.660313 Dannert T, 2005, PHYS PLASMAS, V12, DOI 10.1063/1.1947447 Depret G, 2000, PLASMA PHYS CONTR F, V42, P949, DOI 10.1088/0741-3335/42/9/302 Diamond PH, 2005, PLASMA PHYS CONTR F, V47, pR35, DOI 10.1088/0741-3335/47/5/R01 Dif-Pradalier G, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.085004 Drouot T, 2015, PHYS PLASMAS, V22, DOI 10.1063/1.4927920 Drouot T, 2014, EUR PHYS J D, V68, DOI 10.1140/epjd/e2014-50151-2 Ernst DR, 2004, PHYS PLASMAS, V11, P2637, DOI 10.1063/1.1705653 Fong BH, 1999, PHYS PLASMAS, V6, P188, DOI 10.1063/1.873272 Garbet X, 2010, NUCL FUSION, V50, DOI 10.1088/0029-5515/50/4/043002 Gorler T, 2008, PHYS PLASMAS, V15, DOI 10.1063/1.3006086 Grandgirard V, 2008, COMMUN NONLINEAR SCI, V13, P81, DOI 10.1016/j.cnsns.2007.05.016 Gravier E, 2017, NUCL FUSION, V57, DOI 10.1088/1741-4326/aa8c4c Gravier E, 2016, PHYS PLASMAS, V23, DOI 10.1063/1.4962845 Gurcan OD, 2015, J PHYS A-MATH THEOR, V48, DOI 10.1088/1751-8113/48/29/293001 Gurcan OD, 2016, PHYS REV E, V94, DOI 10.1103/PhysRevE.94.033106 Gurcan OD, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.255002 Gurcan O. D., SPIRAL CHAINS UNPUB HAMMETT GW, 1993, PLASMA PHYS CONTR F, V35, P973, DOI 10.1088/0741-3335/35/8/006 Idomura Y, 2009, NUCL FUSION, V49, DOI 10.1088/0029-5515/49/6/065029 KADOMTSEV BB, 1971, NUCL FUSION, V11, P67, DOI 10.1088/0029-5515/11/1/010 Kim EJ, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.075003 KINGSBURY OT, 1994, PHYS PLASMAS, V1, P2319, DOI 10.1063/1.870629 KRAICHNAN RH, 1971, J FLUID MECH, V47, P525, DOI 10.1017/S0022112071001216 Krommes JA, 2012, ANNU REV FLUID MECH, V44, P175, DOI 10.1146/annurev-fluid-120710-101223 Kwon JM, 2012, NUCL FUSION, V52, DOI 10.1088/0029-5515/52/1/013004 L'vov VS, 1998, PHYS REV E, V58, P1811, DOI 10.1103/PhysRevE.58.1811 Lin Z, 1998, SCIENCE, V281, P1835, DOI 10.1126/science.281.5384.1835 Miki K, 2012, PHYS PLASMAS, V19, DOI 10.1063/1.4753931 Morel P, 2014, PLASMA PHYS CONTR F, V56, DOI 10.1088/0741-3335/56/1/015002 OHKITANI K, 1989, PROG THEOR PHYS, V81, P329, DOI 10.1143/PTP.81.329 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 PARKER SE, 1993, PHYS REV LETT, V71, P2042, DOI 10.1103/PhysRevLett.71.2042 Peeters AG, 2005, PHYS PLASMAS, V12, DOI 10.1063/1.1848111 Peterson P, 2009, INT J COMPUT SCI ENG, V4, P296, DOI 10.1504/IJCSE.2009.029165 REWOLDT G, 1990, PHYS FLUIDS B-PLASMA, V2, P318, DOI 10.1063/1.859320 TANG WM, 1977, PHYS FLUIDS, V20, P430, DOI 10.1063/1.861879 Xu SK, 2018, PHYS PLASMAS, V25, DOI 10.1063/1.5020145 XU XQ, 1991, PHYS FLUIDS B-PLASMA, V3, P627, DOI 10.1063/1.859862 NR 44 TC 1 Z9 1 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD OCT PY 2018 VL 25 IS 10 AR 102306 DI 10.1063/1.5049681 PG 14 WC Physics, Fluids & Plasmas SC Physics GA GY9OF UT WOS:000448976400030 DA 2021-04-21 ER PT J AU Szott, M Wang, Z Ruzic, DN AF Szott, M. Wang, Z. Ruzic, D. N. TI Reconstruction and analysis of exploding wire particle trajectories via automatic calibration of stereo images SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 22nd Biannual Topical Conference on High-Temperature Plasma Diagnostics (HTPD) CY APR 16-19, 2018 CL Gen Atom, San Diego, CA SP Appl Nanotools, DtAcq Solut, Palomar Sci Instruments, Sydor Technologies, TAE Technologies, Telops HO Gen Atom AB Quantitative understanding of the physics of dust or granular matter transport significantly impacts several aspects of burning plasma science and technology. This work takes machine vision techniques popular in robotics and self-driving cars and applies them to identification and analysis of microparticles generated from exploding wires. Using only the image frames and knowledge of the intrinsic properties of the cameras, a Python code was written to identify the particles, automatically calibrate the relative image positions, and extract trajectory data. After identifying approximately 50 particles based on the timing of secondary particle explosions, the eight point and random sample consensus algorithms were used to determine the geometric correlation between the cameras. Over 100 particle matches were found between the two camera views. These correlated trajectories were used in subsequent 3D track reconstruction and analysis of the physics behind the particle motion. The 3D reconstruction resulted in accurate positioning of the particles with respect to the experimental setup. The particle motion was consistent with the effects of a 1 g gravitational field modified by drag forces. The methods and analyses presented here can be used in many facets of high temperature plasma diagnostics. Published by AIP Publishing. C1 [Szott, M.; Ruzic, D. N.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Wang, Z.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Szott, M (corresponding author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. EM szott1@illinois.edu OI Wang, Zhehui/0000-0001-7826-4063 FU Department of Energy Office of Science Graduate Student Research ProgramUnited States Department of Energy (DOE) FX This work was supported by the Department of Energy Office of Science Graduate Student Research Program. CR Allan D, 2016, TRACKPY V0 3 2 Baylor L. R., 2010, IAEACN180 Boeglin WU, 2008, REV SCI INSTRUM, V79, DOI 10.1063/1.2965001 Crocker JC, 1996, J COLLOID INTERF SCI, V179, P298, DOI 10.1006/jcis.1996.0217 Dorf LA, 2006, REV SCI INSTRUM, V77, DOI 10.1063/1.2336790 FISCHLER MA, 1981, COMMUN ACM, V24, P381, DOI 10.1145/358669.358692 Hartley RI, 1997, IEEE T PATTERN ANAL, V19, P580, DOI 10.1109/34.601246 Mansfield DK, 2013, NUCL FUSION, V53, DOI 10.1088/0029-5515/53/11/113023 Prince S. J., 2012, COMPUTER VISION MODE Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/NMETH.2019, 10.1038/nmeth.2019] Ticos CM, 2006, PHYS PLASMAS, V13, DOI 10.1063/1.2356316 Wang ZH, 2007, PHYS PLASMAS, V14, DOI 10.1063/1.2778416 Wang ZB, 2016, 2016 INTERNATIONAL CONFERENCE ON ARCHITECTURE AND CIVIL ENGINEERING (ICACE 2016), P87 NR 13 TC 2 Z9 2 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD OCT PY 2018 VL 89 IS 10 AR 10K118 DI 10.1063/1.5039373 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA GZ1QT UT WOS:000449144500257 PM 30399670 DA 2021-04-21 ER PT J AU Neher, SH Klein, H Kuhs, WF AF Neher, Sigmund H. Klein, Helmut Kuhs, Werner F. TI A fast X-ray-diffraction-based method for the determination of crystal size distributions (FXD-CSD) SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE crystal size distribution; X-ray diffraction; FXD-CSD; spotty diffraction patterns; two-dimensional detectors ID DARWIN TRANSFER EQUATIONS; LINE-BROADENING ANALYSIS; GRAIN-SIZE; GROWTH; EXTINCTION; STRENGTH; VALIDITY; LIMIT; TEXTURE; STRESS AB A procedure for a fast X-ray-diffraction-based crystal size distribution analysis, named FXD-CSD, is presented. The method enables the user, with minimal sample preparation, to determine the crystal size distribution (CSD) of crystalline powders or polycrystalline materials, derived via an intensity scaling procedure from the diffraction intensities of single Bragg spots measured in spotty diffraction patterns with a two-dimensional detector. The method can be implemented on any single-crystal laboratory diffractometer and any synchrotron-based instrument with a fast-readout two-dimensional detector and a precise sample scanning axis. The intensity scaling is achieved via the measurement of a reference sample with known CSD under identical conditions; the only other prerequisite is that the structure (factors) of both sample and reference material must be known. The data analysis is done with a software package written in Python. A detailed account is given of each step of the procedure, including the measurement strategy and the demands on the spottiness of the diffraction rings, the data reduction and the intensity corrections needed, and the data evaluation and the requirements for the reference material. Using commercial laboratory X-ray equipment, several corundum crystal size fractions with precisely known CSD were measured and analysed to verify the accuracy and precision of the FXD-CSD method; a comparison of known and deduced CSDs shows good agreement both in mean size and in the shape of the size distribution. For the used material and diffractometer setup, the crystal size application range is one to several tens of micrometres; this range is highly material and X-ray source dependent and can easily be extended on synchrotron sources to cover the range from below 0.5 mu m to over 100 mu m. FXD-CSD has the potential to become a generally applicable method for CSD determination in the field of materials science and pharmaceutics, including development and quality management, as well as in various areas of fundamental research in physics, chemistry, chemical engineering, crystallography, the geological sciences and bio-crystallization. It can be used also under in situ conditions for studying crystal coarsening phenomena, and delivers precise and accurate CSDs, permitting experimental tests of various theories developed to predict their evolution. C1 [Neher, Sigmund H.; Klein, Helmut; Kuhs, Werner F.] Univ Gottingen, GZG Crystallog, Goldschmidtstr 1, D-37077 Gottingen, Germany. RP Neher, SH; Kuhs, WF (corresponding author), Univ Gottingen, GZG Crystallog, Goldschmidtstr 1, D-37077 Gottingen, Germany. EM sneher@gwdg.de; wkuhs1@gwdg.de FU Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [KU920/20-1]; BMBFFederal Ministry of Education & Research (BMBF) [03G0856B] FX The following funding is acknowledged: Deutsche Forschungsgemeinschaft (grant No. KU920/20-1). A small final part of this work was funded by the BMBF in the framework of the SUGAR-III programme (grant 03G0856B). CR ABBRUZZESE G, 1986, ACTA METALL MATER, V34, P905, DOI 10.1016/0001-6160(86)90064-7 ABBRUZZESE G, 1992, MATER SCI FORUM, V94, P77 Abu Bakar MR, 2009, CRYST GROWTH DES, V9, P1378, DOI 10.1021/cg800595v Als-Nielsen J., 2011, ELEMENTS MODERN XRAY Andersen M. S., 2013, CVXOPT PYTHON SOFTWA Balzar D, 2004, J APPL CRYSTALLOGR, V37, P911, DOI 10.1107/S0021889804022551 BECKER PJ, 1974, ACTA CRYSTALLOGR A, VA 30, P129, DOI 10.1107/S0567739474000337 BECKER PJ, 1974, ACTA CRYSTALLOGR A, VA 30, P148, DOI 10.1107/S0567739474000349 BECKER PJ, 1975, ACTA CRYSTALLOGR A, V31, P417, DOI 10.1107/S0567739475000976 Berbenni S, 2007, INT J PLASTICITY, V23, P114, DOI 10.1016/j.ijplas.2006.03.004 BUNGE HJ, 1990, TEXTURE MICROSTRUCT, V13, P59, DOI 10.1155/TSM.13.59 CARNIGLIA SC, 1972, J AM CERAM SOC, V55, P243, DOI 10.1111/j.1151-2916.1972.tb11272.x CHANTIKUL P, 1990, J AM CERAM SOC, V73, P2419, DOI 10.1111/j.1151-2916.1990.tb07607.x Chaouachi M, 2017, CRYST GROWTH DES, V17, P2458, DOI 10.1021/acs.cgd.6b01875 Chavanne J, 1998, J SYNCHROTRON RADIAT, V5, P196, DOI 10.1107/S0909049597012855 Chen WM, 2011, CRYSTENGCOMM, V13, P3959, DOI 10.1039/c1ce05272a Eberl DD, 1998, AM J SCI, V298, P499, DOI 10.2475/ajs.298.6.499 FELTHAM P, 1969, SCRIPTA METALL MATER, V3, P853, DOI 10.1016/0036-9748(69)90194-X FREEDMAN D, 1981, Z WAHRSCHEINLICHKEIT, V57, P453, DOI 10.1007/BF01025868 Fujiwara M, 2005, J PROCESS CONTR, V15, P493, DOI 10.1016/j.jprocont.2004.08.003 German RM, 2010, CRIT REV SOLID STATE, V35, P263, DOI 10.1080/10408436.2010.525197 He B.B., 2009, 2 DIMENSIONAL XRAY D He B. B., 2011, US Patent, Patent No. 7885383 HILLERT M, 1965, ACTA METALL MATER, V13, P227, DOI 10.1016/0001-6160(65)90200-2 Hiraoka N, 2005, J SYNCHROTRON RADIAT, V12, P670, DOI 10.1107/S0909049505022569 HIRSCH PB, 1952, ACTA CRYSTALLOGR, V5, P162, DOI 10.1107/S0365110X52000496 HIRSCH PB, 1954, BRIT J APPL PHYS, V5, P257, DOI 10.1088/0508-3443/5/7/306 Ida T., 2011, US Patent, Patent No. [2011/ 0064199, 20110064199] Ingham B, 2014, J APPL CRYSTALLOGR, V47, P166, DOI 10.1107/S1600576713029713 KABSCH W, 1988, J APPL CRYSTALLOGR, V21, P916, DOI 10.1107/S0021889888007903 Kazaryan A., 2001, PHYS REV B, V63, P1 Klapp SA, 2007, GEOPHYS RES LETT, V34, DOI 10.1029/2006GL029134 Knudsen EB, 2013, J APPL CRYSTALLOGR, V46, P537, DOI 10.1107/S0021889813000150 Konert M, 1997, SEDIMENTOLOGY, V44, P523, DOI 10.1046/j.1365-3091.1997.d01-38.x Krill CE, 1998, PHILOS MAG A, V77, P621, DOI 10.1080/01418619808224072 Kruzic JJ, 2008, J AM CERAM SOC, V91, P1986, DOI 10.1111/j.1551-2916.2008.02380.x KURZYDLOWSKI KJ, 1993, ACTA METALL MATER, V41, P3141, DOI 10.1016/0956-7151(93)90044-S Langford JI, 2000, J APPL CRYSTALLOGR, V33, P964, DOI 10.1107/S002188980000460X LASAGA AC, 1998, PR S GEOCH Lipson H., 2006, INT TABLES CRYSTAL C, P596 LOUAT NP, 1994, PHILOS MAG A, V69, P841, DOI 10.1080/01418619408242523 MILCH JR, 1974, J APPL CRYSTALLOGR, V7, P502, DOI 10.1107/S0021889874010284 Muller G., 1967, METHODS SEDIMENTARY Nagy ZK, 2012, ANNU REV CHEM BIOMOL, V3, P55, DOI 10.1146/annurev-chembioeng-062011-081043 Nakamura D, 2016, ELECTR COMMUN JPN, V99, P58, DOI 10.1002/ecj.11874 Neher SH, 2018, J AM CERAM SOC, V101, P1381, DOI 10.1111/jace.15309 Nutzmann K., 2013, THESIS Pieniazek A, 2016, OPT MATER EXPRESS, V6, P3741, DOI 10.1364/OME.6.003741 Poulsen HF, 2004, MATER SCI FORUM, V467-470, P1363, DOI 10.4028/www.scientific.net/MSF.467-470.1363 Raeisinia B, 2008, MODEL SIMUL MATER SC, V16, DOI 10.1088/0965-0393/16/2/025001 Rodriguez-Navarro AB, 2006, J AM CERAM SOC, V89, P2232, DOI 10.1111/j.1551-2916.2006.00998.x ROUSE KD, 1970, ACTA CRYSTALL A-CRYS, VA 26, P682, DOI 10.1107/S0567739470001687 Scardi P, 2004, J APPL CRYSTALLOGR, V37, P381, DOI 10.1107/S0021889804004583 Schdanow HS, 1935, Z KRISTALLOGR, V90, P82 Scherrer P., 1918, MATHPHYS KL, V2, P98, DOI DOI 10.1007/978-3-662-33915-2 Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/NMETH.2019, 10.1038/nmeth.2019] Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089 Sharma H, 2012, J APPL CRYSTALLOGR, V45, P693, DOI 10.1107/S0021889812025563 Shi D, 2005, NANOTECHNOLOGY, V16, pS562, DOI 10.1088/0957-4484/16/7/034 Shimogaki T, 2014, APPL PHYS A-MATER, V117, P269, DOI 10.1007/s00339-014-8529-6 Skripnyak NV, 2017, PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON MECHANICS AND MATERIALS IN DESIGN (M2D2017), P1749 Sorensen HO, 2012, Z KRIST-CRYST MATER, V227, P63, DOI 10.1524/zkri.2012.1438 Stephen RA, 1937, J I MET, V60, P285 SWANSON PL, 1987, J AM CERAM SOC, V70, P279, DOI 10.1111/j.1151-2916.1987.tb04982.x TAKAYAMA Y, 1992, MATER SCI FORUM, V94, P325 Tasaki R, 2018, APPL PHYS A-MATER, V124, DOI 10.1007/s00339-018-1596-3 Tommaseo CE, 2009, PRAKT METALLOGR-PR M, V46, P77, DOI 10.3139/147.110026 Tschentscher T, 1998, J SYNCHROTRON RADIAT, V5, P286, DOI 10.1107/S0909049597014775 Ungar T, 2001, J APPL CRYSTALLOGR, V34, P298, DOI 10.1107/S0021889801003715 van der Walt S., 2014, scikit-image: image processing in Python. PeerJ, V2, pE453, DOI [10.7717/peerj.453, DOI 10.7717/PEERJ.453] VINCENT L, 1991, IEEE T PATTERN ANAL, V13, P583, DOI 10.1109/34.87344 Yager KG, 2014, J APPL CRYSTALLOGR, V47, P1855, DOI 10.1107/S1600576714020822 Yang WY, 2008, J AM CERAM SOC, V91, P2732, DOI 10.1111/j.1551-2916.2008.02483.x NR 73 TC 1 Z9 1 U1 1 U2 14 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD OCT PY 2018 VL 51 BP 1352 EP 1371 DI 10.1107/S1600576718010567 PN 5 PG 20 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA GU8TI UT WOS:000445614800010 DA 2021-04-21 ER PT J AU Varjas, D Rosdahl, TO Akhmerov, AR AF Varjas, Daniel Rosdahl, Tomas O. Akhmerov, Anton R. TI Qsymm: algorithmic symmetry finding and symmetric Hamiltonian generation SO NEW JOURNAL OF PHYSICS LA English DT Article DE symmetry; graphene; Majorana wire; SPT ID QUANTUM; STATE AB Symmetry is a guiding principle in physics that allows us to generalize conclusions between many physical systems. In the ongoing search for new topological phases of matter, symmetry plays a crucial role by protecting topological phases. We address two converse questions relevant to the symmetry classification of systems: is it possible to generate all possible single-body Hamiltonians compatible with a given symmetry group? Is it possible to find all the symmetries of a given family of Hamiltonians? We present numerically stable, deterministic polynomial time algorithms to solve both of these problems. Our treatment extends to all continuous or discrete symmetries of non-interacting lattice or continuum Hamiltonians. We implement the algorithms in the Qsymm Python package, and demonstrate their usefulness through applications in active research areas of condensed matter physics, including Majorana wires and Kekule graphene. C1 [Varjas, Daniel] Delft Univ Technol, QuTech, POB 4056, NL-2600 GA Delft, Netherlands. [Varjas, Daniel; Rosdahl, Tomas O.; Akhmerov, Anton R.] Delft Univ Technol, Kavli Inst Nanosci, POB 4056, NL-2600 GA Delft, Netherlands. RP Varjas, D (corresponding author), Delft Univ Technol, QuTech, POB 4056, NL-2600 GA Delft, Netherlands.; Varjas, D (corresponding author), Delft Univ Technol, Kavli Inst Nanosci, POB 4056, NL-2600 GA Delft, Netherlands. EM dvarjes@gmail.com; torosdahl@gmail.com RI Rosdahl, Tomas/T-1074-2018 OI Rosdahl, Tomas/0000-0001-5126-6413; Varjas, Daniel/0000-0002-3283-6182; Akhmerov, Anton/0000-0001-8031-1340 FU ERCEuropean Research Council (ERC)European Commission [638760]; Netherlands Organisation for Scientific Research (NWO/OCW); US Office of Naval ResearchOffice of Naval Research FX We thank N V Gnezdilov, M Hastings, A Lau, B Nijholt, VP Ostroukh, R Skolasinski and J B Weston for fruitful discussions. This work was supported by ERC Starting Grant 638760, the Netherlands Organisation for Scientific Research (NWO/OCW), and the US Office of Naval Research. CR Altland A, 1997, PHYS REV B, V55, P1142, DOI 10.1103/PhysRevB.55.1142 Ando Y, 2015, ANNU REV CONDEN MA P, V6, P361, DOI 10.1146/annurev-conmatphys-031214-014501 BEAUZAMY B, 1990, J NUMBER THEORY, V36, P219, DOI 10.1016/0022-314X(90)90075-3 Bir G.L., 1974, SYMMETRY STRAIN INDU Bradlyn B, 2018, PHYS REV B, V97, DOI 10.1103/PhysRevB.97.035138 Bradlyn B, 2017, NATURE, V547, P298, DOI 10.1038/nature23268 Cappelluti E, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.075409 Fang SA, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.205108 Fei ZY, 2017, NAT PHYS, V13, P677, DOI [10.1038/nphys4091, 10.1038/NPHYS4091] Fu LA, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.106802 Fu L, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.266801 Fulga IC, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.155424 Fulton W, 2004, REPRESENTATION THEOR, DOI [10.1007/978-1-4612-0979-9, DOI 10.1007/978-1-4612-0979-9] Gamayun OV, 2018, NEW J PHYS, V20, DOI 10.1088/1367-2630/aaa7e5 Gottlieb LA, 2010, LECT NOTES COMPUT SC, V6302, P205, DOI 10.1007/978-3-642-15369-3_16 Groth CW, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/6/063065 Hall B. C., 2015, LIE GROUPS LIE ALGEB, DOI [10.1007/978-3-319-13467-3, DOI 10.1007/978-3-319-13467-3] Hasan MZ, 2010, REV MOD PHYS, V82, P3045, DOI 10.1103/RevModPhys.82.3045 Hou CY, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.186809 Hsieh TH, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms1969 Jancu JM, 1998, PHYS REV B, V57, P6493, DOI 10.1103/PhysRevB.57.6493 Jia ZY, 2017, PHYS REV B, V96, DOI 10.1103/PhysRevB.96.041108 Jones E., 2001, SCIPY OPEN SOURCE SC Kane CL, 2014, NAT PHYS, V10, P39, DOI [10.1038/NPHYS2835, 10.1038/nphys2835] Kitaev A, 2009, AIP CONF PROC, V1134, P22, DOI 10.1063/1.3149495 Kitagawa T, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.235114 Kluyver T, 2016, POSITIONING AND POWER IN ACADEMIC PUBLISHING: PLAYERS, AGENTS AND AGENDAS, P87, DOI 10.3233/978-1-61499-649-1-87 Konig M, 2007, SCIENCE, V318, P766, DOI 10.1126/science.1148047 Kormanyos A, 2015, 2D MATER, V2, DOI 10.1088/2053-1583/2/2/022001 Kruthoff J, 2017, PHYS REV X, V7, DOI 10.1103/PhysRevX.7.041069 Lau A, 2018, UNPUB Lau A, 2018, ARXIV180409574 Lehoucq R, 1997, SOFTW ENV TOOLS, V6 Leijnse M, 2012, SEMICOND SCI TECH, V27, DOI 10.1088/0268-1242/27/12/124003 Li J, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.235433 Liu GB, 2013, PHYS REV B, V88, DOI 10.1103/PhysRevB.88.085433 LUTTINGER JM, 1955, PHYS REV, V97, P869, DOI 10.1103/PhysRev.97.869 Meurer A, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.103 Muechler L, 2016, PHYS REV X, V6, DOI 10.1103/PhysRevX.6.041069 Murakami S, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1602680 Nijholt B, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.235434 Ningyuan J, 2015, PHYS REV X, V5, DOI 10.1103/PhysRevX.5.021031 Notomi M, 2000, PHYS REV B, V62, P10696, DOI 10.1103/PhysRevB.62.10696 Po HC, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00133-2 Resta R, 2000, J PHYS-CONDENS MAT, V12, pR107, DOI 10.1088/0953-8984/12/9/201 Sato M, 2017, REP PROG PHYS, V80, DOI 10.1088/1361-6633/aa6ac7 Schnyder AP, 2008, PHYS REV B, V78, DOI 10.1103/PhysRevB.78.195125 Slager RJ, 2013, NAT PHYS, V9, P98, DOI 10.1038/nphys2513 SLATER JC, 1954, PHYS REV, V94, P1498, DOI 10.1103/PhysRev.94.1498 Susstrunk R, 2015, SCIENCE, V349, P47, DOI 10.1126/science.aab0239 Tang SJ, 2017, NAT PHYS, V13, P683, DOI [10.1038/nphys4174, 10.1038/NPHYS4174] Varjas D, 2018, QSYMM SYMMETRY FINDE, DOI [10.5281/zenodo.1287230, DOI 10.5281/ZENODO.1287230] Varjas D, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.195116 VOGL P, 1983, J PHYS CHEM SOLIDS, V44, P365, DOI 10.1016/0022-3697(83)90064-1 Wang QH, 2012, NAT NANOTECHNOL, V7, P699, DOI [10.1038/nnano.2012.193, 10.1038/NNANO.2012.193] Wang XB, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.054507 Watanabe H, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aat8685 Wu SF, 2018, SCIENCE, V359, P76, DOI 10.1126/science.aan6003 Xiao D, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.196802 Ye JT, 2012, SCIENCE, V338, P1193, DOI 10.1126/science.1228006 Zheng FP, 2016, ADV MATER, V28, P4845, DOI 10.1002/adma.201600100 NR 61 TC 9 Z9 9 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 24 PY 2018 VL 20 AR 093026 DI 10.1088/1367-2630/aadf67 PG 18 WC Physics, Multidisciplinary SC Physics GA GU8RG UT WOS:000445607600001 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Le, TP Olaya-Castro, A AF Le, Thao P. Olaya-Castro, Alexandra TI Objectivity (or lack thereof): Comparison between predictions of quantum Darwinism and spectrum broadcast structure SO PHYSICAL REVIEW A LA English DT Article ID PYTHON FRAMEWORK; BROWNIAN-MOTION; DECOHERENCE; DYNAMICS; SYSTEMS; STATES; ENVIRONMENT; PHYSICS; QUTIP AB Quantum Darwinism and spectrum broadcast structure describe the emergence of objectivity in quantum systems. However, it is unclear whether these two frameworks lead to consistent predictions on the objectivity of the state of a quantum system in a given scenario. In this paper, we jointly investigate quantum Darwinism and spectrum broadcasting, as well as the subdivision of quantum Darwinism into accessible information and quantum discord, in a two-level system interacting with an N-level environment via a random matrix coupling. We propose a partial trace method to suitably and consistently partition the effective N-level environment and compare the predictions with those obtained using the partitioning method proposed by Perez [Phys. Rev. A 81, 052326 (2010)]. We find that quantum Darwinism can apparently emerge under the Perez trace even when spectrum broadcast structure does not emerge, and the majority of the quantum mutual information between system and environment fractions is in fact quantum in nature. This work therefore shows there can be discrepancies between quantum Darwinism and the nature of information and spectrum broadcast structure. C1 [Le, Thao P.; Olaya-Castro, Alexandra] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. RP Le, TP (corresponding author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM thao.le.16@ucl.ac.uk OI Le, Thao/0000-0001-6309-1753 FU Engineering and Physical Sciences Research CouncilUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/L015242/1] FX We thank the anonymous referee for constructive feedback on previous versions of this manuscript. This work was supported by the Engineering and Physical Sciences Research Council (Grant No. EP/L015242/1). CR Balaneskovic N, 2016, EUR PHYS J D, V70, DOI 10.1140/epjd/e2016-70174-9 Balaneskovic N, 2015, EUR PHYS J D, V69, DOI 10.1140/epjd/e2015-60319-9 Blume-Kohout R, 2005, FOUND PHYS, V35, P1857, DOI 10.1007/s10701-005-7352-5 Blume-Kohout R, 2006, PHYS REV A, V73, DOI 10.1103/PhysRevA.73.062310 Blume-Kohout R, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.240405 Brandao FGSL, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8908 BRODY TA, 1981, REV MOD PHYS, V53, P385, DOI 10.1103/RevModPhys.53.385 Bulgac A, 1998, PHYS REV E, V58, P196, DOI 10.1103/PhysRevE.58.196 Carrera M, 2014, PHYS REV A, V90, DOI 10.1103/PhysRevA.90.022107 Datta A., 2008, THESIS Esposito M, 2003, PHYS REV E, V68, DOI 10.1103/PhysRevE.68.066113 Esposito M, 2010, NEW J PHYS, V12, DOI 10.1088/1367-2630/12/1/013013 Galve F, 2016, SCI REP-UK, V6, DOI 10.1038/srep19607 Giorgi GL, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.022105 Gorin T, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/11/115016 Henderson L, 2001, J PHYS A-MATH GEN, V34, P6899, DOI 10.1088/0305-4470/34/35/315 Horodecki R, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.032122 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Joos E., 2003, DECOHERENCE APPEARAN Korbicz JK, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.120402 Lampo A, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.012120 Lebowitz JL, 2015, J PHYS A-MATH THEOR, V48, DOI 10.1088/1751-8113/48/26/265201 Liu BH, 2011, NAT PHYS, V7, P931, DOI [10.1038/nphys2085, 10.1038/NPHYS2085] Lutz E, 1999, PHYSICA A, V267, P354, DOI 10.1016/S0378-4371(99)00022-9 Mironowicz P, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.150501 Ollivier H, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.220401 Ollivier H, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.017901 Paz JP, 2009, PHYS REV A, V80, DOI 10.1103/PhysRevA.80.042111 Perez A, 2010, PHYS REV A, V81, DOI 10.1103/PhysRevA.81.052326 Pleasance G, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.062105 Riedel CJ, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.020404 Salvail JZ, 2013, NAT PHOTONICS, V7, P316, DOI [10.1038/NPHOTON.2013.24, 10.1038/nphoton.2013.24] Schlosshauer M, 2004, REV MOD PHYS, V76, P1267, DOI 10.1103/RevModPhys.76.1267 Schlosshauer M, 2007, FRONT COLLECT, P1 Tuziemski J, 2015, EPL-EUROPHYS LETT, V112, DOI 10.1209/0295-5075/112/40008 Tuziemski J, 2015, PHOTONICS, V2, P228, DOI 10.3390/photonics2010228 Weidenmuller HA, 2009, REV MOD PHYS, V81, P539, DOI 10.1103/RevModPhys.81.539 Zurek WH, 2003, REV MOD PHYS, V75, P715, DOI 10.1103/RevModPhys.75.715 ZUREK WH, 1993, PHYS REV LETT, V70, P1187, DOI 10.1103/PhysRevLett.70.1187 ZUREK WH, 1993, PROG THEOR PHYS, V89, P281, DOI 10.1143/PTP.89.281 Zurek WH, 2009, NAT PHYS, V5, P181, DOI 10.1038/NPHYS1202 Zwolak M, 2016, SCI REP-UK, V6, DOI 10.1038/srep25277 Zwolak M, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.140406 Zwolak M, 2013, SCI REP-UK, V3, DOI 10.1038/srep01729 Zwolak M, 2010, PHYS REV A, V81, DOI 10.1103/PhysRevA.81.062110 Zwolak M, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.110402 NR 47 TC 7 Z9 7 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD SEP 5 PY 2018 VL 98 IS 3 AR 032103 DI 10.1103/PhysRevA.98.032103 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA GS5BM UT WOS:000443671600001 OA Green Published DA 2021-04-21 ER PT J AU Jain, A AF Jain, Abhinandan TI An analytical workbench for system level multibody dynamics SO MULTIBODY SYSTEM DYNAMICS LA English DT Article DE Dynamics; Workbench AB There has been considerable focus in the research community on developing accurate models, as well as on fast algorithms for solving the equations of motion of multibody systems required for simulating the dynamics of such systems. This paper focuses on the less explored complementary topic of evaluating system level dynamics properties of multibody systems. Examples of such dynamics properties are the system mass matrix, Jacobians and sensitivities of these quantities. These system level quantities manifest the dynamical properties of the system and are important for design, optimization and control. While such system level quantities are often used in theory to describe the underlying mathematical physics of the systems, due to their complexity there is a lack of a systematic methods for computing them when desired. In this paper we describe a computational workbench framework that provides a bridge between theory and the computation of such system level quantities. This workbench framework builds upon the Spatial Operator Algebra (SOA) that has been used for analysis and algorithm development for multibody dynamics. Mathematical operator expressions from the SOA can be transcribed literally to the workbench command line to allow the easy evaluation of complex dynamics quantities. We use a specific Python/C++ implementation of a workbench called PyCraft to illustrate the structure and use of such a workbench. Several examples illustrating operator-based analysis and corresponding PyCraft-based computation are included. C1 [Jain, Abhinandan] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. RP Jain, A (corresponding author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Abhi.Jain@jpl.nasa.gov CR Craig J. J, 1986, INTRO ROBOTICS FIXMAN M, 1974, P NATL ACAD SCI USA, V71, P3050, DOI 10.1073/pnas.71.8.3050 Jain A, 1997, J COMPUT PHYS, V136, P289, DOI 10.1006/jcph.1997.5731 JAIN A, 1995, IEEE T ROBOTIC AUTOM, V11, P571, DOI 10.1109/70.406941 Jain A., 2016, 4 JOINT INT C MULT S Jain A., 2013, 2013 IEEE INT C ROB Jain A, 2012, NONLINEAR DYNAM, V67, P2153, DOI 10.1007/s11071-011-0136-x Jain A, 2011, ROBOT AND MULTIBODY DYNAMICS: ANALYSIS AND ALGORITHMS, P3, DOI 10.1007/978-1-4419-7267-5 Khatib O., 1985, 3 INT S ROB RES PAR KREUTZDELGADO K, 1992, INT J ROBOT RES, V11, P320, DOI 10.1177/027836499201100405 LUH JYS, 1980, J DYN SYST-T ASME, V102, P69, DOI 10.1115/1.3149599 RODRIGUEZ G, 1991, INT J ROBOT RES, V10, P371, DOI 10.1177/027836499101000406 WALKER MW, 1982, J DYN SYST-T ASME, V104, P205, DOI 10.1115/1.3139699 NR 13 TC 1 Z9 1 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1384-5640 EI 1573-272X J9 MULTIBODY SYST DYN JI Multibody Syst. Dyn. PD SEP PY 2018 VL 44 IS 1 BP 57 EP 79 DI 10.1007/s11044-018-9623-x PG 23 WC Mechanics SC Mechanics GA GP4CV UT WOS:000440805700003 DA 2021-04-21 ER PT J AU Figueiras, E Olivieri, D Paredes, A Michinel, H AF Figueiras, Edgar Olivieri, David Paredes, Angel Michinel, Humberto TI An open source virtual laboratory for the Schrodinger equation SO EUROPEAN JOURNAL OF PHYSICS LA English DT Article DE virtual laboratory; Schrodinger equation; beam propagation method; open source; Python ID SOLITONS; PROPAGATION; SCIENCE; PHYSICS AB A simple Python-based open source software library for the numerical simulation of the linear or nonlinear time-dependent Schrodinger equation in one and two dimensions is presented. The integration is performed using a first-order split-step pseudospectral method, relying on the fast Fourier transform. The software library could be useful for undergraduate courses in elementary quantum mechanics, wave optics and computational physics. It could also be of interest for graduate students working with nonlinear waves, in frameworks such as laser beam propagation in nonlinear optical materials, matter waves within ultracold gases, dark matter or superfluid dynamics, among others. The discussion is complemented by solved examples and suggestions for educational applications of the code. C1 [Figueiras, Edgar; Olivieri, David] Univ Vigo, Dept Linguaxes & Sistemas Informat, As Lagoas S-N, E-32004 Orense, Spain. [Paredes, Angel; Michinel, Humberto] Univ Vigo, Sch Aeronaut & Space Engn, Appl Phys Dept, As Lagoas S-N, E-32004 Orense, Spain. RP Paredes, A (corresponding author), Univ Vigo, Sch Aeronaut & Space Engn, Appl Phys Dept, As Lagoas S-N, E-32004 Orense, Spain. EM efgomez@esei.uvigo.es; olivieri@uvigo.es; angel.paredes@uvigo.es; hmichinel@uvigo.es RI Paredes, Angel/L-3126-2014; Michinel, Humberto/L-3214-2014 OI Paredes, Angel/0000-0003-3207-1586; Michinel, Humberto/0000-0002-7854-7626 FU Ministerio de Economia y Competitividad (Spain) [FIS2014-58117-P, FIS2017-83762-P]; Conselleria de Cultura, Educacion e Ordenacion Universitaria (Xunta de Galicia)Xunta de Galicia [GPC2015/019] FX We thank A F Biasi, J Blanco-Labrador and D Tommasini for testing the code and commenting on the manuscript. This work is supported by grants FIS2014-58117-P and FIS2017-83762-P from Ministerio de Economia y Competitividad (Spain), and grant GPC2015/019 from Conselleria de Cultura, Educacion e Ordenacion Universitaria (Xunta de Galicia). CR Agrawal G. P., 2007, NONLINEAR FIBER OPTI Biasi A, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.053615 Briscese F, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-5209-7 Burger S, 1999, PHYS REV LETT, V83, P5198, DOI 10.1103/PhysRevLett.83.5198 Cambronero-Lopez F, 2017, EUR J PHYS, V38, DOI 10.1088/1361-6404/aa5a93 Carpentier AV, 2008, AM J PHYS, V76, P916, DOI 10.1119/1.2955792 Chhabra M, 2017, EUR J PHYS, V38, DOI 10.1088/0143-0807/38/1/015404 Couairon A, 2007, PHYS REP, V441, P47, DOI 10.1016/j.physrep.2006.12.005 DAVYDOV AS, 1979, PHYS SCRIPTA, V20, P387, DOI 10.1088/0031-8949/20/3-4/013 de Jong T, 2013, SCIENCE, V340, P305, DOI 10.1126/science.1230579 Fibich G., 2015, NONLINEAR SCHRODINGE FLECK JA, 1976, APPL PHYS, V10, P129, DOI 10.1007/BF00896333 Galan D, 2017, EUR J PHYS, V38, DOI 10.1088/1361-6404/aa5dc1 Gould H, 2016, INTRO COMPUTER SIMUL HASEGAWA A, 1973, APPL PHYS LETT, V23, P142, DOI 10.1063/1.1654836 Hatherly PA, 2009, EUR J PHYS, V30, P751, DOI 10.1088/0143-0807/30/4/008 Kim WS, 2000, PHYS LETT A, V266, P364, DOI 10.1016/S0375-9601(00)00080-3 Kiriushcheva N, 1998, AM J PHYS, V66, P867, DOI 10.1119/1.18985 Kivshar YS, 1998, PHYS REP, V298, P81, DOI 10.1016/S0370-1573(97)00073-2 Landau RH, 2015, COMPUTATIONAL PHYS P Lehtovaara L, 2007, J COMPUT PHYS, V221, P148, DOI 10.1016/j.jcp.2006.06.006 Michinel H, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.066604 Michinel H, 2012, PHYS REV A, V86, DOI 10.1103/PhysRevA.86.013620 Minner DD, 2010, J RES SCI TEACH, V47, P474, DOI 10.1002/tea.20347 Muslu GM, 2005, MATH COMPUT SIMULAT, V67, P581, DOI 10.1016/j.matcom.2004.08.002 Newman M., 2013, COMPUTATIONAL PHYS Orquin I, 2007, COMPUT APPL ENG EDUC, V15, P124, DOI 10.1002/cae.20100 Paredes A, 2016, PHYS DARK UNIVERSE, V12, P50, DOI 10.1016/j.dark.2016.02.003 Paredes A, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.173901 Rodas-Verde MI, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.153903 Rogel-Salazar J, 2013, EUR J PHYS, V34, P247, DOI 10.1088/0143-0807/34/2/247 Schmidt J. D., 2010, NUMERICAL SIMULATION Shao J., 2014, IEEE PHOTONICS J, V6, P1, DOI DOI 10.1109/JPH0T.2014.2340993) Sulem PL, 1999, NONLINEAR SCHRODINGE Teich MC., 2007, FUNDAMENTALS PHOTONI, V2nd edn van Dijk W, 2014, AM J PHYS, V82, P955, DOI 10.1119/1.4885376 Wu W, 2013, PHYS REV A, V88 Zacharia ZC, 2008, J RES SCI TEACH, V45, P1021, DOI 10.1002/tea.20260 ZAKHAROV VE, 1972, SOV PHYS JETP-USSR, V34, P62 NR 39 TC 5 Z9 5 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0143-0807 EI 1361-6404 J9 EUR J PHYS JI Eur. J. Phys. PD SEP PY 2018 VL 39 IS 5 AR 055802 DI 10.1088/1361-6404/aac999 PG 13 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA GL2FK UT WOS:000436932800001 OA Green Published, Other Gold DA 2021-04-21 ER PT J AU Zhao, CC Song, JS AF Zhao, Chenchao Song, Jun S. TI Quantum transport senses community structure in networks SO PHYSICAL REVIEW E LA English DT Article ID EFFICIENT ALGORITHM; DIFFUSION AB Quantum time evolution exhibits rich physics, attributable to the interplay between the density and phase of a wave function. However, unlike classical heat diffusion, the wave nature of quantum mechanics has not yet been extensively explored in modern data analysis. We propose that the Laplace transform of quantum transport (QT) can be used to construct an ensemble of maps from a given complex network to a circle S-1, such that closely related nodes on the network are grouped into sharply concentrated clusters on S-1. The resulting QT clustering (QTC) algorithm is as powerful as the state-of-the-art spectral clustering in discerning complex geometric patterns and more robust when clusters show strong density variations or heterogeneity in size. The observed phenomenon of QTC can be interpreted as a collective behavior of the microscopic nodes that evolve as macroscopic cluster "orbitals" in an effective tight-binding model recapitulating the network. PYTHON source code implementing the algorithm and examples are available at Imps://githuh.com/issong-1ah/QTC. C1 [Song, Jun S.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA. RP Song, JS (corresponding author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA. EM songj@illinois.edu RI Song, Jun S/E-2526-2016 OI Song, Jun S/0000-0002-0422-2175 FU Sontag Foundation; Grainger Engineering Breakthroughs Initiative FX We thank Alan Luu, Mohith Manjunath, and Yi Zhang for their help. This work was supported by the Sontag Foundation and the Grainger Engineering Breakthroughs Initiative. CR ANDERSON PW, 1958, PHYS REV, V109, P1492, DOI 10.1103/PhysRev.109.1492 Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Cardillo A, 2013, PHYS REV A, V87, DOI 10.1103/PhysRevA.87.052312 Childs AM, 2002, QUANTUM INF PROCESS, V1, P35, DOI 10.1023/A:1019609420309 Coifman RR, 2006, APPL COMPUT HARMON A, V21, P5, DOI 10.1016/j.acha.2006.04.006 DEFAYS D, 1977, COMPUT J, V20, P364, DOI 10.1093/comjnl/20.4.364 Dunham I, 2012, NATURE, V489, P57, DOI 10.1038/nature11247 Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226 Faccin M, 2014, PHYS REV X, V4, DOI 10.1103/PhysRevX.4.041012 Faccin M, 2013, PHYS REV X, V3, DOI 10.1103/PhysRevX.3.041007 Farhi E, 1998, PHYS REV A, V58, P915, DOI 10.1103/PhysRevA.58.915 FORGY EW, 1965, BIOMETRICS, V21, P768 Fudenberg G, 2011, NAT BIOTECHNOL, V29, P1109, DOI 10.1038/nbt.2049 Hastie T., 2013, ELEMENTS STAT LEARNI Horn D, 2002, PHYS REV LETT, V88, DOI 10.1103/PhysRevLett.88.018702 Kaufman L, 2009, FINDING GROUPS DATA Lafferty J, 2005, J MACH LEARN RES, V6, P129 Li HJ, 2012, PHYS REV E, V86, DOI 10.1103/PhysRevE.86.016109 LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/tit.1982.1056489 MARIMONT RB, 1979, J I MATH APPL, V24, P59 Novikov V. A., 1999, ITEP LECT PARTICLE P, V2, P201 Novikov V. A., 1999, ITEP LECT PARTICLE P, V1, P201 Reichardt J, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.218701 Sanchez-Burillo E, 2012, SCI REP-UK, V2, DOI 10.1038/srep00605 Shenvi N, 2003, PHYS REV A, V67, DOI 10.1103/PhysRevA.67.052307 SIBSON R, 1973, COMPUT J, V16, P30, DOI 10.1093/comjnl/16.1.30 von Luxburg U, 2007, STAT COMPUT, V17, P395, DOI 10.1007/s11222-007-9033-z Yu GS, 2012, IEEE T IMAGE PROCESS, V21, P2481, DOI 10.1109/TIP.2011.2176743 Zhao C., 2018, FRONTIERS APPL MATH, V4, P129 Zhao CC, 2017, PHYS REV E, V95, DOI 10.1103/PhysRevE.95.042307 NR 31 TC 1 Z9 1 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD AUG 3 PY 2018 VL 98 IS 2 AR 022301 DI 10.1103/PhysRevE.98.022301 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA GP3DQ UT WOS:000440721800004 PM 30253552 DA 2021-04-21 ER PT J AU Wang, F Barklage, M Lou, XT van der Lee, S Bina, CR Jacobsen, SD AF Wang, Fei Barklage, Mitchell Lou, Xiaoting van der Lee, Suzan Bina, Craig R. Jacobsen, Steven D. TI HyMaTZ: A Python Program for Modeling Seismic Velocities in Hydrous Regions of the Mantle Transition Zone SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article ID SINGLE-CRYSTAL ELASTICITY; FE-BEARING WADSLEYITE; SHEAR-WAVE VELOCITIES; SAN-CARLOS OLIVINE; EQUATION-OF-STATE; SOUND VELOCITIES; HIGH-PRESSURE; TEMPERATURE-DEPENDENCE; STORAGE CAPACITY; EARTHS INTERIOR AB Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410- to 660-km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic-velocity models. The influence of water is applied through a regression to experimental data on how H2O influences the thermoelastic properties of (Mg, Fe)(2)SiO4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H2O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in VS as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low-velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/ or an alternative compositional model is required. Plain Language Summary Olivine and its high-pressure polymorphs, wadsleyite and ringwoodite, constitute at least half of the material in the Earth's upper mantle. In addition to magnesium, iron, silicon, and oxygen, these phases are known for their ability to incorporate H2O. Water is incorporated into their crystal structures as OH (hydroxyl) defects, charge-balanced primarily by cation vacancies. Hydration of olivine, wadsleyite, and ringwoodite through such defectsmodifies their density and elastic properties such as the bulk (K) and shear (G) moduli, which can lead to changes in seismic velocities as determined from analyses of seismograms using methods such as seismic tomography. This paper presents a tool for researchers to calculate and graph the influence of hydration in olivine, wadsleyite, and ringwoodite for comparison to any seismic-velocity model. While Hydrous Mantle Transition Zone accounts for elastic property changes due to hydration, the effect ofwater on thermodynamic phase proportions is not yet included. The goal of such studies is to assess the amount and regional distribution of water in the mantle transition zone. C1 [Wang, Fei; Barklage, Mitchell; Lou, Xiaoting; van der Lee, Suzan; Bina, Craig R.; Jacobsen, Steven D.] Northwestern Univ, Dept Earth & Planetary Sci, Evanston, IL 60208 USA. RP Wang, F (corresponding author), Northwestern Univ, Dept Earth & Planetary Sci, Evanston, IL 60208 USA. EM feiwang2020@u.northwestern.edu RI Jacobsen, Steven/F-3443-2013; van der Lee, Suzan/K-1144-2013 OI Jacobsen, Steven/0000-0002-9746-958X; van der Lee, Suzan/0000-0003-1884-1185; Bina, Craig/0000-0001-5946-3737 FU National Science FoundationNational Science Foundation (NSF) [EAR-1452344] FX This research was supported by the National Science Foundation grant EAR-1452344 to S. D. J. HyMaTZ can be downloaded from GitHub at github. com/wangyefei/HyMaTZ. HyMaTZ can be redistributed and/or modified under the terms of the GNU Library General Public License as published by the Free Software Foundation. All of the data sets used in this paper are provided in the software distribution. CR Abramson EH, 1997, J GEOPHYS RES-SOL EA, V102, P12253, DOI 10.1029/97JB00682 Afonso JC, 2008, GEOCHEM GEOPHY GEOSY, V9, DOI 10.1029/2007GC001834 ANDERSON DL, 1986, NATURE, V320, P321, DOI 10.1038/320321a0 Barklage M, 2015, GEOCHEM GEOPHY GEOSY, V16, P681, DOI 10.1002/2014GC005627 Bedle H, 2009, J GEOPHYS RES-SOL EA, V114, DOI 10.1029/2008JB005949 BINA CR, 1992, ANNU REV EARTH PL SC, V20, P527, DOI 10.1146/annurev.ea.20.050192.002523 BOGGS PT, 1989, ACM T MATH SOFTWARE, V15, P348, DOI 10.1145/76909.76913 Bolfan-Casanova N, 2005, MINERAL MAG, V69, P229, DOI 10.1180/0026461056930248 Bolfan-Casanova N, 2012, AM MINERAL, V97, P1483, DOI 10.2138/am.2012.3869 Burdick S, 2017, SEISMOL RES LETT, V88, P319, DOI 10.1785/0220160186 Cammarano F, 2003, PHYS EARTH PLANET IN, V138, P197, DOI 10.1016/S0031-9201(03)00156-0 Chang YY, 2015, J GEOPHYS RES-SOL EA, V120, P8259, DOI 10.1002/2015JB012123 Chen JH, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2001GL014429 Connolly JAD, 2016, GEOPHYS RES LETT, V43, P5026, DOI 10.1002/2016GL068239 Connolly JAD, 2009, GEOCHEM GEOPHY GEOSY, V10, DOI 10.1029/2009GC002540 Connolly JAD, 2005, EARTH PLANET SC LETT, V236, P524, DOI 10.1016/j.epsl.2005.04.033 Cottaar S, 2014, GEOCHEM GEOPHY GEOSY, V15, P1164, DOI 10.1002/2013GC005122 Courtier AM, 2006, GEOPHYS MONOGR SER, V168, P181, DOI 10.1029/168GM14 Darling KL, 2004, PHYS EARTH PLANET IN, V143, P19, DOI 10.1016/j.pepi.2003.07.018 Demouchy S, 2005, AM MINERAL, V90, P1084, DOI 10.2138/am.2005.1751 DZIEWONSKI AM, 1975, PHYS EARTH PLANET IN, V10, P12, DOI 10.1016/0031-9201(75)90017-5 DZIEWONSKI AM, 1981, PHYS EARTH PLANET IN, V25, P297, DOI 10.1016/0031-9201(81)90046-7 Emry EL, 2015, GEOCHEM GEOPHY GEOSY, V16, P40, DOI 10.1002/2014GC005588 Fei HZ, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603024 French SW, 2014, GEOPHYS J INT, V199, P1303, DOI 10.1093/gji/ggu334 Frost DJ, 2007, EARTH PLANET SC LETT, V256, P182, DOI 10.1016/j.epsl.2007.01.023 Frost DJ, 2006, REV MINERAL GEOCHEM, V62, P243, DOI 10.2138/rmg.2006.62.11 Goes S, 2002, J GEOPHYS RES-SOL EA, V107, DOI 10.1029/2000JB000049 Goes S, 2000, J GEOPHYS RES-SOL EA, V105, P11153, DOI 10.1029/1999JB900300 GRAHAM EK, 1969, J GEOPHYS RES, V74, P5949, DOI 10.1029/JB074i025p05949 GRAND SP, 1994, J GEOPHYS RES-SOL EA, V99, P11591, DOI 10.1029/94JB00042 Grand SP, 2002, PHILOS T R SOC A, V360, P2475, DOI 10.1098/rsta.2002.1077 Green HW, 2010, NATURE, V467, P828, DOI 10.1038/nature09401 HASHIN Z, 1963, J MECH PHYS SOLIDS, V11, P127, DOI 10.1016/0022-5096(63)90060-7 Hauri EH, 2006, EARTH PLANET SC LETT, V248, P715, DOI 10.1016/j.epsl.2006.06.014 Higo Y, 2008, PHYS EARTH PLANET IN, V166, P167, DOI 10.1016/j.pepi.2008.01.003 Higo Y, 2006, PHYS EARTH PLANET IN, V159, P276, DOI 10.1016/j.pepi.2006.08.004 Hirschmann MM, 2006, ANNU REV EARTH PL SC, V34, P629, DOI 10.1146/annurev.earth.34.031405.125211 Hirschmann MM, 2005, EARTH PLANET SC LETT, V236, P167, DOI 10.1016/j.epsl.2005.04.022 Holland TJ, 2013, J PETROL, V54, P1901, DOI 10.1093/petrology/egt035 Inoue T, 2010, PHYS EARTH PLANET IN, V183, P245, DOI 10.1016/j.pepi.2010.08.003 IRIFUNE T, 1987, EARTH PLANET SC LETT, V86, P365, DOI 10.1016/0012-821X(87)90233-0 ISAAK DG, 1992, J GEOPHYS RES-SOL EA, V97, P1871, DOI 10.1029/91JB02675 Isaak DG, 2007, PHYS EARTH PLANET IN, V162, P22, DOI 10.1016/j.pepi.2007.02.010 Isaak DG, 2010, PHYS EARTH PLANET IN, V182, P107, DOI 10.1016/j.pepi.2010.06.014 Jackson JM, 2000, AM MINERAL, V85, P296, DOI 10.2138/am-2000-2-306 Jacobsen S. D, 2006, EARTHS DEEP WATER CY, DOI [10.1029/GM168, DOI 10.1029/GM168] Jacobsen SD, 2006, GEOPHYS MONOGR SER, V168, P131 Jacobsen SD, 2006, REV MINERAL GEOCHEM, V62, P321, DOI 10.2138/rmg.2006.62.14 Jacobsen SD, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2009GL038660 Jacobsen SD, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2008GL034398 Karato S, 1998, EARTH PLANET SC LETT, V157, P193, DOI 10.1016/S0012-821X(98)00034-X KARATO S, 1993, GEOPHYS RES LETT, V20, P1623, DOI 10.1029/93GL01767 KARATO S, 1990, REV GEOPHYS, V28, P399, DOI 10.1029/RG028i004p00399 Karato S, 2011, EARTH PLANET SC LETT, V301, P413, DOI 10.1016/j.epsl.2010.11.038 KENNETT BLN, 1991, GEOPHYS J INT, V105, P429, DOI 10.1111/j.1365-246X.1991.tb06724.x KENNETT BLN, 1995, GEOPHYS J INT, V122, P108, DOI 10.1111/j.1365-246X.1995.tb03540.x Kohlstedt DL, 1996, CONTRIB MINERAL PETR, V123, P345, DOI 10.1007/s004100050161 Komabayashi T, 2006, PHYS EARTH PLANET IN, V156, P89, DOI 10.1016/j.pepi.2006.02.002 KUMAZAWA M, 1969, J GEOPHYS RES, V74, P5961, DOI 10.1029/JB074i025p05961 Li B, 2007, P NATL ACAD SCI USA, V104, P9145, DOI 10.1073/pnas.0608609104 Li BS, 2000, AM MINERAL, V85, P292, DOI 10.2138/am-2000-2-305 Li BS, 2003, AM MINERAL, V88, P1312 Li BS, 2001, J GEOPHYS RES-SOL EA, V106, P30579, DOI 10.1029/2001JB000317 Liu Q, 2008, HIGH PRESSURE RES, V28, P405, DOI 10.1080/08957950802296287 Liu W, 2005, GEOPHYS RES LETT, V32, DOI 10.1029/2005GL023453 Liu W, 2009, PHYS EARTH PLANET IN, V174, P98, DOI 10.1016/j.pepi.2008.10.020 Liu Z, 2016, GEOPHYS RES LETT, V43, P2480, DOI 10.1002/2015GL067097 Mao Z, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2008GL035618 Mao Z, 2016, SCI CHINA EARTH SCI, V59, P873, DOI 10.1007/s11430-016-5277-9 Mao Z, 2012, EARTH PLANET SC LETT, V331, P112, DOI 10.1016/j.epsl.2012.03.001 Mao Z, 2011, AM MINERAL, V96, P1606, DOI 10.2138/am.2011.3807 Mayama N, 2005, PHYS EARTH PLANET IN, V148, P353, DOI 10.1016/j.pepi.2004.09.007 MINSTER JB, 1981, PHILOS T R SOC A, V299, P319, DOI 10.1098/rsta.1981.0025 Ohtani E, 2004, PHYS EARTH PLANET IN, V143, P255, DOI 10.1016/j.pepi.2003.09.015 Ohtani E, 2001, PHYS EARTH PLANET IN, V124, P105, DOI 10.1016/S0031-9201(01)00192-3 Pearson DG, 2014, NATURE, V507, P221, DOI 10.1038/nature13080 POLLACK HN, 1993, REV GEOPHYS, V31, P267, DOI 10.1029/93RG01249 RINGWOOD AE, 1967, EARTH PLANET SC LETT, V2, P130, DOI 10.1016/0012-821X(67)90114-8 Ritsema J, 2004, J GEOPHYS RES-SOL EA, V109, DOI 10.1029/2003JB002610 ROMANOWICZ BA, 1979, GEOPHYS J ROY ASTR S, V57, P479, DOI 10.1111/j.1365-246X.1979.tb04790.x Schaeffer AJ, 2014, EARTH PLANET SC LETT, V402, P26, DOI 10.1016/j.epsl.2014.05.014 Schmandt B, 2014, GEOPHYS RES LETT, V41, P6342, DOI 10.1002/2014GL061231 Schmandt B, 2014, SCIENCE, V344, P1265, DOI [10.1126/science.1253358, 10.1126/science.1253258] Sinogeikin SV, 2003, PHYS EARTH PLANET IN, V136, P41, DOI 10.1016/S0031-9201(03)00022-0 Sinogeikin SV, 1998, J GEOPHYS RES-SOL EA, V103, P20819, DOI 10.1029/98JB01819 Sinogeikin SV, 1997, GEOPHYS RES LETT, V24, P3265, DOI 10.1029/97GL03217 Smyth JR, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2001GL014418 SMYTH JR, 1994, AM MINERAL, V79, P1021 SMYTH JR, 1987, AM MINERAL, V72, P1051 Smyth JR, 2004, PHYS EARTH PLANET IN, V143, P271, DOI 10.1016/j.pepi.2003.08.011 Speziale S, 2004, J GEOPHYS RES-SOL EA, V109, DOI 10.1029/2004JB003162 Stixrude L, 2005, GEOPHYS J INT, V162, P610, DOI 10.1111/j.1365-246X.2005.02642.x Stixrude L, 2012, ANNU REV EARTH PL SC, V40, P569, DOI 10.1146/annurev.earth.36.031207.124244 Stixrude L, 2011, GEOPHYS J INT, V184, P1180, DOI 10.1111/j.1365-246X.2010.04890.x SUZUKI R, 1983, ACTA NEUROPATHOL, V60, P217, DOI 10.1007/BF00691869 Tenner TJ, 2012, CONTRIB MINERAL PETR, V163, P297, DOI 10.1007/s00410-011-0675-7 Thio V, 2016, PHYS EARTH PLANET IN, V250, P46, DOI 10.1016/j.pepi.2015.11.005 van der Lee S, 2008, EARTH PLANET SC LETT, V273, P15, DOI 10.1016/j.epsl.2008.04.041 van der Lee S, 2005, GEOPHYS MONOGR SER, V157, P67, DOI 10.1029/157GM05 van der Meijde M, 2003, SCIENCE, V300, P1556, DOI 10.1126/science.1083636 vanderHilst RD, 1997, NATURE, V386, P578, DOI 10.1038/386578a0 vanderLee S, 1997, J GEOPHYS RES-SOL EA, V102, P22815, DOI 10.1029/97JB01168 Wang JY, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2006GL026441 Wang JY, 2003, AM MINERAL, V88, P1608 Wang XB, 2015, GEOPHYS RES LETT, V42, P3289, DOI 10.1002/2015GL063436 WATT JP, 1976, REV GEOPHYS, V14, P541, DOI 10.1029/RG014i004p00541 WEBB SL, 1989, PHYS CHEM MINER, V16, P684 WEIDNER DJ, 1986, CHEM PHYSICS TERREST, P251, DOI DOI 10.1007/978-1-4612-4928-3_7 WOOD BJ, 1995, SCIENCE, V268, P74, DOI 10.1126/science.268.5207.74 Xu WB, 2008, EARTH PLANET SC LETT, V275, P70, DOI 10.1016/j.epsl.2008.08.012 Ye Y, 2012, AM MINERAL, V97, P573, DOI 10.2138/am.2012.4010 ZAUG JM, 1993, SCIENCE, V260, P1487, DOI 10.1126/science.260.5113.1487 Zha CS, 1997, EARTH PLANET SC LETT, V147, pE9, DOI 10.1016/S0012-821X(97)00010-1 Zha CS, 1996, J GEOPHYS RES-SOL EA, V101, P17535, DOI 10.1029/96JB01266 Zha CS, 1998, EARTH PLANET SC LETT, V159, P25, DOI 10.1016/S0012-821X(98)00063-6 NR 116 TC 5 Z9 5 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD AUG PY 2018 VL 19 IS 8 BP 2308 EP 2324 DI 10.1029/2018GC007464 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA HC9JQ UT WOS:000452122500002 OA Bronze DA 2021-04-21 ER PT J AU Toye, H Kortas, S Zhan, P Hoteit, I AF Toye, Habib Kortas, Samuel Zhan, Peng Hoteit, Ibrahim TI A fault-tolerant HPC scheduler extension for large and operational ensemble data assimilation: Application to the Red Sea SO JOURNAL OF COMPUTATIONAL SCIENCE LA English DT Article; Proceedings Paper CT 2nd International Computational Science and Engineering Conference CY OCT 23-24, 2017 CL Doha, QATAR DE High performance computing; Ensemble data assimilation; Bayesian filtering; Operational oceanography; Red Sea ID ADAPTIVE COVARIANCE INFLATION; KALMAN FILTER; MODEL; OCEAN; LOCALIZATION; FRAMEWORK AB A fully parallel ensemble data assimilation and forecasting system has been developed for the Red Sea based on the MIT general circulation model (MITgcm) to simulate the Red Sea circulation and the Data Assimilation Research Testbed (DART) ensemble assimilation software. An important limitation of operational ensemble assimilation systems is the risk of ensemble members' collapse. This could happen in those situations when the filter update step imposes large corrections on one, or more, of the forecasted ensemble members that are not fully consistent with the model physics. Increasing the ensemble size is expected to improve the assimilation system performances, but obviously increases the risk of members' collapse. Hardware failure or slow numerical convergence encountered for some members should also occur more frequently. In this context, the manual steering of the whole process appears as a real challenge and makes the implementation of the ensemble assimilation procedure uneasy and extremely time consuming. This paper presents our efforts to build an efficient and fault-tolerant MITgcm-DART ensemble assimilation system capable of operationally running thousands of members. Built on top of Decimate, a scheduler extension developed to ease the submission, monitoring and dynamic steering of workflow of dependent jobs in a fault-tolerant environment, we describe the assimilation system implementation and discuss in detail its coupling strategies. Within Decimate, only a few additional lines of Python is needed to define flexible convergence criteria and to implement any necessary actions to the forecast ensemble members, as for instance (i) restarting faulty job in case of job failure, (ii) changing the random seed in case of poor convergence or numerical instability, (iii) adjusting (reducing or increasing) the number of parallel forecasts on the fly, (iv) replacing members on the fly to enrich the ensemble with new members, etc. We demonstrate the efficiency of the system with numerical experiments assimilating real satellites sea surface height and temperature observations in the Red Sea. (C) 2018 Elsevier B.V. All rights reserved. C1 [Toye, Habib; Hoteit, Ibrahim] King Abdullah Univ Sci & Technol, Div Comp Elect & Math Sci & Engn, Jeddah 239556900, Saudi Arabia. [Kortas, Samuel] King Abdullah Univ Sci & Technol, KAUST Supercomp Lab KSL, Jeddah 239556900, Saudi Arabia. [Zhan, Peng; Hoteit, Ibrahim] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Jeddah 239556900, Saudi Arabia. RP Hoteit, I (corresponding author), King Abdullah Univ Sci & Technol, Div Comp Elect & Math Sci & Engn, Jeddah 239556900, Saudi Arabia. EM ibrahim.hoteit@kaust.edu.sa OI zhan, peng/0000-0002-3996-7011; TOYE, Habib/0000-0002-1186-837X; Hoteit, Ibrahim/0000-0002-3751-4393 FU King Abdullah University of Science and Technology (KAUST)King Abdullah University of Science & Technology; Saudi ARAMCO FX The research reported in this manuscript was supported by King Abdullah University of Science and Technology (KAUST) and Saudi ARAMCO, and made use of the resources of the Supercomputing Core Laboratory of KAUST. The data used in this study may be obtained from the authors upon request. CR Anderson J, 2009, B AM METEOROL SOC, V90, P1283, DOI 10.1175/2009BAMS2618.1 Anderson JL, 2007, PHYSICA D, V230, P99, DOI 10.1016/j.physd.2006.02.011 Anderson JL, 2007, J ATMOS OCEAN TECH, V24, P1452, DOI 10.1175/JTECH2049.1 Anderson JL, 2007, TELLUS A, V59, P210, DOI 10.1111/j.1600-0870.2006.00216.x Anderson JL, 2009, TELLUS A, V61, P72, DOI 10.1111/j.1600-0870.2008.00361.x Anderson JL, 2003, MON WEATHER REV, V131, P634, DOI 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2 Anderson JL, 2001, MON WEATHER REV, V129, P2884, DOI 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 Belyaev KP, 2001, APPL MATH MODEL, V25, P655, DOI 10.1016/S0307-904X(01)00003-8 Burgers G, 1998, MON WEATHER REV, V126, P1719, DOI 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2 Edwards CA, 2015, ANNU REV MAR SCI, V7, P21, DOI 10.1146/annurev-marine-010814-015821 EVENSEN G, 1994, J GEOPHYS RES-OCEANS, V99, P10143, DOI 10.1029/94JC00572 Evensen G., 2001, OCEAN CLIMATE PREDIC, P37, DOI [10.1007/3-540-70734-4_6, DOI 10.1007/3-540-70734-4_6] Fu WW, 2011, OCEAN MODEL, V40, P227, DOI 10.1016/j.ocemod.2011.09.004 Guo HD, 2015, ADV CLIM CHANG RES, V6, P108, DOI 10.1016/j.accre.2015.09.007 Hamill TM, 2011, MON WEATHER REV, V139, P117, DOI 10.1175/2010MWR3246.1 Hamill TM, 2001, MON WEATHER REV, V129, P2776, DOI 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2 Hoteit I, 2008, MON WEATHER REV, V136, P317, DOI 10.1175/2007MWR1927.1 Hoteit I, 2015, MON WEATHER REV, V143, P2918, DOI 10.1175/MWR-D-14-00088.1 Hoteit I, 2002, J MARINE SYST, V36, P101, DOI 10.1016/S0924-7963(02)00129-X Hoteit I, 2012, MON WEATHER REV, V140, P528, DOI 10.1175/2011MWR3640.1 Houtekamer PL, 1998, MON WEATHER REV, V126, P796, DOI 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2 Houtekamer PL, 2001, MON WEATHER REV, V129, P123, DOI 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 Kalman R.E., 1960, J BASIC ENG, V82, P35, DOI [10.1115/1.3662552, DOI 10.1115/1.3662552] Kortas S., 2018, DECIMATE DOCUMENTATI Kortas S., 2017, DECIMATE BETA DEV BR Kortas S., 2017, DECIMATE STABLE BRAN Liu B, 2016, J HYDROL, V535, P1, DOI 10.1016/j.jhydrol.2016.01.048 Liu B, 2016, MON WEATHER REV, V144, P781, DOI 10.1175/MWR-D-14-00292.1 Marshall J, 1997, J GEOPHYS RES-OCEANS, V102, P5753, DOI 10.1029/96JC02775 Marshall J., 1997, J GEOPHYS RES, V102, pC3, DOI [10.1029/96JC02775102, DOI 10.1029/96JC02775102] Martin MJ, 2015, J OPER OCEANOGR, V8, pS28, DOI 10.1080/1755876X.2015.1022055 MEINHOLD RJ, 1983, AM STAT, V37, P123, DOI 10.2307/2685871 Oke PR, 2007, OCEAN DYNAM, V57, P32, DOI 10.1007/s10236-006-0088-8 Pham DT, 1998, J MARINE SYST, V16, P323 Sakov P, 2008, TELLUS A, V60, P361, DOI 10.1111/j.1600-0870.2007.00299.x Sakov P, 2011, COMPUTAT GEOSCI, V15, P225, DOI 10.1007/s10596-010-9202-6 Toye H, 2017, OCEAN DYNAM, V67, P915, DOI 10.1007/s10236-017-1064-1 Verlaan M, 1997, STOCH HYDROL HYDRAUL, V11, P349, DOI 10.1007/BF02427924 Zhan P, 2016, J GEOPHYS RES-OCEANS, V121, P4732, DOI 10.1002/2015JC011589 Zhan P, 2014, J GEOPHYS RES-OCEANS, V119, P3909, DOI 10.1002/2013JC009563 NR 40 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1877-7503 EI 1877-7511 J9 J COMPUT SCI-NETH JI J. Comput. Sci. PD JUL PY 2018 VL 27 BP 46 EP 56 DI 10.1016/j.jocs.2018.04.018 PG 11 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA GS4ZG UT WOS:000443665800005 OA Green Published DA 2021-04-21 ER PT J AU Bhat, PC Prosper, HB Sekmen, S Stewart, C AF Bhat, Pushpalatha C. Prosper, Harrison B. Sekmen, Sezen Stewart, Chip TI Optimizing event selection with the random grid search SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Selection optimization; Grid search; LHC; Higgs; SUSY ID PROGRAM AB The random grid search (RGS) is a simple, but efficient, stochastic algorithm to find optimal cuts that was developed in the context of the search for the top quark at Fermilab in the mid-1990s. The algorithm, and associated code, have been enhanced recently with the introduction of two new cut types, one of which has been successfully used in searches for supersymmetry at the Large Hadron Collider. The RGS optimization algorithm is described along with the recent developments, which are illustrated with two examples from particle physics. One explores the optimization of the selection of vector boson fusion events in the four-lepton decay mode of the Higgs boson and the other optimizes SUSY searches using boosted objects and the razor variables. Program summary Program title: Random Grid Search Program Files doi: http://dx.doi.org/10.17632/mpcmd7xb4.1 Licensing provisions: GNU General Public License 3 (GPL) Programming language: c++, python Nature of problem: We address the problem of scanning a large number of thresholds (cuts) on discriminating variables in order to find ones that maximize some measure of the degree of discrimination between classes of objects, for example, between signal and background events at the Large Hadron Collider (LHC). Solution method: The cuts searched are determined by the distribution of the objects that are the focus of an analysis. For example, if one is searching for supersymmetric events at the LHC, the cuts are determined by the predicted distribution of the variables that discriminate between the supersymmetric signal and the standard model background. In effect, we search for cuts using importance sampling determined by the signal distribution, thereby mitigating the curse of dimensionality. Additional comments including restrictions and unusual features: For cases with exceptionally large numbers of events, the program may take several hours to run. However, the system can be trivially parallelized, with no change to the program, by splitting large files into N smaller files and running the same set of cuts over the N files. The counts associated with each cut can then be summed over the N files. (C) 2018 Elsevier B.V. All rights reserved. C1 [Bhat, Pushpalatha C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Prosper, Harrison B.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Sekmen, Sezen] Kyungpook Natl Univ, Daegu, South Korea. [Stewart, Chip] Broad Inst, Boston, MA USA. RP Sekmen, S (corresponding author), Kyungpook Natl Univ, Daegu, South Korea. EM pushpa@fnal.gov; harry@hep.fsu.edu; ssekmen@cern.ch; stewart@broadinstitute.org OI Sekmen, Sezen/0000-0003-1726-5681 FU U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC02-07CH11359, DE-SC0010102]; FermilabUnited States Department of Energy (DOE)University of Chicago; National Research Foundation of Korea (NRF)National Research Foundation of Korea; Ministry of Science ICT [NRF-2008-00460]; U.S. Department of Energy through the Distinguished Researcher Program from the Fermilab LHC Physics CenterUnited States Department of Energy (DOE) FX The work of PCB and HBP is supported in part by the U.S. Department of Energy, under contract number DE-AC02-07CH11359 with Fermilab, and under grant number DE-SC0010102, respectively. The work of SS is supported by the financial support of the National Research Foundation of Korea (NRF), funded by the Ministry of Science & ICT under contract NRF-2008-00460 and by the U.S. Department of Energy through the Distinguished Researcher Program from the Fermilab LHC Physics Center. CR Aaboud M, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2016)112 Aad G, 2016, J INSTRUM, V11, DOI 10.1088/1748-0221/11/04/P04008 Aad G, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.012006 Aad G, 2012, PHYS LETT B, V716, P1, DOI 10.1016/j.physletb.2012.08.020 Aaij R, 2015, J INSTRUM, V10, DOI 10.1088/1748-0221/10/06/P06013 ABACHI S, 1995, PHYS REV LETT, V74, P2632, DOI 10.1103/PhysRevLett.74.2632 Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265 Abazov VM, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.092001 Abazov V. M., 2003, PHYS REV D, V67, DOI [10.11031PhysRevD.67.012004, DOI 10.11031/PHYSREVD.67.012004] Abazov VM, 2001, PHYS REV D, V64, DOI [10.1103/PhysRevD.64.092004, 10.1103/PhysRevD.64.012004] Abbott B, 1998, PHYS REV D, V58, DOI 10.1103/PhysRevD.58.052001 ABE F, 1995, PHYS REV LETT, V74, P2626, DOI 10.1103/PhysRevLett.74.2626 Acciarri R, 2017, J INSTRUM, V12, DOI 10.1088/1748-0221/12/03/P03011 Allanach BC, 2002, COMPUT PHYS COMMUN, V143, P305, DOI 10.1016/S0010-4655(01)00460-X Amos NA, 1995, P INT C COMP HIGH EN, P215 Aurisano A, 2016, J INSTRUM, V11, DOI 10.1088/1748-0221/11/09/P09001 Barnreuther P, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.132001 Baldi P, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.111801 Baldi P, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5308 Baldi P, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.094034 Ballintijn M, 2006, NUCL INSTRUM METH A, V559, P13, DOI 10.1016/j.nima.2005.11.100 Beenakker W, 1997, NUCL PHYS B, V492, P51, DOI 10.1016/S0550-3213(97)80027-2 Beenakker W., 1996, ARXIVHEPPH9611232 Bhat PC, 2011, ANNU REV NUCL PART S, V61, P281, DOI [10.1146/annurev.nucl.012809.10442, 10.1146/annurev.nucl.012809.104427] Bishop CM., 2006, PATTERN RECOGN Buckley A, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3318-8 C Collaboration CMS Collaboration, 2016, SEARCH INV DEC HIGGS Cacciari M, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.082002 Campbell JM, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3461-2 Chatrchyan S, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.092007 Chatrchyan S, 2013, J INSTRUM, V8, DOI 10.1088/1748-0221/8/11/P11002 Chatrchyan S, 2012, PHYS LETT B, V716, P30, DOI 10.1016/j.physletb.2012.08.021 Chatrchyan S, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2012)033 Czakon M, 2014, COMPUT PHYS COMMUN, V185, P2930, DOI 10.1016/j.cpc.2014.06.021 Czakon M, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.252004 Czakon M, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2013)080 Czakon M, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2012)054 de Favereau J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2014)057 de Florian D., 2016, HDB LHC HIGGS CROSS, DOI [10.23731/CYRM-2017-002, DOI 10.23731/CYRM-2017-002] Dulat S, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.033006 Feindt M, 2006, NUCL INSTRUM METH A, V559, P190, DOI 10.1016/j.nima.2005.11.166 Guest D, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.112002 Hoecker Andreas, 2007, ARXIVPHYSICS0703039 Khachatryan V, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.092009 Khachatryan V, 2015, J INSTRUM, V10, DOI 10.1088/1748-0221/10/06/P06005 KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694 Martin Abadi, 2015, TENSORFLOW LARGE SCA Muhlleitner MM, 2007, ACTA PHYS POL B, V38, P635 Nason P, 2014, EUR PHYS J C, V74, P1, DOI 10.1140/epjc/s10052-013-2702-5 Patrignani C, 2016, CHINESE PHYS C, V40, DOI 10.1088/1674-1137/40/10/100001 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Prosper H. B., 2012, CMSIN2012012 CERN Rogan C., 2010, ARXIV10062727 Searcy J., 2016, J ZHU PHYS REV D, V93, DOI 10.1103/PhysRevD.93.094033 Sirunyan A. M., 2017, ARXIV171207158 Sjostrand T, 2008, COMPUT PHYS COMMUN, V178, P852, DOI 10.1016/j.cpc.2008.01.036 Sjostrand T, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/05/026 Strobbe N. C., 2011, THESIS T. A. Collaboration ATLAS Collaboration, 2016, MEAS HIGGS BOS PROD Thaler J, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2011)015 Theano Development Team, 2016, ARXIV E PRINTS NR 61 TC 7 Z9 8 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2018 VL 228 BP 245 EP 257 DI 10.1016/j.cpc.2018.02.018 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA GH9PI UT WOS:000434000900025 DA 2021-04-21 ER PT J AU Giorgino, T AF Giorgino, Toni TI How to differentiate collective variables in free energy codes: Computer-algebra code generation and automatic differentiation SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Molecular dynamics; Free energy; Biased sampling; Metadynamics; Symbolic; C plus ID MOLECULAR-DYNAMICS AB The proper choice of collective variables (CVs) is central to biased-sampling free energy reconstruction methods in molecular dynamics simulations. The PLUMED 2 library, for instance, provides several sophisticated CV choices, implemented in a C++ framework; however, developing new CVs is still time consuming due to the need to provide code for the analytical derivatives of all functions with respect to atomic coordinates. We present two solutions to this problem, namely (a) symbolic differentiation and code generation, and (b) automatic code differentiation, in both cases leveraging open-source libraries (SymPy and Stan Math, respectively). The two approaches are demonstrated and discussed in detail implementing a realistic example CV, the local radius of curvature of a polymer. Users may use the code as a template to streamline the implementation of their own CVs using high-level constructs and automatic gradient computation. Program summary Program Title: Practical approaches to the differentiation of collective variables in free energy codes: computer-algebra code generation and automatic differentiation Program Files doi: http:fidx.doi.org/10.17632/r4r67bvkdn.1 Licensing provisions: GNU Lesser General Public License Version 3 (LGPL-3) Programming languages: C++, Python Nature of problem: The C++ implementation of collective variables (CVs, functions of atomic coordinates to be used in biased sampling applications) in biasing libraries for atomistic simulations, such as PLUMED [1], requires computation of both the variable and its gradient with respect to the atomic coordinates; coding and testing the analytical derivatives complicate the implementation of new CVs. Solution method: The paper shows two approaches to automate the computation of CV gradients, namely, symbolic differentiation with code generation and automatic code differentiation, demonstrating their implementation entirely with open-source software (respectively, SymPy and the Stan Math Library). Additional comments: The paper's accompanying code serves as an example and template for the methods described in the paper; it is distributed as the two modules curvature_codegen and curvature_aut odiff integrated in PLUMED 2's source tree; the latest version is available at https://github. comitonigi/plumed2- automatic-gradients. [1] Tribello GA, Bonomi M, Branduardi D, Camilloni C, Bussi G. PLUMED 2: New feathers for an old bird. Computer Physics Communications. 2014 Feb; 185(2):604-13. (C) 2018 Published by Elsevier B.V. C1 [Giorgino, Toni] Natl Res Council CNR IN, Inst Neurosci, Corso Stati Uniti 4, I-35127 Padua, Italy. [Giorgino, Toni] Univ Milan, Dipartimento Biosci, CNR, Ist Biofis,IBF, Via Celoria 26, I-20133 Milan, Italy. RP Giorgino, T (corresponding author), Natl Res Council CNR IN, Inst Neurosci, Corso Stati Uniti 4, I-35127 Padua, Italy.; Giorgino, T (corresponding author), Univ Milan, Dipartimento Biosci, CNR, Ist Biofis,IBF, Via Celoria 26, I-20133 Milan, Italy. EM toni.giorgino@cnr.it RI Giorgino, Toni/H-1866-2011 OI Giorgino, Toni/0000-0001-6449-0596 FU CINECA awards under the ISCRA initiativeCINECA, Italy; Acellera Ltd. FX I would like to thank Prof. G. Bussi and Prof. C. Camilloni for discussions on the applications of automatic differentiation and comments on the manuscript. I acknowledge CINECA awards under the ISCRA initiative for the availability of high performance computing resources and support. Research funding from Acellera Ltd. is gratefully acknowledged. CR Bonomi M, 2017, BIOINFORMATICS, V33, P3999, DOI 10.1093/bioinformatics/btx529 Branduardi D, 2007, J CHEM PHYS, V126, DOI 10.1063/1.2432340 Carpenter B., 2015, ARXIV150907164CS Carpenter B, 2017, J STAT SOFTW, V76, P1, DOI 10.18637/jss.v076.i01 Fiorin G, 2013, MOL PHYS, V111, P3345, DOI 10.1080/00268976.2013.813594 Galvelis R, 2017, J CHEM THEORY COMPUT, V13, P2489, DOI 10.1021/acs.jctc.7b00188 Giorgino T, 2017, COMPUT PHYS COMMUN, V217, P204, DOI 10.1016/j.cpc.2017.04.009 Guennebaud G., 2010, EIGEN V3 Hamelberg D, 2004, J CHEM PHYS, V120, P11919, DOI 10.1063/1.1755656 Hindmarsh AC, 2005, ACM T MATH SOFTWARE, V31, P363, DOI 10.1145/1089014.1089020 Laio A, 2002, P NATL ACAD SCI USA, V99, P12562, DOI 10.1073/pnas.202427399 Laio A, 2008, REP PROG PHYS, V71, DOI 10.1088/0034-4885/71/12/126601 Meurer A, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.103 Mollica L, 2015, SCI REP-UK, V5, DOI 10.1038/srep11539 Mushtaq A, 2014, COMPUT PHYS COMMUN, V185, P1461, DOI 10.1016/j.cpc.2014.01.012 Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Salmaso V, 2017, STRUCTURE, V25, P655, DOI 10.1016/j.str.2017.02.009 Sun HY, 2017, J CHEM INF MODEL, V57, P1895, DOI 10.1021/acs.jcim.7b00075 TORRIE GM, 1977, J COMPUT PHYS, V23, P187, DOI 10.1016/0021-9991(77)90121-8 Tribello GA, 2017, J CHEM THEORY COMPUT, V13, P1317, DOI 10.1021/acs.jctc.6b01073 Tribello GA, 2014, COMPUT PHYS COMMUN, V185, P604, DOI 10.1016/j.cpc.2013.09.018 Weaver Vincent M., 2013, IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS 2013), P215 NR 22 TC 2 Z9 2 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2018 VL 228 BP 258 EP 263 DI 10.1016/j.cpc.2018.02.017 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA GH9PI UT WOS:000434000900026 DA 2021-04-21 ER PT J AU Schmidt, B Hartmann, C AF Schmidt, Burkhard Hartmann, Carsten TI WavePacket: A Matlab package for numerical quantum dynamics. II: Open quantum systems, optimal control, and model reduction SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Schrodinger equation; Liouville-von Neumann equation; Optimal control; Model order reduction ID PYTHON FRAMEWORK; ALGORITHM; DISSOCIATION; PROPAGATION; REALIZATION; TRANSITIONS; MOLECULES; LASERS; QUTIP AB WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrodinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found. Program summary Program Title: WAVEPACKET Program Files doi: http://dx.doi.org/10.17632/9g8b7jychy.1 Licensing provisions: GPLv3 Programming language: MATLAB Journal reference of previous version: Comput. Phys. Comm. 213 (2017), 223. Does the new version supersede the previous version?: The previous article focused on the treatment of closed quantum systems by discrete variable representations and implementation of various numerical algorithms for solving Schrobdinger's equations. Complementary to that, the present second part is concerned with open quantum systems and optimal control by external fields. In addition, two approaches to dimension reduction useful in modeling of quantum control are described. Reasons for the new version: The reason for having a second article on the WavePacket software package lies in the fact that a complete description of the package would have exceeded the scope of a regular article. Several significant features of the WAVEPACKET package are introduced here which could not be mentioned in the first article, due to length constraints. Summary of revisions: Here we describe the numerical treatment of open quantum systems dynamics modeled by Lindblad master equations. Moreover, we explain the WAVEPACKET functions for optimal control simulations, both for closed and open quantum systems. To address the problem of computational effort, two strategies for model reduction have been included. Nature of problem: Dynamics of closed and open systems are described by Schrodinger or Liouvillevon Neumann equations, respectively, where the latter ones will be restricted to the Lindblad master equation. Emphasis is on the interaction of quantum system with external electric fields, treated within the semi-classical dipole approximation. Quantum optimal control simulations are used for the design of tailored fields achieving specified targets in quantum dynamics. With these features, WAVEPACKET can be instrumental for the simulation, understanding, and prediction of modern experiments in atomic, molecular and optical physics involving temporally shaped fields. Solution method: Representing state vectors or reduced density matrices in a discrete basis, SchrOdinger or Liouville-von Neumann equations are cast into systems of ordinary differential equations. Those are treated by self-written or MATLAB'S built-in solvers, the latter ones offering adaptive time-stepping. The optimal control equations are solved by the rapid monotonically convergent iteration methods developed by Zhu, Rabitz, Ohtsuki and others. In order to reduce the dimensionality of large scale control problems, the balanced truncation method as well as H2-optimal model reduction approaches are available in WAVEPACKET. Additional comments including restrictions and unusual features: The WAVEPACKET program package is rather easy and intuitive to use, providing visualization of quantum dynamics 'on the fly'. It is mainly intended for low-dimensional systems, typically not exceeding three to five degrees of freedom. Detailed user guides and reference manuals are available through numerous Wiki pages hosted at the SOURCEFORGE platform where also a large number of well documented demonstration examples can be found. (C) 2018 Elsevier B.V. All rights reserved. C1 [Schmidt, Burkhard] Free Univ Berlin, Inst Math, Arnimallee 6, D-14195 Berlin, Germany. [Hartmann, Carsten] Brandenburg Tech Univ Cottbus, Inst Math, Konrad Wachsmann Allee 1, D-03046 Cottbus, Germany. RP Schmidt, B (corresponding author), Free Univ Berlin, Inst Math, Arnimallee 6, D-14195 Berlin, Germany. EM burkhard.schmidt@fu-berlin.de; carsten.hartmann@b-tu.de RI Schmidt, Burkhard/A-2358-2013 OI Schmidt, Burkhard/0000-0002-9658-499X FU Einstein Center for Mathematics Berlin (ECMath) [SE 11, SE 20] FX This work has been supported by the Einstein Center for Mathematics Berlin (ECMath) through projects SE 11 and SE 20. Boris Schafer-Bung (formerly at FU Berlin) and Tobias Breiten (U of Graz, Austria) are acknowledged for setting up initial versions of the MATLAB codes for dimension reduction. Finally, we are grateful to Ulf Lorenz (formerly at U Potsdam) for his valuable help with all kind of questions around the WAVEPACKET software package. CR Andrianov I, 2006, J CHEM PHYS, V124, DOI 10.1063/1.2161191 Baer M, 2006, BORN OPPENHEIMER Bai ZJ, 2006, LINEAR ALGEBRA APPL, V415, P406, DOI 10.1016/j.laa.2005.04.032 Beck MH, 2000, PHYS REP, V324, P1, DOI 10.1016/S0370-1573(99)00047-2 Benner P., 2017, ARXIV170609882 Benner P, 2012, SIAM J MATRIX ANAL A, V33, P859, DOI 10.1137/110836742 Breiten T, 2010, SYST CONTROL LETT, V59, P443, DOI 10.1016/j.sysconle.2010.06.003 Breuer HP., 2002, THEORY OPEN QUANTUM BURKEY RS, 1984, J OPT SOC AM B, V1, P169, DOI 10.1364/JOSAB.1.000169 Damm T., 2008, LINEAR ALGEBRA APPL, V15, P53 de Vivie-Riedle R, 2007, CHEM REV, V107, P5082, DOI 10.1021/cr040094l Domcke W., 2004, ADV SERIES PHYS CHEM, V15 Glaser SJ, 2015, EUR PHYS J D, V69, DOI 10.1140/epjd/e2015-60464-1 Grossmann F, 2008, SPRINGER SER ATOM OP, V48, P3 Hahn J, 2002, IND ENG CHEM RES, V41, P2204, DOI 10.1021/ie0106175 Hartmann C, 2013, SIAM J CONTROL OPTIM, V51, P2356, DOI 10.1137/100796844 Hartmann C, 2010, MULTISCALE MODEL SIM, V8, P1348, DOI 10.1137/080732717 Horenko I, 2004, J CHEM PHYS, V120, P8913, DOI 10.1063/1.1691015 Horenko I, 2002, J CHEM PHYS, V117, P11075, DOI 10.1063/1.1522712 Horenko I, 2002, J CHEM PHYS, V117, P4643, DOI 10.1063/1.1498467 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 JUDSON RS, 1992, PHYS REV LETT, V68, P1500, DOI 10.1103/PhysRevLett.68.1500 Kais S., 2014, ADV CHEM PHYS Khan BA, 2014, J PHYS CHEM A, V118, P11451, DOI 10.1021/jp507459m Khaneja N, 2005, J MAGN RESON, V172, P296, DOI 10.1016/j.jmr.2004.11.004 Korolkov MV, 1996, J CHEM PHYS, V105, P1862, DOI 10.1063/1.472058 Kossakowski A., 1972, Reports on Mathematical Physics, V3, P247, DOI 10.1016/0034-4877(72)90010-9 LAUB AJ, 1987, IEEE T AUTOMAT CONTR, V32, P115, DOI 10.1109/TAC.1987.1104549 Le Bris C., 2003, QUANTUM CONTROL MATH, P139 LEFORESTIER C, 1991, J COMPUT PHYS, V94, P59, DOI 10.1016/0021-9991(91)90137-A Light JC, 2000, ADV CHEM PHYS, V114, P263, DOI 10.1002/9780470141731.ch4 LIGHT JC, 1985, J CHEM PHYS, V82, P1400, DOI 10.1063/1.448462 LINDBLAD G, 1976, COMMUN MATH PHYS, V48, P119, DOI 10.1007/BF01608499 Lockwood DM, 2001, CHEM PHYS, V268, P55, DOI 10.1016/S0301-0104(01)00306-8 Machnes S, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.022305 Maday Y, 2003, J CHEM PHYS, V118, P8191, DOI 10.1063/1.1564043 May V., 2000, CHARGE ENERGY TRANSF MECKE R, 1950, Z ELEKTROCHEM, V54, P38 Mendl CB, 2011, COMPUT PHYS COMMUN, V182, P1327, DOI 10.1016/j.cpc.2011.01.028 Ohtsuki Y, 2004, J CHEM PHYS, V120, P5509, DOI 10.1063/1.1650297 Ohtsuki Y, 1999, J CHEM PHYS, V110, P9825, DOI 10.1063/1.478036 Owschimikow N, 2011, PHYS CHEM CHEM PHYS, V13, P8671, DOI 10.1039/c0cp02260h Rabitz H, 2000, SCIENCE, V288, P824, DOI 10.1126/science.288.5467.824 Rabitz H, 2003, SCIENCE, V299, P525, DOI 10.1126/science.1080683 Schafer-Bung B, 2011, J CHEM PHYS, V135, DOI 10.1063/1.3605243 Schleich W., 2001, QUANTUM OPTICS PHASE Schmidt B, 2017, COMPUT PHYS COMMUN, V213, P223, DOI 10.1016/j.cpc.2016.12.007 Schmidt B, 2014, J CHEM PHYS, V140, DOI 10.1063/1.4864465 SEEL M, 1991, J CHEM PHYS, V95, P7806, DOI 10.1063/1.461816 SOMLOI J, 1993, CHEM PHYS, V172, P85, DOI 10.1016/0301-0104(93)80108-L Steinfeld J.I., 1989, CHEM KINETICS DYNAMI Subotnik JE, 2016, ANNU REV PHYS CHEM, V67, P387, DOI 10.1146/annurev-physchem-040215-112245 Sundermann K, 1999, J CHEM PHYS, V110, P1896, DOI 10.1063/1.477856 Sundstrom V, 2008, ANNU REV PHYS CHEM, V59, P53, DOI 10.1146/annurev.physchem.59.032607.093615 TANNOR D, 2004, INTRO QUANTUM MECH T TOMBS MS, 1987, INT J CONTROL, V46, P1319, DOI 10.1080/00207178708933971 Tremblay JC, 2011, J CHEM PHYS, V134, DOI 10.1063/1.3532410 Wachspress EL, 1988, APPL MATH LETT, V1, P87 Weiss U., 1999, QUANTUM DISSIPATIVE Werschnik J, 2007, J PHYS B-AT MOL OPT, V40, pR175, DOI 10.1088/0953-4075/40/18/R01 Zewail AH, 2000, J PHYS CHEM A, V104, P5660, DOI 10.1021/jp001460h Zhang LQ, 2002, AUTOMATICA, V38, P205, DOI 10.1016/S0005-1098(01)00204-7 Zhang W., 2014, J COMPUT DYN, V1, P279, DOI DOI 10.3934/jcd.2014.1.279 Zhou K., 1998, ESSENTIALS ROBUST CO Zhu J, 2013, J CHEM PHYS, V138, DOI 10.1063/1.4774058 Zhu WS, 1998, J CHEM PHYS, V108, P1953, DOI 10.1063/1.475576 Zhu WS, 1998, J CHEM PHYS, V109, P385, DOI 10.1063/1.476575 NR 68 TC 8 Z9 8 U1 5 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2018 VL 228 BP 229 EP 244 DI 10.1016/j.cpc.2018.02.022 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA GH9PI UT WOS:000434000900024 DA 2021-04-21 ER PT J AU Bosnar, D Matic, Z Friscic, I Zugec, P Janci, H AF Bosnar, D. Matic, Z. Friscic, I. Zugec, P. Janci, H. TI A simple setup for cosmic muon lifetime measurements SO EUROPEAN JOURNAL OF PHYSICS LA English DT Article DE cosmic muons; scintillation detector; muon lifetime ID MEAN LIFETIME AB Elementary particle physics is a fascinating field of modern physics investigating the basic constituents of matter and their interactions. In the experiments large accelerators and very sophisticated detector systems are usually used. However, it is desirable to have simple experiments for undergraduate and even secondary school courses which can demonstrate complex investigations in this field. We have constructed a simple setup for the measurement of the lifetime of cosmic muons based on a single scintillation detector. Expensive and complicated professional particle physics equipment for the signal processing, which has mainly prevented the realization of this experiment by non-experts, is replaced by simple, inexpensive and commercially available electronic components. With our setup we register time stamps of the events detected in the scintillation detector and from this data we determine the muon lifetime. Also, a Python software package has been developed for data analysis and presentation of the results. C1 [Bosnar, D.; Friscic, I.; Zugec, P.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb, Croatia. [Matic, Z.] Metall Nova Doo, Rijeka, Croatia. [Janci, H.] Osnovna Skola Grgura Karlovcana, Djurdjevac, Croatia. [Friscic, I.] MIT, LNS, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Bosnar, D (corresponding author), Univ Zagreb, Fac Sci, Dept Phys, Zagreb, Croatia. EM bosnar@phy.hr CR CERN, 2018, CERN ACC SCI Coan T, 2006, AM J PHYS, V74, P161, DOI 10.1119/1.2135319 Evans R.D., 1955, ATOMIC NUCL HALL RE, 1970, AM J PHYS, V38, P1196, DOI 10.1119/1.1976002 Hess VF, 1912, PHYS Z, V13, P1084 LEWIS RJ, 1982, AM J PHYS, V50, P894, DOI 10.1119/1.13013 Melissinos A C, 2003, EXPT MODERN PHYS Muehry H, 2002, PHYS TEACH, V40, P294 Neddermeyer SH, 1937, PHYS REV, V51, P0884, DOI 10.1103/PhysRev.51.884 OWENS A, 1978, AM J PHYS, V46, P859, DOI 10.1119/1.11407 Particle Data Group, 2017, REV PART PHYS Perkins D, 2009, PARTICLE ASTROPHYSIC Riggi F, 2016, EUR J PHYS, V37, DOI 10.1088/0143-0807/37/4/045702 Thomson M., 2013, MODERN PARTICLE PHYS WARD T, 1985, AM J PHYS, V53, P542, DOI 10.1119/1.14235 Webber DM, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.041803 NR 16 TC 1 Z9 1 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0143-0807 EI 1361-6404 J9 EUR J PHYS JI Eur. J. Phys. PD JUL PY 2018 VL 39 IS 4 AR 045801 DI 10.1088/1361-6404/aaadec PG 9 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA GD2OI UT WOS:000430339400001 DA 2021-04-21 ER PT J AU Court, CJ Cole, JM AF Court, Callum J. Cole, Jacqueline M. TI Data Descriptor: Auto-generated materials database of Curie and Neel temperatures via semi-supervised relationship extraction SO SCIENTIFIC DATA LA English DT Article; Data Paper ID INFORMATION; DISCOVERY; MAGNDATA AB Large auto-generated databases of magnetic materials properties have the potential for great utility in materials science research. This article presents an auto-generated database of 39,822 records containing chemical compounds and their associated Curie and Neel magnetic phase transition temperatures. The database was produced using natural language processing and semi-supervised quaternary relationship extraction, applied to a corpus of 68,078 chemistry and physics articles. Evaluation of the database shows an estimated overall precision of 73%. Therein, records processed with the text-mining toolkit, ChemDataExtractor, were assisted by a modified Snowball algorithm, whose original binary relationship extraction capabilities were extended to quaternary relationship extraction. Consequently, its machine learning component can now train with <= 500 seeds, rather than the 4,000 originally used. Data processed with the modified Snowball algorithm affords 82% precision. Database records are available in MongoDB, CSV and JSON formats which can easily be read using Python, R, Java and MatLab. This makes the database easy to query for tackling big-data materials science initiatives and provides a basis for magnetic materials discovery. [GRAPHICS] . C1 [Court, Callum J.; Cole, Jacqueline M.] Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Cole, Jacqueline M.] STFC Rutherford Appleton Lab, ISIS Neutron & Muon Source, Harwell Sci & Innovat Campus, Didcot OX11 0QX, Oxon, England. [Cole, Jacqueline M.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. [Cole, Jacqueline M.] Univ Cambridge, Dept Chem Engn & Biotechnol, West Cambridge Site,Philippa Fawcett Dr, Cambridge CB3 0FS, England. RP Cole, JM (corresponding author), Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England.; Cole, JM (corresponding author), STFC Rutherford Appleton Lab, ISIS Neutron & Muon Source, Harwell Sci & Innovat Campus, Didcot OX11 0QX, Oxon, England.; Cole, JM (corresponding author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.; Cole, JM (corresponding author), Univ Cambridge, Dept Chem Engn & Biotechnol, West Cambridge Site,Philippa Fawcett Dr, Cambridge CB3 0FS, England. EM jmc61@cam.ac.uk RI Cole, Jacqueline/C-5991-2008 OI Court, Callum/0000-0002-3919-5605 FU EPSRC Computational Methods in Materials Science CentreUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/L015552/1]; Royal Commission of the 1851 Great Exhibition; DOE Office of Science, Office of Basic Energy SciencesUnited States Department of Energy (DOE) [DE-AC02-06CH11357] FX CJC would like to thank the EPSRC Computational Methods in Materials Science Centre for Doctoral Training for PhD funding (reference, EP/L015552/1). JMC is grateful to the Royal Commission of the 1851 Great Exhibition for the 2014 Design Fellowship, and Argonne National Laboratory where work done was supported by DOE Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. CR Agichtein E., 2000, ACM 2000. Digital Libraries. Proceedings of the Fifth ACM Conference on Digital Libraries, P85 [Anonymous], 2017, SPRINGER NATURE SPRI Eltyeb S, 2014, J CHEMINFORMATICS, V6, DOI 10.1186/1758-2946-6-17 Fader A., 2011, P C EMP METH NAT LAN, P1535, DOI DOI 10.1234/12345678 Frakes W.B., 1992, INFORM RETRIEVAL DAT Gallego SV, 2016, J APPL CRYSTALLOGR, V49, P1941, DOI 10.1107/S1600576716015491 Gallego SV, 2016, J APPL CRYSTALLOGR, V49, P1750, DOI 10.1107/S1600576716012863 Gong Y., 2001, P 6 INT C DOC AN REC, P903 Hawizy L, 2011, J CHEMINFORMATICS, V3, DOI 10.1186/1758-2946-3-17 Holden J, 2011, MAT GEN IN GLOB COMP Jain A, 2013, APL MATER, V1, DOI 10.1063/1.4812323 Kim E, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.127 Krallinger M, 2017, CHEM REV, V117, P7673, DOI 10.1021/acs.chemrev.6b00851 Lawrence Berkeley National Laboratory, 2017, MAT PROJ LUHN HP, 1957, IBM J RES DEV, V1, P309, DOI 10.1147/rd.14.0309 Olivares-Amaya R, 2011, ENERG ENVIRON SCI, V4, P4849, DOI 10.1039/c1ee02056k Pyzer-Knapp EO, 2015, ADV FUNCT MATER, V25, P6495, DOI 10.1002/adfm.201501919 Swain MC, 2016, J CHEM INF MODEL, V56, P1894, DOI 10.1021/acs.jcim.6b00207 Yates A., 2007, P NAACL HLT, P25 NR 19 TC 23 Z9 23 U1 1 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 2052-4463 J9 SCI DATA JI Sci. Data PD JUN 19 PY 2018 VL 5 AR 180111 DI 10.1038/sdata.2018.111 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA GJ7CK UT WOS:000435542300001 PM 29917013 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Ambrogi, F Kraml, S Kulkarni, S Laa, U Lessa, A Magerl, V Sonneveld, J Traub, M Waltenberger, W AF Ambrogi, Federico Kraml, Sabine Kulkarni, Suchita Laa, Ursula Lessa, Andre Magerl, Veronika Sonneveld, Jory Traub, Michael Waltenberger, Wolfgang TI SModelS v1.1 user manual: Improving simplified model constraints with efficiency maps SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE LHC; Supersymmetry; Simplified models; Physics beyond the standard model; Reinterpretation AB SModelS is an automatized tool for the interpretation of simplified model results from the LHC. It allows to decompose models of new physics obeying a Z(2) symmetry into simplified model components, and to compare these against a large database of experimental results. The first release of SModelS, v1.0, used only cross section upper limit maps provided by the experimental collaborations. In this new release, v1.1, we extend the functionality of SModelS to efficiency maps. This increases the constraining power of the software, as efficiency maps allow to combine contributions to the same signal region from different simplified models. Other new features of version 1.1 include likelihood and X-2 calculations, extended information on the topology coverage, an extended database of experimental results as well as major speed upgrades for both the code and the database. We describe in detail the concepts and procedures used in SModelS v1.1, explaining in particular how upper limits and efficiency map results are dealt with in parallel. Detailed instructions for code usage are also provided. Program summary Program Title: SModelS Program Files doi: http ://dx.doi.org/10.17632/w4nft4459w.1 Licensing provisions: GPLv3 Programming language: Python Nature of problem: The results for searches for new physics beyond the Standard Model (BSM) at the Large Hadron Collider are often communicated by the experimental collaborations in terms of constraints on so-called simplified models spectra (SMS). Understanding how SMS constraints impact a realistic new physics model, where possibly a multitude of relevant production channels and decay modes are relevant, is a non-trivial task. Solution method: We exploit the notion of simplified models to constrain full models by "decomposing" them into their SMS components. A database of SMS results obtained from the official results of the ATLAS and CMS collaborations, but in part also from 'recasting' the experimental analyses, can be matched against the decomposed model, resulting in a statement to what extent the model at hand is in agreement or contradiction with the experimental results. Further useful information on, e.g., the coverage of the models' signatures is also provided. Additional comments including Restrictions and Unusual features: At present, the tool is limited to signatures with missing transverse energy, and only models with a Z(2)-like symmetry can be tested. Each SMS is defined purely by the vertex structure and the SM final state particles; BSM particles are described only by their masses, production cross sections and branching ratios. Possible differences in signal selection efficiencies arising, e.g., from different production mechanisms or from the spin of the BSM particles, are ignored in this approach. Since only part of the full model can be constrained by SMS results, SModelS will always remain more conservative (though orders of magnitude faster) than "full recasting" approaches. (C) 2018 Elsevier B.V. All rights reserved. C1 [Ambrogi, Federico; Kulkarni, Suchita; Traub, Michael; Waltenberger, Wolfgang] Austrian Acad Sci, Inst Hochenergiephys, Nikolsdorfer Gasse 18, A-1050 Vienna, Austria. [Kraml, Sabine; Laa, Ursula] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Ave Martyrs, F-38026 Grenoble, France. [Laa, Ursula] Univ Savoie Mt Blanc, CNRS, LAPTh, BP 110 Annecy le Vieux, F-74941 Annecy, France. [Lessa, Andre] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210580 Santo Andre, SP, Brazil. [Magerl, Veronika] Albert Ludwigs Univ, Fak Math & Phys, D-79104 Freiburg, Germany. [Sonneveld, Jory] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. RP Waltenberger, W (corresponding author), Austrian Acad Sci, Inst Hochenergiephys, Nikolsdorfer Gasse 18, A-1050 Vienna, Austria. EM wolfgang.waltenberger@gmail.com RI Waltenberger, Wolfgang/H-9330-2018; Lessa, Andre/AAK-2194-2021 OI Waltenberger, Wolfgang/0000-0002-6215-7228; Lessa, Andre/0000-0002-5251-7891; Kraml, Sabine/0000-0002-2613-7000; Laa, Ursula/0000-0002-0249-6439 FU French ANRFrench National Research Agency (ANR) [DMAstro-LHC ANR-12-BS05-0006]; Theory-LHC-France Initiative of the CNRS (INP/IN2P3); Austrian FWFAustrian Science Fund (FWF) [P26896-N27]; "New Frontiers" program of the Austrian Academy of Sciences; Investissements d'avenir, Labex ENIGMASSFrench National Research Agency (ANR); Sao Paulo Research Foundation (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2015/20570-1, 2016/50338-6]; German Science Foundation (DFG)German Research Foundation (DFG) [SFB676]; German Federal Ministry of Education and Research (BMBF)Federal Ministry of Education & Research (BMBF); Austrian Science Fund (FWF)Austrian Science Fund (FWF) [P 26896] Funding Source: researchfish FX This work was supported in part by the French ANR, project DMAstro-LHC ANR-12-BS05-0006, and the Theory-LHC-France Initiative of the CNRS (INP/IN2P3). F.A. is supported by the Austrian FWF, project P26896-N27, Su.K. by the "New Frontiers" program of the Austrian Academy of Sciences, U.L. by the "Investissements d'avenir, Labex ENIGMASS", and A.L. by the Sao Paulo Research Foundation (FAPESP), projects 2015/20570-1 and 2016/50338-6. The work of J.S. is supported by the collaborative research center SFB676 "Particles, Strings, and the Early Universe" by the German Science Foundation (DFG) and by the German Federal Ministry of Education and Research (BMBF). CR Aad G, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2015)134 Aad G, 2014, J HIGH ENERGY PHYS, P1, DOI 10.1007/JHEP05(2014)071 Aad G, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2013)189 Aad G, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2013)130 Alwall J, 2008, EUR PHYS J C, V53, P473, DOI 10.1140/epjc/s10052-007-0490-5 Alwall J, 2007, COMPUT PHYS COMMUN, V176, P300, DOI 10.1016/j.cpc.2006.11.010 Alwall J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)079 Barducci D., 2016, ARXIV160603834 Bein S., MADANALYSIS 5 IMPLEM, DOI 10.7484/INSPIREHEP.DATA.83GG.U5BW Cacciari M, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1896-2 CMS Collaboration, 2017, 2017001 CMS COLL de Favereau J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2014)057 Dumont B., 2014, MADANALYSIS 5 IMPLEM, DOI 10.7484/INSPIREHEP.DATA.HLMR.T56W.2 Fuks B., ADANALYSIS5 IMPLEMEN, DOI 10.7484/INSPIREHEP.DATA.STLS.SAMT Hoche S., 2005, HERA LHC WORKSH IM A, P288, DOI DOI 10.5170/CERN-2005-014.288 Mangano M., 2002, FNAL MATR EL MONT CA Sjostrand T, 2004, J HIGH ENERGY PHYS NR 17 TC 21 Z9 22 U1 0 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUN PY 2018 VL 227 BP 72 EP 98 DI 10.1016/j.cpc.2018.02.007 PG 27 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA GC4LM UT WOS:000429756000007 DA 2021-04-21 ER PT J AU Richardson, ML Amini, B AF Richardson, Michael L. Amini, Behrang TI Teaching Radiology Physics Interactively with Scientific Notebook Software SO ACADEMIC RADIOLOGY LA English DT Article DE Physics; radiology education; simulation; scientific notebook software ID ACHILLES-TENDON; RESIDENTS; INTENSITY; PYTHON AB Rationale and Objectives: The goal of this study is to demonstrate how the teaching of radiology physics can be enhanced with the use of interactive scientific notebook software. Methods: We used the scientific notebook software known as Project Jupyter, which is free, open-source, and available for the Macintosh, Windows, and Linux operating systems. Results: We have created a scientific notebook that demonstrates multiple interactive teaching modules we have written for our residents using the Jupyter notebook system. Conclusions: Scientific notebook software allows educators to create teaching modules in a form that combines text, graphics, images, data, interactive calculations, and image analysis within a single document These notebooks can be used to build interactive teaching modules, which can help explain complex topics in imaging physics to residents. C1 [Richardson, Michael L.] Univ Washington, Dept Radiol, 4245 Roosevelt Way NE, Seattle, WA 98105 USA. [Amini, Behrang] Univ Texas MD Anderson Canc Ctr, Dept Radiol, Houston, TX 77030 USA. RP Richardson, ML (corresponding author), Univ Washington, Dept Radiol, 4245 Roosevelt Way NE, Seattle, WA 98105 USA. EM mrich@u.washington.edu OI Amini, Behrang/0000-0002-4962-3466 CR *AM BOARD RAD, 2017, COR EX CHANG W, 2017, COOKBOOK FOR R Chappell KE, 2004, AM J NEURORADIOL, V25, P431 ERICKSON SJ, 1991, RADIOLOGY, V181, P389, DOI 10.1148/radiology.181.2.1924777 Groch MW, 1998, RADIOGRAPHICS, V18, P1247, DOI 10.1148/radiographics.18.5.9747617 GRUBER J, 2017, MARKDOWN SYNTAX Hayes CW, 1996, TOP MAGN RESON IMAG, V8, P51 Jacobs CT, 2016, J GEOSCI ED, V64, P183, DOI DOI 10.5408/15-101.1 Jones B, 2013, PYTHON COOKBOOK RECI *MAPL, 2017, MAPL SOFTW MATH ONL Marshall H, 2002, AM J ROENTGENOL, V179, P187, DOI 10.2214/ajr.179.1.1790187 *MATL, 2017, MATHWORKS MAK MATLAB MILAS J, 2016, JUPYTER CLASSROOM MITCHELL MR, 1984, INVEST RADIOL, V19, P350, DOI 10.1097/00004424-198409000-00004 Mittelbach Frank., 2004, THE LATEX COMPANION, V2nd Oatridge A, 2003, CLIN RADIOL, V58, P384, DOI 10.1016/S0009-9260(02)00582-2 Osipov D, 2016, RISE DATA SCI NOTEBO Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Perez F, 2011, COMPUT SCI ENG, V13, P13, DOI 10.1109/MCSE.2010.119 *PROJ JUP, 2017, PROJ JUP HOM RICHARDSON ML, 1985, INVEST RADIOL, V20, P492, DOI 10.1097/00004424-198508000-00009 RICHARDSON ML, 2017, CURR PROBL DIAGN RAD, DOI DOI 10.1067/J.CPRADIOL.2017 RStudio Team, 2015, INT DEV ENV R Shen H, 2014, NATURE, V515, P151, DOI 10.1038/515151a Teetor P., 2011, R COOKBOOK van der Walt S, 2014, PEERJ, V2, DOI 10.7717/peerj.453 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 VANNOORDEN R, 2014, NATURE, P16015, DOI DOI 10.1038/NATURE.2014.16015 *WOLFR LANG SYST D, 2017, US NOT BOOK INT Zhang J, 2017, ACAD RADIOL, V24, P677, DOI 10.1016/j.acra.2017.01.015 2016, DIAGN RAD PHYS CURR 2017, STACK OV CONTR 2017, WRIT GITHUB BAS WRIT NR 33 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1076-6332 EI 1878-4046 J9 ACAD RADIOL JI Acad. Radiol. PD JUN PY 2018 VL 25 IS 6 BP 801 EP 810 DI 10.1016/j.acra.2017.11.024 PG 10 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA GG1BZ UT WOS:000432415600020 PM 29751860 DA 2021-04-21 ER PT J AU Rosati, E Madec, M Kammerer, JB Hebrard, L Lallement, C Haiech, J AF Rosati, Elise Madec, Morgan Kammerer, Jean-Baptiste Hebrard, Luc Lallement, Christophe Haiech, Jacques TI Efficient Modeling and Simulation of Space-Dependent Biological Systems SO JOURNAL OF COMPUTATIONAL BIOLOGY LA English DT Article DE compact modeling; mesher; space-and-time modeling; SPICE; systems and synthetic biology ID OSCILLATIONS; CIRCUIT AB We recently demonstrated the possibility to model and to simulate biological functions using hardware description languages (HDLs) and associated simulators traditionally used for microelectronics. Nevertheless, those languages are not suitable to model and simulate space-dependent systems described by partial differential equations. However, in more and more applications space- and time-dependent models are unavoidable. For this purpose, we investigated a new modeling approach to simulate molecular diffusion on a mesoscopic scale still based on HDL. Our work relies on previous investigations on an electrothermal simulation tool for integrated circuits, and analogies that can be drawn between electronics, thermodynamics, and biology. The tool is composed of four main parts: a simple but efficient mesher that divides space into parallelepipeds (or rectangles in 2D) of adaptable size, a set of interconnected biological models, a SPICE simulator that handles the model and Python scripts that interface the different tools. Simulation results obtained with our tool have been validated on simple cases for which an analytical solution exists and compared with experimental data gathered from literature. Compared with existing approaches, our simulator has three main advantages: a very simple algorithm providing a direct interface between the diffusion model and biological model of each cell, the use of a powerful and widely proven simulation core (SPICE) and the ability to interface biological models with other domains of physics, enabling the study of transdisciplinary systems. C1 [Rosati, Elise; Madec, Morgan; Kammerer, Jean-Baptiste; Hebrard, Luc; Lallement, Christophe; Haiech, Jacques] Univ Strasbourg, Lab Sci Ingenieur Informat & Imagerie ICube, CNRS, UMR 7357, 300 Bd Sebastien Brandt, F-67412 Illkirch Graffenstaden, France. [Haiech, Jacques] Univ Strasbourg, Lab Biotechnol & Signalisat Cellulaire BSC, CNRS, UMR 7242, 300 Bd Sebastien Brandt, F-67412 Illkirch Graffenstaden, France. RP Rosati, E (corresponding author), Univ Strasbourg, Lab Sci Ingenieur Informat & Imagerie, CNRS, UMR 7357, 300 Bd Sebastien Brant,BP 10413, F-67412 Illkirch Graffenstaden, France. EM elise.rosati@etu.unistra.fr RI HEBRARD, Luc/AAG-3266-2019; Madec, Morgan/AAA-5910-2020; haiech, jacques J/F-2890-2010 OI haiech, jacques/0000-0003-2908-8053; LALLEMENT, christophe/0000-0002-0708-7212 CR Amar Patrick, 2004, Journal of Biological Physics and Chemistry, V4, P79 Arifin DY, 2006, ADV DRUG DELIVER REV, V58, P1274, DOI 10.1016/j.addr.2006.09.007 Balagadde FK, 2008, MOL SYST BIOL, V4, DOI 10.1038/msb.2008.24 Basu S, 2005, NATURE, V434, P1130, DOI 10.1038/nature03461 Blundell S., 2010, CONCEPTS THERMAL PHY Butterworth Erik, 2013, F1000Res, V2, P288, DOI 10.12688/f1000research.2-288.v1 Calzone L, 2006, BIOINFORMATICS, V22, P1805, DOI 10.1093/bioinformatics/btl172 Digele G, 1997, IEEE T VLSI SYST, V5, P250, DOI 10.1109/92.609867 Dreij K, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023128 ERMENTROUT GB, 1993, J THEOR BIOL, V160, P97, DOI 10.1006/jtbi.1993.1007 Evans G., 2000, NUMERICAL METHODS PA Fick A., 1855, MAGAZ J SCI, V10, P30, DOI [10.1080/14786445508641925, DOI 10.1080/14786445508641925] Fujii T, 2013, ACS NANO, V7, P27, DOI 10.1021/nn3043572 Garci M, 2014, IEEE INT NEW CIRC, P125, DOI 10.1109/NEWCAS.2014.6933999 Gendrault Y, 2014, IEEE T BIO-MED ENG, V61, P1231, DOI 10.1109/TBME.2014.2298559 GOLDBETER A, 1990, P NATL ACAD SCI USA, V87, P1461, DOI 10.1073/pnas.87.4.1461 Haiech J, 2014, BBA-MOL CELL RES, V1843, P2348, DOI 10.1016/j.bbamcr.2014.03.013 Hecht F, 2012, J NUMER MATH, V20, P251, DOI 10.1515/jnum-2012-0013 Hoops S, 2006, BIOINFORMATICS, V22, P3067, DOI 10.1093/bioinformatics/btl485 Hucka M, 2003, BIOINFORMATICS, V19, P524, DOI 10.1093/bioinformatics/btg015 Keiter E., 2014, SAND20124805 SAND NA Konkoli Z, 2011, THEOR BIOL MED MODEL, V8, DOI 10.1186/1742-4682-8-10 Krencker JC, 2014, MICROELECTRON J, V45, P491, DOI 10.1016/j.mejo.2014.02.001 Krencker J.-C., 2010, THERM INV ICS SYST T Lannutti F., 2014, CUSPICE NGSPICE CUDA Lopez CF, 2013, MOL SYST BIOL, V9, DOI 10.1038/msb.2013.1 Madec M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0182385 Madec M, 2012, IEEE ENG MED BIO, P5462, DOI 10.1109/EMBC.2012.6347230 Michaelis VL, 1913, BIOCHEMISTRY-US, V29, P332 Moraru II, 2008, IET SYST BIOL, V2, P352, DOI 10.1049/iet-syb:20080102 Nenzi P., 2011, NGSPICE USERS MANUAL Rosati E, 2016, LECT NOTES COMPUT SC, V9597, P184, DOI 10.1007/978-3-319-31204-0_13 Schmidt H, 2006, BIOINFORMATICS, V22, P514, DOI 10.1093/bioinformatics/bti799 SOMOGYI R, 1991, J BIOL CHEM, V266, P11068 Takahashi K, 2005, FEBS LETT, V579, P1783, DOI 10.1016/j.febslet.2005.01.072 Tamsir A, 2011, NATURE, V469, P212, DOI 10.1038/nature09565 Vogelsong R.S., 1989, 1989 P IEEE CUST INT Vollmer J., 2013, P COMSOL C ROTT NETH Wunsche S, 1997, IEEE T VLSI SYST, V5, P277, DOI 10.1109/92.609870 Xie Z, 2011, SCIENCE, V333, P1307, DOI 10.1126/science.1205527 NR 40 TC 4 Z9 4 U1 0 U2 0 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1066-5277 EI 1557-8666 J9 J COMPUT BIOL JI J. Comput. Biol. PD AUG PY 2018 VL 25 IS 8 BP 917 EP 933 DI 10.1089/cmb.2018.0012 PG 17 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA GP5XC UT WOS:000432062600001 PM 29741924 DA 2021-04-21 ER PT J AU Vianello, G AF Vianello, Giacomo TI The Significance of an Excess in a Counting Experiment: Assessing the Impact of Systematic Uncertainties and the Case with a Gaussian Background SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE astroparticle physics; gamma-ray burst: general; methods: data analysis; methods: statistical ID GAMMA-RAY ASTRONOMY; LIKELIHOOD RATIO; SMALL NUMBERS; CONFIDENCE; STATISTICS; EVENTS; LIMITS AB Several experiments in high-energy physics and astrophysics can be treated as on/off measurements, where an observation potentially containing a new source or effect ("on" measurement) is contrasted with a background-only observation free of the effect ("off" measurement). In counting experiments, the significance of the new source or effect can be estimated with a widely used formula from Li & Ma, which assumes that both measurements are Poisson random variables. In this paper we study three other cases: (i) the ideal case where the background measurement has no uncertainty, which can be used to study the maximum sensitivity that an instrument can achieve, (ii) the case where the background estimate b in the off measurement has an additional systematic uncertainty, and (iii) the case where b is a Gaussian random variable instead of a Poisson random variable. The latter case applies when b comes from a model fitted on archival or ancillary data, or from the interpolation of a function fitted on data surrounding the candidate new source/effect. Practitioners typically use a formula that is only valid when b is large and when its uncertainty is very small, while we derive a general formula that can be applied in all regimes. We also develop simple methods that can be used to assess how much an estimate of significance is sensitive to systematic uncertainties on the efficiency or on the background. Examples of applications include the detection of short gamma-ray bursts and of new X-ray or.-ray sources. All the techniques presented in this paper are made available in a Python code that is ready to use. C1 [Vianello, Giacomo] Stanford Univ, Hansen Expt Phys Lab, 450 Serra Mall, Stanford, CA 94305 USA. RP Vianello, G (corresponding author), Stanford Univ, Hansen Expt Phys Lab, 450 Serra Mall, Stanford, CA 94305 USA. EM giacomov@stanford.edu OI Vianello, Giacomo/0000-0002-2553-0839 CR Abbott BP, 2017, ASTROPHYS J LETT, V848, DOI 10.3847/2041-8213/aa920c Bhat PN, 2016, ASTROPHYS J SUPPL S, V223, DOI 10.3847/0067-0049/223/2/28 CASH W, 1979, ASTROPHYS J, V228, P939, DOI 10.1086/156922 Clopper CJ, 1934, BIOMETRIKA, V26, P404, DOI 10.1093/biomet/26.4.404 Cousins RD, 2008, NUCL INSTRUM METH A, V595, P480, DOI 10.1016/j.nima.2008.07.086 GEHRELS N, 1986, ASTROPHYS J, V303, P336, DOI 10.1086/164079 Gillessen S, 2005, ASTRON ASTROPHYS, V430, P355, DOI 10.1051/0004-6361:20035839 Goldstein A, 2017, ASTROPHYS J LETT, V848, DOI 10.3847/2041-8213/aa8f41 JAMES F, 1980, NUCL PHYS B, V172, P475, DOI 10.1016/0550-3213(80)90179-0 LI TP, 1983, ASTROPHYS J, V272, P317, DOI 10.1086/161295 Meegan C, 2009, ASTROPHYS J, V702, P791, DOI 10.1088/0004-637X/702/1/791 Protassov R, 2002, ASTROPHYS J, V571, P545, DOI 10.1086/339856 Reid N, 1995, STAT SCI, V10, P138, DOI 10.1214/ss/1177010027 Spengler G, 2015, ASTROPART PHYS, V67, P70, DOI 10.1016/j.astropartphys.2015.02.002 Szecsi D, 2013, ASTRON ASTROPHYS, V557, DOI 10.1051/0004-6361/201321068 Vasileiou V, 2013, ASTROPART PHYS, V48, P61, DOI 10.1016/j.astropartphys.2013.07.002 Vianello G., 2018, GV SIGNIFICANCE V1 0, DOI [10.5281/zenodo.1157308, DOI 10.5281/ZENODO.1157308] Wilks SS, 1938, ANN MATH STAT, V9, P60, DOI 10.1214/aoms/1177732360 Zhang S. N., 1990, Experimental Astronomy, V1, P145, DOI 10.1007/BF00462037 NR 19 TC 15 Z9 15 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2018 VL 236 IS 1 AR 17 DI 10.3847/1538-4365/aab780 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA GT5HM UT WOS:000444537700012 DA 2021-04-21 ER PT J AU Hardwick, RJ AF Hardwick, Robert J. TI Multiple spectator condensates from inflation SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE inflation; physics of the early universe ID QUANTUM; GENERATION; FIELD AB We investigate the development of spectator (light test) field condensates due to their quantum fluctuations in a de Sitter inflationary background, making use of the stochastic formalism to describe the system. In this context, a condensate refers to the typical field value found after a coarse-graining using the Hubble scale H, which can be essential to seed the initial conditions required by various post-inflationary processes. We study models with multiple coupled spectators and for the first time we demonstrate that new forms of stationary solution exist (distinct from the standard exponential form) when the potential is asymmetric. Furthermore, we find a critical value for the inter-field coupling as a function of the number of fields above which the formation of stationary condensates collapses to H. Considering some simple two-field example potentials, we are also able to derive a lower limit on the coupling, below which the fluctuations are effectively decoupled, and the standard stationary variance formulae for each field separately can be trusted. These results are all numerically verified by a new publicly available python class (nfield) to solve the coupled Langevin equations over a large number of fields, realisations and timescales. Further applications of this new tool are also discussed. C1 [Hardwick, Robert J.] Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg,Burnaby Rd, Portsmouth PO1 3FX, Hants, England. RP Hardwick, RJ (corresponding author), Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg,Burnaby Rd, Portsmouth PO1 3FX, Hants, England. EM robert.hardwick@port.ac.uk RI Hardwick, Robert J./O-1098-2019 OI Hardwick, Robert J./0000-0001-8778-006X FU U.K. Science and Technology Facilities CouncilUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) [ST/N5044245]; ICG; SEPNet; University of Portsmouth FX The author is supported by U.K. Science and Technology Facilities Council grant ST/N5044245. Some numerical computations were done on the Sciama High Performance Compute (HPC) cluster which is supported by the ICG, SEPNet and the University of Portsmouth. The author would also like to thank both Matthew Hull for fruitful discussions and Chris Pattison, Vincent Vennin and David Wands for careful reading and helpful comments on the manuscript. CR Ashoorioon A, 2009, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2009/06/018 Assadullahi H, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/06/043 Bartolo N., 2002, PHYS REV, VD 65, P1213 Birrell N.D., 1984, CAMBRIDGE MONOGRAPHS BUNCH TS, 1978, P ROY SOC LOND A MAT, V360, P117, DOI 10.1098/rspa.1978.0060 Burgess CP, 2010, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2010/10/017 Ema Y., ARXIV171110554 Enqvist K, 2002, NUCL PHYS B, V626, P395, DOI 10.1016/S0550-3213(02)00043-3 Enqvist K, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/02/006 Enqvist K, 2012, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2012/10/052 Fairbairn M, 2018, EUR PHYS J C, V78, DOI 10.1140/epjc/s10052-018-5830-0 Freese K., ARXIV171203791 Glavan D, 2018, EUR PHYS J C, V78, DOI 10.1140/epjc/s10052-018-5862-5 Grain J, 2017, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2017/05/045 GRISHCHUK L, 1992, PHYS REV D, V46, P1440, DOI 10.1103/PhysRevD.46.1440 GRISHCHUK LP, 1990, PHYS REV D, V42, P3413, DOI 10.1103/PhysRevD.42.3413 Hardwick R. J., UNPUB Hardwick RJ, 2017, INT J MOD PHYS D, V26, DOI 10.1142/S0218271817430258 Hardwick RJ, 2017, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2017/10/018 HEIDMANN A, 1987, PHYS REV LETT, V59, P2555, DOI 10.1103/PhysRevLett.59.2555 Linde A, 1997, PHYS REV D, V56, pR535, DOI 10.1103/PhysRevD.56.R535 Lyth DH, 2002, PHYS LETT B, V524, P5, DOI 10.1016/S0370-2693(01)01366-1 MARKKANEN T, 2017, JHEP, V1 Moroi T, 2001, PHYS LETT B, V522, P215, DOI 10.1016/S0370-2693(01)01295-3 Risken H., 1989, SPINGER SERIES SYNER, V18 Roberts A. J., ARXIV12100933 STAROBINSKY AA, 1994, PHYS REV D, V50, P6357, DOI 10.1103/PhysRevD.50.6357 STAROBINSKY AA, 1982, PHYS LETT B, V117, P175, DOI 10.1016/0370-2693(82)90541-X STAROBINSKY AA, 1985, PIS ZH EKSP TEOR FIZ, V42, P124 Tokuda J, 2018, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2018/02/014 Tsamis NC, 2005, NUCL PHYS B, V724, P295, DOI 10.1016/j.nuclphysb.2005.06.031 Woodard RP, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.081301 NR 32 TC 7 Z9 7 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAY PY 2018 IS 5 AR 054 DI 10.1088/1475-7516/2018/05/054 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA GG7HO UT WOS:000432869300001 DA 2021-04-21 ER PT J AU Schnepf, A Leitner, D Landl, M Lobet, G Mai, TH Morandage, S Sheng, C Zorner, M Vanderborght, J Vereecken, H AF Schnepf, Andrea Leitner, Daniel Landl, Magdalena Lobet, Guillaume Trung Hieu Mai Morandage, Shehan Sheng, Cheng Zoerner, Mirjam Vanderborght, Jan Vereecken, Harry TI CRootBox: a structural-functional modelling framework for root systems SO ANNALS OF BOTANY LA English DT Article DE C plus; Python; root architecture modelling; root-soil interaction; RSML ID WATER-UPTAKE; HYDRAULIC ARCHITECTURE; MATHEMATICAL-MODEL; NUTRIENT-UPTAKE; PLANT-ROOTS; SOIL-WATER; GROWTH; MAIZE; TRANSPORT; NITROGEN AB Background and Aims Root architecture development determines the sites in soil where roots provide input of carbon and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architecture models have been widely used and been further developed into functional-structural models that simulate the fate of water and solutes in the soil-root system. The root architecture model CRootBox presented here is a flexible framework to model root architecture and its interactions with static and dynamic soil environments. Methods CRootBox is a C++-based root architecture model with Python binding, so that CRootBox can be included via a shared library into any Python code. Output formats include VTP, DGF, RSML and a plain text file containing coordinates of root nodes. Furthermore, a database of published root architecture parameters was created. The capabilities of CRootBox for the unconfined growth of single root systems, as well as the different parameter sets, are highlighted in a freely available web application. Key results The capabilities of CRootBox are demonstrated through five different cases: (1) free growth of individual root systems; (2) growth of root systems in containers as a way to mimic experimental setups; (3) fieldscale simulation; (4) root growth as affected by heterogeneous, static soil conditions; and (5) coupling CRootBox with code from the book Soil physics with Python to dynamically compute water flow in soil, root water uptake and water flow inside roots. Conclusions CRootBox is a fast and flexible functional-structural root model that is based on state-of-the-art computational science methods. Its aim is to facilitate modelling of root responses to environmental conditions as well as the impact of roots on soil. In the future, this approach will be extended to the above-ground part of the plant. C1 [Schnepf, Andrea; Landl, Magdalena; Lobet, Guillaume; Trung Hieu Mai; Morandage, Shehan; Sheng, Cheng; Zoerner, Mirjam; Vanderborght, Jan; Vereecken, Harry] Forschungszentrum Juelich GmbH, Agrosphere IBG 3, D-52428 Julich, Germany. [Leitner, Daniel] Simulationswerkstatt, Ortmayrstr 20, A-4060 Leonding, Austria. RP Schnepf, A (corresponding author), Forschungszentrum Juelich GmbH, Agrosphere IBG 3, D-52428 Julich, Germany. EM a.schnepf@fz-juelich.de RI Schnepf, Andrea/Q-4457-2019; Lobet, Guillaume/R-2063-2017; Vanderborght, Jan/AAG-7753-2019; Landl, Magdalena/AAA-7084-2020; Schnepf, Andrea/F-5203-2015 OI Schnepf, Andrea/0000-0003-2203-4466; Lobet, Guillaume/0000-0002-5883-4572; Vanderborght, Jan/0000-0001-7381-3211; Schnepf, Andrea/0000-0003-2203-4466; Mai, Trung Hieu/0000-0002-3753-7245; Vereecken, Harry/0000-0002-8051-8517 FU German Federal Ministry of Education and Research (BMBF)Federal Ministry of Education & Research (BMBF) [031B0026C]; German Research Foundation DFGGerman Research Foundation (DFG) [PAK888, TR32-B4]; China Scholarship Council (CSC)China Scholarship Council FX We thank the editor and two anonymous reviewers for their constructive and insightful comments. This work was funded by the German Federal Ministry of Education and Research (BMBF) in the framework of the funding initiative Soil as a Sustainable Resource for the Bioeconomy - BonaRes, project BonaRes (Module A): Sustainable Subsoil Management - Soil3; subproject 3 (grant 031B0026C) and by the German Research Foundation DFG (grant numbers PAK888 and TR32-B4). C.S. has a PhD scholarship of the China Scholarship Council (CSC). CR BARRACLOUGH PB, 1989, J AGRON CROP SCI, V163, P352, DOI 10.1111/j.1439-037X.1989.tb00778.x Bingham IJ, 2011, EUR J AGRON, V34, P181, DOI 10.1016/j.eja.2011.01.003 Bittelli M, 2015, SOIL PHYS PYTHON TRA Bourion V, 2014, J EXP BOT, V65, P2365, DOI 10.1093/jxb/eru124 Chen YL, 2011, PLANT SOIL, V348, P345, DOI 10.1007/s11104-011-0939-z Chimungu J.G., 2014, PLANT BIOTECHNOLOGY, P181 Chochois V, 2012, J EXP BOT, V63, P3467, DOI 10.1093/jxb/ers044 CLAUSNITZER V, 1994, PLANT SOIL, V164, P299, DOI 10.1007/BF00010082 DIGGLE AJ, 1988, PLANT SOIL, V105, P169, DOI 10.1007/BF02376780 Doussan C, 1998, ANN BOT-LONDON, V81, P225, DOI 10.1006/anbo.1997.0541 Doussan C, 2006, PLANT SOIL, V283, P99, DOI 10.1007/s11104-004-7904-z Drouet JL, 2003, ECOL MODEL, V165, P147, DOI 10.1016/S0304-3800(03)00072-3 Dunbabin VM, 2013, PLANT SOIL, V372, P93, DOI 10.1007/s11104-013-1769-y Dunbabin VM, 2002, PLANT SOIL, V239, P19, DOI 10.1023/A:1014939512104 Dupuy L, 2010, J EXP BOT, V61, P2131, DOI 10.1093/jxb/erp389 Feddes R. A., 1978, SIMULATION FIELD WAT Fischer Gustav, 1982, WURZELATLAS MITTELEU Flemisch B, 2011, ADV WATER RESOUR, V34, P1102, DOI 10.1016/j.advwatres.2011.03.007 Gregory P. J., 2006, PLANT ROOTS GROWTH A Hochholdinger F, 2004, TRENDS PLANT SCI, V9, P42, DOI 10.1016/j.tplants.2003.11.003 Huber K, 2014, PLANT SOIL, V384, P93, DOI 10.1007/s11104-014-2188-4 Jacques D, 2006, J CONTAM HYDROL, V88, P197, DOI 10.1016/j.jconhyd.2006.06.008 Janott M, 2011, PLANT SOIL, V341, P233, DOI 10.1007/s11104-010-0639-0 Javaux M, 2008, VADOSE ZONE J, V7, P1079, DOI 10.2136/vzj2007.0115 Klepper B, 1991, ROOT SHOOT RELATIONS Kutschera L., 1960, WURZELATLAS MITTELEU Leitner D, 2014, FIELD CROP RES, V165, P125, DOI 10.1016/j.fcr.2014.05.009 Leitner D, 2014, PLANT PHYSIOL, V164, P24, DOI 10.1104/pp.113.227892 Leitner D, 2010, MATH COMP MODEL DYN, V16, P575, DOI 10.1080/13873954.2010.491360 Leitner D, 2010, PLANT SOIL, V332, P177, DOI 10.1007/s11104-010-0284-7 Lobet G, 2015, PLANT PHYSIOL, V167, P617, DOI 10.1104/pp.114.253625 Lobet G, 2014, PLANT PHYSIOL, V164, P1619, DOI 10.1104/pp.113.233486 Lynch JP, 1997, PLANT SOIL, V188, P139, DOI 10.1023/A:1004276724310 Osher Stanley, 2003, LEVEL SET METHODS DY, P17 Pages L, 2004, PLANT SOIL, V258, P103, DOI 10.1023/B:PLSO.0000016540.47134.03 PAGES L, 1989, PLANT SOIL, V119, P147, DOI 10.1007/BF02370279 Pages L, 1997, PLANT SOIL, V189, P81, DOI 10.1023/A:1004288430467 Pages L, 2014, ECOL MODEL, V290, P76, DOI 10.1016/j.ecolmodel.2013.11.014 Pages L, 2013, PLANT SOIL, V373, P723, DOI 10.1007/s11104-013-1820-z Pages L, 2011, PLANT CELL ENVIRON, V34, P1749, DOI 10.1111/j.1365-3040.2011.02371.x Perez F, 2011, COMPUT SCI ENG, V13, P13, DOI 10.1109/MCSE.2010.119 Pierret A, 2006, PLANT SOIL, V282, P117, DOI 10.1007/s11104-005-5373-7 Postma JA, 2017, NEW PHYTOL, V215, P1274, DOI 10.1111/nph.14641 Postma JA, 2011, PLANT PHYSIOL, V156, P1190, DOI 10.1104/pp.111.175489 Pradal C, 2008, FUNCT PLANT BIOL, V35, P751, DOI 10.1071/FP08084 RAATS PAC, 1974, SOIL SCI SOC AM J, V38, P717, DOI 10.2136/sssaj1974.03615995003800050012x Roose T, 2004, J THEOR BIOL, V228, P173, DOI 10.1016/j.jtbi.2003.12.013 Roose T, 2001, J MATH BIOL, V42, P347, DOI 10.1007/s002850000075 Schnepf A, 2016, J R SOC INTERFACE, V13, DOI 10.1098/rsif.2016.0129 Schnepf A, 2012, VADOSE ZONE J, V11, DOI 10.2136/vzj2012.0001 Schroder N, 2014, PLANT SOIL, V377, P277, DOI 10.1007/s11104-013-1990-8 Schroder T, 2009, VADOSE ZONE J, V8, P783, DOI 10.2136/vzj2008.0116 Somma F, 1998, PLANT SOIL, V202, P281, DOI 10.1023/A:1004378602378 Spek LY, 1997, PLANT SOIL, V197, P9, DOI 10.1023/A:1004236626479 TSEGAYE T, 1995, PLANT SOIL, V172, P1, DOI 10.1007/BF00020855 Vansteenkiste J, 2014, PLANT SOIL, V375, P75, DOI 10.1007/s11104-013-1942-3 Wasson AP, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00282 Weaver J. E., 1927, ROOT DEV VEGETABLE C Wu L, 2007, ECOL MODEL, V200, P343, DOI 10.1016/j.ecolmodel.2006.08.010 Zobel RW, 2010, PLANT BIOSYST, V144, P507, DOI 10.1080/11263501003764483 NR 60 TC 36 Z9 37 U1 3 U2 63 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-7364 EI 1095-8290 J9 ANN BOT-LONDON JI Ann. Bot. PD APR PY 2018 VL 121 IS 5 SI SI BP 1033 EP 1053 DI 10.1093/aob/mcx221 PG 21 WC Plant Sciences SC Plant Sciences GA GD7FT UT WOS:000430676600019 PM 29432520 OA Bronze, Green Published DA 2021-04-21 ER PT J AU Jaschke, D Wall, ML Carr, LD AF Jaschke, Daniel Wall, Michael L. Carr, Lincoln D. TI Open source Matrix Product States: Opening ways to simulate entangled many-body quantum systems in one dimension SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Many-body quantum system; Entangled quantum dynamics; Matrix Product State (MPS); Quantum simulator; Tensor network method; Density Matrix Renormalization Group (DMRG) ID MONTE-CARLO-SIMULATION; RENORMALIZATION-GROUP; ALGORITHM AB Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantum physics ranging from solid state systems to quantum simulators and quantum computing. Our open source MPS code provides the community with a toolset to analyze the statics and dynamics of one-dimensional quantum systems. Here, we present our open source library, Open Source Matrix Product States (OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes tools for ground state calculation and excited states via the variational ansatz. We also support ground states for infinite systems with translational invariance. Dynamics are simulated with different algorithms, including three algorithms with support for long-range interactions. Convenient features include built-in support for fermionic systems and number conservation with rotational U(1) and discrete Z(2) symmetries for finite systems, as well as data parallelism with MPI. We explain the principles and techniques used in this library along with examples of how to efficiently use the general interfaces to analyze the Ising and Bose-Hubbard models. This description includes the preparation of simulations as well as dispatching and post-processing of them. Program summary Program title: Open Source Matrix Product States (OSMPS), v2.0 Program Files doi: http://dx.doi.org/10.17632/vxm2mcmk4v.1 Licensing provisions: GNU GPL v3 Programming language: Python, Fortran2003, MPI for parallel computing Compilers (Fortran): gfortran, ifort, g95 Dependencies: The minimal requirements in addition to the Fortran compiler are BIAS, LAPACK, ARPACK, python, numpy, scipy. Additional packages for plotting include matplotlib, dvipng, and LATEX packages. The Expokit package, available at the homepage http://www.maths.uq.edu.au/expokit/, is required to use the Local Runge-Kutta time evolution. Supplementary material: We provide programs to reproduce selected figures in the Appendices. Nature of problem: Solving the ground state and dynamics of a many-body entangled quantum system is a challenging problem; the Hilbert space grows exponentially with system size. Complete diagonalization of the Hilbert space to floating point precision is limited to less than forty qubits. Solution method: Matrix Product States in one spatial dimension overcome the exponentially growing Hilbert space by truncating the least important parts of it. The error can be well controlled. Local neighboring sites are variationally optimized in order to minimize the energy of the complete system. We can target the ground state and low lying excited states. Moreover, we offer various methods to solve the time evolution following the many-body Schrodinger equation. These methods include e.g. the Suzuki-Trotter decompositions using local propagators or the Krylov method, both approximating the propagator on the complete Hilbert space. (C) 2017 Elsevier B.V. All rights reserved. C1 [Jaschke, Daniel; Wall, Michael L.; Carr, Lincoln D.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Wall, Michael L.] NIST, JILA, Boulder, CO 80309 USA. [Wall, Michael L.] Univ Colorado, Boulder, CO 80309 USA. [Wall, Michael L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. RP Jaschke, D (corresponding author), Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. EM djaschke@mines.edu RI Carr, Lincoln/E-3819-2016 OI Carr, Lincoln/0000-0002-4848-7941; Wall, Michael/0000-0002-6223-0800; Jaschke, Daniel/0000-0001-7658-3546 FU National Science FoundationNational Science Foundation (NSF) [PHY-120881, PHY-1520915, OAC-1740130]; Air Force Office of Scientific ResearchUnited States Department of DefenseAir Force Office of Scientific Research (AFOSR) [FA9550-14-1-0287]; Division Of PhysicsNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS) [1520915] Funding Source: National Science Foundation FX We gratefully appreciate contributions from and discussions with A. Dhar, B. Gardas, A. Glick, W. Han, D. M. Larue, and D. Vargas during the development of OSMPS. We are equally thankful to the ALPS collaboration [81,25] and to C. W. Clark, I. Danshita, R. Mishmash, B. I. Schneider, and J. E. Williams who contributed heavily to the predecessor of OSMPS, OpenTEBD [34]. The calculations were carried out using the high performance computing resources provided by the Golden Energy Computing Organization at the Colorado School of Mines. This work has been supported by the National Science Foundation under the grants PHY-120881, PHY-1520915, and OAC-1740130, and the Air Force Office of Scientific Research under grant FA9550-14-1-0287. CR Alvermann A, 2011, J COMPUT PHYS, V230, P5930, DOI 10.1016/j.jcp.2011.04.006 Anisimovas E, 2016, PHYS REV A, V94, DOI 10.1103/PhysRevA.94.063632 Bauer B, 2011, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2011/05/P05001 Bellotti FF, 2017, EUR PHYS J D, V71, DOI 10.1140/epjd/e2017-70650-8 Carr L., 2010, UNDERSTANDING QUANTU Chan G. Kin-Lic, 160502611 ARXIV Crosswhite GM, 2008, PHYS REV A, V78, DOI 10.1103/PhysRevA.78.012356 DALIBARD J, 1992, PHYS REV LETT, V68, P580, DOI 10.1103/PhysRevLett.68.580 Dargel P., MPS DMRG APPLET De Chiara G, 2008, J COMPUT THEOR NANOS, V5, P1277, DOI 10.1166/jctn.2008.011 Dhar A, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.075116 Dolfi M, 2014, COMPUT PHYS COMMUN, V185, P3430, DOI 10.1016/j.cpc.2014.08.019 DUM R, 1992, PHYS REV A, V45, P4879, DOI 10.1103/PhysRevA.45.4879 Dutta A, 2001, PHYS REV B, V64, DOI 10.1103/PhysRevB.64.184106 Eisert J, 2010, REV MOD PHYS, V82, P277, DOI 10.1103/RevModPhys.82.277 GALLOPOULOS E, 1992, SIAM J SCI STAT COMP, V13, P1236, DOI 10.1137/0913071 Garcia-Ripoll J., MATRIX PRODUCT STATE Gardas B., 161205084 ARXIV Garrison J. R., SIMPLE DMRG Georges A, 1996, REV MOD PHYS, V68, P13, DOI 10.1103/RevModPhys.68.13 Gersgorin S., 1931, B ACAD SCI URSS, P749 Gobert D, 2005, PHYS REV E, V71, DOI 10.1103/PhysRevE.71.036102 Golub G., 1996, J HOPKINS STUDIES MA Gong ZX, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.205115 Gong ZX, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.041102 Haegeman J, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.165116 HUBBARD J, 1963, PROC R SOC LON SER-A, V276, P238, DOI 10.1098/rspa.1963.0204 Ising E, 1925, Z PHYS, V31, P253, DOI 10.1007/BF02980577 Jaschke D., OPEN SOURCE MATRIX P Jaschke D., 161207437 ARXIV Jordan P, 1928, Z PHYS, V47, P631, DOI 10.1007/BF01331938 Garcia-Ripoll JJ, 2006, NEW J PHYS, V8, DOI 10.1088/1367-2630/8/12/305 Koller AP, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.195302 Maghrebi M. F., 151001325 ARXIV Manmana SR, 2005, AIP CONF PROC, V789, P269 McCulloch I. P., 08042509 ARXIV McCulloch IP, 2007, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2007/10/P10014 Michel L, 10084667 ARXIV Milsted A., EVOMPS MIRSKY L, 1975, MONATSH MATH, V79, P303, DOI 10.1007/BF01647331 Moler C, 2003, SIAM REV, V45, P3, DOI 10.1137/S00361445024180 Nielsen M, 2007, QUANTUM COMPUTATION Orus R, 2014, ANN PHYS-NEW YORK, V349, P117, DOI 10.1016/j.aop.2014.06.013 Polkovnikov A, 2010, ANN PHYS-NEW YORK, V325, P1790, DOI 10.1016/j.aop.2010.02.006 Prokof'ev NV, 1998, J EXP THEOR PHYS+, V87, P310, DOI 10.1134/1.558661 QI LQ, 1984, LINEAR ALGEBRA APPL, V56, P105, DOI 10.1016/0024-3795(84)90117-4 RUNGE E, 1984, PHYS REV LETT, V52, P997, DOI 10.1103/PhysRevLett.52.997 Russomanno A, 2016, EPL-EUROPHYS LETT, V115, DOI 10.1209/0295-5075/115/30006 SAAD Y, 1992, SIAM J NUMER ANAL, V29, P209, DOI 10.1137/0729014 Sachdev S., 2011, QUANTUM PHASE TRANSI SANDVIK AW, 1991, PHYS REV B, V43, P5950, DOI 10.1103/PhysRevB.43.5950 Schachenmayer J, 2015, PHYS REV X, V5, DOI 10.1103/PhysRevX.5.011022 Schollwock U, 2005, REV MOD PHYS, V77, P259, DOI 10.1103/RevModPhys.77.259 Schollwock U, 2011, ANN PHYS-NEW YORK, V326, P96, DOI 10.1016/j.aop.2010.09.012 Shi YY, 2006, PHYS REV A, V74, DOI 10.1103/PhysRevA.74.022320 Sidje RB, 1998, ACM T MATH SOFTWARE, V24, P130, DOI 10.1145/285861.285868 Singh S, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.115125 Singh S, 2010, PHYS REV A, V82, DOI 10.1103/PhysRevA.82.050301 Sornborger AT, 1999, PHYS REV A, V60, P1956, DOI 10.1103/PhysRevA.60.1956 Stoudenmire EM, 2010, NEW J PHYS, V12, DOI 10.1088/1367-2630/12/5/055026 Urbanek M, 2016, COMPUT PHYS COMMUN, V199, P170, DOI 10.1016/j.cpc.2015.10.016 Vargas D. L., 150807041 ARXIV Verstraete F, 2008, ADV PHYS, V57, P143, DOI 10.1080/14789940801912366 Verstraete F, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.227205 Verstraete F, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.207204 Vidal G, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.147902 Vidal G, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.110501 Wall ML, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/12/123005 Wall ML, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.023605 Wall ML, 2012, NEW J PHYS, V14, DOI 10.1088/1367-2630/14/12/125015 Wang L, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/10/103008 Weimer H, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/9/093040 Werner AH, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.237201 WHITE SR, 1992, PHYS REV LETT, V69, P2863, DOI 10.1103/PhysRevLett.69.2863 WHITE SR, 1993, PHYS REV B, V48, P10345, DOI 10.1103/PhysRevB.48.10345 White SR, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.127004 Wouters S, 2014, COMPUT PHYS COMMUN, V185, P1501, DOI 10.1016/j.cpc.2014.01.019 Zaletel MP, 2015, PHYS REV B, V91, DOI 10.1103/PhysRevB.91.165112 Zwolak M, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.207205 NR 79 TC 23 Z9 23 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD APR PY 2018 VL 225 BP 59 EP 91 DI 10.1016/j.cpc.2017.12.015 PG 33 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA GA0MC UT WOS:000428006400006 DA 2021-04-21 ER PT J AU Zhu, GL Lu, XY Wan, LL Yin, TS Bin, Q Wu, Y AF Zhu, Gui-Lei Lu, Xin-You Wan, Liang-Liang Yin, Tai-Shuang Bin, Qian Wu, Ying TI Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime SO PHYSICAL REVIEW A LA English DT Article ID PYTHON FRAMEWORK; SINGLE PHOTONS; QUANTUM; CAVITY; LIGHT; DYNAMICS; MOTION; STATE; QUTIP AB Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Herewe investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science. C1 [Zhu, Gui-Lei; Lu, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China. RP Lu, XY; Wu, Y (corresponding author), Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China. EM xinyoulu@hust.edu.cn; yingwu2@126.com RI Wu, Ying/M-7844-2019 OI Bin, Qian/0000-0001-6823-2850; Zhu, Guilei/0000-0002-7731-2665 FU National Key Research and Development Program of China [2016YFA0301203]; National Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11374116, 11574104, 11375067] FX This work is supported by the National Key Research and Development Program of China Grant No. 2016YFA0301203, and the National Science Foundation of China (Grants No. 11374116, No. 11574104, and No. 11375067). CR Aspelmeyer M, 2014, REV MOD PHYS, V86, P1391, DOI 10.1103/RevModPhys.86.1391 Aspelmeyer M, 2012, PHYS TODAY, V65, P29, DOI 10.1063/PT.3.1640 Bhattacharya M, 2008, PHYS REV A, V77, DOI 10.1103/PhysRevA.77.033819 Bhattacharya M, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.073601 Bose S, 1997, PHYS REV A, V56, P4175, DOI 10.1103/PhysRevA.56.4175 Brooks DWC, 2012, NATURE, V488, P476, DOI 10.1038/nature11325 Buchmann LF, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.013851 Chan J, 2012, APPL PHYS LETT, V101, DOI 10.1063/1.4747726 Chan J, 2011, NATURE, V478, P89, DOI 10.1038/nature10461 Chan J, 2009, OPT EXPRESS, V17, P3802, DOI 10.1364/OE.17.003802 Eichenfield M, 2009, NATURE, V462, P78, DOI 10.1038/nature08524 Fiore V, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.133601 Gan JH, 2016, OPT LETT, V41, P2676, DOI 10.1364/OL.41.002676 Groblacher S, 2009, NATURE, V460, P724, DOI 10.1038/nature08171 Heikkila TT, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.203603 Heinrich G, 2011, EPL-EUROPHYS LETT, V93, DOI 10.1209/0295-5075/93/18003 Hong FY, 2008, PHYS REV A, V78, DOI 10.1103/PhysRevA.78.013812 Johansson JR, 2014, PHYS REV A, V90, DOI 10.1103/PhysRevA.90.053833 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Karuza M, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.013804 Keller M, 2004, NATURE, V431, P1075, DOI 10.1038/nature02961 Kim EJ, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.033835 Kippenberg TJ, 2008, SCIENCE, V321, P1172, DOI 10.1126/science.1156032 Kippenberg TJ, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.083904 Komar P, 2013, PHYS REV A, V87, DOI 10.1103/PhysRevA.87.013839 Krause AG, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.233601 Kronwald A, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.133601 Lemonde MA, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11338 Lemonde MA, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.033836 Liao JQ, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.023853 Lounis B, 2000, NATURE, V407, P491, DOI 10.1038/35035032 Lu XY, 2018, PHYS REV A, V97, DOI 10.1103/PhysRevA.97.033807 Lu XY, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.093602 Lu XY, 2013, SCI REP-UK, V3, DOI 10.1038/srep02943 Ludwig M, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.073603 Ludwig M, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.063601 Lu XY, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.013834 Lund AP, 2004, PHYS REV A, V70, DOI 10.1103/PhysRevA.70.020101 Marquardt F., 2009, PHYSICS, V2, P40, DOI DOI 10.1103/PHYSICS.2.40 Marquardt F, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.093902 Massel F, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms1993 Meystre P, 2013, ANN PHYS-BERLIN, V525, P215, DOI 10.1002/andp.201200226 Murch KW, 2008, NAT PHYS, V4, P561, DOI 10.1038/nphys965 Nunnenkamp A, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.063602 O'Connell AD, 2010, NATURE, V464, P697, DOI 10.1038/nature08967 PACE AF, 1993, PHYS REV A, V47, P3173, DOI 10.1103/PhysRevA.47.3173 Palomaki TA, 2013, SCIENCE, V342, P710, DOI 10.1126/science.1244563 Palomaki TA, 2013, NATURE, V495, P210, DOI 10.1038/nature11915 Pepper B, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.023601 Purdy TP, 2013, PHYS REV X, V3, DOI 10.1103/PhysRevX.3.031012 Rabl P, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.063601 Rimberg AJ, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/5/055008 Safavi-Naeini AH, 2011, NATURE, V472, P69, DOI 10.1038/nature09933 Safavi-Naeini AH, 2013, NATURE, V500, P185, DOI 10.1038/nature12307 Safavi-Naeini AH, 2010, APPL PHYS LETT, V97, DOI 10.1063/1.3507288 Sankey JC, 2010, NAT PHYS, V6, P707, DOI 10.1038/NPHYS1707 Seok H, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.063850 Si LG, 2017, PHYS REV A, V95, DOI 10.1103/PhysRevA.95.033803 Stannigel K, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.013603 Teufel JD, 2011, NATURE, V475, P359, DOI 10.1038/nature10261 Thompson JD, 2008, NATURE, V452, P72, DOI 10.1038/nature06715 Vahala KJ, 2003, NATURE, V424, P839, DOI 10.1038/nature01939 Vanner MR, 2011, PHYS REV X, V1, DOI 10.1103/PhysRevX.1.021011 Vitali D, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.030405 Wan LL, 2017, OPT EXPRESS, V25, P17364, DOI 10.1364/OE.25.017364 Weis S, 2010, SCIENCE, V330, P1520, DOI 10.1126/science.1195596 Wilson-Rae I, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.093901 Xiang ZL, 2013, REV MOD PHYS, V85, P623, DOI 10.1103/RevModPhys.85.623 Xiong H, 2015, SCI CHINA PHYS MECH, V58, DOI 10.1007/s11433-015-5648-9 Xuereb A, 2013, PHYS REV A, V87, DOI 10.1103/PhysRevA.87.023830 Yin TS, 2017, PHYS REV A, V95, DOI 10.1103/PhysRevA.95.053861 You JQ, 2011, NATURE, V474, P589, DOI 10.1038/nature10122 Zhou X, 2013, NAT PHYS, V9, P179, DOI 10.1038/nphys2527 NR 74 TC 20 Z9 22 U1 1 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD MAR 16 PY 2018 VL 97 IS 3 AR 033830 DI 10.1103/PhysRevA.97.033830 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA FZ5KZ UT WOS:000427632500019 DA 2021-04-21 ER PT J AU Saunders, WR Grant, J Muller, EH AF Saunders, William Robert Grant, James Mueller, Erike Hermann TI A domain specific language for performance portable molecular dynamics algorithms SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Molecular dynamics; Domain specific language; Performance portability; Parallel computing; GPU ID PARTICLE-MESH; PARALLEL; SIMULATIONS; ARCHITECTURES; COMPUTERS; GROMACS; NAMD AB Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a "Separation of Concerns" approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-theart simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework. (C) 2017 Elsevier B.V. All rights reserved. C1 [Saunders, William Robert; Mueller, Erike Hermann] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England. [Grant, James] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England. RP Muller, EH (corresponding author), Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England. EM w.r.saunders@bath.ac.uk; r.j.grant@bath.ac.uk; e.mueller@bath.ac.uk OI Mueller, Eike/0000-0003-3006-3347; Grant, James/0000-0003-1362-2055 FU EPSRC studentshipUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC); Engineering and Physical Sciences Research CouncilUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [1552071] Funding Source: researchfish FX We would like to thank Alexander Stukowski (Darmstadt) for useful correspondence to clarify the exact definitions of the quantities in the common neighbour analysis algorithm. The PhD project of William Saunders is funded by an EPSRC studentship. This research made use of the Balena High Performance Computing (HPC) service at the University of Bath. CR Abraham Mark James, 2015, SoftwareX, V1-2, P19, DOI 10.1016/j.softx.2015.06.001 Allen M. P., 1989, COMPUTER SIMULATION Alnaes MS, 2014, ACM T MATH SOFTWARE, V40, DOI 10.1145/2566630 Anderson E., 1999, SOC IND APPL MATH Anderson JA, 2008, J COMPUT PHYS, V227, P5342, DOI 10.1016/j.jcp.2008.01.047 BERENDSEN HJC, 1995, COMPUT PHYS COMMUN, V91, P43, DOI 10.1016/0010-4655(95)00042-E Bertolli C., 2012, REVISED SELECTED P 1, P191 Bonomi M, 2009, COMPUT PHYS COMMUN, V180, P1961, DOI 10.1016/j.cpc.2009.05.011 Brown WM, 2012, COMPUT PHYS COMMUN, V183, P449, DOI 10.1016/j.cpc.2011.10.012 Brown WM, 2011, COMPUT PHYS COMMUN, V182, P898, DOI 10.1016/j.cpc.2010.12.021 Bush IJ, 2006, COMPUT PHYS COMMUN, V175, P323, DOI 10.1016/j.cpc.2006.05.001 Cickovski T, 2007, SIM S 2007 ANSS 07 4, P256 Eastman P, 2013, J CHEM THEORY COMPUT, V9, P461, DOI 10.1021/ct300857j Ewald PP, 1921, ANN PHYS-BERLIN, V64, P253 Frenkel D., 2002, UNDERSTANDING MOL SI Giles MB, 2013, J PARALLEL DISTR COM, V73, P1451, DOI 10.1016/j.jpdc.2012.07.008 Giles M. B., 2011, Performance Evaluation Review, V38, P9, DOI 10.1145/1964218.1964221 Glaser J, 2015, COMPUT PHYS COMMUN, V192, P97, DOI 10.1016/j.cpc.2015.02.028 GREENGARD L, 1987, J COMPUT PHYS, V73, P325, DOI 10.1016/0021-9991(87)90140-9 Gysi T., 2014, EGU GEN ASS C COP, V16, P8464 HONEYCUTT JD, 1987, J PHYS CHEM-US, V91, P4950, DOI 10.1021/j100303a014 Horowitz C., 2011, ARXIV11095095 Hu Y, 2016, 2016 IEEE 10TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP (MCSOC), P361, DOI 10.1109/MCSoC.2016.37 Jia ZD, 2007, ESAIM-MATH MODEL NUM, V41, P333, DOI 10.1051/m2an:2007019 KARPLUS M, 1990, NATURE, V347, P631, DOI 10.1038/347631a0 Lawson C. L., 1979, ACM Transactions on Mathematical Software, V5, P308, DOI 10.1145/355841.355847 Leimkuhler B, 2011, J STAT PHYS, V143, P921, DOI 10.1007/s10955-011-0210-2 Mangiardi CM, 2017, COMPUT PHYS COMMUN, V219, P196, DOI 10.1016/j.cpc.2017.05.020 Maruyama N., 2011, P 2011 INT C HIGH PE, P1 Mickel W, 2013, J CHEM PHYS, V138, DOI 10.1063/1.4774084 Nelson MT, 1996, INT J SUPERCOMPUT AP, V10, P251, DOI 10.1177/109434209601000401 Newton I., 1846, MATH PRINCIPLES NATU, VII Pall S, 2013, COMPUT PHYS COMMUN, V184, P2641, DOI 10.1016/j.cpc.2013.06.003 Phillips JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289 PLIMPTON S, 1995, J COMPUT PHYS, V117, P1, DOI 10.1006/jcph.1995.1039 Pronk S, 2013, BIOINFORMATICS, V29, P845, DOI 10.1093/bioinformatics/btt055 Radu M, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.055702 Rapaport DC, 2011, COMPUT PHYS COMMUN, V182, P926, DOI 10.1016/j.cpc.2010.12.029 Rapaport DC, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.051905 RAPAPORT DC, 1988, COMPUT PHYS REP, V9, P1, DOI 10.1016/0167-7977(88)90014-7 Rapaport DC, 2004, ART MOL DYNAMICS SIM Rathgeber F, 2012, IEEE COMPUTER SOC, P1116 Razali A, 2017, SOFT MATTER, V13, P3230, DOI 10.1039/c6sm02221a Reguly IZ, 2016, CONCURR COMP-PRACT E, V28, P557, DOI 10.1002/cpe.3621 Saunders W. R., 2017, ARXIV170801135 Smith W, 1996, J MOL GRAPHICS, V14, P136, DOI 10.1016/S0263-7855(96)00043-4 STEINHARDT PJ, 1983, PHYS REV B, V28, P784, DOI 10.1103/PhysRevB.28.784 Stone JE, 2007, J COMPUT CHEM, V28, P2618, DOI 10.1002/jcc.20829 Stukowski A, 2012, MODEL SIMUL MATER SC, V20, DOI 10.1088/0965-0393/20/3/035012 Todorov IT, 2006, J MATER CHEM, V16, P1911, DOI 10.1039/b517931a VERLET L, 1967, PHYS REV, V159, P98, DOI 10.1103/PhysRev.159.98 Williams NR, 2015, J NUCL MATER, V458, P45, DOI 10.1016/j.jnucmat.2014.11.120 NR 52 TC 3 Z9 3 U1 0 U2 8 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAR PY 2018 VL 224 BP 119 EP 135 DI 10.1016/j.cpc.2017.11.006 PG 17 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA FV6XZ UT WOS:000424726700010 DA 2021-04-21 ER PT J AU Parsons, RA Pimont, F Wells, L Cohn, G Jolly, WM de Coligny, F Rigolot, E Dupuy, JL Mell, W Linn, RR AF Parsons, Russell A. Pimont, Francois Wells, Lucas Cohn, Greg Jolly, W. Matt de Coligny, Francois Rigolot, Eric Dupuy, Jean-Luc Mell, William Linn, Rodman R. TI Modeling thinning effects on fire behavior with STANDFIRE SO ANNALS OF FOREST SCIENCE LA English DT Article DE Fuel treatments; Fire behavior; Modeling; Physics-based; WFDS; FIRETEC; FuelManager ID FOREST VEGETATION SIMULATOR; NORTHERN ROCKY-MOUNTAINS; FUEL TREATMENT LONGEVITY; MIXED-CONIFER FOREST; BEETLE OUTBREAK; CROWN FIRE; WIND-FLOWS; PROPAGATION; CANOPY; INCREASES AB Key message We describe a modeling system that enables detailed, 3D fire simulations in forest fuels. Using data from three sites, we analyze thinning fuel treatments on fire behavior and fire effects and compare outputs with a more commonly used model. Context Thinning is considered useful in altering fire behavior, reducing fire severity, and restoring resilient ecosystems. Yet, few tools currently exist that enable detailed analysis of such efforts. Aims The study aims to describe and demonstrate a new modeling system. A second goal is to put its capabilities in context of previous work through comparisons with established models. Methods The modeling system, built in Python and Java, uses data from a widely used forest model to develop spatially explicit fuel inputs to two 3D physics-based fire models. Using forest data from three sites in Montana, USA, we explore effects of thinning on fire behavior and fire effects and compare model outputs. Results The study demonstrates new capabilities in assessing fire behavior and fire effects changes from thinning. While both models showed some increases in fire behavior relating to higher winds within the stand following thinning, results were quite different in terms of tree mortality. These different outcomes illustrate the need for continuing refinement of decision support tools for forest management. Conclusion This system enables researchers and managers to use measured forest fuel data in dynamic, 3D fire simulations, improving capabilities for quantitative assessment of fuel treatments, and facilitating further refinement in physics-based fire modeling. C1 [Parsons, Russell A.; Jolly, W. Matt] US Forest Serv, Rocky Mt Res Stn, Fire Sci Lab, 5775 W Highway 10, Missoula, MT 59801 USA. [Pimont, Francois; Rigolot, Eric; Dupuy, Jean-Luc] INRA, UR Ecol Forets Mediterraneennes 629, Site Agroparc, F-84914 Avignon 9, France. [Wells, Lucas] Oregon State Univ, Coll Forestry, Dept Forest Engn Resources & Management, 210 Snell Hall, Corvallis, OR 97331 USA. [Cohn, Greg] Oregon State Univ, Coll Forestry, Dept Forest Ecosyst & Soc, 321 Richardson Hall, Corvallis, OR 97331 USA. [de Coligny, Francois] INRA, UMR AMAP Bot & BioinforMat Architecture Plantes, Bd Lironde TA A-51-PS2, F-34398 Montpellier 5, France. [Mell, William] US Forest Serv, Pacific Wildland Fire Sci Lab, 400 N 34th St,Suite 201, Seattle, WA 98103 USA. [Linn, Rodman R.] Los Alamos Natl Lab, Environm Sci Div, Mail Stop D401, Los Alamos, NM 87544 USA. RP Parsons, RA (corresponding author), US Forest Serv, Rocky Mt Res Stn, Fire Sci Lab, 5775 W Highway 10, Missoula, MT 59801 USA. EM rparsons@fs.fed.us FU Joint Fire Science Program of the US Department of Agriculture (USDA); US Department of the Interior (USDI) [12-1-03-30]; USDA Forest Service Research [13-IA-11221633-103]; Los Alamos National LaboratoryUnited States Department of Energy (DOE)Los Alamos National Laboratory FX This work was made possible by funding from the Joint Fire Science Program of the US Department of Agriculture (USDA) and US Department of the Interior (USDI), Project No. 12-1-03-30 (STANDFIRE), as well as from USDA Forest Service Research (both Rocky Mountain Research Station and Washington office) National Fire Plan Dollars, through Interagency Agreements 13-IA-11221633-103 with Los Alamos National Laboratory. CR Adams HD, 2009, P NATL ACAD SCI USA, V106, P7063, DOI 10.1073/pnas.0901438106 Almeida M, 2017, FIRE TECHNOL, V53, P553, DOI 10.1007/s10694-016-0591-5 Anderson H. E, 1982, INT122 USDA FOR SERV Cary GJ, 2017, LANDSCAPE ECOL, V32, P1473, DOI 10.1007/s10980-016-0420-8 Clyatt KA, 2017, FOREST ECOL MANAG, V400, P587, DOI 10.1016/j.foreco.2017.06.021 COVINGTON WW, 1994, J FOREST, V92, P39 Crookston NL, 2005, COMPUT ELECTRON AGR, V49, P60, DOI 10.1016/j.compag.2005.02.003 Crotteau JS, 2016, INT J WILDLAND FIRE, V25, P633, DOI 10.1071/WF14223 Cruz MG, 2017, INT J WILDLAND FIRE, V26, P413, DOI 10.1071/WF16218 Cruz MG, 2010, INT J WILDLAND FIRE, V19, P377, DOI 10.1071/WF08132 Dufour-Kowalski S, 2012, ANN FOREST SCI, V69, P221, DOI 10.1007/s13595-011-0140-9 Fernandes PM, 2009, CAN J FOREST RES, V39, P2529, DOI 10.1139/X09-145 Forney GP, 2004, USERS GUIDE SMOKEVIE Hoffman CM, 2015, AGR FOREST METEOROL, V204, P79, DOI 10.1016/j.agrformet.2015.01.018 Hood SM, 2007, INT J WILDLAND FIRE, V16, P679, DOI 10.1071/WF06122 Hood SM, 2016, ECOL APPL, V26, P1984, DOI 10.1002/eap.1363 Jimenez E, 2016, EUR J FOREST RES, V135, P675, DOI 10.1007/s10342-016-0963-x Johnson MC, 2011, CAN J FOREST RES, V41, P1018, DOI [10.1139/X11-032, 10.1139/x11-032] Jones KW, 2017, J ENVIRON MANAGE, V198, P66, DOI 10.1016/j.jenvman.2017.05.023 Kalies EL, 2016, FOREST ECOL MANAG, V375, P84, DOI 10.1016/j.foreco.2016.05.021 Keane RE, 2012, LANDSCAPE ECOL, V27, P1213, DOI 10.1007/s10980-012-9773-9 Larson AJ, 2012, FOREST ECOL MANAG, V267, P74, DOI 10.1016/j.foreco.2011.11.038 Linn R, 2005, INT J WILDLAND FIRE, V14, P37, DOI 10.1071/WF04043 Linn RR, 2013, AGR FOREST METEOROL, V173, P139, DOI 10.1016/j.agrformet.2012.11.007 Linn RR, 1997, THESIS LOS ALAMOS NA Loudermilk EL, 2012, INT J WILDLAND FIRE, V21, P882, DOI 10.1071/WF10116 McGaughey R.J., 2004, STAND VISUALIZATION Mell W, 2009, COMBUST FLAME, V156, P2023, DOI 10.1016/j.combustflame.2009.06.015 Moghaddas JJ, 2007, INT J WILDLAND FIRE, V16, P673, DOI 10.1071/WF06066 Noonan-Wright EK, 2014, FOREST SCI, V60, P231, DOI 10.5849/forsci.12-062 North MP, 2011, FOREST ECOL MANAG, V261, P1115, DOI 10.1016/j.foreco.2010.12.039 Omi PN, 2010, EFFECTIVENESS FUEL T Parsons RA, 2017, LAND-BASEL, V6, DOI 10.3390/land6020043 Parsons RA, 2011, ECOL MODEL, V222, P679, DOI 10.1016/j.ecolmodel.2010.10.023 Pimont F, 2016, ENVIRON MODELL SOFTW, V80, P225, DOI 10.1016/j.envsoft.2016.03.003 Pimont F, 2015, REMOTE SENS-BASEL, V7, P7995, DOI 10.3390/rs70607995 Pimont F, 2011, ANN FOREST SCI, V68, P523, DOI 10.1007/s13595-011-0061-7 Pimont F, 2009, INT J WILDLAND FIRE, V18, P775, DOI 10.1071/WF07130 Rebain S A, 2015, FIRE FUELS EXTENSION, P403 Reinhardt E.D., 2003, RMRSGTR116 USDA FOR, P209 Reinhardt ED, 1997, INTGTR344 USDA FOR S, P65 Rothermel R.C., 1991, INT438 USDA FOR SERV, P46 Rothermel R.C, 1972, INT115 USDA FOR SERV, P40 RYAN KC, 1988, CAN J FOREST RES, V18, P1291, DOI 10.1139/x88-199 Scott J., 2005, RMRSGTR153 USDA FOR Scott J.H., 2001, RMRSRP29 USDA FOR SE, P59 Stephens SL, 2012, FOREST ECOL MANAG, V285, P204, DOI 10.1016/j.foreco.2012.08.030 Van Wagner C.E., 1977, CAN J FOREST RES, V7, P23 Ziegler JP, 2017, FOREST ECOL MANAG, V386, P1, DOI 10.1016/j.foreco.2016.12.002 Ziska LH, 2005, GLOBAL CHANGE BIOL, V11, P1325, DOI 10.1111/j.1365-2486.2005.00992.x NR 50 TC 8 Z9 8 U1 1 U2 12 PU SPRINGER FRANCE PI PARIS PA 22 RUE DE PALESTRO, PARIS, 75002, FRANCE SN 1286-4560 EI 1297-966X J9 ANN FOREST SCI JI Ann. For. Sci. PD MAR PY 2018 VL 75 IS 1 AR 7 DI 10.1007/s13595-017-0686-2 PG 10 WC Forestry SC Forestry GA GC0QO UT WOS:000429482800009 OA Green Published, Bronze DA 2021-04-21 ER PT J AU Axani, SN Frankiewicz, K Conrad, JM AF Axani, S. N. Frankiewicz, K. Conrad, J. M. TI The CosmicWatch Desktop Muon Detector: a self-contained, pocket sized particle detector SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Solid state detectors; Data acquisition circuits; Particle detectors AB The CosmicWatch Desktop Muon Detector is a self-contained, hand-held cosmic ray muon detector that is valuable for astro/particle physics research applications and outreach. The material cost of each detector is under 100$ and it takes a novice student approximately four hours to build their first detector. The detectors are powered via a USB connection and the data can either be recorded directly to a computer or to a microSD card. Arduino- and Python-based software is provided to operate the detector and an online application to plot the data in real-time. In this paper, we describe the various design features, evaluate the performance, and illustrate the detectors capabilities by providing several example measurements. C1 [Axani, S. N.; Conrad, J. M.] MIT, Dept Phys, 77 Massachusetts Av, Cambridge, MA 02139 USA. [Frankiewicz, K.] Natl Ctr Nucl Res, Hoza 69, PL-00681 Warsaw, Poland. RP Axani, SN (corresponding author), MIT, Dept Phys, 77 Massachusetts Av, Cambridge, MA 02139 USA. EM saxani@mit.edu OI Conrad, Janet/0000-0002-6393-0438 FU MIT seed funding [NSF-PHY-1505858]; National Science Centre, PolandNational Science Centre, Poland [2015/17/N/ST2/04064]; Direct For Mathematical & Physical ScienNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS) [1505858] Funding Source: National Science Foundation FX This work was supported by grant NSF-PHY-1505858 (PI: Prof. Janet Conrad), MIT seed funding, and funds from the National Science Centre, Poland (2015/17/N/ST2/04064). The authors would like to thank SensL and Fermilab, for donations that made the development of this project possible, as well as P. Fisher at MIT and IceCube collaborators at WIPAC, for their support in developing this as a high school and undergraduate project. CR Aarsten M.G., ARXIV14125106 Aguilar-Arevalo AA, 2009, NUCL INSTRUM METH A, V599, P28, DOI 10.1016/j.nima.2008.10.028 Axani SN, 2017, AM J PHYS, V85, P948, DOI 10.1119/1.5003806 Axani S.N., COSMICWATCH REPOSITO Cowen DF, 2003, NUCL PHYS B-PROC SUP, V118, P371, DOI 10.1016/S0920-5632(03)01335-5 Fukuda S, 2003, NUCL INSTRUM METH A, V501, P418, DOI 10.1016/S0168-9002(03)00425-X Olive KA, 2014, CHINESE PHYS C, V38, DOI 10.1088/1674-1137/38/9/090001 NR 7 TC 4 Z9 4 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2018 VL 13 AR P03019 DI 10.1088/1748-0221/13/03/P03019 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA GA3LM UT WOS:000428230500002 DA 2021-04-21 ER PT J AU Yao, K Herr, JE Toth, DW Mckintyre, R Parkhill, J AF Yao, Kun Herr, John E. Toth, David W. Mckintyre, Ryker Parkhill, John TI The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics SO CHEMICAL SCIENCE LA English DT Article ID POTENTIAL-ENERGY SURFACES; FORCE-FIELD; MANY-BODY; ORGANIC PHOTOVOLTAICS; DENSITY AB Traditional force fields cannot model chemical reactivity, and suffer from low generality without re-fitting. Neural network potentials promise to address these problems, offering energies and forces with near ab initio accuracy at low cost. However a data-driven approach is naturally inefficient for long-range interatomic forces that have simple physical formulas. In this manuscript we construct a hybrid model chemistry consisting of a nearsighted neural network potential with screened long-range electrostatic and van der Waals physics. This trained potential, simply dubbed "TensorMol-0.1", is offered in an open-source Python package capable of many of the simulation types commonly used to study chemistry: geometry optimizations, harmonic spectra, open or periodic molecular dynamics, Monte Carlo, and nudged elastic band calculations. We describe the robustness and speed of the package, demonstrating its millihartree accuracy and scalability to tens-of-thousands of atoms on ordinary laptops. We demonstrate the performance of the model by reproducing vibrational spectra, and simulating the molecular dynamics of a protein. Our comparisons with electronic structure theory and experimental data demonstrate that neural network molecular dynamics is poised to become an important tool for molecular simulation, lowering the resource barrier to simulating chemistry. C1 [Yao, Kun; Herr, John E.; Toth, David W.; Mckintyre, Ryker; Parkhill, John] Univ Notre Dame Lac, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Parkhill, J (corresponding author), Univ Notre Dame Lac, Dept Chem & Biochem, Notre Dame, IN 46556 USA. EM john.parkhill@gmail.com RI Yao, Kun/AAW-5046-2020 OI Yao, Kun/0000-0003-2032-7441; Toth, David/0000-0003-1396-6165 CR Artrith N, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.153101 Barducci A, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.020603 Bartok AP, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.136403 Behler J, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.146401 Behler J, 2017, ANGEW CHEM INT EDIT, V56, P12828, DOI 10.1002/anie.201703114 Behler J, 2011, PHYS CHEM CHEM PHYS, V13, P17930, DOI 10.1039/c1cp21668f Bereau T., 2017, ARXIV171005871 Brockherde F, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-00839-3 Carpenter BK, 2018, J PHYS CHEM B, V122, P3230, DOI 10.1021/acs.jpcb.7b08707 Ceriotti M, 2014, COMPUT PHYS COMMUN, V185, P1019, DOI 10.1016/j.cpc.2013.10.027 Chai JD, 2008, PHYS CHEM CHEM PHYS, V10, P6615, DOI 10.1039/b810189b Chmiela S, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603015 Clevert D.-A., 2015, ARXIV151107289 Conte R, 2015, J CHEM THEORY COMPUT, V11, P1631, DOI 10.1021/acs.jctc.5b00091 Cubuk ED, 2017, J CHEM PHYS, V147, DOI 10.1063/1.4990503 Deringer VL, 2017, PHYS REV B, V95, DOI 10.1103/PhysRevB.95.094203 Eastman P, 2017, PLOS COMPUT BIOL, V13, DOI 10.1371/journal.pcbi.1005659 Faber FA, 2017, J CHEM THEORY COMPUT, V13, P5255, DOI 10.1021/acs.jctc.7b00577 Fennell CJ, 2006, J CHEM PHYS, V124, DOI 10.1063/1.2206581 Fracchia F, 2018, J CHEM THEORY COMPUT, V14, P255, DOI 10.1021/acs.jctc.7b00779 Gastegger M, 2017, CHEM SCI, V8, P6924, DOI 10.1039/c7sc02267k Ghiringhelli LM, 2017, NEW J PHYS, V19, DOI 10.1088/1367-2630/aa57bf Gomez-Bombarelli R, 2016, ARXIV161002415 Grimme S, 2006, J COMPUT CHEM, V27, P1787, DOI 10.1002/jcc.20495 Grisa A., 2017, ARXIV170906757 Guimaraes GL, 2017, ARXIV170510843 Hachmann J, 2014, ENERG ENVIRON SCI, V7, P698, DOI 10.1039/c3ee42756k Hachmann J, 2011, J PHYS CHEM LETT, V2, P2241, DOI 10.1021/jz200866s Halgren TA, 1996, J COMPUT CHEM, V17, P553 Han JQ, 2018, COMMUN COMPUT PHYS, V23, P629, DOI 10.4208/cicp.OA-2017-0213 Handley CM, 2010, J PHYS CHEM A, V114, P3371, DOI 10.1021/jp9105585 Hansen K, 2015, J PHYS CHEM LETT, V6, P2326, DOI 10.1021/acs.jpclett.5b00831 Hase F, 2017, CHEM SCI, V8, P8419, DOI 10.1039/c7sc03542j Henkelman G, 2000, J CHEM PHYS, V113, P9901, DOI 10.1063/1.1329672 Herr J. E., 2017, ARXIV171207240 Isayev O, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15679 Isayev O, 2015, CHEM MATER, V27, P735, DOI 10.1021/cm503507h Janet JP, 2017, J PHYS CHEM A, V121, P8939, DOI 10.1021/acs.jpca.7b08750 Janet JP, 2017, CHEM SCI, V8, P5137, DOI 10.1039/c7sc01247k Jinnouchi R, 2017, J PHYS CHEM LETT, V8, P4279, DOI 10.1021/acs.jpclett.7b02010 John ST, 2017, J PHYS CHEM B, V121, P10934, DOI 10.1021/acs.jpcb.7b09636 Khaliullin RZ, 2011, NAT MATER, V10, P693, DOI [10.1038/NMAT3078, 10.1038/nmat3078] Khorshidi A, 2016, COMPUT PHYS COMMUN, V207, P310, DOI 10.1016/j.cpc.2016.05.010 Kim E, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.127 Kingma D.P., 2014, ARXIV 14126980, DOI DOI 10.1145/1830483.1830503 Kobayashi R, 2017, PHYS REV MATER, V1, DOI 10.1103/PhysRevMaterials.1.053604 Kolb B, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01251-z Kruglov I, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-08455-3 Li J., 2017, ARXIV170903741 Li J, 2015, J CHEM PHYS, V142, DOI 10.1063/1.4921412 Li L, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.245129 Li L, 2016, INT J QUANTUM CHEM, V116, P819, DOI 10.1002/qua.25040 Li Y, 2017, J CHEM THEORY COMPUT, V13, P4492, DOI 10.1021/acs.jctc.7b00521 Lopez-Bezanilla A, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.235411 Lubbers N., 2017, ARXIV171000017 Ma XF, 2015, J PHYS CHEM LETT, V6, P3528, DOI 10.1021/acs.jpclett.5b01660 Malshe M, 2010, J CHEM PHYS, V132, DOI 10.1063/1.3431624 Manzhos S, 2015, INT J QUANTUM CHEM, V115, P1012, DOI 10.1002/qua.24795 Manzhos S, 2009, COMPUT PHYS COMMUN, V180, P2002, DOI 10.1016/j.cpc.2009.05.022 Martin Abadi, 2015, TENSORFLOW LARGE SCA McGibbon RT, 2017, J CHEM PHYS, V147, DOI 10.1063/1.4986081 Medders GR, 2015, J CHEM PHYS, V143, DOI 10.1063/1.4930194 Medders GR, 2013, J CHEM THEORY COMPUT, V9, P1103, DOI 10.1021/ct300913g Mills K, 2017, PHYS REV A, V96, DOI 10.1103/PhysRevA.96.042113 Moberg DR, 2017, J PHYS CHEM LETT, V8, P2579, DOI 10.1021/acs.jpclett.7b01106 Mones L, 2016, J CHEM THEORY COMPUT, V12, P5100, DOI 10.1021/acs.jctc.6b00553 Morawietz T, 2013, J PHYS CHEM A, V117, P7356, DOI 10.1021/jp401225b Morawietz T, 2012, J CHEM PHYS, V136, DOI 10.1063/1.3682557 Olivares-Amaya R, 2011, ENERG ENVIRON SCI, V4, P4849, DOI 10.1039/c1ee02056k Ouyang R., 2017, ARXIV171003319 Peterson AA, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4960708 Pilania G, 2013, SCI REP-UK, V3, DOI 10.1038/srep02810 Piquemal JP, 2017, J CHEM PHYS, V147, DOI 10.1063/1.5008887 Ramsundar B, 2017, J CHEM INF MODEL, V57, P2068, DOI 10.1021/acs.jcim.7b00146 Reddy SK, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4967719 Riera M, 2017, J CHEM PHYS, V147, DOI 10.1063/1.4993213 Schutt KT, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.205118 Schutt KT, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms13890 Segler M., 2017, ARXIV170200020 Shakouri K, 2017, J PHYS CHEM LETT, V8, P2131, DOI 10.1021/acs.jpclett.7b00784 Shao KJ, 2016, J CHEM PHYS, V145, DOI 10.1063/1.4961454 Shao YH, 2015, MOL PHYS, V113, P184, DOI 10.1080/00268976.2014.952696 Smith JS, 2017, CHEM SCI, V8, P3192, DOI 10.1039/c6sc05720a Smith JS, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.193 Snyder JC, 2013, J CHEM PHYS, V139, DOI 10.1063/1.4834075 Snyder JC, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.253002 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Sun YT, 2017, J PHYS CHEM LETT, V8, P3434, DOI 10.1021/acs.jpclett.7b01046 THOLE BT, 1981, CHEM PHYS, V59, P341, DOI 10.1016/0301-0104(81)85176-2 Timoshenko J, 2017, J PHYS CHEM LETT, V8, P5091, DOI 10.1021/acs.jpclett.7b02364 Tkatchenko A, 2012, PHYS REV LETT, V108, DOI [10.1103/PhysRevLett.108.058301, 10.1103/PhysRevLett.108.236402] Ulissi ZW, 2017, ACS CATAL, V7, P6600, DOI 10.1021/acscatal.7b01648 Vu K, 2015, INT J QUANTUM CHEM, V115, P1115, DOI 10.1002/qua.24939 Wei JN, 2016, ACS CENTRAL SCI, V2, P725, DOI 10.1021/acscentsci.6b00219 Wu JH, 2017, J CHEM PHYS, V147, DOI 10.1063/1.5006882 Yao K, 2017, J PHYS CHEM LETT, V8, P2689, DOI 10.1021/acs.jpclett.7b01072 Yao K, 2017, J CHEM PHYS, V146, DOI 10.1063/1.4973380 Yao K, 2016, J CHEM THEORY COMPUT, V12, P1139, DOI 10.1021/acs.jctc.5b01011 Zhang ZJ, 2014, J CHEM PHYS, V141, DOI 10.1063/1.4897308 Zhou XX, 2017, ANAL CHEM, V89, P12690, DOI 10.1021/acs.analchem.7b02566 NR 100 TC 129 Z9 129 U1 9 U2 73 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2041-6520 EI 2041-6539 J9 CHEM SCI JI Chem. Sci. PD FEB 28 PY 2018 VL 9 IS 8 BP 2261 EP 2269 DI 10.1039/c7sc04934j PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA FY8CV UT WOS:000427091500023 PM 29719699 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Tauscher, K Rapetti, D Burns, JO Switzer, E AF Tauscher, Keith Rapetti, David Burns, Jack O. Switzer, Eric TI Global 21 cm Signal Extraction from Foreground and Instrumental Effects. I. Pattern Recognition Framework for Separation Using Training Sets SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark ages, reionization, first stars; methods: data analysis; methods: statistical ID 21-CM SIGNAL; INFORMATION CRITERION; HIGH-REDSHIFT; COSMIC DAWN; REIONIZATION; MODEL; EPOCH; COSMOLOGY; UNIVERSE; LIMIT AB The sky-averaged (global) highly redshifted 21 cm spectrum from neutral hydrogen is expected to appear in the VHF range of similar to 20-200 MHz and its spectral shape and strength are determined by the heating properties of the first stars and black holes, by the nature and duration of reionization, and by the presence or absence of exotic physics. Measurements of the global signal would therefore provide us with a wealth of astrophysical and cosmological knowledge. However, the signal has not yet been detected because it must be seen through strong foregrounds weighted by a large beam, instrumental calibration errors, and ionospheric, ground, and radio-frequency-interference effects, which we collectively refer to as "systematics." Here, we present a signal extraction method for global signal experiments which uses Singular Value Decomposition of "training sets" to produce systematics basis functions specifically suited to each observation. Instead of requiring precise absolute knowledge of the systematics, our method effectively requires precise knowledge of how the systematics can vary. After calculating eigenmodes for the signal and systematics, we perform a weighted least square fit of the corresponding coefficients and select the number of modes to include by minimizing an information criterion. We compare the performance of the signal extraction when minimizing various information criteria and find that minimizing the Deviance Information Criterion most consistently yields unbiased fits. The methods used here are built into our widely applicable, publicly available Python package, pylinex, which analytically calculates constraints on signals and systematics from given data, errors, and training sets. C1 [Tauscher, Keith; Rapetti, David; Burns, Jack O.] Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Campus Box 391, Boulder, CO 80309 USA. [Tauscher, Keith] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Rapetti, David] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Switzer, Eric] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Tauscher, K (corresponding author), Univ Colorado, Ctr Astrophys & Space Astron, Dept Astrophys & Planetary Sci, Campus Box 391, Boulder, CO 80309 USA.; Tauscher, K (corresponding author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM Keith.Tauscher@colorado.edu OI BURNS, JACK/0000-0002-4468-2117 FU NASA Solar System Exploration Research Virtual Institute [80ARC017M0006]; NASA's Ames Research Center [NNA09DB30A, NNX15AD20A, NNX16AF59G]; NASA ATP grant [NNX15AK80G]; NASA Postdoctoral Program Senior Fellowship at NASA's Ames Research Center; NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center [SMD-16-7501] FX We thank Raul Monsalve, Jordan Mirocha, Richard Bradley, Bang Nhan, Licia Verde, and Nicholas Kern for useful discussions. This work was directly supported by the NASA Solar System Exploration Research Virtual Institute cooperative agreement number 80ARC017M0006. This work was also supported by grants from NASA's Ames Research Center (NNA09DB30A, NNX15AD20A, NNX16AF59G) and by a NASA ATP grant (NNX15AK80G). D.R. is supported by a NASA Postdoctoral Program Senior Fellowship at NASA's Ames Research Center, administered by the Universities Space Research Association under contract with NASA. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center through the award SMD-16-7501. CR AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705 Ali ZS, 2015, ASTROPHYS J, V809, DOI 10.1088/0004-637X/809/1/61 Ando T, 2007, BIOMETRIKA, V94, P443, DOI 10.1093/biomet/asm017 Bernardi G, 2016, MON NOT R ASTRON SOC, V461, P2847, DOI 10.1093/mnras/stw1499 Bernardi G, 2015, ASTROPHYS J, V799, DOI 10.1088/0004-637X/799/1/90 Bowman JD, 2010, NATURE, V468, P796, DOI 10.1038/nature09601 Burns JO, 2017, ASTROPHYS J, V844, DOI 10.3847/1538-4357/aa77f4 Burns JO, 2012, ADV SPACE RES, V49, P433, DOI 10.1016/j.asr.2011.10.014 Chang TC, 2010, NATURE, V466, P463, DOI 10.1038/nature09187 Cohen A, 2017, MON NOT R ASTRON SOC, V472, P1915, DOI 10.1093/mnras/stx2065 DeBoer DR, 2017, PUBL ASTRON SOC PAC, V129, DOI 10.1088/1538-3873/129/974/045001 Dillon JS, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.123011 Dillon JS, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.023002 EWEN HI, 1951, NATURE, V168, P356, DOI 10.1038/168356a0 Furlanetto SR, 2006, PHYS REP, V433, P181, DOI 10.1016/j.physrep.2006.08.002 Guzman AE, 2011, ASTRON ASTROPHYS, V525, DOI 10.1051/0004-6361/200913628 Harker GJA, 2016, MON NOT R ASTRON SOC, V455, P3829, DOI 10.1093/mnras/stv2630 Haslam C. G. T., 1982, Astronomy & Astrophysics Supplement Series, V47, P1 Jacobs DC, 2015, ASTROPHYS J, V801, DOI 10.1088/0004-637X/801/1/51 Kern NS, 2017, ASTROPHYS J, V848, DOI 10.3847/1538-4357/aa8bb4 Leistedt B, 2014, MON NOT R ASTRON SOC, V444, P2, DOI 10.1093/mnras/stu1439 Liddle AR, 2007, MON NOT R ASTRON SOC, V377, pL74, DOI 10.1111/j.1745-3933.2007.00306.x Loeb A, 2013, 1 GALAXIES UNIVERSE Madau P, 1997, ASTROPHYS J, V475, P429, DOI 10.1086/303549 Mahesh N., 2014, ARXIV14062585 Mirocha J., 2017, ARXIV171002530 Mirocha J, 2017, MON NOT R ASTRON SOC, V464, P1365, DOI 10.1093/mnras/stw2412 Mirocha J, 2015, ASTROPHYS J, V813, DOI 10.1088/0004-637X/813/1/11 Monsalve RA, 2017, ASTROPHYS J, V847, DOI 10.3847/1538-4357/aa88d1 Monsalve RA, 2017, ASTROPHYS J, V835, DOI 10.3847/1538-4357/835/1/49 Morales MF, 2010, ANNU REV ASTRON ASTR, V48, P127, DOI 10.1146/annurev-astro-081309-130936 Nhan BD, 2017, ASTROPHYS J, V836, DOI 10.3847/1538-4357/836/1/90 Offringa A. R., 2015, PASA, V32, P8 Paciga G, 2013, MON NOT R ASTRON SOC, V433, P639, DOI 10.1093/mnras/stt753 Parsons AR, 2014, ASTROPHYS J, V788, DOI 10.1088/0004-637X/788/2/106 Patra N, 2013, EXP ASTRON, V36, P319, DOI 10.1007/s10686-013-9336-3 Porciani C, 2006, MON NOT R ASTRON SOC, V371, P1824, DOI 10.1111/j.1365-2966.2006.10813.x Presley ME, 2015, ASTROPHYS J, V809, DOI 10.1088/0004-637X/809/1/18 Price D. C., 2017, ARXIV170909313 Pritchard JR, 2012, REP PROG PHYS, V75, DOI 10.1088/0034-4885/75/8/086901 RAO MS, 2017, APJ, V840, DOI DOI 10.3847/1538-4357/AA69BD Schmit CJ, 2018, MON NOT R ASTRON SOC, V475, P1213, DOI 10.1093/mnras/stx3292 SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136 Singh S, 2017, ASTROPHYS J LETT, V845, DOI 10.3847/2041-8213/aa831b Singh S, 2015, ASTROPHYS J, V815, DOI 10.1088/0004-637X/815/2/88 Spiegelhalter DJ, 2014, J R STAT SOC B, V76, P485, DOI 10.1111/rssb.12062 Spiegelhalter DJ, 2002, J R STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353 Stern H.S., 2013, BAYESIAN DATA ANAL 3 Switzer ER, 2014, ASTROPHYS J, V793, DOI 10.1088/0004-637X/793/2/102 Vedantham HK, 2014, MON NOT R ASTRON SOC, V437, P1056, DOI 10.1093/mnras/stt1878 Voytek TC, 2014, ASTROPHYS J LETT, V782, DOI 10.1088/2041-8205/782/1/L9 NR 51 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2018 VL 853 IS 2 AR 187 DI 10.3847/1538-4357/aaa41f PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA FV0NM UT WOS:000424253400021 DA 2021-04-21 ER PT J AU Johnson, D Huerta, EA Haas, R AF Johnson, Daniel Huerta, E. A. Haas, Roland TI Python Open source Waveform ExtractoR (POWER): an open source, Python package to monitor and post-process numerical relativity simulations SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE gravitational waves; numerical relativity; computational astrophysics; open source software AB Numerical simulations of Einstein's field equations provide unique insights into the physics of compact objects moving at relativistic speeds, and which are driven by strong gravitational interactions. Numerical relativity has played a key role to firmly establish gravitational wave astrophysics as a new field of research, and it is now paving the way to establish whether gravitational wave radiation emitted from compact binary mergers is accompanied by electromagnetic and astroparticle counterparts. As numerical relativity continues to blend in with routine gravitational wave data analyses to validate the discovery of gravitational wave events, it is essential to develop open source tools to streamline these studies. Motivated by our own experience as users and developers of the open source, community software, the Einstein Toolkit, we present an open source, Python package that is ideally suited to monitor and post-process the data products of numerical relativity simulations, and compute the gravitational wave strain at future null infinity in high performance environments. We showcase the application of this new package to post-process a large numerical relativity catalog and extract higher-order waveform modes from numerical relativity simulations of eccentric binary black hole mergers and neutron star mergers. This new software fills a critical void in the arsenal of tools provided by the Einstein Toolkit consortium to the numerical relativity community. C1 [Johnson, Daniel; Huerta, E. A.; Haas, Roland] Univ Illinois, NCSA, Urbana, IL 61801 USA. [Johnson, Daniel] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Johnson, Daniel] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. [Johnson, Daniel] Univ Illinois, Students Pushing Innovat SPIN Undergraduate Inter, Urbana, IL 61801 USA. RP Johnson, D (corresponding author), Univ Illinois, NCSA, Urbana, IL 61801 USA.; Johnson, D (corresponding author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA.; Johnson, D (corresponding author), Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA.; Johnson, D (corresponding author), Univ Illinois, Students Pushing Innovat SPIN Undergraduate Inter, Urbana, IL 61801 USA. EM dsjohns2@illinois.edu OI Huerta, Eliu/0000-0002-9682-3604; Johnson, Daniel/0000-0001-7717-5640 FU National Science FoundationNational Science Foundation (NSF) [OCI-0725070, ACI-1238993]; State of Illinois; NSF SI2-SSI award [OAC-1550514]; NCSA; SPIN (Students Pushing Innovation) Program at NCSA; Direct For Computer & Info Scie & EnginrNational Science Foundation (NSF)NSF - Directorate for Computer & Information Science & Engineering (CISE) [1550514] Funding Source: National Science Foundation FX This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the State of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications (NCSA). The eccentric numerical relativity simulations used in this article were generated with the open source, community software, the Einstein Toolkit on the Blue Waters petascale supercomputer and XSEDE (TG-PHY160053). This work was partially supported by the NSF SI2-SSI award OAC-1550514. We acknowledge support from the NCSA and the SPIN (Students Pushing Innovation) Program at NCSA. We thank Ian Hinder and Barry Wardell for the SimulationTools analysis package. Plots were generated with Matplotlib [29]. POWER uses numpy [30] and scipy [31]. CR Abbott BP, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.061102 Abbott BP, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.241103 Abbott BP, 2017, PHYS REV LETT, V119, DOI 10.1103/PhysRevLett.119.141101 Abbott BP, 2017, PHYS REV LETT, V118, DOI 10.1103/PhysRevLett.118.221101 Abbott BP, 2017, CLASSICAL QUANT GRAV, V34, DOI 10.1088/1361-6382/aa6854 Abbott BP, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.064035 Abbott BP, 2016, LIVING REV RELATIV, V19, DOI 10.1007/lrr-2016-1 Baker JG, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.111102 Baumgarte TW, 1999, PHYS REV D, V59, DOI 10.1103/PhysRevD.59.024007 Campanelli M, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.111101 Einstein A, 1915, SITZBER K PREUSS AKA, P844 Einstein Toolkit Consortium, 2017, THE EINST TOOLK Etienne ZB, 2015, CLASSICAL QUANT GRAV, V32, DOI 10.1088/0264-9381/32/17/175009 Haas R, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.124062 Hinder I, 2017, SIMULATION TOOLS IS Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones E., 2001, SCIPY OPEN SOURCE SC Khan S, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.044007 Kidder LE, 2017, J COMPUT PHYS, V335, P84, DOI 10.1016/j.jcp.2016.12.059 Lehner L, 2014, ANNU REV ASTRON ASTR, V52, P661, DOI 10.1146/annurev-astro-081913-040031 Loffler F, 2012, CLASSICAL QUANT GRAV, V29, DOI 10.1088/0264-9381/29/11/115001 Mosta P, 2014, CLASSICAL QUANT GRAV, V31, DOI 10.1088/0264-9381/31/1/015005 NAKAMURA T, 1987, PROG THEOR PHYS SUPP, P1 Pretorius F, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.121101 Reisswig C, 2011, CLASSICAL QUANT GRAV, V28, DOI 10.1088/0264-9381/28/19/195015 Sathyaprakash BS, 2009, LIVING REV RELATIV, V12, DOI 10.12942/lrr-2009-2 SHIBATA M, 1995, PHYS REV D, V52, P5428, DOI 10.1103/PhysRevD.52.5428 Taracchini A, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.061502 The HDF Group, 1997, HIER DAT FORM VERS 5 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 NR 30 TC 5 Z9 5 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD JAN 25 PY 2018 VL 35 IS 2 AR 027002 DI 10.1088/1361-6382/aa9cad PG 10 WC Astronomy & Astrophysics; Quantum Science & Technology; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA FQ5MF UT WOS:000418404000001 DA 2021-04-21 ER PT J AU Hubber, DA Rosotti, GP Booth, RA AF Hubber, D. A. Rosotti, G. P. Booth, R. A. TI GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE hydrodynamics; methods: numerical ID SMOOTHED PARTICLE HYDRODYNAMICS; SPH; SIMULATIONS; ACCRETION; DUST; GAS; ALGORITHM; FLOW; IMPLEMENTATION; FRAGMENTATION AB GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelized with both OPENMP and MPI and contains a PYTHON library for analysis and visualization. The code has been written with a fully object-oriented approach to easily allowuser-defined implementations of physics modules or other algorithms. The code currently contains implementations of smoothed particle hydrodynamics, meshless finite-volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license. C1 [Hubber, D. A.] Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany. [Hubber, D. A.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Rosotti, G. P.; Booth, R. A.] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. RP Hubber, DA (corresponding author), Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany.; Hubber, DA (corresponding author), Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. EM dhubber@usm.lmu.de RI Rosotti, Giovanni P/O-4774-2018 OI Rosotti, Giovanni P/0000-0003-4853-5736; Booth, Richard/0000-0002-0364-937X FU DFG cluster of excellence 'Origin and Structure of the Universe'German Research Foundation (DFG); Munich Institute for Astro-and Particle Physics (MIAPP), DFG Projects [841797-4, 841798-2]; DISCSIM project - European Research Council under ERC-ADG [341137]; BIS National E-infrastructure capital grant [ST/K001590/1]; STFC capital grants [ST/H008861/1, ST/H00887X/1]; STFC DiRAC Operations grant [ST/K00333X/1] FX This research was supported by the DFG cluster of excellence 'Origin and Structure of the Universe' including the Munich Institute for Astro-and Particle Physics (MIAPP), DFG Projects 841797-4, 841798-2 (DAH and GPR), the DISCSIM project, grant agreement 341137 funded by the European Research Council under ERC-2013-ADG (GPR and RAB). Some development of the code and simulations have been carried out on the computing facilities of the Computational centre for Particle and Astrophysics (C2PAP) and on the DiRAC Data Analytic system at the University of Cambridge, operated by the University of Cambridge High Performance Computing Service on behalf of the Science and Technology Facilities Council (STFC) DiRAC HPC Facility (www.dirac.ac.uk); the equipment was funded by BIS National E-infrastructure capital grant (ST/K001590/1), STFC capital grants ST/H008861/1 and ST/H00887X/1, and STFC DiRAC Operations grant ST/K00333X/1. We would like to thank the following people for helpful discussions or for contributing code to the public version, including Alexander Arth (discussions on IC generation), Scott Balfour (ionizing radiation algorithms), Seamus Clarke (sink particle algorithm refinements and various bug fixes), James Dale (ionizing radiation algorithms) Franta Dinnbier (periodic gravity), Stefan Heigl (assisting implementing the MFV schemes), Oliver Lomax (assisting implementing the KD tree), Judith Ngoumou (assisting implementing the MFV schemes), Margarita Petkova (parallelization and C2PAP support), Paul Rohde (stellar feedback routines), SteffiWalch (supernova feedback routines) and AnthonyWhitworth (discussions on trees and radiation algorithms). We also thank the anonymous referee for helpful and detailed comments which have improved the clarity and readability of this paper. CR Aarseth S. J., 2003, GRAVITATIONAL N BODY AARSETH SJ, 1974, ASTRON ASTROPHYS, V37, P183 ARTYMOWICZ P, 1994, ASTROPHYS J, V421, P651, DOI 10.1086/173679 BARNES J, 1986, NATURE, V324, P446, DOI 10.1038/324446a0 BATE MR, 1995, MON NOT R ASTRON SOC, V277, P362, DOI 10.1093/mnras/277.2.362 Batten P, 1997, SIAM J SCI COMPUT, V18, P1553, DOI 10.1137/S1064827593260140 Binney J., 2008, GALACTIC DYNAMICS 2 Booth RA, 2015, MON NOT R ASTRON SOC, V452, P3932, DOI 10.1093/mnras/stv1486 BOSS AP, 1979, ASTROPHYS J, V234, P289, DOI 10.1086/157497 Cullen L, 2010, MON NOT R ASTRON SOC, V408, P669, DOI 10.1111/j.1365-2966.2010.17158.x de Val-Borro M, 2007, ASTRON ASTROPHYS, V471, P1043, DOI 10.1051/0004-6361:20077169 de Val-Borro M, 2006, MON NOT R ASTRON SOC, V370, P529, DOI 10.1111/j.1365-2966.2006.10488.x Deng HP, 2017, ASTROPHYS J, V847, DOI 10.3847/1538-4357/aa872b Dipierro G, 2016, MON NOT R ASTRON SOC, V459, pL1, DOI 10.1093/mnrasl/slw032 FLEBBE O, 1994, ASTROPHYS J, V431, P754, DOI 10.1086/174526 Gaburov E, 2011, MON NOT R ASTRON SOC, V414, P129, DOI 10.1111/j.1365-2966.2011.18313.x Gafton E, 2011, MON NOT R ASTRON SOC, V418, P770, DOI 10.1111/j.1365-2966.2011.19528.x GINGOLD RA, 1977, MON NOT R ASTRON SOC, V181, P375, DOI 10.1093/mnras/181.3.375 Grassi T, 2014, MON NOT R ASTRON SOC, V439, P2386, DOI 10.1093/mnras/stu114 GRESHO PM, 1990, INT J NUMER METH FL, V11, P621, DOI 10.1002/fld.1650110510 Helm E., 1995, ADDISON WESLEY PROFE HERNQUIST L, 1991, ASTROPHYS J SUPPL S, V75, P231, DOI 10.1086/191530 Hess S, 2010, MON NOT R ASTRON SOC, V406, P2289, DOI 10.1111/j.1365-2966.2010.16892.x Hopkins PF, 2017, MON NOT R ASTRON SOC, V466, P3387, DOI 10.1093/mnras/stw3306 Hopkins PF, 2015, MON NOT R ASTRON SOC, V450, P53, DOI 10.1093/mnras/stv195 Hopkins PF, 2013, MON NOT R ASTRON SOC, V428, P2840, DOI 10.1093/mnras/sts210 Hubber D, 2016, ASCL1602015 Hubber DA, 2013, MON NOT R ASTRON SOC, V430, P1599, DOI 10.1093/mnras/sts694 Hubber DA, 2013, MON NOT R ASTRON SOC, V430, P3261, DOI 10.1093/mnras/stt128 Hubber D. A., 2011, A A, V529, P27, DOI DOI 10.1051/0004-6361/201014949 Hubber DA, 2006, ASTRON ASTROPHYS, V450, P881, DOI 10.1051/0004-6361:20054100 HUT P, 1995, ASTROPHYS J, V443, pL93, DOI 10.1086/187844 Inutsuka S, 2002, J COMPUT PHYS, V179, P238, DOI 10.1006/jcph.2002.7053 Kley W, 1999, MON NOT R ASTRON SOC, V303, P696, DOI 10.1046/j.1365-8711.1999.02198.x Laibe G, 2012, MON NOT R ASTRON SOC, V420, P2345, DOI 10.1111/j.1365-2966.2011.20202.x Laibe G, 2011, MON NOT R ASTRON SOC, V418, P1491, DOI 10.1111/j.1365-2966.2011.19291.x Lanson N, 2008, SIAM J NUMER ANAL, V46, P1912, DOI 10.1137/S0036142903427718 Loren-Aguilar P, 2015, MON NOT R ASTRON SOC, V454, P4114, DOI 10.1093/mnras/stv2262 Lovelace RVE, 1999, ASTROPHYS J, V513, P805, DOI 10.1086/306900 LUCY LB, 1977, ASTRON J, V82, P1013, DOI 10.1086/112164 MAKINO J, 1992, PUBL ASTRON SOC JPN, V44, P141 Mignone A, 2007, J COMPUT PHYS, V225, P1427, DOI 10.1016/j.jcp.2007.01.033 MONAGHAN JJ, 1992, ANNU REV ASTRON ASTR, V30, P543, DOI 10.1146/annurev.aa.30.090192.002551 MONAGHAN JJ, 1985, ASTRON ASTROPHYS, V149, P135 Monaghan JJ, 1997, J COMPUT PHYS, V136, P298, DOI 10.1006/jcph.1997.5732 Morris JP, 1997, J COMPUT PHYS, V136, P41, DOI 10.1006/jcph.1997.5690 Morris JP, 1996, THESIS Munoz DJ, 2013, MON NOT R ASTRON SOC, V428, P254, DOI 10.1093/mnras/sts015 Murray JR, 1996, MON NOT R ASTRON SOC, V279, P402, DOI 10.1093/mnras/279.2.402 Portegies Zwart S, 2001, MON NOT R ASTRON SOC, V321, P199, DOI 10.1046/j.1365-8711.2001.03976.x Price DJ, 2007, MON NOT R ASTRON SOC, V374, P1347, DOI 10.1111/j.1365-2966.2006.11241.x Price D. J., 2017, PASA Price DJ, 2007, PUBL ASTRON SOC AUST, V24, P159, DOI 10.1071/AS07022 Price DJ, 2015, MON NOT R ASTRON SOC, V451, P813, DOI 10.1093/mnras/stv996 Price DJ, 2012, J COMPUT PHYS, V231, P759, DOI 10.1016/j.jcp.2010.12.011 Price DJ, 2008, J COMPUT PHYS, V227, P10040, DOI 10.1016/j.jcp.2008.08.011 Rosswog S, 2015, MON NOT R ASTRON SOC, V448, P3628, DOI 10.1093/mnras/stv225 Saitoh TR, 2013, ASTROPHYS J, V768, DOI 10.1088/0004-637X/768/1/44 Saitoh TR, 2009, ASTROPHYS J LETT, V697, pL99, DOI 10.1088/0004-637X/697/2/L99 Sijacki D, 2012, MON NOT R ASTRON SOC, V424, P2999, DOI 10.1111/j.1365-2966.2012.21466.x Springel V, 2005, MON NOT R ASTRON SOC, V364, P1105, DOI 10.1111/j.1365-2966.2005.09655.x Springel V, 2002, MON NOT R ASTRON SOC, V333, P649, DOI 10.1046/j.1365-8711.2002.05445.x Springel V, 2010, MON NOT R ASTRON SOC, V401, P791, DOI 10.1111/j.1365-2966.2009.15715.x Stone JM, 2008, ASTROPHYS J SUPPL S, V178, P137, DOI 10.1086/588755 Toro E. F., 1994, Shock Waves, V4, P25, DOI 10.1007/BF01414629 Toro E. F., 1997, RIEMANN SOLVERS NUME VAN LEER B, 1979, J COMPUT PHYS, V32, P101, DOI 10.1016/0021-9991(79)90145-1 Wadsley JW, 2008, MON NOT R ASTRON SOC, V387, P427, DOI 10.1111/j.1365-2966.2008.13260.x Wadsley JW, 2004, NEW ASTRON, V9, P137, DOI 10.1016/j.newast.2003.08.004 Wetzstein M, 2009, ASTROPHYS J SUPPL S, V184, P298, DOI 10.1088/0067-0049/184/2/298 WHITWORTH AP, 1995, ASTRON ASTROPHYS, V301, P929 Wunsch R., 2017, MNRAS NR 72 TC 22 Z9 22 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN PY 2018 VL 473 IS 2 BP 1603 EP 1632 DI 10.1093/mnras/stx2405 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA FU3DS UT WOS:000423731200015 DA 2021-04-21 ER PT S AU Chang, J Gutsche, O Mandrichenko, I Pivarski, J AF Chang, Jin Gutsche, Oliver Mandrichenko, Igor Pivarski, James GP IOP TI Striped Data Server for Scalable Parallel Data Analysis SO 18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT) CY AUG 21-25, 2017 CL Univ Washington, Seattle, WA HO Univ Washington AB A columnar data representation is known to be an efficient way for data storage, specifically in cases when the analysis is often done based only on a small fragment of the available data structures. A data representation like Apache Parquet is a step forward from a columnar representation, which splits data horizontally to allow for easy parallelization of data analysis. Based on the general idea of columnar data storage, working on the FNAL LDRD Project FNAL-LDRD-2016-032, we have developed a striped data representation, which, we believe, is better suited to the needs of High Energy Physics data analysis. A traditional columnar approach allows for efficient data analysis of complex structures. While keeping all the benefits of columnar data representations, the striped mechanism goes further by enabling easy parallelization of computations without requiring special hardware. We will present an implementation and some performance characteristics of such a data representation mechanism using a distributed no-SQL database or a local file system, unified under the same API and data representation model. The representation is efficient and at the same time simple so that it allows for a common data model and APIs for wide range of underlying storage mechanisms such as distributed no-SQL databases and local file systems. Striped storage adopts Numpy arrays as its basic data representation format, which makes it easy and efficient to use in Python applications. The Striped Data Server is a web service, which allows to hide the server implementation details from the end user, easily exposes data to WAN users, and allows to utilize well known and developed data caching solutions to further increase data access efficiency. We are considering the Striped Data Server as the core of an enterprise scale data analysis platform for High Energy Physics and similar areas of data processing. We have been testing this architecture with a 2TB dataset from a CMS dark matter search and plan to expand it to multiple 100 TB or even PB scale. We will present the striped format, Striped Data Server architecture and performance test results. EM ivm@fnal.gov CR Chatrchyan S, 2008, J INSTRUM, V3, DOI 10.1088/1748-0221/3/08/S08004 Colbert S. C., 2011, COMPUTING SCI ENG, V3 NR 2 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2018 VL 1085 AR 042035 DI 10.1088/1742-6596/1085/4/042035 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Multidisciplinary SC Computer Science; Physics GA BM7GU UT WOS:000467872200101 OA Bronze DA 2021-04-21 ER PT S AU Lange, DJ AF Lange, David J. GP IOP TI Building a scalable python distribution for HEP data analysis SO 18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT) CY AUG 21-25, 2017 CL Univ Washington, Seattle, WA HO Univ Washington AB There are numerous approaches to building analysis applications across the high-energy physics community. Among them are Python-based, or at least Python-driven, analysis workflows. We aim to ease the adoption of a Python-based analysis toolkit by making it easier for non-expert users to gain access to Python tools for scientific analysis. Experimental software distributions and individual user analysis have quite different requirements. Distributions tend to worry most about stability, usability and reproducibility, while the users usually strive to be fast and nimble. We discuss how we built and now maintain a python distribution for analysis while satisfying requirements both a large software distribution (in our case, that of CMSSW) and user, or laptop, level analysis. We pursued the integration of tools used by the broader data science community as well as HEP developed (e.g., histogrammar, root_numpy) Python packages. We discuss concepts we investigated for package integration and testing, as well as issues we encountered through this process. Distribution and platform support are important topics. We discuss our approach and progress towards a sustainable infrastructure for supporting this Python stack for the CMS user community and for the broader HEP user community. C1 [Lange, David J.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. RP Lange, DJ (corresponding author), Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. EM dlange@princeton.edu CR Eulisse G, 2014, J PHYS CONF SER, V513, DOI 10.1088/1742-6596/513/5/052009 Jones C D, 2008, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/119/3/032027 NR 2 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2018 VL 1085 AR 042041 DI 10.1088/1742-6596/1085/4/042041 PG 5 WC Computer Science, Interdisciplinary Applications; Physics, Multidisciplinary SC Computer Science; Physics GA BM7GU UT WOS:000467872200107 OA Bronze DA 2021-04-21 ER PT S AU Pivarski, J Lange, D Jatuphattharachat, T AF Pivarski, Jim Lange, David Jatuphattharachat, Thanat GP IOP TI Toward real-time data query systems in HEP SO 18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT) CY AUG 21-25, 2017 CL Univ Washington, Seattle, WA HO Univ Washington AB Exploratory data analysis tools must respond quickly to a user's questions, so that the answer to one question (e.g. a visualized histogram or fit) can influence the next. In some SQL-based query systems used in industry, even very large (petabyte) datasets can be summarized on a human timescale (seconds), employing techniques such as columnar data representation, caching, indexing, and code generation/JIT-compilation. This article describes progress toward realizing such a system for High Energy Physics (HEP), focusing on the intermediate problems of optimizing data access and calculations for "query sized" payloads, such as a single histogram or group of histograms, rather than large reconstruction or data-skimming jobs. These techniques include direct extraction of ROOT TBranches into Numpy arrays and compilation of Python analysis functions (rather than SQL) to be executed very quickly. We will also discuss the problem of caching and actively delivering jobs to worker nodes that have the necessary input data preloaded in cache. All of these pieces of the larger solution are available as standalone GitHub repositories, and could be used in current analyses. C1 [Pivarski, Jim; Lange, David] Princeton Univ, Phys Dept, Princeton, NJ 08544 USA. [Jatuphattharachat, Thanat] Comp Engn Chulalongkorn Univ, Krung Thep Maha Nakhon 10330, Thailand. RP Pivarski, J (corresponding author), Princeton Univ, Phys Dept, Princeton, NJ 08544 USA. EM pivarski@princeton.edu FU National Science FoundationNational Science Foundation (NSF) [ACI-1450377, PHY-1624356] FX This work was supported by the National Science Foundation under grants ACI-1450377 and PHY-1624356. CR Bockelman B, 2017, J PHYS C SERIES Bockelman B, 2017, ROOT BULKAPI FASTREA Hausenblas M, 2013, BIG DATA, V1, P100, DOI 10.1089/big.2013.0011 Jatuphattharachat T, 2017, FEMTO MESOS Pivarski J, 2017, FAST ACCESS COLUMNAR Pivarski J, 2017, OAMAP TOOLSET COMPUT Pivarski J, 2017, UPROOT MINIMALIST RO The Apache Arrow team, 2016, AP ARR POW COL MEM A 1997, NUCL INSTRUM METH A, V389, P81, DOI DOI 10.1016/S0168-9002(97)00048-X NR 9 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2018 VL 1085 AR 032044 DI 10.1088/1742-6596/1085/3/032044 PG 7 WC Computer Science, Interdisciplinary Applications; Physics, Multidisciplinary SC Computer Science; Physics GA BM7GU UT WOS:000467872200054 OA Bronze DA 2021-04-21 ER PT B AU Barbuta, MG Marcu, A Slusanschi, EI AF Barbuta, Mihail-Gabriel Marcu, Aurelian Slusanschi, Emil-Ioan GP IEEE TI Adaptive algorithm for detecting beam center in high-power laser transport lines SO 2018 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA) LA English DT Proceedings Paper CT 2nd IEEE Conference on Control Technology and Applications (CCTA) CY AUG 21-24, 2018 CL Copenhagen, DENMARK SP IEEE, IEEE Control Syst Soc AB High-power laser installations which require complex beam transport systems under vacuum also require a method to accurately align the beam(s) remotely. The alignment precision depends on the accuracy of the beam measurements, and multiple solutions have been adopted in current laser installations [1][2]. However, time constraints entail the implementation of automated alignment procedures using fast and accurate detection methods for a wide variety of capture types. The current paper proposes an adaptive template matching beam detection algorithm, implemented using Python and OpenCV, which has shown very good accuracy and performance. This is demonstrated using tests on sample captures from the Petawatt laser of the Center of Advanced Laser Technologies [3] at the National Institute for Laser, Plasma and Radiation Physics. C1 [Barbuta, Mihail-Gabriel] Univ Politehn Bucuresti, Fac Appl Phys, Splaiul Independentei 313, Bucharest 060042, Romania. [Marcu, Aurelian] Natl Inst Laser Plasma & Radiat Phys, Str Atomistilor 409, Magurele 077125, Romania. [Slusanschi, Emil-Ioan] Univ Politehn Bucuresti, Fac Automat Control & Comp, Splaiul Independentei 313, Bucharest 060042, Romania. RP Barbuta, MG (corresponding author), Univ Politehn Bucuresti, Fac Appl Phys, Splaiul Independentei 313, Bucharest 060042, Romania. EM mihail.barbuta@protonmail.ch; aurelian.marcu@inflpr.ro; slusanschi@cs.pub.ro FU Romanian MCI under 'Sectoral Programme' [10-PS] FX Dr. A. Marcu would like to acknowledge financial support from Romanian MCI under 'Sectoral Programme', 10-PS project. CR Awwal A. A. S., 2005, SPIE OPTICS PHOTONIC Awwal AAS, 2009, OPT LASER TECHNOL, V41, P193, DOI 10.1016/j.optlastec.2008.05.008 Barbuta M. G., 2016, THESIS Bradski G., 2008, LEARNING OPENCV Candy J., 2004, P SPIE INT SOC OPTIC, P11 Douglas DH., 1973, CARTOGRAPHICA, V10, P112, DOI [DOI 10.3138/FM57-6770-U75U-7727, 10.3138/fm57-6770-u75u-7727] Hou B, 2011, OPT ENG, V50, DOI 10.1117/1.3554379 Wilhelmsen K., 2007, P 2007 INT C ACC LAR, V02, P486 NR 8 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5386-7698-1 PY 2018 BP 115 EP 120 PG 6 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA BM2RZ UT WOS:000461414700018 DA 2021-04-21 ER PT J AU Wilkinson, CJ Mauro, YZ Mauro, JC AF Wilkinson, Collin J. Mauro, Yihong Z. Mauro, John C. TI RelaxPy: Python code for modeling of glass relaxation behavior SO SOFTWAREX LA English DT Article DE Glass; Thermodynamics; Viscosity; Relaxation; Fictive temperature; Kinetics ID FICTIVE TEMPERATURE; CONSTRAINT THEORY AB The degree of relaxation in any glass sample is a governing property in every property of the glass. It plays an important role in every major glass product commercially available, but has required individual groups to develop their own relaxation codes. RelaxPy is a Python-based script designed to be used in a Python interpreter or Linux terminal. Given an input temperature path and set of material properties including the nonequilibrium viscosity parameters, RelaxPy returns the evolution of the composite fictive temperature, viscosity, and relaxation time. Optionally, the software can also return the individual values of the fictive temperature components using a Prony series fit to approximate the stretched exponential relaxation form. RelaxPy aims to provide a flexible, open-source framework for glass relaxation modeling where new advances in glass physics can be easily incorporated and shared with the community. (c) 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). C1 [Wilkinson, Collin J.; Mauro, Yihong Z.; Mauro, John C.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Wilkinson, CJ (corresponding author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM collin.wilkinson1123@gmail.com OI Mauro, John/0000-0002-4319-3530 CR GRASSBERGER P, 1982, J CHEM PHYS, V77, P6281, DOI 10.1063/1.443832 Guo XJ, 2018, J AM CERAM SOC, V101, P1169, DOI 10.1111/jace.15272 Gupta PK, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3077168 Kohlrausch R, 1854, POGG ANN PHYS CHEM, V91, P179, DOI DOI 10.1002/ANDP.18541670203 Mauro JC, 2018, PHYSICA A, V506, P284, DOI 10.1016/j.physa.2018.04.064 Mauro JC, 2016, CHEM MATER, V28, P4267, DOI 10.1021/acs.chemmater.6b01054 Mauro JC, 2014, J NON-CRYST SOLIDS, V396, P41, DOI 10.1016/j.jnoncrysol.2014.04.009 Mauro JC, 2011, AM CERAM SOC BULL, V90, P31 Mauro JC, 2009, J CHEM PHYS, V130, DOI 10.1063/1.3152432 Mauro JC, 2009, J AM CERAM SOC, V92, P75, DOI 10.1111/j.1551-2916.2008.02851.x NARAYANASWAMY OS, 1971, J AM CERAM SOC, V54, P491, DOI 10.1111/j.1151-2916.1971.tb12186.x Phillips JC, 2011, J NON-CRYST SOLIDS, V357, P3853, DOI 10.1016/j.jnoncrysol.2011.08.001 PHILLIPS JC, 1985, SOLID STATE COMMUN, V53, P699, DOI 10.1016/0038-1098(85)90381-3 PHILLIPS JC, 1994, J STAT PHYS, V77, P945, DOI 10.1007/BF02179472 RITLAND HN, 1956, J AM CERAM SOC, V39, P403, DOI 10.1111/j.1151-2916.1956.tb15613.x TOOL AQ, 1946, J AM CERAM SOC, V29, P240, DOI 10.1111/j.1151-2916.1946.tb11592.x Tool AQ, 1931, J AM CERAM SOC, V14, P276, DOI 10.1111/j.1151-2916.1931.tb16602.x Welch RC, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.265901 Zanotto ED, 2017, J NON-CRYST SOLIDS, V471, P490, DOI 10.1016/j.jnoncrysol.2017.05.019 Zheng QJ, 2017, J AM CERAM SOC, V100, P6, DOI 10.1111/jace.14678 NR 20 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2352-7110 J9 SOFTWAREX JI SoftwareX PD JAN-JUN PY 2018 VL 7 BP 255 EP 258 DI 10.1016/j.softx.2018.07.008 PG 4 WC Computer Science, Software Engineering SC Computer Science GA HJ4JC UT WOS:000457139300043 OA DOAJ Gold DA 2021-04-21 ER PT J AU Silva, DJ Amaral, JS Amaral, VS AF Silva, D. J. Amaral, J. S. Amaral, V. S. TI Heatrapy: A flexible Python framework for computing dynamic heat transfer processes involving caloric effects in 1.5D systems SO SOFTWAREX LA English DT Article DE Heat transfer; Thermodynamics; Caloric effect; Python ID MAGNETOCALORIC MATERIALS; MAGNETIC REFRIGERATOR; CYCLES AB Although the number of computational investigations of heat transfer processes involving non-conventional effects has been increasing for the past years, mainly due to the modeling of caloric systems such as magnetocaloric devices, an open source package dedicated to such dynamics is still unavailable. So far, all reported simulations of caloric systems have been run with new code without a good level of flexibility. We have developed a Python framework that makes the modeling of such systems easy to be computed. The related package, called heatrapy, can compute heat transfer processes inside and between thermal objects. Moreover, the thermal objects can be activated (magnetized, electrified, compressed) or deactivated at any time. A complete overview of the framework is presented and all the related physics are described. The package includes examples of two magnetocaloric systems, although it can be used in a variety of problems, including electrocaloric, barocaloric and elastocaloric systems. Additional features, such as the sweeping of the material activation or deactivation, the discontinuity of thermal objects, and the inclusion of cascade of materials are described. (c) 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). C1 [Silva, D. J.] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal. Univ Aveiro, CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal. RP Silva, DJ (corresponding author), Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal. EM djsilva@ua.pt RI Amaral, Vitor/M-9882-2019; Amaral, Vitor S/A-1570-2009; Amaral, J. S./C-6354-2009; da Silva, Daniel Jose/L-6503-2014 OI Amaral, Vitor/0000-0003-3359-7133; Amaral, Vitor S/0000-0003-3359-7133; Amaral, J. S./0000-0003-0488-9372; da Silva, Daniel Jose/0000-0002-2660-4692 FU Smart Green Homes Project, Portugal [POCI-01-0247-FEDER-007678]; Portugal 2020 under the Competitiveness and Internationalization Operational Program, Portugal; European Regional Development Fund, Portugal; Project CICECO-Aveiro Institute of Materials, Portugal [POCI-01-0145-FEDER-007679, UID/CT/5001/2013]; FCT/MEC, Portugal; FCT, PortugalPortuguese Foundation for Science and Technology [UID/CT/5001/2013, IF/01089/2015] FX The present study was developed in the scope of the Smart Green Homes Project, Portugal [POCI-01-0247-FEDER-007678], a co-promotion between Bosch Termotecnologia S.A. and the University of Aveiro. It is financed by Portugal 2020 under the Competitiveness and Internationalization Operational Program, Portugal, and by the European Regional Development Fund, Portugal. Project CICECO-Aveiro Institute of Materials, Portugal, POCI-01-0145-FEDER-007679 (FCT, Portugal Ref. UID/CT/5001/2013), financed by national funds through the FCT/MEC, Portugal and co-financed by FEDER under the PT2020 Partnership Agreement is acknowledged. JSA acknowledges FCT, Portugal IF/01089/2015 research grant. CR [Anonymous], 2018, SOURCE PHYSPLOTLIB P Aprea C, 2017, INT J HEAT TECHNOL, V35, pS383, DOI 10.18280/ijht.35Sp0152 Canesin FC, 2012, INT C MAGN REFR ROOM, P509 Ezan MA, 2017, INT J REFRIG, V75, P262, DOI 10.1016/j.ijrefrig.2016.12.018 Jabbari M, 2013, INT J REFRIG, V36, P2403, DOI 10.1016/j.ijrefrig.2013.05.002 Kamran MS, 2016, APPL THERM ENG, V102, P1126, DOI 10.1016/j.applthermaleng.2016.02.085 Kitanovski A, 2014, INT J REFRIG, V37, P28, DOI 10.1016/j.ijrefrig.2013.05.014 KITANOVSKI A, 2015, MAGNETOCALORIC ENERG Kitanovski A, 2015, INT J REFRIG, V57, P288, DOI 10.1016/j.ijrefrig.2015.06.008 Landau RH, 2007, COMPUTATIONAL PHYS P Lienhard J.H, 2017, HEAT TRANSFER TXB Lloveras P, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9801 Luo D, 2017, ENERGY, V130, P500, DOI 10.1016/j.energy.2017.05.008 Ma N, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-13515-9 Ma RJ, 2017, SCIENCE, V357, P1130, DOI 10.1126/science.aan5980 Manosa L, 2010, NAT MATER, V9, P478, DOI [10.1038/nmat2731, 10.1038/NMAT2731] Moya X, 2014, NAT MATER, V13, P439, DOI [10.1038/NMAT3951, 10.1038/nmat3951] Nielsen KK, 2011, INT J REFRIG, V34, P603, DOI 10.1016/j.ijrefrig.2010.12.026 Ozbolt M, 2014, INT J REFRIG, V40, P174, DOI 10.1016/j.ijrefrig.2013.11.007 Petersen TF, 2008, INT J REFRIG, V31, P432, DOI 10.1016/j.ijrefrig.2007.07.009 Petersen TF, 2008, J PHYS D APPL PHYS, V41, DOI 10.1088/0022-3727/41/10/105002 Qian SX, 2016, INT J REFRIG, V64, P1, DOI 10.1016/j.ijrefrig.2015.12.001 Scott JF, 2011, ANNU REV MATER RES, V41, P229, DOI 10.1146/annurev-matsci-062910-100341 Silva DJ, 2016, APPL THERM ENG, V99, P514, DOI 10.1016/j.applthermaleng.2016.01.026 Silva DJ, 2014, APPL ENERG, V113, P1149, DOI 10.1016/j.apenergy.2013.08.070 Silva DJ, 2012, APPL ENERG, V93, P570, DOI 10.1016/j.apenergy.2011.12.002 Thijssen J., 2007, COMPUTATIONAL PHYS, V2nd You YH, 2017, INT J REFRIG, V79, P217, DOI 10.1016/j.ijrefrig.2017.04.014 NR 28 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2352-7110 J9 SOFTWAREX JI SoftwareX PD JAN-JUN PY 2018 VL 7 BP 373 EP 382 DI 10.1016/j.softx.2018.09.007 PG 10 WC Computer Science, Software Engineering SC Computer Science GA HJ4JC UT WOS:000457139300062 OA DOAJ Gold DA 2021-04-21 ER PT S AU Johnson, LC Cummings, K Drobilek, M Johansson, E Marino, J Rampy, R Richards, K Rimmele, T Sekulic, P Woger, F AF Johnson, Luke C. Cummings, Keith Drobilek, Mark Johansson, Erik Marino, Jose Rampy, Rachel Richards, Kit Rimmele, Thomas Sekulic, Predrag Woger, Friedrich BE Close, LM Schreiber, L Schmidt, D TI Laboratory integration of the DKIST wavefront correction system SO ADAPTIVE OPTICS SYSTEMS VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Adaptive Optics Systems VI CY JUN 10-15, 2018 CL Austin, TX SP SPIE, 4D Technol, Andor Technol Ltd, Astron Consultants & Equipment, Inc, Giant Magellan Telescope, GPixel, Inc, Harris Corp, Mater Corp, Optimax Syst, Inc, Princeton Infrared Technologies, Symetrie, Teledyne Technologies Inc, Thirty Meter Telescope DE adaptive optics; DKIST; project status; solar AO; solar physics; integration; commissioning; laboratory testing AB The Wavefront Correction (WFC) system for the Daniel K. Inouye Solar Telescope (DKIST) is in its final stages of laboratory integration. All optical, mechanical, and software components have been unit tested and installed and aligned in our laboratory testbed in Boulder, CO. We will verify all aspects of WFC system performance in the laboratory before disassembling and shipping it to Maui for final integration with the DKIST in early 2019. The DKIST Adaptive Optics (AO) system contains a 1600-actuator deformable mirror, a correlating Shack-Hartmann wavefront sensor, a fast tip-tilt mirror, and an FPGA-based control system. Running at a nominal rate of 1975 Hz, the AO system will deliver diffraction-limited images to five of the DKIST science instruments simultaneously. The DKIST AO system is designed to achieve the diffraction limit (on-axis Strehl > 0.3) at wavelengths up to 500 nm in median daytime seeing (r(0) = 7 cm). In addition to AO for diffraction-limited observing, the DKIST WFC system has a low-order wavefront sensor for sensing quasi-static wavefront errors, a context viewer for telescope pointing and image quality assessment, and an active optics engine. The active optics engine uses inputs from the low-order wavefront sensor and the AO system to actively correct for telescope misalignment. All routine alignment and calibration procedures are automated via motorized stages that can be controlled from Python scripts. We present the current state of the WFC system as we prepare for final integration with the DKIST, including verification test design, system performance metrics, and laboratory test data. C1 [Johnson, Luke C.; Drobilek, Mark; Johansson, Erik; Marino, Jose; Rampy, Rachel; Richards, Kit; Rimmele, Thomas; Woger, Friedrich] Natl Solar Observ, 3665 Discovery Dr, Boulder, CO 80303 USA. [Cummings, Keith] Natl Solar Observ, 8 Kiopaa St Ste 201, Pukalani, HI USA. [Sekulic, Predrag] Natl Solar Observ, 950 Cherry Ave, Tucson, AZ USA. RP Johnson, LC (corresponding author), Natl Solar Observ, 3665 Discovery Dr, Boulder, CO 80303 USA. EM ljohnson@nso.edu FU National Science FoundationNational Science Foundation (NSF) FX The Daniel K. Inouye Solar Telescope is a facility of the National Solar Observatory (NSO). NSO is managed by the Association of Universities for Research in Astronomy, Inc., and is funded by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Association of Universities for Research in Astronomy, Inc. CR Bret S. B. W., 2004, P SOC PHOTO-OPT INS, V5496, P5496 BROWN TM, 1982, ASTRON ASTROPHYS, V116, P260 Craig S, 2016, PROC SPIE, V9911, DOI 10.1117/12.2233654 Johansson E., 2018, P SOC PHOTO-OPT INS, P10703 Johnson L. C., 2012, P SPIE, V8447 Johnson L. C., 2016, P SPIE INT SOC OPT E, V9909, P99090 Johnson L. C., 2012, P SPIE, V8444 Johnson LC, 2014, PROC SPIE, V9148, DOI 10.1117/12.2056990 Meimon S, 2015, OPT EXPRESS, V23, P27134, DOI 10.1364/OE.23.027134 Robinson D, 2004, IEEE T IMAGE PROCESS, V13, P1185, DOI 10.1109/TIP.2004.832923 WANG JY, 1978, J OPT SOC AM, V68, P78, DOI 10.1364/JOSA.68.000078 NR 11 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-1960-9 J9 PROC SPIE PY 2018 VL 10703 AR UNSP 107030F DI 10.1117/12.2314012 PG 9 WC Optics SC Optics GA BL5UM UT WOS:000452819300012 DA 2021-04-21 ER PT S AU Por, EH Haffert, SY Radhakrishnan, VM Doelman, DS van Kooten, M Bos, SP AF Por, Emiel H. Haffert, Sebastiaan Y. Radhakrishnan, Vikram M. Doelman, David S. van Kooten, Maaike Bos, Steven P. BE Close, LM Schreiber, L Schmidt, D TI High Contrast Imaging for Python (HCIPy): an open-source adaptive optics and coronagraph simulator SO ADAPTIVE OPTICS SYSTEMS VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Adaptive Optics Systems VI CY JUN 10-15, 2018 CL Austin, TX SP SPIE, 4D Technol, Andor Technol Ltd, Astron Consultants & Equipment, Inc, Giant Magellan Telescope, GPixel, Inc, Harris Corp, Mater Corp, Optimax Syst, Inc, Princeton Infrared Technologies, Symetrie, Teledyne Technologies Inc, Thirty Meter Telescope DE HCIPy; Python; Simulations; High Contrast Imaging; Adaptive Optics; Coronagraphy; Open source ID WAVE-FRONT SENSOR; PLANET DETECTION; PHASE AB HCIPy is a package written in Python for simulating the interplay between wavefront control and coronagraphic systems. By defining an element which merges values/coefficients with its sampling grid/modal basis into a single object called Field, this minimizes errors in writing the code and makes it clearer to read. HCIPy provides a monochromatic Wavefront and defines a Propagator that acts as the transformation between two wavefronts. In this way a Propagator acts as any physical part of the optical system, be it a piece of free space, a thin complex apodizer or a microlens array. HCIPy contains Fraunhofer and Fresnel propagators through free space. It includes an implementation of a thin complex apodizer, which can modify the phase and/or amplitude of a wavefront, and forms the basis for more complicated optical elements. Included in HCIPy are wavefront errors (modal, power spectra), complex apertures (VLT, Keck or Subaru pupil), coronagraphs (Lyot, vortex or apodizing phase plate coronagraph), deformable mirrors, wavefront sensors (Shack-Hartmann, Pyramid, Zernike or phase-diversity wavefront sensor) and multi-layer atmospheric models including scintillation). HCIPy aims to provide an easy-to-use, modular framework for wavefront control and coronagraphy on current and future telescopes, enabling rapid prototyping of the full high-contrast imaging system. Adaptive optics and coronagraphic systems can be easily extended to include more realistic physics. The package includes a complete documentation of all classes and functions, and is available as open-source software. C1 [Por, Emiel H.; Haffert, Sebastiaan Y.; Radhakrishnan, Vikram M.; Doelman, David S.; van Kooten, Maaike; Bos, Steven P.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. RP Por, EH (corresponding author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM por@strw.leidenuniv.nl OI Radhakrishnan, Vikram Mark/0000-0003-4122-4046; Doelman, David/0000-0003-0695-0480; Por, Emiel/0000-0002-3961-083X FU Netherlands Organisation for Scientific Research (NWO)Netherlands Organization for Scientific Research (NWO); Sao Paulo Research Foundation (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) FX EP acknowledges funding by The Netherlands Organisation for Scientific Research (NWO) and the Sao Paulo Research Foundation (FAPESP). CR Assemat F, 2006, OPT EXPRESS, V14, P988, DOI 10.1364/OE.14.000988 Basden A, 2010, APPL OPTICS, V49, P6354, DOI 10.1364/AO.49.006354 Baudoz P., 2005, P INT ASTRON UNION, V1, P553 Bloemhof EE, 2003, P SOC PHOTO-OPT INS, V5169, P309, DOI 10.1117/12.507245 Bos S. P., 2018, P SPIE Bos SP, 2017, PROC SPIE, V10407, DOI 10.1117/12.2273341 Carlotti A, 2011, OPT EXPRESS, V19, P26796, DOI 10.1364/OE.19.026796 Cavarroc C, 2006, ASTRON ASTROPHYS, V447, P397, DOI 10.1051/0004-6361:20053916 Codona JL, 2004, ASTROPHYS J, V604, pL117, DOI 10.1086/383569 Foo G, 2005, OPT LETT, V30, P3308, DOI 10.1364/OL.30.003308 Frigo M, 2005, P IEEE, V93, P216, DOI 10.1109/JPROC.2004.840301 GONSALVES RA, 1982, OPT ENG, V21, P829, DOI 10.1117/12.7972989 Gonzalez CAG, 2017, ASTRON J, V154, DOI 10.3847/1538-3881/aa73d7 Gratadour D, 2014, PROC SPIE, V9148, DOI 10.1117/12.2056358 Gurobi Optimization I, 2016, GUROBI OPTIMIZER REF Guyon O, 2006, ASTROPHYS J SUPPL S, V167, P81, DOI 10.1086/507630 Haffert SY, 2016, OPT EXPRESS, V24, P18986, DOI 10.1364/OE.24.018986 Hirsch M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053671 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones E., 2014, SCIPY OPEN SOURCE SC Jovanovic N., 2018, P SPIE Kenworthy MA, 2007, ASTROPHYS J, V660, P762, DOI 10.1086/513596 Konnik Mikhail V, 2014, ARXIV14124031 Krist JE, 2007, P SOC PHOTO-OPT INS, V6675, pP6750, DOI 10.1117/12.731179 Le Louarn M, 2006, PROC SPIE, V6272, pU1048, DOI 10.1117/12.670187 Mawet D, 2005, ASTROPHYS J, V633, P1191, DOI 10.1086/462409 Mawet D, 2013, ASTROPHYS J SUPPL S, V209, DOI 10.1088/0067-0049/209/1/7 Nickolls John, 2008, ACM Queue, V6, DOI 10.1145/1365490.1365500 Perrin MD, 2012, PROC SPIE, V8442, DOI 10.1117/12.925230 Por EH, 2017, PROC SPIE, V10400, DOI 10.1117/12.2274219 Radhakrishnan V. M., 2018, P SPIE Ragazzoni R, 2002, OPT COMMUN, V208, P51, DOI 10.1016/S0030-4018(02)01580-8 Ragazzoni R, 1996, J MOD OPTIC, V43, P289, DOI 10.1080/095003496156165 Reeves A, 2016, PROC SPIE, V9909 Rigaut F., 2002, YAO ADAPTIVE OPTICS Snik F., 2012, P SOC PHOTO-OPT INS, V8450, P84500 Soummer R, 2007, OPT EXPRESS, V15, P15935, DOI 10.1364/OE.15.015935 SPRAGUE RA, 1972, APPL OPTICS, V11, P1469, DOI 10.1364/AO.11.001469 Stone JE, 2010, COMPUT SCI ENG, V12, P66, DOI 10.1109/MCSE.2010.69 Taylor GI, 1938, PROC R SOC LON SER-A, V164, P0476, DOI 10.1098/rspa.1938.0032 The Astropy Collaboration, 2018, ARXIV E PRINTS van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Wang J.J., 2015, ASTROPHYSICS SOURCE Wilby MJ, 2017, ASTRON ASTROPHYS, V597, DOI 10.1051/0004-6361/201628628 Zernike F., 1935, Z TECHN PHYS, V16, P454 Zimmerman NT, 2016, J ASTRON TELESC INST, V2, DOI 10.1117/1.JATIS.2.1.011012 NR 46 TC 5 Z9 5 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-1960-9 J9 PROC SPIE PY 2018 VL 10703 AR UNSP 1070342 DI 10.1117/12.2314407 PG 14 WC Optics SC Optics GA BL5UM UT WOS:000452819300121 DA 2021-04-21 ER PT S AU Cieszewski, R Pozniak, K Romaniuk, R Linczuk, M AF Cieszewski, Radoslaw Pozniak, Krzysztof Romaniuk, Ryszard Linczuk, Maciej BE Romaniuk, RS Linczuk, M TI Widely parameterizable High-Level Synthesis SO PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2018 SE Proceedings of SPIE LA English DT Proceedings Paper CT SPIE-IEEE-PSP WILGA on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments CY JUN 03-10, 2018 CL Wilga, POLAND SP Warsaw Univ Technol, Inst Elect Syst, Fac Elect & Informat Technologies, Photon Soc Poland, Polish Acad Sci, Comm Elect & Telecommunicat, Accelerator Res & Innovat European Sci & Soc, Assoc Polish Elect Engineers, Polish Comm Optoelectron, EuroFus Collaborat, EuroFus Poland, SPIE, Polish Chapter, IEEE, Poland Sect, WILGA DE High-Level Synthesis; graph partitioning; FPGA; Algorithmic Synthesis; Behavioral Synthesis; Hot Plasma Physics Experiment; networkx AB In recent years, HLS compilers are gaining increasing popularity. This popularity is due to the fact that FPGA chips can achieve higher computing power than traditional CPUs in fine-grained algorithms. The greatest development of compilers were in recent years. Both commercial and open solutions are being developed. The most difficult part of compilers are algorithms responsible for converting code from a high high level of abstraction to low. In commercial solutions, these algorithms are closed as a "black box" and open solutions have implemented rather simple algorithms. The article presents an alternative, open solution of a high-level synthesis compiler (HLS) implemented in Python with its algorithms. The compiler, based on Python's high-level functional description, generates a configuration that allows the creation of a given structure in the FPGA system during the synthesis process. The article describes the design methods, tools and implementation of the developed Python-VHDL compiler with examples of its use. C1 [Cieszewski, Radoslaw; Pozniak, Krzysztof; Romaniuk, Ryszard; Linczuk, Maciej] Warsaw Univ Technol, Inst Elect Syst, Nowowiejska 15-19, PL-00665 Warsaw, Poland. RP Cieszewski, R (corresponding author), Warsaw Univ Technol, Inst Elect Syst, Nowowiejska 15-19, PL-00665 Warsaw, Poland. EM R.Cieszewski@stud.elka.pw.edu.pl RI Romaniuk, Ryszard S/B-9140-2011; Pozniak, Krzysztof/AAO-7377-2020 OI Romaniuk, Ryszard S/0000-0002-5710-4041; Pozniak, Krzysztof/0000-0001-5426-1423 CR Asanovic K, 2009, COMMUN ACM, V52, P56, DOI 10.1145/1562764.1562783 Berdychowski PP, 2010, PHOTONICS APPL ASTRO Bowyer B., 2005, WHY WHAT ALGORITHMIC Cieszewski Radoslaw, 2017, Elektronika, V58, P31, DOI 10.15199/13.2017.8.7 Cong J, 2011, IEEE T COMPUT AID D, V30, P473, DOI 10.1109/TCAD.2011.2110592 Coussy P., 2009, IEEE DESIGN TEST COM, V26 Gajski Daniel D., 2012, SPRINGER SCI BUSINES Gajski DD, 1992, HIGH LEVEL SYNTHESIS, V34 Kolasinski P., 2007, PHOTONICS APPL ASTRO Meredith M., 2004, EETIMES, P04 Wojenski A., 2017, MEASUREMENT AUTOMATI, V6, P223 Wojenski A., 2017, MULTICHANNEL MEASURE, V121, P1, DOI [10.1016/j.fusengdes.2017.04.134, DOI 10.1016/J.FUSENGDES.2017.04.134] Wojenski AJ, 2015, NUCL INSTRUM METH B, V364, P49, DOI 10.1016/j.nimb.2015.06.022 Zabolotny WM, 2017, J INSTRUM, V12, DOI 10.1088/1748-0221/12/02/C02060 Zabolotny WM, 2017, J INSTRUM, V12, DOI 10.1088/1748-0221/12/01/C01050 Zabolotny WM, 2011, PHOTONICS APPL ASTRO Zabolotny WM, 2010, PHOTONICS APPL ASTRO Zabolotny WM, 2006, PROC SPIE, V6347, DOI 10.1117/12.714532 NR 18 TC 0 Z9 0 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-2204-3 J9 PROC SPIE PY 2018 VL 10808 AR 108084D DI 10.1117/12.2502153 PG 7 WC Optics SC Optics GA BL4TX UT WOS:000450820000157 DA 2021-04-21 ER PT S AU Morra, G AF Morra, Gabriele BA Morra, G BF Morra, G TI Mechanics I: Kinematics SO PYTHONIC GEODYNAMICS: IMPLEMENTATIONS FOR FAST COMPUTING SE Lecture Notes in Earth System Sciences LA English DT Article; Book Chapter AB It is shown here how to use Finite Differences to calculate displacement, velocity, and acceleration using a discretized approximation, that in a general undergraduate Physics course would be obtained by using derivatives and integrals. Both ways are illustrated (i) the calculation of the kinematic quantities from a known trajectory, and (ii) the calculation of the trajectory by knowing the acceleration field in the space. The possible errors that can be made are illustrated in detail, in particular how a small error in calculating a trajectory can amplify when solving for a long trajectory. In this and in the following chapter, we will consider very simple problems that are normally encountered in a general Physics course, relative to Kinematic and Newtonian mechanics. We will focus on how all these problems can be solved by using a numerical approach only, without any analytical calculation. For many of the cases considered here, it is simply an overkill to use a computer to solve them, however because of their simplicity they are an excellent way to introduce an inexpert reader to new numerical techniques. The strategies that we use here will be useful in the rest of the book to understand how to calculate the motion of particles in the Particles in Cell method. They will give us the opportunity to simply introduce Eulerian (mesh based) and Lagrangian (particle based) approach that are essential when solving problem in the more complex deformable media. In this and the next chapter, we will initially assume that every object is rigid, and introduce only generically the concept of strain, i.e., the quantification of the deformation of the objects themselves. In fact while the velocity and the acceleration are the derivative of the displacement in time, the strain is the derivative of the displacement in space, and the strain rate both the derivative of the displacement in space and in time. With them, combined with the diffusion process, we can describe every process that happens in the solid interiors of a planet (the liquid core, as well as stars interiors, require also the treatment of the electromagnetic equations that go beyond the scope of this introductory text). Overall the goal of this chapter is to start to familiarize with programming in Python and to understand the importance of the concepts of momentum and energy. In all the problems in this chapters only the time is discretized, meaning that the solutions are calculated for a time t and then for the next time step at t + Delta t, where Delta t can be constant (regular discretization), or vary. The discretization of the physical space, instead, will be introduced in Chap. 7 together with the equations that control the deformation of a stressed body. C1 [Morra, Gabriele] Univ Louisiana Lafayette, Dept Phys, Lafayette, LA 70504 USA. [Morra, Gabriele] Univ Louisiana Lafayette, Sch Geosci, Lafayette, LA 70504 USA. RP Morra, G (corresponding author), Univ Louisiana Lafayette, Dept Phys, Lafayette, LA 70504 USA.; Morra, G (corresponding author), Univ Louisiana Lafayette, Sch Geosci, Lafayette, LA 70504 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER INTERNATIONAL PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 2193-8571 EI 2193-858X BN 978-3-319-55682-6; 978-3-319-55680-2 J9 LECT N EARTH SYST SC PY 2018 BP 63 EP 75 DI 10.1007/978-3-319-55682-6_4 D2 10.1515/9783110317794 PG 13 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA BL3LQ UT WOS:000449857100006 DA 2021-04-21 ER PT J AU Derouillat, J Beck, A Perez, F Vinci, T Chiaramello, M Grassi, A Fle, M Bouchard, G Plotnikov, I Aunai, N Dargent, J Riconda, C Grech, M AF Derouillat, J. Beck, A. Perez, F. Vinci, T. Chiaramello, M. Grassi, A. Fle, M. Bouchard, G. Plotnikov, I. Aunai, N. Dargent, J. Riconda, C. Grech, M. TI SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Plasma kinetic simulation; Particle-In-Cell (PIC); High-performance computing; Laser-plasma interaction; Astrophysical plasmas ID STIMULATED SCATTERING; ENERGY-LOSS; LASER; ACCELERATION; LIGHT; BEAMS; IONIZATION; COLLISIONS; ELECTRONS; RADIATION AB SMILE! is a collaborative, open-source, object-oriented (C++) particle-in-cell code. To benefit from the latest advances in high-performance computing (HPC), SMILEI is co-developed by both physicists and HPC experts. The code's structures, capabilities, parallelization strategy and performances are discussed. Additional modules (e.g. to treat ionization or collisions), benchmarks and physics highlights are also presented. Multi-purpose and evolutive, SMILEI is applied today to a wide range of physics studies, from relativistic laser-plasma interaction to astrophysical plasmas. Program summary Program title: SMILEI (version 3.2) Program Files doi: http://dx.doi.org/10.17632/gsn4x6mbrg.1 Licensing provisions: This version of the code is distributed under the GNU General Public License v3 Programming language: C++11, Python 2.7 Nature of the problem: The kinetic simulation of plasmas is at the center of various physics studies, from laser plasma interaction to astrophysics. To address today's challenges, a versatile simulation tool requires high-performance computing on massively parallel super-computers. Solution method: The Vlasov-Maxwell system describing the self-consistent evolution of a collisionless plasma is solved using the Particle-In-Cell (PIC) method. Additional physics modules allow to account for additional effects such as collisions and/or ionization. A hybrid MPI-OpenMP strategy, based on a patch based super-decomposition, allows for efficient cache-use, dynamic load balancing and high-performance on massively parallel super-computers. Additional comments: Repository https://github.com/SmileiPlC/Smilei References: http://www.maisondelasimulation.fr/smilei (C) 2017 Published by Elsevier B.V. C1 [Derouillat, J.] Univ Paris Saclay, UVSQ, Univ Paris Sud, CEA,Maison Simulat, F-91191 Gif Sur Yvette, France. [Beck, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Perez, F.; Vinci, T.; Grech, M.] Sorbonne Univ, UPMC Univ Paris 06, Univ Paris Saclay, Ecole Polytech,CNRS,CEA,Lab Utilisat Lasers Inten, F-91128 Palaiseau, France. [Chiaramello, M.; Grassi, A.; Riconda, C.] Univ Paris Saclay, Sorbonne Univ, UPMC Univ Paris 06, CNRS,Ecole Polytech,CEA,Lab Utilisat Lasers Inten, F-75252 Paris 05, France. [Grassi, A.] Univ Pisa, Dipartimento Fis Enrico Fermi, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy. [Grassi, A.] Ist Nazl Ottica, CNR, Uos Adriano Gozzini, I-56127 Pisa, Italy. [Fle, M.] Inst Dev Ressources Informat Sci, CNRS, I-56127 Pisa, Italy. [Bouchard, G.] Univ Paris Saclay, CEN Saclay, DSM IRAMIS, CEA,Lasers Interact & Dynam Lab, F-91191 Gif Sur Yvette, France. [Plotnikov, I.; Dargent, J.] Univ Toulouse, UPS OMP, Inst Rech Astrophys & Planetol, F-31400 Toulouse, France. [Aunai, N.; Dargent, J.] Univ Paris Sud, UPMC, Ecole Polytech, CNRS,Lab Phys Plasmas, F-91128 Palaiseau, France. RP Grech, M (corresponding author), Sorbonne Univ, UPMC Univ Paris 06, Univ Paris Saclay, Ecole Polytech,CNRS,CEA,Lab Utilisat Lasers Inten, F-91128 Palaiseau, France. EM mickael.grech@polytechnique.edu RI Grassi, Anna/AAG-9663-2019; Grech, Mickael/H-3587-2011 OI Grassi, Anna/0000-0003-3314-7060; Grech, Mickael/0000-0002-3351-0635; Vinci, Tommaso/0000-0002-1595-1752 FU Investissements d'Avenir of the PALM LabExFrench National Research Agency (ANR) [ANR-10-LABX-0039-PALM]; Plas@Par LabEx [ANR-11-IDEX-0004-02]; Universite Franco-Italienne through the Vinci program [C2-133]; ANRFrench National Research Agency (ANR) [ANR-13-PDOC-0027]; ANR MACH projectFrench National Research Agency (ANR) [ANR-14-CE33-0019 MACH]; GENCI-IDRIS Grands Challenges, GENCI-IDRIS/TGCC [2016-x2016057678, 2017-x2016057678]; GENCI-CINES [2016-c2016067484] FX The authors are grateful to L. Gremillet, M. Lobet, R. Nuter and A. Sgattoni for fruitful discussions, and Ph. Savoini for feedback on the code. MG and GB thank F. Que're and H. Vincenti for sharing physics insights. Financial support from the Investissements d'Avenir of the PALM LabEx (ANR-10-LABX-0039-PALM, Junior Chair SimPLE) and from the Plas@Par LabEx (ANR-11-IDEX-0004-02) are acknowledged. AG acknowledges financial support from the Universite Franco-Italienne through the Vinci program (Grant No. C2-133). NA and JDa thank the ANR (project ANR-13-PDOC-0027) for funding their research. MG personally thanks the collaboration federated around the ANR MACH project (ANR-14-CE33-0019 MACH). This work was performed using HPC resources from GENCI-IDRIS Grands Challenges 2015, GENCI-IDRIS/TGCC (Grants 2016-x2016057678 and 2017-x2016057678), GENCI-CINES (Grant 2016-c2016067484) and GENCI-CINES (Special allocation no t201604s020). CR Ammosov M. V., 1986, Soviet Physics - JETP, V64, P1191 Andreev AA, 2006, PHYS PLASMAS, V13, DOI 10.1063/1.2201896 Arenberg JW, 2014, PROC SPIE, V9237, DOI 10.1117/12.2068336 Barucq H, 1997, ASYMPTOTIC ANAL, V15, P25 Beck A, 2016, NUCL INSTRUM METH A, V829, P418, DOI 10.1016/j.nima.2016.03.112 BERENGER JP, 1994, J COMPUT PHYS, V114, P185, DOI 10.1006/jcph.1994.1159 Birsall C. K., 1985, PLASMA PHYS VIA COMP BLANDFORD RD, 1976, PHYS FLUIDS, V19, P1130, DOI 10.1063/1.861619 Blasi P, 2013, ASTRON ASTROPHYS REV, V21, DOI 10.1007/s00159-013-0070-7 Boris J., 1970, P 4 C NUM SIM PLASM, P3 Bret A, 2010, PHYS PLASMAS, V17, DOI 10.1063/1.3514586 Cassak PA, 2007, PHYS PLASMAS, V14, DOI 10.1063/1.2795630 Chen H, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.105001 Chiaramello M, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.235003 Chiaramello M, 2016, PHYS PLASMAS, V23, DOI 10.1063/1.4955322 COHEN BI, 1979, PHYS FLUIDS, V22, P1115, DOI 10.1063/1.862713 Cros B, 2014, NUCL INSTRUM METH A, V740, P27, DOI 10.1016/j.nima.2013.10.090 Decyk VK, 2011, COMPUT PHYS COMMUN, V182, P641, DOI 10.1016/j.cpc.2010.11.009 Di Piazza A, 2012, REV MOD PHYS, V84, P1177, DOI 10.1103/RevModPhys.84.1177 Esirkepov TZ, 2001, COMPUT PHYS COMMUN, V135, P144, DOI 10.1016/S0010-4655(00)00228-9 Faure J, 2004, NATURE, V431, P541, DOI 10.1038/nature02963 Flannery Brian P., 2007, NUMERICAL RECIPIES Fonseca RA, 2002, LECT NOTES COMPUT SC, V2331, P342 FORSLUND DW, 1975, PHYS FLUIDS, V18, P1002, DOI 10.1063/1.861248 FRANKEL NE, 1979, PHYS REV A, V20, P2120, DOI 10.1103/PhysRevA.20.2120 Fuchs J, 2014, EUR PHYS J-SPEC TOP, V223, P1169, DOI 10.1140/epjst/e2014-02169-y Geddes CGR, 2004, NATURE, V431, P538, DOI 10.1038/nature02900 Germaschewski K, 2016, J COMPUT PHYS, V318, P305, DOI 10.1016/j.jcp.2016.05.013 GODFREY BB, 1974, J COMPUT PHYS, V15, P504, DOI 10.1016/0021-9991(74)90076-X Golovanov AA, 2017, PHYS PLASMAS, V24, DOI 10.1063/1.4996856 Grassi A, 2017, PHYS REV E, V96, DOI 10.1103/PhysRevE.96.033204 Grassi A, 2017, PHYS REV E, V95, DOI 10.1103/PhysRevE.95.023203 Greenwood AD, 2004, J COMPUT PHYS, V201, P665, DOI 10.1016/j.jcp.2004.06.021 Harlow F.H., 1956, TECHNICAL REPORT Haugbolle T, 2013, PHYS PLASMAS, V20, DOI 10.1063/1.4811384 Haugbolle T, 2011, ASTROPHYS J LETT, V739, DOI 10.1088/2041-8205/739/2/L42 Hesse M, 2013, PHYS PLASMAS, V20, DOI 10.1063/1.4811467 HILBERT D., 1891, MATH ANN, V38, P459, DOI [10.1007/BF01199431, DOI 10.1007/BF01199431] Huba J. D., 2013, NRL PLASMA FORMULARY Huebl Axel, 2015, OPENPMD 1 0 0 META D Kim YK, 2000, PHYS REV A, V62, DOI 10.1103/PhysRevA.62.052710 Kirk JG, 1999, J PHYS G NUCL PARTIC, V25, pR163, DOI 10.1088/0954-3899/25/8/201 Lancia L, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.075001 Lancia L, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.025001 Lehe R., 2014, THESIS Lifschitz AF, 2009, J COMPUT PHYS, V228, P1803, DOI 10.1016/j.jcp.2008.11.017 Lobet M, 2016, J PHYS CONF SER, V688, DOI 10.1088/1742-6596/688/1/012058 Macchi A, 2013, REV MOD PHYS, V85, P751, DOI 10.1103/RevModPhys.85.751 Mangles SPD, 2004, NATURE, V431, P535, DOI 10.1038/nature02939 Mulser P, 1998, PHYS PLASMAS, V5, P4466, DOI 10.1063/1.873184 Nanbu K, 1997, PHYS REV E, V55, P4642, DOI 10.1103/PhysRevE.55.4642 Nanbu K, 1998, J COMPUT PHYS, V145, P639, DOI 10.1006/jcph.1998.6049 Nuter R, 2011, PHYS PLASMAS, V18, DOI 10.1063/1.3559494 Nuter R, 2016, J COMPUT PHYS, V305, P664, DOI 10.1016/j.jcp.2015.10.057 Nuter R, 2014, EUR PHYS J D, V68, DOI 10.1140/epjd/e2014-50162-y PERELOMOV AM, 1966, SOV PHYS JETP-USSR, V23, P924 PERELOMOV AM, 1967, SOV PHYS JETP-USSR, V24, P207 Perez F, 2012, PHYS PLASMAS, V19, DOI 10.1063/1.4742167 Pukhov A, 2002, APPL PHYS B-LASERS O, V74, P355, DOI 10.1007/s003400200795 ROHRLICH F, 1954, PHYS REV, V93, P38, DOI 10.1103/PhysRev.93.38 Sarri G, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7747 Sironi L, 2013, ASTROPHYS J, V771, DOI 10.1088/0004-637X/771/1/54 Spitkovsky A, 2008, ASTROPHYS J LETT, V682, pL5, DOI 10.1086/590248 Spohn H., 1991, LARGE SCALE DYNAMICS Stantchev G, 2008, J PARALLEL DISTR COM, V68, P1339, DOI 10.1016/j.jpdc.2008.05.009 STUART BC, 1995, PHYS REV LETT, V74, P2248, DOI 10.1103/PhysRevLett.74.2248 Taflove A., 2005, COMPUTATION ELECTROD TAJIMA T, 1979, PHYS REV LETT, V43, P267, DOI 10.1103/PhysRevLett.43.267 Thaury C, 2010, J PHYS B-AT MOL OPT, V43, DOI 10.1088/0953-4075/43/21/213001 Thevenet M, 2016, NAT PHYS, V12, P355, DOI 10.1038/NPHYS3597 Thiele I, 2016, J COMPUT PHYS, V321, P1110, DOI 10.1016/j.jcp.2016.06.004 Trier Frederiksen J., 2015, PARTICLE CONTROL PHA Umstadter D, 1996, PHYS REV LETT, V76, P2073, DOI 10.1103/PhysRevLett.76.2073 Vay JL, 2008, PHYS PLASMAS, V15, DOI 10.1063/1.2837054 Vay JL, 2011, J COMPUT PHYS, V230, P5908, DOI 10.1016/j.jcp.2011.04.003 Vincenti H, 2016, COMPUT PHYS COMMUN, V200, P147, DOI 10.1016/j.cpc.2015.11.009 Weber S, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.055004 WEIBEL ES, 1959, PHYS REV LETT, V2, P83, DOI 10.1103/PhysRevLett.2.83 Wilson R, 2016, PHYS PLASMAS, V23, DOI 10.1063/1.4943200 WRIGHT TP, 1975, PHYS REV A, V12, P686, DOI 10.1103/PhysRevA.12.686 Zenitani S, 2015, PHYS PLASMAS, V22, DOI 10.1063/1.4919383 NR 81 TC 70 Z9 71 U1 5 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JAN PY 2018 VL 222 BP 351 EP 373 DI 10.1016/j.cpc.2017.09.024 PG 23 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA FR3MD UT WOS:000418969900027 DA 2021-04-21 ER PT J AU Dercks, D Desai, N Kim, JS Rolbiecki, K Tattersall, J Weber, T AF Dercks, Daniel Desai, Nishita Kim, Jong Soo Rolbiecki, Krzysztof Tattersall, Jamie Weber, Torsten TI CheckMATE 2: From the model to the limit SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Confidence limits; Monte Carlo; Detector simulation; Delphes; LHC; Recasting; Beyond the Standard Model ID TRANSVERSE-MOMENTUM; MEASURING MASSES; MISSING ENERGY; LHC; PHYSICS; SEARCH; SUPERSYMMETRY; ELECTRONS; EVENTS; SQUARK AB We present the latest developments to the CheckMATE program that allows models of new physics to be easily tested against the recent LHC data. To achieve this goal, the core of CheckMATE now contains over 60 LHC analyses of which 12 are from the 13 TeV run. The main new feature is that CheckMATE 2 now integrates the Monte Carlo event generation via MadGraph5_aMC@NLO and Pythia 8. This allows users to go directly from a SLHA file or UFO model to the result of whether a model is allowed or not. In addition, the integration of the event generation leads to a significant increase in the speed of the program. Many other improvements have also been made, including the possibility to now combine signal regions to give a total likelihood for a model. Program summary Program Title: CheckMATE Program Files doi:http://dx.doLorg/10.17632/k4pnk5wrfm.1 Licensing provisions: GPLv3 Programming language: C++, Python External routines/libraries: ROOT, Python, HepMC (optional) Pythia 8 (optional), Madgraph5_aMC@NLO (optional) Subprograms used: Delphes Nature of problem: The LHC experiments have performed a huge number of searches for new physics in the past few years. However the results can only be given for a few benchmark models out of the huge number that exist in the literature. Solution method: CheckMATE is a program that automatically calculates limits for new physics models. The original version required the user to generate Monte Carlo events themselves before CheckMATE could be run but the new version now integrates this step. The simplest output of CheckMATE is whether the model is ruled out at 95% CLs or not. However, more complicated statistical metrics are also available, including the combination of many signal regions. Restrictions: Only a subset of available experimental results have been implemented. Additional comments: CheckMATE is built upon the tools and hard work of many people. If CheckMATE is used in your publication it is extremely important that all of the following citations are included, - Delphes 3 [1]. https://cp3.irmp.ucl.ac.be/projects/delphes - FastJet [2,3]. http://fastjet.fr/ - Anti-k(t) jet algorithm [4]. - CLs prescription [5]. - All experimental analyses that were used to set limits in the study and if the analysis was implemented by non-CheckMATE authors, the relevant implementation reference. - MadGraph5_aMC@NLO [6] if it is used to calculate the hard matrix element from within CheckMATE. https://launchpad.net/mg5amcnlo - Pythia 8.2 [7] if showering or matching is done from within CheckMATE. http://home.thep.lu.se/-torbjorn/Pythia.html - The Monte Carlo event generator that was used if. hepmc or. The files were generated externally. - In analyses that use the m(T2) kinematical discriminant [8,9] we use the mt2_bisect library [10]. We also include the M-T2(bl) and M-T2(W) derivatives [11]. http://particle.physics.ucdavis.edu/hefti/projects/doku.php?id=wimpmass https://sites.google.com/a/ucdavis.edu/mass/ - In analyses that use the M-cr family of kinematical discriminants we use the MctLib library that includes the following variables, Ma [12], M-cr corrected [13], Ma parallel and perpendicular [14]. https://mctlib.hepforge.org/ - In analyses that use topness variable we use the topness library [15]. https://github.com/michaelgraesser/topness - Super-Razor [16] in analyses that use this variable. [1]). de Favereau et al. [DELPHES 3 Collaboration], JHEP 1402 (2014) 057 [arXiv:1307.6346 [hep-ex]]. [2] M. Cacciari, G. P. Salam and G. Soyez, Eur. Phys.). C 72 (2012) 1896 [arXiv:1111.6097 [hep-ph]]. [3] M. Cacciari and G. P. Salam, Phys. Lett. B 641(2006) 57 [hep-ph/0512210]. [4] M. Cacciari, G. P. Salam and G. Soyez, JHEP 0804 (2008) 063 [arXiv:0802.1189 [hep-ph]]. [5] A. L. Read, J. Phys. G 28 (2002) 2693. [6] J. Alwall et al., JHEP 1407 (2014) 079 [arXiv:1405.0301 [hep-ph]]. [7] T. Sjostrand et al., Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012 [hep-ph]]. [8] C. G. Lester and D. J. Summers, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349]. [9] A. Barr, C. Lester and P. Stephens, J. Phys. G 29 (2003) 2343 [hep-ph/0304226]. [10] H. C. Cheng and Z. Han, JHEP 0812 (2008) 063 [arXiv:0810.5178 [hep-ph]]. [11]Y. Bai, H. C. Cheng, J. Gallicchio and). Gu, JHEP 1207 (2012) 110 [arXiv:1203.4813 [hep-ph]]. [12] D. R. Tovey, JHEP 0804 (2008) 034 [arXiv:0802.2879 [hep-ph]]. [13] G. Polesello and D. R. Tovey, JHEP 1003 (2010) 030 [arXiv:0910.0174 [hep-ph]]. [14] K. T. Matchev and M. Park, Phys. Rev. Lett. 107 (2011) 061801 [arXiv:0910.1584 [hep-ph]]. [15] M. L. Graesser and). Shelton, Phys. Rev. Lett. 111 (2013) no.12, 121802 [arXiv:1212.4495 [hep-ph]]. [16] M. R. Buckley, J. D. Lykken, C. Rogan and M. Spiropulu, Phys. Rev. D 89 (2014) no:5, 055020 [arXiv:1310.4827 [hep-ph]]. (C) 2017 Elsevier B.V. All rights reserved. C1 [Dercks, Daniel] Univ Hamburg, Inst Theoret Phys 2, Lumper Chaussee 149, D-22761 Hamburg, Germany. [Dercks, Daniel] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany. [Dercks, Daniel] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany. [Desai, Nishita] Univ Montpellier, CNRS, L2C, UMR 5221, F-34090 Montpellier, France. [Desai, Nishita] Univ Montpellier, CNRS, LUPM, UMR 5299, F-34090 Montpellier, France. [Kim, Jong Soo] Inst for Basic Sci Korea, Ctr Theoret Phys Universe, Daejeon 34051, South Korea. [Kim, Jong Soo] Univ Autonoma Madrid, Inst Fis Teor, Calle Nicolas Cabrera 13-15, E-28049 Madrid, Spain. [Rolbiecki, Krzysztof] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland. [Tattersall, Jamie; Weber, Torsten] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol, D-52056 Aachen, Germany. RP Kim, JS (corresponding author), Inst for Basic Sci Korea, Ctr Theoret Phys Universe, Daejeon 34051, South Korea. EM daniel.dercks@desy.de; nishita.desai@umontpellier.fr; jongsoo.kim@tu-dortmund.de; krzysztof.rolbiecki@fuw.edu.pl; tattersall@physik.rwth-aachen.de; torsten.weber@rwth-aachen.de RI , Krzysztof/R-3697-2019; Kim, Jong Soo/G-6307-2018 OI , Krzysztof/0000-0002-9645-9670; Kim, Jong Soo/0000-0002-1244-4181 FU BMBFFederal Ministry of Education & Research (BMBF) [00160200]; OCEVU Labex [ANR-11-LABX-0060]; A*MIDEX project - French Government programme "Investissements d'Avenir"French National Research Agency (ANR) [ANR-11-IDEX-0001-02]; German Research Foundation (DFG) through the Forschergruppe New Physics at the Large Hadron ColliderGerman Research Foundation (DFG) [FOR 2239]; IBS [IBS-R018-D1]; MINECO, Spain [FPA2013-44773-P]; Consolider-Ingenio CPANSpanish Government [CSD2007-00042]; Spanish MINECO Centro de excelencia Severo Ochoa Program [SEV-2012-0249]; National Science Centre (Poland)National Science Centre, Poland [2015/19/D/ST2/03136]; Collaborative Research Center of the DFG, "Particles, Strings, and the Early Universe" [SFB676] FX The work has been supported by the BMBF grant 00160200. ND acknowledges partial support of the OCEVU Labex (ANR-11-LABX-0060), the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the French Government programme "Investissements d'Avenir" and the German Research Foundation (DFG) through the Forschergruppe New Physics at the Large Hadron Collider (FOR 2239). The work of JSK was supported by IBS under the project code, IBS-R018-D1 and was partially supported by the MINECO, Spain, under contract FPA2013-44773-P; Consolider-Ingenio CPAN CSD2007-00042 and the Spanish MINECO Centro de excelencia Severo Ochoa Program under grant SEV-2012-0249. KR was supported by the National Science Centre (Poland) under Grant 2015/19/D/ST2/03136 and the Collaborative Research Center SFB676 of the DFG, "Particles, Strings, and the Early Universe". CR Aaboud M, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.052009 Aaboud M, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.032005 Aaboud M, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-4184-8 Aaboud M, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2016)059 Aad G, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.191803 Aad G, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-4397-x Aad G, 2016, PHYS REV D, V94, DOI 10.1103/PhysRevD.94.032003 Aad G, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-4095-8 Aad G, 2016, EUR PHYS J C, V76, DOI 10.1140/epjc/s10052-016-4120-y Aad G, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3518-2 Aad G, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2014)118 Aad G, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.012008 Aad G, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2014)176 Aad G, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.052008 Aad G, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2014)035 Aad G, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2014)169 Aad G, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2013)189 AAD G, 2014, J HIGH ENERGY PHYS AAD G, 2014, EUR PHYS J C, V74 AAD G, 2014, J HIGH ENERGY PHYS AAD G, 2015, EUR PHYS J C, V75 Aad G., 2016, J HIGH ENERGY PHYS, V08 Allanach BC, 2009, COMPUT PHYS COMMUN, V180, P8, DOI 10.1016/j.cpc.2008.08.004 Alloul A, 2014, COMPUT PHYS COMMUN, V185, P2250, DOI 10.1016/j.cpc.2014.04.012 Alves D, 2012, J PHYS G NUCL PARTIC, V39, DOI 10.1088/0954-3899/39/10/105005 Alwall J, 2007, COMPUT PHYS COMMUN, V176, P300, DOI 10.1016/j.cpc.2006.11.010 Alwall J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)079 Alwall J, 2009, PHYS REV D, V79, DOI 10.1103/PhysRevD.79.075020 [Anonymous], 2012, ATLASCONF2012147 CER [Anonymous], 2014, ATLPHYSPUB2014010 CE [Anonymous], 2013, ATLPHYSPUB2013009 CE [Anonymous], 2013, ATLASCONF2013061 CER [Anonymous], 2015, ATLASCONF2015082 CER [Anonymous], 2013, ATLASCONF2013049 CER [Anonymous], 2015, CMSPASSUS15011 CERN [Anonymous], 2013, ATLPHYSPUB2013011 CE [Anonymous], 2015, ATLPHYSPUB2015022 CE [Anonymous], 2016, ATLASCONF2016013 CER [Anonymous], 2012, ATLASCONF2012104 CER [Anonymous], 2013, ATLPHYSPUB2013004 CE [Anonymous], 2013, ATLASCONF2013024 CER Arkani-Hamed N., 2007, ARXIVHEPPH0703088 ARNISON G, 1983, PHYS LETT B, V122, P103, DOI 10.1016/0370-2693(83)91177-2 ATLAS Collaboration, 2012, ATLASCONF2012040 CER ATLAS Collaboration, 2012, ATLASCONF2012097 CER ATLAS Collaboration, 2016, ATLASCONF2016076 CER ATLAS Collaboration, 2012, ATLASCONF2012043 CER ATLAS Collaboration, 2016, ATLASCONF2016024 CER Baek S, 2016, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2016)117 Bai Y, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2012)110 Ball RD, 2013, NUCL PHYS B, V867, P244, DOI 10.1016/j.nuclphysb.2012.10.003 BANNER M, 1983, PHYS LETT B, V122, P476, DOI 10.1016/0370-2693(83)91605-2 Barducci D, 2015, COMPUT PHYS COMMUN, V197, P263, DOI 10.1016/j.cpc.2015.08.016 BARGER V, 1987, PHYS REV D, V36, P295, DOI 10.1103/PhysRevD.36.295 Barr A, 2003, J PHYS G NUCL PARTIC, V29, P2343, DOI 10.1088/0954-3899/29/10/304 Barr AJ, 2010, J PHYS G NUCL PARTIC, V37, DOI 10.1088/0954-3899/37/12/123001 Beenakker W, 1998, NUCL PHYS B, V515, P3, DOI 10.1016/S0550-3213(98)00014-5 Beenakker W, 1997, NUCL PHYS B, V492, P51, DOI 10.1016/S0550-3213(97)80027-2 Beenakker W, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.029901 Beenakker W, 1999, PHYS REV LETT, V83, P3780, DOI 10.1103/PhysRevLett.83.3780 Beenakker W, 2011, INT J MOD PHYS A, V26, P2637, DOI 10.1142/S0217751X11053560 Beenakker W, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2010)098 Beenakker W, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/12/041 Belyaev A, 2013, COMPUT PHYS COMMUN, V184, P1729, DOI 10.1016/j.cpc.2013.01.014 Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Buckley A, 2013, COMPUT PHYS COMMUN, V184, P2803, DOI 10.1016/j.cpc.2013.05.021 Buckley MR, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.055020 Butterworth J. M., 2016, ARXIV 1606 05296 Cao JJ, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2015)152 Caron S., 2014, EUR PHYS J C, V77, P257 Chatrchyan S, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.012004 CHATRCHYAN S, 2013, EUR PHYS J C, V73 Chen CH, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.034007 Cheng HC, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/12/063 Christensen ND, 2009, COMPUT PHYS COMMUN, V180, P1614, DOI 10.1016/j.cpc.2009.02.018 Conte E, 2013, COMPUT PHYS COMMUN, V184, P222, DOI 10.1016/j.cpc.2012.09.009 Cranmer K., 2015, P 2011 EUR SCH HIGH, V2015, P267 Cranmer K, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2011)038 de Favereau J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2014)057 Degrande C, 2012, COMPUT PHYS COMMUN, V183, P1201, DOI 10.1016/j.cpc.2012.01.022 Dobbs M, 2001, COMPUT PHYS COMMUN, V134, P41, DOI 10.1016/S0010-4655(00)00189-2 Dowell M., 1972, BIT (Nordisk Tidskrift for Informationsbehandling), V12, P503, DOI 10.1007/BF01932959 Drees M, 2015, COMPUT PHYS COMMUN, V187, P227, DOI 10.1016/j.cpc.2014.10.018 Dumont B, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-014-3242-3 Graesser ML, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.121802 Khachatryan V, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2015)121 Khachatryan V, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2015)124 Khachatryan V, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.052018 Khachatryan V, 2011, PHYS LETT B, V698, P196, DOI 10.1016/j.physletb.2011.03.021 KHACHATRYAN V, 2015, EUR PHYS J C, V75 Kilian W, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1742-y Kim JS, 2015, COMPUT PHYS COMMUN, V196, P535, DOI 10.1016/j.cpc.2015.06.002 Kim JS, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2014)010 Knuteson B., 2006, ARXIVHEPPH0602101 Kraml S., 2014, ARXIV14121745 Kraml S, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-014-2868-5 Kulesza A, 2009, PHYS REV D, V80, DOI 10.1103/PhysRevD.80.095004 Kulesza A, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.111802 Lester CG, 1999, PHYS LETT B, V463, P99, DOI 10.1016/S0370-2693(99)00945-4 LSPC Grenoble, 2014, MIN WORKSH REC ATLAS Matchev KT, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.061801 Moretti M., 2001, ARXIVHEPPH0102195 Olive KA, 2014, CHINESE PHYS C, V38, DOI 10.1088/1674-1137/38/9/090001 Papucci M, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-014-3163-1 Plehn T, 2005, CZECH J PHYS, V55, pB213 Polesello G, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2010)030 Randall L, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.221803 Read AL, 2002, J PHYS G NUCL PARTIC, V28, P2693, DOI 10.1088/0954-3899/28/10/313 Rogan C., 2010, ARXIV10062727 Semenov A, 2016, COMPUT PHYS COMMUN, V201, P167, DOI 10.1016/j.cpc.2016.01.003 Sjostrand T, 2008, COMPUT PHYS COMMUN, V178, P852, DOI 10.1016/j.cpc.2008.01.036 Sjostrand T, 2015, COMPUT PHYS COMMUN, V191, P159, DOI 10.1016/j.cpc.2015.01.024 Skands P, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/07/036 SMITH J, 1983, PHYS REV LETT, V50, P1738, DOI 10.1103/PhysRevLett.50.1738 Spira M., 2002, P SUSY 02 DESY HAMB, P217 Staub F., 2015, ADV HIGH ENERGY PHYS, V2015, DOI [10.1155/2015/840780, DOI 10.1155/2015/840780] Staub F, 2014, COMPUT PHYS COMMUN, V185, P1773, DOI 10.1016/j.cpc.2014.02.018 The ATLAS Collaboration, 2015, ATLASCONF2015004 CER The ATLAS Collaboration, 2013, ATLASCONF2013089 CER The CMS Collaboration, 2013, CMSPASSUS13013 TOVEY DR, 2008, JHEP, V804 van Neerven W., 1982, TECH REP Wilks SS, 1938, ANN MATH STAT, V9, P60, DOI 10.1214/aoms/1177732360 NR 123 TC 84 Z9 86 U1 4 U2 15 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD DEC PY 2017 VL 221 BP 383 EP 418 DI 10.1016/j.cpc.2017.08.021 PG 36 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA FK3HS UT WOS:000413376800030 DA 2021-04-21 ER PT J AU Renard, S Holtz, A Baylard, C Banduch, M AF Renard, Sebastien Holtz, Andreas Baylard, Christophe Banduch, Martin CA W7-X Team TI Software tool solutions for the design of W7-X SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 29th Symposium on Fusion Technology (SOFT) CY SEP 05-09, 2016 CL Prague, CZECH REPUBLIC SP CAS, Inst Plasma Phys, Res Ctr Rez DE W7-X; Digital mockup; SmarTeam; Concurrent engineering; Collision analysis report; PDM AB As an international research facility, the W7-X project hosts many types of components designed not only by the Max Planck Institute for Plasma Physics (IPP) teams, but also by external partners. At IPP the Design Engineering (DE) division is responsible for design and spatial integration of all the components within the Torus Hall. Two software tools, interfacing with Computer Aided Design (CAD) models, have been developed in-house to assist in the design and installation of components of W7-X. The first, the Digital MockUp (DMU) is a full scale 3D graphical representation of W7-X generated by a Python script using CATIA and information from the Product Data Management system (PDM), SmarTeam. The second, the Collision Analysis Report (CAR) is an Excel table listing the critical distances between a selection of components and their surroundings using the DMU and SmarTeam. SmarTeam along with the DMU and the CAR reduces the risk of design iteration, increases the efficiency of the designers and promotes the communication within the project teams. (C) 2017 The Authors. Published by Elsevier B.V. C1 [Renard, Sebastien] CEA IRFM, F-13108 St Paul Les Durance, France. [Holtz, Andreas; Banduch, Martin; W7-X Team] Max Planck Inst Plasma Phys, Teilinst Greifswald, Wendelsteinstr 1, D-17491 Greifswald, Germany. [Baylard, Christophe] ITER Org, Route Vinon Verdon, F-13115 St Paul Les Durance, France. RP Renard, S (corresponding author), CEA IRFM, F-13108 St Paul Les Durance, France. EM Sebastien.renard@ipp.mpg.de FU Euratom research and training programme [633053] FX This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. CR Baylard C, 2009, FUSION ENG DES, V84, P435, DOI 10.1016/j.fusengdes.2008.12.035 Ksiazek I, 2011, NUKLEONIKA, V56, P155 NR 2 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV PY 2017 VL 123 BP 133 EP 136 DI 10.1016/j.fusengdes.2017.04.027 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA FR3UL UT WOS:000418992000026 OA Other Gold DA 2021-04-21 ER PT J AU Huber, V Huber, A Kinna, D Matthews, G Balboa, I Capel, A McCullen, P Mertens, P Sergienko, G Silburn, S Zastrow, KD AF Huber, Valentina Huber, Alexander Kinna, David Matthews, Guy Balboa, Itziar Capel, Adrian McCullen, Paul Mertens, Philippe Sergienko, Gennady Silburn, Scott Zastrow, Klaus-Dieter TI JUVIL: A new innovative software framework for data analysis of JET imaging systems intended for the study of plastha physics and machine operational safety SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 29th Symposium on Fusion Technology (SOFT) CY SEP 05-09, 2016 CL Prague, CZECH REPUBLIC SP CAS, Inst Plasma Phys, Res Ctr Rez DE Imaging diagnostics; JUVIL software; Image processing; Data analysis AB A new powerful software framework JUVIL (JET Users Video Imaging Library) has been developed and successfully installed at JET for fast data visualization and advanced analysis of all types of imaging data. The JUVIL framework is based on modular object -oriented components implemented in Python to simplify work with JET scientific data. It provides standard interfaces to access video data and post-processing, which are highly configurable and can be easily extended and adapted for new data formats and imaging cameras. One of the GUI components is the video player, widely used during the last JET campaign. It displays the video data for NIR/IR/VIS cameras and automatically carries out the post-processing (image rotation, data format conversion, scaling of non-interlaced fields to full frames). (C) 2017 The Authors. Published by Elsevier B.V. C1 [Huber, Valentina] Forschungszentrum Julich, Supercomp Ctr, D-52425 Julich, Germany. [Huber, Alexander; Mertens, Philippe; Sergienko, Gennady] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, Partner Trilateral Euregio Cluster TEC, D-52425 Julich, Germany. [Kinna, David; Matthews, Guy; Balboa, Itziar; Capel, Adrian; McCullen, Paul; Silburn, Scott; Zastrow, Klaus-Dieter] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England. RP Huber, V (corresponding author), Forschungszentrum Julich, Supercomp Ctr, D-52425 Julich, Germany. EM V.Huber@fz-juelich.de RI Huber, Alexander/X-7394-2019; Sergienko, Gennady/W-8597-2019 OI Huber, Alexander/0000-0002-3558-8129; Sergienko, Gennady/0000-0002-1539-4909 FU European Union's Horizon research and innovation program FX This work has been carried out within the framework of the Contract for the Operation of the JET Facilities and has received funding from the European Union's Horizon 2020 research and innovation program. The views and opinions expressed herein do not necessarily reflect those of the European Commission. CR Alvares D., 2012, PHYS REV ST ACCEL BE, V15 Arnoux G, 2012, REV SCI INSTRUM, V83, DOI 10.1063/1.4738742 Arnoux G., E4200707001 IET CDN Balboa I, 2016, REV SCI INSTRUM, V87, DOI 10.1063/1.4960323 Capel A.J., H200505010 JET CDN Devaux S., H201313050 JET CDN Ford O., T1200503003 JET CDN Huber A, 2012, REV SCI INSTRUM, V83, DOI 10.1063/1.4731759 Huber V, 2016, REV SCI INSTRUM, V87, DOI 10.1063/1.4959912 Jouve M., 2011, EFDAJETCP110601 Kinna D., H201010007 JET CDN Kinna D., H201111 JET CDN Martin V., 2011, FUSION ENG DES, V86 NR 13 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV PY 2017 VL 123 BP 979 EP 985 DI 10.1016/j.fusengdes.2017.03.005 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA FR3UL UT WOS:000418992000206 OA Green Published, Other Gold DA 2021-04-21 ER PT J AU Schillaci, MJ AF Schillaci, Michael Jay TI Perfectly Python SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article AB As some of my own research is in classical and post-Newtonian theories of gravity, I found the text's treatment of orbital motion to be of particular interest. The author does a wonderful job of presenting the basic physics and then discussing the importance of units and scales before introducing the Runge-Lenz vector. C1 [Schillaci, Michael Jay] Harris Corp, Geospatial Syst Div, Melbourne, FL 32919 USA. RP Schillaci, MJ (corresponding author), Harris Corp, Geospatial Syst Div, Melbourne, FL 32919 USA. EM Michael.Schillaci98@gmail.com NR 0 TC 0 Z9 0 U1 0 U2 3 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD NOV-DEC PY 2017 VL 19 IS 6 BP 51 EP 53 PG 3 WC Computer Science, Interdisciplinary Applications SC Computer Science GA FL7AU UT WOS:000414398800008 DA 2021-04-21 ER PT J AU Chekanov, SV Pogrebnyak, I Wilbern, D AF Chekanov, S. V. Pogrebnyak, I. Wilbern, D. TI Cross-platform validation and analysis environment for particle physics SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Monte Carlo; Format; IO; Analysis software AB A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for online validation of Monte Carlo event samples through a web interface. Published by Elsevier B.V. C1 [Chekanov, S. V.; Pogrebnyak, I.] Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Pogrebnyak, I.] Michigan State Univ, Dept Phys & Astron, 567 Wilson Rd, E Lansing, MI 48824 USA. [Wilbern, D.] Northern Michigan Univ, 1401 Presque Isle Ave, Marquette, MI 49855 USA. RP Chekanov, SV (corresponding author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chekanov@anl.gov; ivanp@msu.edu; dwilbern@nmu.edu OI Chekanov, Sergei/0000-0001-7314-7247 FU National Science FoundationNational Science Foundation (NSF); U.S. Department of Energy's Office of ScienceUnited States Department of Energy (DOE); U.S. Department of Energy, Office of ScienceUnited States Department of Energy (DOE) [DE-AC02-06CH11357] FX This research was performed using resources provided by the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy's Office of Science. We gratefully acknowledge the computing resources provided on Blues, a highperformance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science under contract DE-AC02-06CH11357. CR [Anonymous], 2015, JAVA ANAL STUDIO PAR AURENHAMMER F, 1991, ACM COMPUT SURV, V23, P345, DOI DOI 10.1145/116873.116880 Butterworth JM, 2003, COMPUT PHYS COMMUN, V153, P85, DOI 10.1016/S0010-4655(03)00156-5 Cacciari M, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/04/063 Cacciari M, 2006, PHYS LETT B, V641, P57, DOI 10.1016/j.physletb.2006.08.037 Cacciari M, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1896-2 Chekanov SV, 2015, ADV HIGH ENERGY PHYS, V2015, DOI 10.1155/2015/136093 Chekanov S. V., 2016, NUMERIC COMPUTATION Chekanov S. V., 2013, COMPUT PHYS COMMUN, V185, P2629 Chekanov S. V., SNOWM 2013 EL P ECON DMelt, 2015, COMP VIS ENV Gaede F., 2003, CHEP03, P5 Graf NA, 2012, IEEE NUCL SCI CONF R, P1016 Salam G. P., 2006, LPTHE0602 NR 14 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV PY 2017 VL 220 BP 91 EP 96 DI 10.1016/j.cpc.2017.06.017 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA FI8KU UT WOS:000412252300008 DA 2021-04-21 ER PT J AU Sibalic, N Pritchard, JD Adams, CS Weatherill, KJ AF Sibalic, N. Pritchard, J. D. Adams, C. S. Weatherill, K. J. TI ARC: An open-source library for calculating properties of alkali Rydberg atoms SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Alkali atom; Matrix elements; Dipole-dipole interactions; Stark shift; Forster resonances ID QUANTUM DEFECTS; METAL ATOMS; DISPERSION COEFFICIENTS; WALL INTERACTION; RB VAPOR; STATES; CESIUM; NP; NS; POLARIZABILITIES AB We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program summary Program Title: ARC: Alkali Rydberg Calculator Program Files doi: http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrodinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and bench marking runs (.html and.ipynb). [1] T.E. Oliphant, Comput. Sci. Eng. 9, 10 (2007). http://www.scipy.org/. [2] J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007). http://matplotlib.org/. (C) 2017 The Author(s). Published by Elsevier B.V. C1 [Sibalic, N.; Adams, C. S.; Weatherill, K. J.] Univ Durham, Dept Phys, Joint Quantum Ctr JQC Durham Newcastle, South Rd, Durham DH1 3LE, England. [Pritchard, J. D.] Univ Strathclyde, Dept Phys, SUPA, 107 Rottenrow East, Glasgow G4 0NG, Lanark, Scotland. RP Sibalic, N (corresponding author), Univ Durham, Dept Phys, Joint Quantum Ctr JQC Durham Newcastle, South Rd, Durham DH1 3LE, England. EM nikolasibalic@physics.org RI Pritchard, Jonathan/AAB-3387-2020; Sibalic, Nikola/B-7622-2016; Pritchard, Jonathan D/G-4339-2012; Adams, Charles S/C-8808-2015; Weatherill, Kevin/A-6226-2012 OI Pritchard, Jonathan/0000-0003-2172-7340; Sibalic, Nikola/0000-0001-9198-1630; Pritchard, Jonathan D/0000-0003-2172-7340; Adams, Charles S/0000-0001-5602-2741; Weatherill, Kevin/0000-0002-6577-116X FU Durham University; EPSRCUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/N003527/1, EP/M013103/1]; FET-PROACT project "RySQ" [H2020-FETPROACT-2014-640378-RYSQ]; EPSRC grant "Rydberg soft matter" [EP/M014398/1]; DSTL; Engineering and Physical Sciences Research CouncilUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/N003527/1, EP/M014398/1, EP/M013103/1] Funding Source: researchfish FX We thank D. Whiting, J. Keaveney, H. Busche, P. Huillery, T. Billam, C. Nicholas, I. Hughes, R. Potvliege and M. Jones for stimulating discussions. This work is supported by Durham University, EPSRC grant EP/N003527/1, FET-PROACT project "RySQ" (H2020-FETPROACT-2014-640378-RYSQ), EPSRC grant "Rydberg soft matter" (EP/M014398/1), DSTL and EPSRC grant EP/M013103/1. Data for the presented examples can be generated by the 'Python note-book available in Supplementary material [20]. In the final stages of this project we have been informed by Sebastian Weber about a related efforts on C++ program for pair-state calculations [62]. CR Afrousheh K, 2006, PHYS REV A, V74, DOI 10.1103/PhysRevA.74.062712 Akulshin A, 2014, OPT LETT, V39, P845, DOI 10.1364/OL.39.000845 Akulshin AM, 2009, OPT EXPRESS, V17, P22861, DOI 10.1364/OE.17.022861 Ates C, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.213003 Ates C, 2007, PHYS REV A, V76, DOI 10.1103/PhysRevA.76.013413 Beterov II, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.042710 Beterov II, 2009, PHYS REV A, V79, DOI 10.1103/PhysRevA.79.052504 BHATTI SA, 1981, PHYS REV A, V24, P161, DOI 10.1103/PhysRevA.24.161 Bloch D, 2005, ADV ATOM MOL OPT PHY, V50, P91, DOI 10.1016/S1049-250X(04)50003-4 Condon E.U., 1970, THEORY ATOMIC SPECTR Courtade E, 2004, J PHYS B-AT MOL OPT, V37, P967, DOI 10.1088/0953-4075/37/5/002 Deiglmayr J, 2016, PHYS REV A, V93, DOI 10.1103/PhysRevA.93.013424 Deiglmayr J, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.193001 Derevianko A, 1999, PHYS REV LETT, V82, P3589, DOI 10.1103/PhysRevLett.82.3589 Firstenberg O, 2016, J PHYS B-AT MOL OPT, V49, DOI 10.1088/0953-4075/49/15/152003 Gaj A, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5546 GALLAGHER TF, 1982, PHYS REV A, V25, P1905, DOI 10.1103/PhysRevA.25.1905 Goldschmidt EA, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.032518 GOY P, 1986, PHYS REV A, V34, P2889, DOI 10.1103/PhysRevA.34.2889 GOY P, 1982, PHYS REV A, V26, P2733, DOI 10.1103/PhysRevA.26.2733 Han JN, 2006, PHYS REV A, V74, DOI 10.1103/PhysRevA.74.054502 Hoening M, 2014, PHYS REV A, V90, DOI 10.1103/PhysRevA.90.021603 Javanainen J., COMPUT PHYS COMM Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Kiffner M., 2015, J PHYS B ATOM MOL PH, V49 Kondo JM, 2015, OPT LETT, V40, P5570, DOI 10.1364/OL.40.005570 Lee HG, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.053427 Lesanovsky I, 2014, PHYS REV A, V90, DOI 10.1103/PhysRevA.90.011603 Li WH, 2003, PHYS REV A, V67, DOI 10.1103/PhysRevA.67.052502 LORENZEN CJ, 1983, PHYS SCRIPTA, V27, P300, DOI 10.1088/0031-8949/27/4/012 Maas DJ, 1999, PHYS REV A, V59, P1374, DOI 10.1103/PhysRevA.59.1374 Mack M, 2011, PHYS REV A, V83, DOI 10.1103/PhysRevA.83.052515 MARINESCU M, 1994, PHYS REV A, V49, P982, DOI 10.1103/PhysRevA.49.982 Moon HS, 2007, J OPT SOC AM B, V24, P2157, DOI 10.1364/JOSAB.24.002157 Murray C, 2016, ADV ATOM MOL OPT PHY, V65, P321, DOI 10.1016/bs.aamop.2016.04.005 Noumerov BV, 1923, MON NOT R ASTRON SOC, V84, P0592 Numerov B V, 1927, ASTRON NACHR, V230, P359, DOI DOI 10.1002/ASNA.19272301903 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Paredes-Barato D, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.040501 Pritchard JD, 2013, ANN REV COLD ATOMS, V1, P301 Ravets S, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.020701 Roy R. J. L., 1974, CAN J PHYS, V52, P246 Ryabtsev II, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.073003 Saffman M, 2016, J PHYS B-AT MOL OPT, V49, DOI 10.1088/0953-4075/49/20/202001 Safronova MS, 2004, PHYS REV A, V69, DOI 10.1103/PhysRevA.69.022509 Safronova MS, 1999, PHYS REV A, V60, P4476, DOI 10.1103/PhysRevA.60.4476 Schauss P, 2015, SCIENCE, V347, P1455, DOI 10.1126/science.1258351 Sedlacek JA, 2012, NAT PHYS, V8, P819, DOI [10.1038/NPHYS2423, 10.1038/nphys2423] Sevincli S, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/12/123036 Sibalic N, 2016, PHYS REV A, V94, DOI 10.1103/PhysRevA.94.033840 Sibalic N, 2016, PHYS REV A, V94, DOI 10.1103/PhysRevA.94.011401 Sibalii N., 2016, INTRO RYDBERG ATOMS Simons M. T., 2016, P SOC PHOTO-OPT INS, V9747, P1 Singer K, 2005, J PHYS B-AT MOL OPT, V38, pS295, DOI 10.1088/0953-4075/38/2/021 Sobelman II, 1979, ATOMIC SPECTRA RAD T Sulham CV, 2010, APPL PHYS B-LASERS O, V101, P57, DOI 10.1007/s00340-010-4015-9 Tanasittikosol M, 2011, J PHYS B-AT MOL OPT, V44, DOI 10.1088/0953-4075/44/18/184020 THEODOSIOU CE, 1984, PHYS REV A, V30, P2881, DOI 10.1103/PhysRevA.30.2881 Urvoy A, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.203002 van Bijnen RMW, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.243002 Vogt T, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.083003 Wade CG, 2017, NAT PHOTONICS, V11, P40, DOI [10.1038/NPHOTON.2016.214, 10.1038/nphoton.2016.214] WEBER KH, 1987, PHYS REV A, V35, P4650, DOI 10.1103/PhysRevA.35.4650 Weber S, 2017, J PHYS B-AT MOL OPT, V50, DOI 10.1088/1361-6455/aa743a Whaley R. C., 1998, P 1998 ACM IEEE C SU, P38, DOI [DOI 10.1109/SC.1998.10004, 10.1109/SC.1998.10004] Zentile MA, 2015, COMPUT PHYS COMMUN, V189, P162, DOI 10.1016/j.cpc.2014.11.023 ZIMMERMAN ML, 1979, PHYS REV A, V20, P2251, DOI 10.1103/PhysRevA.20.2251 NR 67 TC 57 Z9 60 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV PY 2017 VL 220 BP 319 EP 331 DI 10.1016/j.cpc.2017.06.015 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA FI8KU UT WOS:000412252300027 OA Green Accepted, Other Gold DA 2021-04-21 ER PT J AU Trassinelli, M AF Trassinelli, Martino TI Bayesian data analysis tools for atomic physics SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 18th International Conference on the Physics of Highly Charged Ions (HCI) CY SEP 11-16, 2016 CL Jan Kochanowski Univ, Kielce, POLAND SP Int Union Pure & Appl Phys, Dreebit, SPECS HO Jan Kochanowski Univ DE Bayesian data analysis; Atomic physics; Nested sampling; Model testing ID INFERENCE; EFFICIENT; SPECTROSCOPY AB We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics. Starting from basic rules of probability, we present the Bayes' theorem and its applications. In particular we discuss about how to calculate simple and joint probability distributions and the Bayesian evidence, a model dependent quantity that allows to assign probabilities to different hypotheses from the analysis of a same data set. To give some practical examples, these methods are applied to two concrete cases. In the first example, the presence or not of a satellite line in an atomic spectrum is investigated. In the second example, we determine the most probable model among a set of possible profiles from the analysis of a statistically poor spectrum. We show also how to calculate the probability distribution of the main spectral component without having to determine uniquely the spectrum modeling. For these two studies, we implement the program Nested_fit to calculate the different probability distributions and other related quantities. Nested_fit is a Fortran90/Python code developed during the last years for analysis of atomic spectra. As indicated by the name, it is based on the nested algorithm, which is presented in details together with the program itself. (C) 2017 Elsevier B.V. All rights reserved. C1 [Trassinelli, Martino] UPMC Univ Paris 06, Sorbonne Univ, CNRS, Inst NanoSci Paris, F-75005 Paris, France. RP Trassinelli, M (corresponding author), UPMC Univ Paris 06, Sorbonne Univ, CNRS, Inst NanoSci Paris, F-75005 Paris, France. EM trassinelli@insp.jussieu.fr RI Trassinelli, Martino/M-5326-2016 OI Trassinelli, Martino/0000-0003-4414-1801 CR Abbott BP, 2016, PHYS REV LETT, V116, DOI 10.1103/PhysRevLett.116.241103 Abbott B.P., 2016, PHYS REV LETT, V116 AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705 BAKER S, 1984, NUCL INSTRUM METH A, V221, P437, DOI 10.1016/0167-5087(84)90016-4 BALLENTINE LE, 1986, AM J PHYS, V54, P883, DOI 10.1119/1.14783 Barradas NP, 1999, THIN SOLID FILMS, V343, P31, DOI 10.1016/S0040-6090(98)01681-2 Bayes T., 1763, PHIL T ROY SOC LOND, V53, P370, DOI DOI 10.1098/RSTL.1763.0053 Bevington PR., 2003, DATA REDUCTION ERROR Buchner J, 2016, STAT COMPUT, V26, P383, DOI 10.1007/s11222-014-9512-y Calonico D, 2009, METROLOGIA, V46, P267, DOI 10.1088/0026-1394/46/3/014 Chopin N, 2010, BIOMETRIKA, V97, P741, DOI 10.1093/biomet/asq021 Cox R.T., 1961, ALGEBRA PROBABLE INF COX RT, 1946, AM J PHYS, V14, P1, DOI 10.1119/1.1990764 Feroz F, 2008, MON NOT R ASTRON SOC, V384, P449, DOI 10.1111/j.1365-2966.2007.12353.x Feroz F, 2009, MON NOT R ASTRON SOC, V398, P1601, DOI 10.1111/j.1365-2966.2009.14548.x Feroz F, 2013, AIP CONF PROC, V1553, P106, DOI 10.1063/1.4819989 Gordon C, 2007, MON NOT R ASTRON SOC, V382, P1859, DOI 10.1111/j.1365-2966.2007.12707.x JAMES F, 1975, COMPUT PHYS COMMUN, V10, P343, DOI 10.1016/0010-4655(75)90039-9 Jaynes Edwin T, 2003, PROBABILITY THEORY L Jeffreys H., 1961, THEORY PROBABILITY Kalambet Y, 2011, J CHEMOMETR, V25, P352, DOI 10.1002/cem.1343 KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572 KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694 Laplace P-S, 1825, ESSAI PHILOS PROBABI Lewis A, 2002, PHYS REV D, V66, DOI 10.1103/PhysRevD.66.103511 MASSEY FJ, 1951, J AM STAT ASSOC, V46, P68, DOI 10.2307/2280095 Mooser A, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.140405 Mukherjee P, 2006, ASTROPHYS J, V638, pL51, DOI 10.1086/501068 Neyman J, 1933, PHILOS T R SOC LOND, V231, P289, DOI 10.1098/rsta.1933.0009 Patrignani C, 2016, CHINESE PHYS C, V40, DOI 10.1088/1674-1137/40/10/100001 Robert Christian P., 2013, MONTE CARLO STAT MET, DOI 10.1007/978-1-4757-4145-2 SHANNON CE, 1948, BELL SYST TECH J, V27, P623, DOI 10.1002/j.1538-7305.1948.tb00917.x Sivia D.S., 2006, DATA ANAL BAYESIAN T SIVIA DS, 1992, J CHEM PHYS, V96, P170, DOI 10.1063/1.462505 Skilling J, 2004, AIP CONF PROC, V735, P395 Skilling J, 2006, BAYESIAN ANAL, V1, P833, DOI 10.1214/06-BA127 Skilling J, 2012, AIP CONF PROC, V1443, P145, DOI 10.1063/1.3703630 Skilling J, 2009, AIP CONF PROC, V1193, P277, DOI 10.1063/1.3275625 Spiegelhalter DJ, 2014, J R STAT SOC B, V76, P485, DOI 10.1111/rssb.12062 Spiegelhalter DJ, 2002, J R STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353 Stockton JK, 2007, PHYS REV A, V76, DOI 10.1103/PhysRevA.76.033613 Theisen M., 2013, ANAL LINIENFORM RONT Trassinelli M, 2016, EPJ WEB CONF, V130, DOI 10.1051/epjconf/201613001022 Trassinelli M, 2016, PHYS LETT B, V759, P583, DOI 10.1016/j.physletb.2016.06.025 Trassinelli M, 2009, EPL-EUROPHYS LETT, V87, DOI 10.1209/0295-5075/87/63001 Trotta R, 2008, CONTEMP PHYS, V49, P71, DOI 10.1080/00107510802066753 Veitch J, 2010, PHYS REV D, V81, DOI 10.1103/PhysRevD.81.062003 Wiebe N, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.010503 Yates F., 1934, JR STATIST SOC S, V1, P217, DOI DOI 10.2307/2983604 NR 49 TC 7 Z9 7 U1 0 U2 12 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD OCT 1 PY 2017 VL 408 BP 301 EP 312 DI 10.1016/j.nimb.2017.05.030 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA FI2MQ UT WOS:000411773400067 DA 2021-04-21 ER PT J AU Kelly, DJ Kelly, AE Aviles, BN Godfrey, AT Salko, RK Collins, BS AF Kelly, Daniel J., III Kelly, Ann E. Aviles, Brian N. Godfrey, Andrew T. Salko, Robert K. Collins, Benjamin S. TI MC21/CTF and VERA multiphysics solutions to VERA core physics benchmark progression problems 6 and 7 SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article; Proceedings Paper CT International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C) CY APR 16-20, 2017 CL SOUTH KOREA DE CTF; MC21; MPACT; Multiphysics; VERA AB The continuous energy Monte Carlo neutron transport code, MC21, was coupled to the CTF subchannel thermal-hydraulics code using a combination of Consortium for Advanced Simulation of Light Water Reactors (CASL) tools and in-house Python scripts. An MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 6 demonstrated good agreement with MC21/COBRA-IE and VERA solutions. The MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 7, Watts Bar Unit 1 at beginning of cycle hot full power equilibrium xenon conditions, is the first published coupled Monte Carlo neutronics/subchannel T-H solution for this problem. MC21/CTF predicted a critical boron concentration of 854.5 ppm, yielding a critical eigenvalue of 0.99994 +/- 6.8E-6 (95% confidence interval). Excellent agreement with a VERA solution of Problem 7 was also demonstrated for integral and local power and temperature parameters. (C) 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license. C1 [Kelly, Daniel J., III; Kelly, Ann E.; Aviles, Brian N.] Bechtel Marine Prop Corp, POB 1072, Schenectady, NY 12301 USA. [Godfrey, Andrew T.; Salko, Robert K.; Collins, Benjamin S.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. RP Kelly, DJ (corresponding author), Bechtel Marine Prop Corp, POB 1072, Schenectady, NY 12301 USA. EM daniel.kelly@unnpp.gov FU DOEUnited States Department of Energy (DOE); Office of Science of the U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC05-00OR22725]; Office of Nuclear Energy of the US Department of Energy and the Nuclear Science User Facility [DE-AC07-05ID14517] FX The Naval Nuclear Laboratory authors would like to thank the MC21 and PUMA development teams for their support during this research. Work for the Oak Ridge National Laboratory authors was funded by the DOE-sponsored "Consortium for Advanced Simulation of Light Water Reactors" (CASL) project, and ORNL research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. CASL research made use of the resources of the High Performance Computing Center at Idaho National Laboratory, which is supported by the Office of Nuclear Energy of the US Department of Energy and the Nuclear Science User Facility under Contract No. DE-AC07-05ID14517. CR AUMILLER D. L., 2015, P NURETH 16 CHIC ILL Aviles B.N., 2017, PROGR NUCL ENERGY Bennett A, 2016, ANN NUCL ENERGY, V96, P1, DOI 10.1016/j.anucene.2016.05.008 Daeubler M, 2015, ANN NUCL ENERGY, V83, P352, DOI 10.1016/j.anucene.2015.03.040 Ellis M, 2017, NUCL SCI ENG, V185, P184, DOI 10.13182/NSE16-26 Gill DF, 2017, NUCL SCI ENG, V185, P194, DOI 10.13182/NSE16-3 GLEASON J., 2008, ANS2008 GODFREY A.T., 2014, CASLU20120131004 Griesheimer DP, 2015, ANN NUCL ENERGY, V82, P29, DOI 10.1016/j.anucene.2014.08.020 Guilliard N., 2016, P PHYSOR 2016 SUN VA Ivanov A, 2015, ANN NUCL ENERGY, V84, P204, DOI 10.1016/j.anucene.2014.12.030 Kelly D. J., 2010, P PHYSOR 2010 PITTSB Kelly III D.J., 2014, P PHYSOR 2014 KYOT J Kochunas B., 2015, CASLU20150155000 Kotlyar D, 2016, ANN NUCL ENERGY, V96, P61, DOI 10.1016/j.anucene.2016.05.032 Lee H., 2017, P M C 2017 JEJ REP K Lemaire M., 2017, P M C JEJ REP KOR AP Leppanen J, 2015, ANN NUCL ENERGY, V84, P55, DOI 10.1016/j.anucene.2014.10.014 Liu S., 2017, P M C JEJ REP KOR AP Palmtag S, 2014, CASLU20140014002 Pecchia M, 2015, ANN NUCL ENERGY, V85, P271, DOI 10.1016/j.anucene.2015.05.023 Salko R., 2014, CASLU20140188000 Salko R., 2014, CTF THEORY MANUAL Sieger M., 2015, CASLU20150042000 NR 24 TC 7 Z9 7 U1 0 U2 0 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD SEP PY 2017 VL 49 IS 6 SI SI BP 1326 EP 1338 DI 10.1016/j.net.2017.07.016 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA FL4TY UT WOS:000414225600024 OA DOAJ Gold DA 2021-04-21 ER PT J AU Schmieschek, S Shamardin, L Frijters, S Kruger, T Schiller, UD Harting, J Coveney, PV AF Schmieschek, S. Shamardin, L. Frijters, S. Kruger, T. Schiller, U. D. Harting, J. Coveney, P. V. TI LB3D: A parallel implementation of the Lattice-Boltzmann method for simulation of interacting amphiphilic fluids SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Lattice-Boltzmann method; High performance computing; Multiphase flow; LBM; LB3D ID BOUNDARY-CONDITIONS; MODEL; FLOW; EQUATION; SCIENCE; ARRAY; CODE AB We introduce the lattice-Boltzmann code LB3D, version 7.1. Building on a parallel program and supporting tools which have enabled research utilising high performance computing resources for nearly two decades, LB3D version 7 provides a subset of the research code functionality as an open source project. Here, we describe the theoretical basis of the algorithm as well as computational aspects of the implementation. The software package is validated against simulations of meso-phases resulting from self-assembly in ternary fluid mixtures comprising immiscible and amphiphilic components such as water-oil-surfactant systems. The impact of the surfactant species on the dynamics of spinodal decomposition are tested and quantitative measurement of the permeability of a body centred cubic (BCC) model porous medium for a simple binary mixture is described. Single-core performance and scaling behaviour of the code are reported for simulations on current supercomputer architectures. Program summary Program Title: LB3D Program Files doi: http://dx.doi.org/10.17632/9g9x2wr8z8.1 Licensing provisions: BSD 3-clause Programming language: FORTRAN90, Python, C Nature of problem: Solution of the hydrodynamics of single phase, binary immiscible and ternary amphiphilic fluids. Simulation of fluid mixtures comprising miscible and immiscible fluid components as well as amphiphilic species on the mesoscopic scale. Observable phenomena include self-organisation of mesoscopic complex fluid phases and fluid transport in porous media. Solution method: Lattice-Boltzmann (lattice-Bhatnagar-Gross-Krook, LBGK) [1, 2, 3] method describing fluid dynamics in terms of the single particle velocity distribution function in a 3-dimensional discrete phase space (D3Q19) [4, 5, 6]. Multiphase interactions are modelled using a phenomenological pseudo potential approach [7, 8] with amphiphilic interactions utilising an additional dipole field [9, 10]. Solid boundaries are modelled using simple bounce-back boundary conditions and additional pseudo-potential wetting interactions [11]. Additional comments including Restrictions and Unusual features: The purpose of the release is the provision of a refactored minimal version of LB3D suitable as a starting point for the integration of additional features building on the parallel computation and 10 functionality. [1] S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford University Press, 2001. [2] B. Dunweg, A. Ladd, Lattice Boltzmann simulations of soft matter systems, Adv. Poly. Sci. 221 (2009) 89-166 [3] C. K. Aidun, J. R. Clausen, Lattice-Boltzmann Method for Complex Flows, Annual Review of Fluid Mechanics 42 (2010) 439. [4] X. He, L.-S. Luo, A priori derivation of the lattice-Boltzmann equation, Phys. Rev. E 55 (1997) R6333. [5] X. He, L-S. Luo, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E 56. [6] Y. H. Qian, D. D'Humieres, P. Lallemand, Lattice BGK Models for Navier Stokes Equation, Euro-physics Letters 17 (1992) 479. [7] X. Shan, H. Chen, Lattice-Boltzmann model for simulating flows with multiple phases and components, Physical Review E 47 (1993) 1815. [8] X. Shan, G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, Journal of Statistical Physics 81 (1995) 379. [9] H. Chen, B. Boghosian, P.V. Coveney, M. Nekovee, A ternary lattice-Boltzmann model for amphiphilic fluids, Proceedings of the Royal Society of London A 456 (2000) 2043. [10] M. Nekovee, P. V. Coveney, H. Chen, B. M. Boghosian, Lattice-Boltzmann model for interacting amphiphilic fluids, Phys. Rev. E 62 (2000) 8282. [11] N. S. Marlys, H. Chen, Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice-Boltzmann method, Phys. Rev. E 53 (1996) 743. (C) 2017 The Authors. Published by Elsevier B.V. C1 [Schmieschek, S.; Shamardin, L.; Kruger, T.; Schiller, U. D.; Coveney, P. V.] UCL, Dept Chem, Ctr Computat Sci, 20 Gordon St, London WC1H 0AJ, England. [Shamardin, L.] Google UK Ltd, 6 Pancras Sq, London N1C 4AG, England. [Frijters, S.; Harting, J.] Eindhoven Univ Technol, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands. [Kruger, T.] Univ Edinburgh, Sch Engn, Kings Bldg,Mayfield Rd, Edinburgh EH9 3JL, Midlothian, Scotland. [Schiller, U. D.] Clemson Univ, Dept Mat Sci & Engn, 161 Sirrine Hall, Clemson, SC 29634 USA. [Harting, J.] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg Renewable Energy, Further Str 248, D-90429 Nurnberg, Germany. RP Coveney, PV (corresponding author), UCL, Dept Chem, Ctr Computat Sci, 20 Gordon St, London WC1H 0AJ, England. EM p.v.coveney@ucl.ac.uk RI Harting, Jens/B-4884-2008; Schiller, Ulf D./A-2067-2015; Kruger, Timm/N-1745-2014 OI Harting, Jens/0000-0002-9200-6623; Schiller, Ulf D./0000-0001-8941-1284; Kruger, Timm/0000-0003-2934-2699; Shamardin, Lev/0000-0002-4392-6626 FU UK Consortium on Mesoscale Engineering Sciences (UKCOMES) under EPSRC [EP/L00030X/1]; EU H ComPat project [223979]; Fujitsu Laboratories Europe; Engineering and Physical Sciences Research CouncilUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/L00030X/1] Funding Source: researchfish FX Support from Fujitsu Laboratories Europe, from the UK Consortium on Mesoscale Engineering Sciences (UKCOMES) under EPSRC Grant No. EP/L00030X/1 and the EU H2020 ComPat project No. 223979 is acknowledged. Our work also made use of the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). CR Aidun CK, 2010, ANNU REV FLUID MECH, V42, P439, DOI 10.1146/annurev-fluid-121108-145519 BHATNAGAR PL, 1954, PHYS REV, V94, P511, DOI 10.1103/PhysRev.94.511 Blake R. J., 2005, Scientific Programming, V13, P1 Boghosian BM, 2000, P ROY SOC A-MATH PHY, V456, P1431, DOI 10.1098/rspa.2000.0570 Breitmoser E., LB3D USER MANUAL CAHN JW, 1962, ACTA METALL MATER, V10, P179, DOI 10.1016/0001-6160(62)90114-1 CAHN JW, 1961, ACTA METALL MATER, V9, P795, DOI 10.1016/0001-6160(61)90182-1 CHEKHLOV A, 1995, PHYS REV E, V51, pR2739, DOI 10.1103/PhysRevE.51.R2739 Chen HD, 2000, P ROY SOC A-MATH PHY, V456, P2043, DOI 10.1098/rspa.2000.0601 Chin J, 2003, CONTEMP PHYS, V44, P417, DOI 10.1080/00107510310001605046 Chin J, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.016303 CHIN J, 2004, P UK E SCI ALL HANDS Chin J, 2006, P ROY SOC A-MATH PHY, V462, P3575, DOI 10.1098/rspa.2006.1741 Chun B, 2007, PHYS REV E, V75, DOI 10.1103/PhysRevE.75.066705 CORNUBERT R, 1991, PHYSICA D, V47, P241, DOI 10.1016/0167-2789(91)90295-K Coveney PV, 2010, ABSTR PAP AM CHEM S, V239 DEGENNES PG, 1980, J CHEM PHYS, V72, P4756, DOI 10.1063/1.439809 Desplat JC, 2001, COMPUT PHYS COMMUN, V134, P273, DOI 10.1016/S0010-4655(00)00205-8 Dunweg B, 2009, ADV POLYM SCI, V221, P89, DOI 10.1007/12_2008_4 Folk M., 2011, P EDBT ICDT 2011 WOR, P36, DOI DOI 10.1145/1966895.1966900 Ginzburg I, 2003, PHYS REV E, V68, DOI 10.1103/PhysRevE.68.066614 Giupponi G, 2006, MATH COMPUT SIMULAT, V72, P124, DOI 10.1016/j.matcom.2006.05.035 Gonzalez-Segredo N, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.031503 Gonzalez-Segredo N, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.061501 Gonzalez-Segredo N, 2003, PHYS REV E, V67, DOI 10.1103/PhysRevE.67.046304 Gonzalez-Segredo N., 2004, PHYS REV E, V6, P9 Gonzalez-Segredo N., 2004, EPL-EUROPHYS LETT, V6, P5 Groen D., 2011, JUL BLUE GEN P EXTR Guo ZL, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.046308 Harting J, 2005, PHILOS T R SOC A, V363, P1895, DOI 10.1098/rsta.2005.1618 Harting J, 2005, COMPUT PHYS COMMUN, V165, P97, DOI 10.1016/j.cpc.2004.10.001 Harting J, 2004, PHILOS T R SOC A, V362, P1703, DOI 10.1098/rsta.2004.1402 Harting J, 2007, PHYS REV E, V75, DOI 10.1103/PhysRevE.75.041504 Harting J, 2008, HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '07, P457, DOI 10.1007/978-3-540-74739-0_31 HASIMOTO H, 1959, J FLUID MECH, V5, P317, DOI 10.1017/S0022112059000222 HDF Group, 2010, HIER DAT FORM VERS 5 He XY, 1998, PHYS REV E, V57, pR13, DOI 10.1103/PhysRevE.57.R13 He XY, 1997, PHYS REV E, V56, P6811, DOI 10.1103/PhysRevE.56.6811 He XY, 1997, PHYS REV E, V55, pR6333, DOI 10.1103/PhysRevE.55.R6333 He XY, 1997, J STAT PHYS, V87, P115, DOI 10.1007/BF02181482 Hecht M., 2010, J STAT MECH-THEORY E, V13, P1 Kutay ME, 2006, COMPUT GEOTECH, V33, P381, DOI 10.1016/j.compgeo.2006.08.002 Ladd AJC, 2001, J STAT PHYS, V104, P1191, DOI 10.1023/A:1010414013942 LAVALLEE P, 1991, PHYSICA D, V47, P233, DOI 10.1016/0167-2789(91)90294-J Love PJ, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.061302 Martys NS, 1996, PHYS REV E, V53, P743, DOI 10.1103/PhysRevE.53.743 Mattila K, 2009, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2009/06/P06015 Mazzeo MD, 2008, COMPUT PHYS COMMUN, V178, P894, DOI 10.1016/j.cpc.2008.02.013 Nekovee M, 2000, PHYS REV E, V62, P8282, DOI 10.1103/PhysRevE.62.8282 Pickles S. M., P WORKSH CAS STUD GR, V10 QIAN YH, 1992, EUROPHYS LETT, V17, P479, DOI 10.1209/0295-5075/17/6/001 Saksena RS, 2008, J PHYS CHEM B, V112, P2950, DOI 10.1021/jp0731506 Saksena RS, 2009, SOFT MATTER, V5, P4446, DOI 10.1039/b911884e Saksena RS, 2009, P ROY SOC A-MATH PHY, V465, P1977, DOI 10.1098/rspa.2008.0479 Saksena RS, 2009, PHILOS T R SOC A, V367, P2557, DOI 10.1098/rsta.2009.0049 Saksena RS., 2008, P TER C 2008, V2008, P92 SANGANI AS, 1982, INT J MULTIPHAS FLOW, V8, P343, DOI 10.1016/0301-9322(82)90047-7 Schmieschek S, 2013, HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '12: TRANSACTIONS OF THE HIGH PERFORMANCE COMPUTING CENTER, STUTTGART (HLRS) 2012, P39, DOI 10.1007/978-3-642-33374-3_5 Segredo NJ. Gonzalez, LATTICE BOLTZMANN LA Shan XW, 2006, J FLUID MECH, V550, P413, DOI 10.1017/S0022112005008153 Shan XW, 1998, PHYS REV LETT, V80, P65, DOI 10.1103/PhysRevLett.80.65 SHAN XW, 1995, J STAT PHYS, V81, P379, DOI 10.1007/BF02179985 SHAN XW, 1993, PHYS REV E, V47, P1815, DOI 10.1103/PhysRevE.47.1815 Succi S., 2001, LATTICE BOLTZMANN EQ Wolf-Gladrow D. A., 2000, LECT NOTES MATH ZIEGLER DP, 1993, J STAT PHYS, V71, P1171, DOI 10.1007/BF01049965 Zou QS, 1997, PHYS FLUIDS, V9, P1591, DOI 10.1063/1.869307 NR 67 TC 18 Z9 19 U1 2 U2 38 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD AUG PY 2017 VL 217 BP 149 EP 161 DI 10.1016/j.cpc.2017.03.013 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EX3HN UT WOS:000403123300014 OA Green Published, Other Gold DA 2021-04-21 ER PT J AU Kitcher, ED Chirayath, SS AF Kitcher, Evans D. Chirayath, Sunil S. TI A neutron transport and thermal hydraulics coupling scheme to study xenon induced power oscillations in a nuclear reactor SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Multi-physics coupling; Xenon induced power oscillations; Xenon oscillation bench mark ID CARLO BURNUP CALCULATIONS; MONTE-CARLO; NUMERICAL STABILITY AB A multi-physics computational methodology to analyze xenon induced power oscillations in a nuclear reactor is developed and presented. The methodology development takes into account both neutron transport and thermal hydraulics behaviors and their inter-dependent feedbacks in a nuclear power reactor as a function of fuel burn-up. The methodology uses the Monte Carlo N-Particle radiation transport computational code (MCNP6) along with its fuel transmutation module (CINDER90), a semi-analytic single channel analysis tool for thermal hydraulics and the SIGACE code suite for temperature dependent neutron interaction cross section processing. A Python script developed couples the physics codes for full automation. The accuracy of the multi-physics computational methodology developed was verified through a benchmark calculation for the published core parameters of a startup test performed at Yonggwang Power Reactor Unit No. 3. The power axial offset and xenon axial offset parameters were calculated for this benchmark case and used to quantify the oscillatory behavior observed, the results of this benchmark study is also presented here. The results showed that the developed methodology was able to capture the underlying phenomena governing xenon induced power oscillations in a nuclear reactor. (C) 2017 Elsevier Ltd. All rights reserved. C1 [Kitcher, Evans D.; Chirayath, Sunil S.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Chirayath, SS (corresponding author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM sunilsc@tamu.edu CR Dufek J, 2013, ANN NUCL ENERGY, V56, P34, DOI 10.1016/j.anucene.2013.01.018 Dufek J, 2009, NUCL SCI ENG, V162, P307, DOI 10.13182/NSE08-69TN Guo ZP, 2013, NUCL ENG DES, V258, P144, DOI 10.1016/j.nucengdes.2013.01.013 IAPWS, 2007, REV REL IAPWS IND FO Isotalo AE, 2013, ANN NUCL ENERGY, V60, P78, DOI 10.1016/j.anucene.2013.04.031 Jae Seung Song, 1999, Journal of the Korean Nuclear Society, V31, P80 Kitcher ED, 2016, ANN NUCL ENERGY, V97, P232, DOI 10.1016/j.anucene.2016.07.019 Kotlyar D, 2011, NUCL ENG DES, V241, P3777, DOI 10.1016/j.nucengdes.2011.07.028 Mckinney, 2014, LACP1400745 Pelowitz DB, 2008, MCNPX USERS MANUAL Shan JQ, 2010, ANN NUCL ENERGY, V37, P58, DOI 10.1016/j.anucene.2009.09.016 Sharma A. R., 2005, SIGACE PACKAGE GENER Sjenitzer BL, 2015, ANN NUCL ENERGY, V76, P27, DOI 10.1016/j.anucene.2014.09.018 Song JS, 1997, NUCL TECHNOL, V119, P105, DOI 10.13182/NT97-A35379 Turinsky PJ, 2012, NUCL ENG TECHNOL, V44, P103, DOI 10.5516/NET.01.2012.500 Wilson W B, 2007, MANUAL CINDER 90 VER, P07 Xi X, 2013, NUCL ENG DES, V258, P157, DOI 10.1016/j.nucengdes.2013.01.031 NR 17 TC 1 Z9 1 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD AUG PY 2017 VL 106 BP 64 EP 70 DI 10.1016/j.anucene.2017.03.045 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EU9RZ UT WOS:000401378600005 DA 2021-04-21 ER PT J AU Dijkstra, YM Brouwer, RL Schuttelaars, HM Schramkowski, GP AF Dijkstra, Yoeri M. Brouwer, Ronald L. Schuttelaars, Henk M. Schramkowski, George P. TI The iFlow modelling framework v2.4: a modular idealized process-based model for flow and transport in estuaries SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID INDUCED RESIDUAL CURRENTS; TIDAL ASYMMETRY; RIVER FLOW; DYNAMICS; MORPHODYNAMICS; BREADTH AB The iFlow modelling framework is a width-averaged model for the systematic analysis of the water motion and sediment transport processes in estuaries and tidal rivers. The distinctive solution method, a mathematical perturbation method, used in the model allows for identification of the effect of individual physical processes on the water motion and sediment transport and study of the sensitivity of these processes to model parameters. This distinction between processes provides a unique tool for interpreting and explaining hydrodynamic interactions and sediment trapping. iFlow also includes a large number of options to configure the model geometry and multiple choices of turbulence and salinity models. Additionally, the model contains auxiliary components, including one that facilitates easy and fast sensitivity studies. iFlow has a modular structure, which makes it easy to include, exclude or change individual model components, called modules. Depending on the required functionality for the application at hand, modules can be selected to construct anything from very simple quasi-linear models to rather complex models involving multiple non-linear interactions. This way, the model complexity can be adjusted to the application. Once the modules containing the required functionality are selected, the underlying model structure automatically ensures modules are called in the correct order. The model inserts iteration loops over groups of modules that are mutually dependent. iFlow also ensures a smooth coupling of modules using analytical and numerical solution methods. This way the model combines the speed and accuracy of analytical solutions with the versatility of numerical solution methods. In this paper we present the modular structure, solution method and two examples of the use of iFlow. In the examples we present two case studies, of the Yangtze and Scheldt rivers, demonstrating how iFlow facilitates the analysis of model results, the understanding of the underlying physics and the testing of parameter sensitivity. A comparison of the model results to measurements shows a good qualitative agreement. iFlow is written in Python and is available as open source code under the LGPL license. C1 [Dijkstra, Yoeri M.; Brouwer, Ronald L.; Schuttelaars, Henk M.; Schramkowski, George P.] Delft Univ Technol, Delft Inst Appl Math, POB 5031, NL-2628 CD Delft, Netherlands. [Brouwer, Ronald L.; Schramkowski, George P.] Flanders Hydraul Res, Berchemlei 115, B-2140 Antwerp, Belgium. RP Dijkstra, YM (corresponding author), Delft Univ Technol, Delft Inst Appl Math, POB 5031, NL-2628 CD Delft, Netherlands. EM y.m.dijkstra@tudelft.nl RI Schuttelaars, Henk/AAH-9494-2020 OI Brouwer, Ronald/0000-0001-6154-3410; Dijkstra, Yoeri/0000-0003-0682-0969 FU VNSC of the "Agenda for the Future" scientific research program [3109 6925, 3110 6170] FX The development of iFlow is funded by VNSC (http://www.vnsc.eu) through contracts 3109 6925 and 3110 6170 of the "Agenda for the Future" scientific research program that is aimed at a better understanding of the Scheldt Estuary for improved policy and management. CR Brouwer R. L., 2016, TECH REP Burchard H, 2011, J PHYS OCEANOGR, V41, P548, DOI 10.1175/2010JPO4453.1 Cheng P, 2010, J PHYS OCEANOGR, V40, P2135, DOI 10.1175/2010JPO4314.1 Chernetsky AS, 2010, OCEAN DYNAM, V60, P1219, DOI 10.1007/s10236-010-0329-8 Cloern JE, 1996, REV GEOPHYS, V34, P127, DOI 10.1029/96RG00986 COLIJN F, 1982, NETH J SEA RES, V15, P196, DOI 10.1016/0077-7579(82)90004-7 de Jonge VN, 2014, ESTUAR COAST SHELF S, V139, P46, DOI 10.1016/j.ecss.2013.12.030 de Swart HE, 2009, ANNU REV FLUID MECH, V41, P203, DOI 10.1146/annurev.fluid.010908.165159 Dijkstra Y. M., 2014, THESIS Dijkstra Y. M., 2016, WL2016R150391 FLAND Dijkstra YM, 2017, J GEOPHYS RES-OCEANS, V122, P4217, DOI 10.1002/2016JC012379 Friedrichs C.T., 1996, BUOYANCY EFFECTS COA, P283, DOI [10.1029/CE053p0283, DOI 10.1029/CE053P0283] FRIEDRICHS CT, 1994, J GEOPHYS RES-OCEANS, V99, P3321, DOI 10.1029/93JC03219 Friedrichs CT, 1998, PHYSICS OF ESTUARIES AND COASTAL SEAS, P315 Guo L, 2014, J GEOPHYS RES-EARTH, V119, P2315, DOI 10.1002/2014JF003110 Guo LC, 2016, J GEOPHYS RES-EARTH, V121, P1000, DOI 10.1002/2016JF003821 HANSEN DONALD V., 1965, J MAR RES, V23, P104 Huijts KMH, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2006JC003615 IANNIELLO JP, 1979, J PHYS OCEANOGR, V9, P962, DOI 10.1175/1520-0485(1979)009<0962:TIRCIE>2.0.CO;2 IANNIELLO JP, 1977, J MAR RES, V35, P755 Jones JE, 1996, ESTUAR COAST SHELF S, V42, P311, DOI 10.1006/ecss.1996.0022 MCCARTHY RK, 1993, TELLUS A, V45A, P325, DOI 10.1034/j.1600-0870.1993.00007.x Murray AB., 2003, GEOPHYS MONOGR SER, P151, DOI DOI 10.1029/135GM11 Plancke Y., 2015, TECH REP Postma H, 1954, ARCH NEERL ZOOL, P405, DOI [10.1163/036551654x00087, DOI 10.1163/036551654X00087] PRANDLE D, 1982, CONT SHELF RES, V1, P191, DOI 10.1016/0278-4343(82)90004-8 Schramkowski G. P., 2016, TECH REP Schramkowski G. P, 2015, TECH REP Schramkowski GP, 2002, J GEOPHYS RES-OCEANS, V107, DOI 10.1029/2000JC000693 Schuttelaars HM, 2013, OCEAN COAST MANAGE, V79, P70, DOI 10.1016/j.ocecoaman.2012.05.009 Talke SA, 2009, ESTUAR COAST, V32, P602, DOI 10.1007/s12237-009-9171-y Van Straaten L.M.J. U., 1957, GEOLOGIE MIJNB, P329 Warner JC, 2005, J GEOPHYS RES-OCEANS, V110, DOI 10.1029/2004JC002691 Wei XY, 2016, J PHYS OCEANOGR, V46, P1457, DOI 10.1175/JPO-D-15-0045.1 Winterwerp JC, 2013, OCEAN DYNAM, V63, P1279, DOI 10.1007/s10236-013-0662-9 NR 35 TC 12 Z9 12 U1 0 U2 4 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD JUL 14 PY 2017 VL 10 IS 7 BP 2691 EP 2713 DI 10.5194/gmd-10-2691-2017 PG 23 WC Geosciences, Multidisciplinary SC Geology GA FA7WJ UT WOS:000405657800001 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Owsiak, M Plociennik, M Palak, B Zok, T Reux, C Di Gallo, L Kalupin, D Johnson, T Schneider, M AF Owsiak, Michal Plociennik, Marcin Palak, Bartek Zok, Tomasz Reux, Cedric Di Gallo, Luc Kalupin, Denis Johnson, Thomas Schneider, Mireille TI Running simultaneous Kepler sessions for the parallelization of parametric scans and optimization studies applied to complex workflows SO JOURNAL OF COMPUTATIONAL SCIENCE LA English DT Article; Proceedings Paper CT 16th International Conference on Computational Science (ICCS) - Data through the Computational Lens CY JUN 06-08, 2016 CL San Diego, CA DE Kepler project; Workflows; Parallel execution; Docker AB In this paper we present an approach taken to run multiple Kepler sessions at the same time. This kind of execution is one of the requirements for Integrated Tokamak Modelling (ITM) platform developed by the Nuclear Fusion community within the context of EUROFusion project [1]. The platform is unique and original: it entails the development of a comprehensive and completely generic tokamak simulator including both the physics and the machine, which can be applied for any fusion device. All components are linked inside workflows. This approach allows complex coupling of various algorithms while at the same time provides consistency. Workflows are composed of Kepler and Ptolemy II elements as well as set of the native libraries written in various languages (Fortran, C, C++). In addition to that, there are Python based components that are used for visualization of results as well as for pre/post processing. At the bottom of all these components there is a database layer that may vary between software releases, and require different version of access libraries. The community is using a shared virtual research environment to prepare and execute workflows. All these constraints make running multiple Kepler sessions really challenging. However, ability to run numerous sessions in parallel is a must - to reduce computation time and to make it possible to run released codes while working with new software at the same time. In this paper we present our approach to solve this issue and examples that show its correctness. (C) 2016 Published by Elsevier B.V. C1 [Owsiak, Michal; Plociennik, Marcin; Palak, Bartek; Zok, Tomasz] Poznan Supercomp & Networking Ctr IBCh PAS, Poznan, Poland. [Reux, Cedric; Di Gallo, Luc] CEA, IRFM, F-13108 St Paul Les Durance, France. [Kalupin, Denis] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany. [Johnson, Thomas] KTH, Fus Plasma Phys, EES, SE-10044 Stockholm, Sweden. [Schneider, Mireille] ITER Org, St Paul Les Durance, France. RP Owsiak, M (corresponding author), Poznan Supercomp & Networking Ctr IBCh PAS, Poznan, Poland. EM michalo@man.poznan.pl; marcinp@man.poznan.pl; bartek@man.poznan.pl; tzok@man.poznan.pl; cedric.reux@cea.fr; luc.digallo@cea.fr; denis.kalupin@euro-fusion.org; johnso@kth.se; mireille.mchneider@iter.org RI Zok, Tomasz/M-1714-2014 OI Zok, Tomasz/0000-0003-4103-9238 FU Euratom research and training programme [633053]; Horizon Framework Programme through INDIGO [RIA-653549] FX This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 633053. Part of this work has been co-funded by the Horizon 2020 Framework Programme through the INDIGO-DataCloud Project, RIA-653549. CR Abramson D., 2011, NIMROD K MASSIVELY P Altintas Ilkay, 2012, P WORKSH DAT AN CLOU, P73 Di Gallo L., 2015, COMPUT PHYS COMMUN, V200, P1 Kalupin D, 2013, NUCL FUSION, V53, DOI 10.1088/0029-5515/53/12/123007 Kalupin D., 2015, P EPS LISB Nguyen H. A., 2015, WORKWAYS INTERACTING Owsiak M., 2015, 14 ITPA EN PART PHYS Plociennik M., 2013, FUNDAM INF, V128, P1 Reux C., 2015, NUCL FUSION, V55 Schneider M., 2015, BENCHMARKING NEUTRAL Schneider M., 2015, 15 ITPA EN PART PHYS NR 11 TC 3 Z9 3 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-7503 J9 J COMPUT SCI-NETH JI J. Comput. Sci. PD MAY PY 2017 VL 20 BP 103 EP 111 DI 10.1016/j.jocs.2016.12.005 PG 9 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA EX3HO UT WOS:000403123400012 DA 2021-04-21 ER PT J AU Lyonnet, F Schienbein, I AF Lyonnet, F. Schienbein, I. TI PyR@TE 2: A Python tool for computing RGEs at two-loop SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Renormalization group equations; Quantum field theory; Running coupling constants; Model building; Physics beyond the Standard Model ID RENORMALIZATION-GROUP EQUATIONS; SUSY MODEL AB Renormalization group equations are an essential tool for the description of theories across different energy scales. Even though their expressions at two-loop for an arbitrary gauge field theory have been known for more than thirty years, deriving the full set of equations for a given model by hand is very challenging and prone to errors. To tackle this issue, we have introduced in Lyonnet et al. (2014) a Python tool called PyR@TE; Python Renormalization group equations @ Two-loop for Everyone. With PyR@TE, it is easy to implement a given Lagrangian and derive the complete set of two-loop RGEs for all the parameters of the theory. In this paper, we present the new version of this code, PyR@TE 2, which brings many new features and in particular it incorporates kinetic mixing when several U(1) gauge groups are involved. In addition, the group theory part has been greatly improved as we introduced a new Python module dubbed PyLie that deals with all the group theoretical aspects required for the calculation of the RGEs as well as providing very useful model building capabilities. This allows the use of any irreducible representation of the SU(n), SO(2n) and SO(2n + 1) groups. Furthermore, it is now possible to implement terms in the Lagrangian involving fields which can be contracted into gauge singlets in more than one way. As a byproduct, results for a popular model (SM + complex triplet) for which, to our knowledge, the complete set of two-loop RGEs has not been calculated before are presented in this paper. Finally, the two-loop RGEs for the anomalous dimension of the scalar and fermion fields have been implemented as well. It is now possible to export the coupled system of beta functions into a numerical C++ function, leading to a consequent speed up in solving them. Program summary Program title: PyR@TE 2 Program Files doi: http://dx.doi.org/10.17632/8h454kdd5n.1 Licensing provisions: GNU GPLv3 Programming language: Python Nature of problem: Deriving the renormalization group equations for a general quantum field theory. Solution method: Group theory, tensor algebra. Dependencies: SymPy, PyYAML, NumPy, IPython, SciPy (C) 2016 Elsevier B.V. All rights reserved. C1 [Lyonnet, F.] Southern Methodist Univ, Dallas, TX 75275 USA. [Schienbein, I.] UJF Grenoble 1, Lab Phys Subat & Cosmol, CNRS, IN2P3,INPG, 53 Ave Martyrs, F-38026 Grenoble, France. RP Lyonnet, F (corresponding author), Southern Methodist Univ, Dallas, TX 75275 USA. EM florian.lyonnet@lpsc.in2p3.fr FU U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-SC0010129] FX We are grateful to Florian Staub, Renato Fonseca, Kristjan Kannike, Helena Kolesova and Fred Olness for many useful discussions. F.L. would like to thank Florian Staub for helping validating the implementation of the kinetic mixing. F.L. is also grateful to Luigi Delle Rose for providing insights on the implementation of the kinetic mixing and for the help in resolving early discrepancies in the U(1)B-L model. This work was also partially supported by the U.S. Department of Energy under Grant No. DE-SC0010129. CR Basso L, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.055018 Coriano C, 2016, J HIGH ENERGY PHYS, P1, DOI 10.1007/JHEP02(2016)135 Datta A, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.053011 DELAGUILA F, 1989, NUCL PHYS B, V312, P751 DELAGUILA F, 1988, NUCL PHYS B, V307, P571, DOI 10.1016/0550-3213(88)90265-9 Dubois P. F., 1996, COMPUT PHYS, V10 Feger R, 2015, COMPUT PHYS COMMUN, V192, P166, DOI 10.1016/j.cpc.2014.12.023 Fonseca RM, 2013, J PHYS CONF SER, V447, DOI 10.1088/1742-6596/447/1/012034 Fonseca RM, 2013, PHYS LETT B, V726, P882, DOI 10.1016/j.physletb.2013.09.042 Fonseca RM, 2012, COMPUT PHYS COMMUN, V183, P2298, DOI 10.1016/j.cpc.2012.05.017 Jones E., SCIPY OPEN SOURCE SC Luo MX, 2003, PHYS REV D, V67, DOI 10.1103/PhysRevD.67.065019 Luo MX, 2003, PHYS LETT B, V555, P279, DOI 10.1016/S0370-2693(03)00076-5 Lyonnet F, 2014, COMPUT PHYS COMMUN, V185, P1130, DOI 10.1016/j.cpc.2013.12.002 Lyonnet F., IMPACT KINETIC MIXIN Lyonnet F., DPF P Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Rizzo TG, 1999, PHYS REV D, V59, DOI 10.1103/PhysRevD.59.015020 Sanderson C., 2010, TECHNICAL REPORT Simonov K., PYYAML Staub F, 2014, COMPUT PHYS COMMUN, V185, P1773, DOI 10.1016/j.cpc.2014.02.018 SymPy Development Team, SYMP PYTH LIB SYMB M van Rossum G., 1991, CWI Q, V4, P283 Wingerter A, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.095012 NR 24 TC 25 Z9 25 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD APR PY 2017 VL 213 BP 181 EP 196 DI 10.1016/j.cpc.2016.12.003 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EK0QB UT WOS:000393630800018 OA Bronze DA 2021-04-21 ER PT J AU Huang, XY Tsai, YLS Yuan, Q AF Huang, Xiaoyuan Tsai, Yue-Lin Sming Yuan, Qiang TI LIKEDM: Likelihood calculator of dark matter detection SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Dark matter; Statistics tools; Dark matter indirect detection ID COSMIC-RAYS; DIFFUSION-MODEL; PROPAGATION; CONSTRAINTS; PARAMETERS; CANDIDATES; GALAXY; GAMMA AB With the large progress in searches for dark matter (DM) particles with indirect and direct methods, we develop a numerical tool that enables fast calculations of the likelihoods of specified DM particle models given a number of observational data, such as charged cosmic rays from space-borne experiments (e.g., PAMELA, AMS-02), gamma-rays from the Fermi space telescope, and underground direct detection experiments. The purpose of this tool - LIKEDM, likelihood calculator for dark matter detection - is to bridge the gap between a particle model of DM and the observational data. The intermediate steps between these two, including the astrophysical backgrounds, the propagation of charged particles, the analysis of Fermi gamma-ray data, as well as the DM velocity distribution and the nuclear form factor, have been dealt with in the code. We release the first version (v1.0) focusing on the constraints from indirect detection of DM with charged cosmic and gamma rays. Direct detection will be implemented in the next version. This manual describes the framework, usage, and related physics of the code. Program summary Program Title: LIKEDM Program Files doi: http://dx.doi.org/10.17632/p93d3ksfvd.1 Licensing provisions: GPLv3 Programming language: FORTRAN 90 and Python Nature of problem: Dealing with the intermediate steps between a dark matter model and data. Solution method: Fast computation of the likelihood of a given dark matter model (defined by a mass, cross section or decay rate, and annihilation or decay yield spectrum), without digging into the details of cosmic-ray propagation, Fermi-LAT data analysis, or related astrophysical backgrounds. (C) 2017 Elsevier B.V. All rights reserved. C1 [Huang, Xiaoyuan] Tech Univ Munich, Phys Dept T30d, James Franck Str, D-85748 Garching, Germany. [Tsai, Yue-Lin Sming] Univ Tokyo, WPI, Kavli IPMU, Kashiwa, Chiba 2778583, Japan. [Yuan, Qiang] Univ Massachusetts, Dept Astron, 710 North Pleasant St, Amherst, MA 01003 USA. [Yuan, Qiang] Chinese Acad Sci, Purple Mt Observ, Key Lab Dark Matter & Space Astron, Nanjing 210008, Jiangsu, Peoples R China. RP Tsai, YLS (corresponding author), Univ Tokyo, WPI, Kavli IPMU, Kashiwa, Chiba 2778583, Japan. EM yue-lin.tsai@ipmu.jp OI Tsai, Yue-Lin Sming/0000-0002-7275-8561 FU World Premier International Research Center Initiative (WPI), MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); National Key Program for Research and Development [2016YFA0400200]; Chinese Academy of SciencesChinese Academy of Sciences; World Premier International Research Center Initiative (WPI), MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); National Key Program for Research and Development [2016YFA0400200]; Chinese Academy of SciencesChinese Academy of Sciences FX We thank Vincent Bonnivard who kindly provides the MCMC results about the profile parameters of dSphs, and Andrew Fowlie and Shankha Banerjee who carefully read and improve the presentation of the manuscript. Y.S.T. was supported by World Premier International Research Center Initiative (WPI), MEXT, Japan. Q.Y. was supported by the National Key Program for Research and Development (No. 2016YFA0400200) and the 100 Talents program of Chinese Academy of Sciences. CR Aad G, 2012, PHYS LETT B, V716, P1, DOI 10.1016/j.physletb.2012.08.020 Accardo L, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.121101 Acero F, 2015, ASTROPHYS J SUPPL S, V218, DOI 10.1088/0067-0049/218/2/23 Ackermann M, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.231301 Ackermann M, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.042001 Ackermann M, 2012, ASTROPHYS J, V761, DOI 10.1088/0004-637X/761/2/91 Ackermann M, 2012, ASTROPHYS J, V750, DOI 10.1088/0004-637X/750/1/3 Ackermann M, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.241302 Adriani O, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.121101 Adriani O, 2009, NATURE, V458, P607, DOI 10.1038/nature07942 Aguilar M, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.221102 Aguilar M, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.121102 Aguilar M, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.141102 Ahnen ML, 2016, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2016/02/039 Akerib D. S., ARXIV13108214ASTROPH Aprile E, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.181301 Arhrib A, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/06/030 BAHCALL JN, 1980, ASTROPHYS J SUPPL S, V44, P73, DOI 10.1086/190685 Bechtol K, 2015, ASTROPHYS J, V807, DOI 10.1088/0004-637X/807/1/50 Bergstrom L, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.171101 Bergstrom L, 2012, ANN PHYS-BERLIN, V524, P479, DOI 10.1002/andp.201200116 Bertone G., 2009, JCAP, V0903, P009 Bi XJ, 2013, FRONT PHYS-BEIJING, V8, P794, DOI 10.1007/s11467-013-0330-z Bonnivard V, 2015, MON NOT R ASTRON SOC, V453, P849, DOI 10.1093/mnras/stv1601 Chatrchyan S, 2012, PHYS LETT B, V716, P30, DOI 10.1016/j.physletb.2012.08.021 Cirelli M, 2012, PRAMANA-J PHYS, V79, P1021, DOI 10.1007/s12043-012-0419-x de Austri RR, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/05/002 Drlica-Wagner A, 2015, ASTROPHYS J, V813, DOI 10.1088/0004-637X/813/2/109 Einasto J., 1965, T ASTROFIZICHESKOGO, V5, P87 Evoli C, 2008, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2008/10/018 Feng L, 2013, PHYS LETT B, V720, P1, DOI 10.1016/j.physletb.2013.01.060 Geringer-Sameth A, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.081101 Geringer-Sameth A, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.083535 Girelli M., 2012, JCAP, V1210, pE0I GLEESON LJ, 1968, ASTROPHYS J, V154, P1011, DOI 10.1086/149822 JAMES F, 1975, COMPUT PHYS COMMUN, V10, P343, DOI 10.1016/0010-4655(75)90039-9 Kamae T, 2007, ASTROPHYS J, V662, P779, DOI 10.1086/513602 Kamae T, 2006, ASTROPHYS J, V647, P692, DOI 10.1086/505189 Lewis A, 2002, PHYS REV D, V66, DOI 10.1103/PhysRevD.66.103511 Li S, 2016, PHYS REV D, V93, DOI 10.1103/PhysRevD.93.043518 Maurin D, 2001, ASTROPHYS J, V555, P585, DOI 10.1086/321496 Navarro JF, 1997, ASTROPHYS J, V490, P493, DOI 10.1086/304888 Putze A, 2010, ASTRON ASTROPHYS, V516, DOI 10.1051/0004-6361/201014010 SEO ES, 1994, ASTROPHYS J, V431, P705, DOI 10.1086/174520 SHEN CS, 1970, ASTROPHYS J, V162, pL181, DOI 10.1086/180650 Strong AW, 2007, ANNU REV NUCL PART S, V57, P285, DOI 10.1146/annurev.nucl.57.090506.123011 Strong AW, 1998, ASTROPHYS J, V509, P212, DOI 10.1086/306470 Tsai YLS, 2013, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2013/03/018 Xiao MJ, 2014, SCI CHINA PHYS MECH, V57, P2024, DOI 10.1007/s11433-014-5598-7 Yuan Q, 2015, ASTROPART PHYS, V60, P1, DOI 10.1016/j.astropartphys.2014.05.005 Yuan Q, 2013, PHYS LETT B, V727, P1, DOI 10.1016/j.physletb.2013.10.010 Yue Q, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.091701 Zhao Y., ARXIV160102181ASTROP NR 53 TC 22 Z9 22 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD APR PY 2017 VL 213 BP 252 EP 263 DI 10.1016/j.cpc.2016.12.015 PG 12 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EK0QB UT WOS:000393630800024 DA 2021-04-21 ER PT J AU King, RN Dykes, K Graf, P Hamlington, PE AF King, Ryan N. Dykes, Katherine Graf, Peter Hamlington, Peter E. TI Optimization of wind plant layouts using an adjoint approach SO WIND ENERGY SCIENCE LA English DT Article ID COMPUTATIONAL FLUID-DYNAMICS; TURBINE WAKES; MODEL; FLOW; DESIGN; FARMS AB Using adjoint optimization and three-dimensional steady-state Reynolds-averaged Navier-Stokes (RANS) simulations, we present a new gradient-based approach for optimally siting wind turbines within utilityscale wind plants. By solving the adjoint equations of the flow model, the gradients needed for optimization are found at a cost that is independent of the number of control variables, thereby permitting optimization of large wind plants with many turbine locations. Moreover, compared to the common approach of superimposing prescribed wake deficits onto linearized flow models, the computational efficiency of the adjoint approach allows the use of higher-fidelity RANS flow models which can capture nonlinear turbulent flow physics within a wind plant. The steady-state RANS flow model is implemented in the Python finite-element package FEniCS and the derivation and solution of the discrete adjoint equations are automated within the dolfin-adjoint framework. Gradient-based optimization of wind turbine locations is demonstrated for idealized test cases that reveal new optimization heuristics such as rotational symmetry, local speedups, and nonlinear wake curvature effects. Layout optimization is also demonstrated on more complex wind rose shapes, including a full annual energy production (AEP) layout optimization over 36 inflow directions and 5 wind speed bins. C1 [King, Ryan N.; Hamlington, Peter E.] Univ Colorado, Boulder, CO 80309 USA. [King, Ryan N.; Dykes, Katherine; Graf, Peter] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP King, RN (corresponding author), Univ Colorado, Boulder, CO 80309 USA.; King, RN (corresponding author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM ryan.king@nrel.gov RI Dykes, Katherine/A-9502-2012 OI Dykes, Katherine/0000-0002-5734-3122 FU Alliance Partner University Program [UGA-0-41026-70]; National Renewable Energy LaboratoryUnited States Department of Energy (DOE) FX This work was supported by award UGA-0-41026-70 through the Alliance Partner University Program in partnership with the National Renewable Energy Laboratory. CR AINSLIE JF, 1988, J WIND ENG IND AEROD, V27, P213, DOI 10.1016/0167-6105(88)90037-2 Amestoy PR, 2000, COMPUT METHOD APPL M, V184, P501, DOI 10.1016/S0045-7825(99)00242-X Barthelmie RJ, 2009, WIND ENERGY, V12, P431, DOI 10.1002/we.348 Boersma S, 2016, J PHYS CONF SER, V753, DOI 10.1088/1742-6596/753/3/032005 Bokharaie VS, 2016, WIND ENERGY SCI, V1, P311, DOI 10.5194/wes-1-311-2016 Brezzi F., 1991, MIXED HYBRID FINITE Burton T, 2011, WIND ENERGY HDB BYRD RH, 1995, SIAM J SCI COMPUT, V16, P1190, DOI 10.1137/0916069 Cabezon D, 2011, WIND ENERGY, V14, P909, DOI 10.1002/we.516 Calaf M, 2010, PHYS FLUIDS, V22, DOI 10.1063/1.3291077 Chen TY, 2011, EXP THERM FLUID SCI, V35, P565, DOI 10.1016/j.expthermflusci.2010.12.005 Churchfield MJ, 2012, J TURBUL, V13, P1, DOI 10.1080/14685248.2012.668191 Crespo A., 1999, WIND ENERGY, V2, P1, DOI [10.1002/(SICI)1099-1824(199901/03)2:1%C1::AID-WE16%E3.0.CO;2-7, DOI 10.1002/(SICI)1099-1824(199901/03)2:1%C1::AID-WE16%E3.0.CO;2-7, 10.1002/(SICI)1099-1824(199901/03)2:1,1::AID-WE16.3.0.CO;2-7, DOI 10.1002/(SICI)1099-1824(199901/03)2:1<1::AID-WE16>3.0.CO;2-7] Donea J., 2003, FINITE ELEMENT METHO Du Pont BL, 2012, J MECH DESIGN, V134, DOI 10.1115/1.4006997 Dykes K., 2014, AM I AERONAUTICS AST, DOI [10.2514/6.2014-1087, DOI 10.2514/6.2014-1087] El Kasmi A, 2008, J WIND ENG IND AEROD, V96, P103, DOI 10.1016/j.jweia.2007.03.007 Farrell PE, 2013, SIAM J SCI COMPUT, V35, pC369, DOI 10.1137/120873558 Fitch AC, 2012, MON WEATHER REV, V140, P3017, DOI 10.1175/MWR-D-11-00352.1 Fleming PA, 2016, WIND ENERGY, V19, P329, DOI 10.1002/we.1836 Funke SW, 2014, RENEW ENERG, V63, P658, DOI 10.1016/j.renene.2013.09.031 Gebraad PMO, 2016, WIND ENERGY, V19, P95, DOI 10.1002/we.1822 Giannakoglou KC, 2008, OPTIMIZATION AND COMPUTATIONAL FLUID DYNAMICS, P79, DOI 10.1007/978-3-540-72153-6_4 Giles MB, 2000, FLOW TURBUL COMBUST, V65, P393, DOI 10.1023/A:1011430410075 Goit JP, 2016, ENERGIES, V9, DOI 10.3390/en9010029 Goit JP, 2015, J FLUID MECH, V768, DOI 10.1017/jfm.2015.70 Herbert-Acero JF, 2014, ENERGIES, V7, P6930, DOI 10.3390/en7116930 Heywood JG, 1996, INT J NUMER METH FL, V22, P325, DOI 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y Hinze M, 2009, MATH MODEL-THEOR APP, V23, P1, DOI 10.1007/978-1-4020-8839-1 Iungo G. V., 2016, 34th Wind Energy Symposium, P1 Jackson P. S., 1975, J ROY METEOR SOC, V101, P929, DOI [10.1002/qj.49710143015, DOI 10.1002/QJ.49710143015] Jager D., 1996, NREL NATL WIND TECHN Jameson A, 2003, AERODYNAMIC SHAPE OP Jensen N.O., 1983, RIS M 2411 RIS NATL, P1 Jimenez A, 2007, J PHYS CONF SER, V75, DOI 10.1088/1742-6596/75/1/012041 King R., 2016, ADJOINT OPTIMIZATION, P2016, DOI [10.2514/6.2016-2199, DOI 10.2514/6.2016-2199] Kusiak A, 2010, RENEW ENERG, V35, P685, DOI 10.1016/j.renene.2009.08.019 Kwong WY, 2012, PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2012, VOL 3, PTS A AND B, P323 Larsen G. C., 2011, RISOR1805 EN Logg A., 2012, LECT NOTES COMPUT SC, V84 Luchini P, 2014, ANNU REV FLUID MECH, V46, P493, DOI 10.1146/annurev-fluid-010313-141253 Marden JR, 2013, IEEE T CONTR SYST T, V21, P1207, DOI 10.1109/TCST.2013.2257780 Martins JRRA, 2013, AIAA J, V51, P2582, DOI 10.2514/1.J052184 Meyers J, 2012, WIND ENERGY, V15, P305, DOI 10.1002/we.469 Mirocha JD, 2014, J RENEW SUSTAIN ENER, V6, DOI 10.1063/1.4861061 Nocedal J., 1999, NUMERICAL OPTIMIZATI Porte-Agel F, 2011, J WIND ENG IND AEROD, V99, P154, DOI 10.1016/j.jweia.2011.01.011 Sanderse B, 2011, WIND ENERGY, V14, P799, DOI 10.1002/we.458 Gonzalez JS, 2010, RENEW ENERG, V35, P1671, DOI 10.1016/j.renene.2010.01.010 van der Laan MP, 2015, WIND ENERGY, V18, P889, DOI 10.1002/we.1736 WALMSLEY JL, 1986, BOUND-LAY METEOROL, V36, P157, DOI 10.1007/BF00117466 Wilcox D. C., 2006, TURBULENCE MODELING Wu YT, 2013, BOUND-LAY METEOROL, V146, P181, DOI 10.1007/s10546-012-9757-y Wu YT, 2011, BOUND-LAY METEOROL, V138, P345, DOI 10.1007/s10546-010-9569-x NR 54 TC 12 Z9 12 U1 0 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 2366-7443 EI 2366-7451 J9 WIND ENERGY SCI JI Wind Energy Sci. PD MAR 10 PY 2017 VL 2 IS 1 BP 115 EP 131 DI 10.5194/wes-2-115-2017 PG 17 WC Green & Sustainable Science & Technology SC Science & Technology - Other Topics GA FL3MD UT WOS:000414126300001 OA DOAJ Gold DA 2021-04-21 ER PT J AU Betzler, BR Powers, JJ Worrall, A AF Betzler, Benjamin R. Powers, Jeffrey J. Worrall, Andrew TI Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Molten salt reactors; Fuel cycle; Depletion; Salt treatment; Salt separations ID BREEDER REACTOR; CORE PHYSICS; DYNAMICS; PERFORMANCE; SYSTEMS; CODE; MSR AB Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Improved capabilities in ChemTriton include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date art illustrated in this paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available U-233); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. The third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. In the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light-water reactor approaches an equilibrium composition after 20 depletion steps, demonstrating the potential for the longer time scales required to achieve equilibrium for solid-fueled systems over liquid fuel systems. This time to equilibrium can be reduced by starting with an initial fuel composition closer to that of the equilibrium fuel, reducing the need to handle time-dependent fuel compositions. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew] Oak Ridge Natl Lab, Bldg 5700,Room J301,Mail Stop 6172, Oak Ridge, TN 37831 USA. RP Betzler, BR (corresponding author), Oak Ridge Natl Lab, Bldg 5700,Room J301,Mail Stop 6172, Oak Ridge, TN 37831 USA. EM betzlerbr@ornl.gov OI Powers, Jeffrey/0000-0003-3653-3880 FU Fuel Cycles Options Campaign of the Fuel Cycle Technologies initiative of the US Department of Energy Office of Nuclear Energy; US Department of EnergyUnited States Department of Energy (DOE) [DE-AC05-00OR22725] FX This work has been funded by the Fuel Cycles Options Campaign of the Fuel Cycle Technologies initiative of the US Department of Energy Office of Nuclear Energy. This manuscript has been authored by employees of Oak Ridge National Laboratory, managed by UT-Battelle LLC under US Department of Energy contract DE-AC05-00OR22725. CR Ahmad A, 2015, ANN NUCL ENERGY, V75, P261, DOI 10.1016/j.anucene.2014.08.014 [Anonymous], 2013, LACP13000634 AL NAT Aufiero M, 2013, J NUCL MATER, V441, P473, DOI 10.1016/j.jnucmat.2013.06.026 Aufiero M, 2014, ANN NUCL ENERGY, V65, P78, DOI 10.1016/j.anucene.2013.10.015 Bauman H.F., 1971, ORNLTM3359 Bays S. E., 2013, INLEXT132849 BETTIS ES, 1970, NUCL APPL TECHNOL, V8, P190, DOI 10.13182/NT70-A28625 Betzler B. R., 2016, P INT C PHYS 2016 SU Bowman S.M., 2011, NUCL TECHNOL, V174 Brinton S., 2016, ADV NUCL IND Brown NR, 2015, NUCL ENG DES, V289, P252, DOI 10.1016/j.nucengdes.2015.04.015 Brown NR, 2016, ANN NUCL ENERGY, V96, P88, DOI 10.1016/j.anucene.2016.05.027 Brown NR, 2016, NUCL TECHNOL, V194, P233, DOI 10.13182/NT15-40 Bulmer J.J., 1956, CF568204 OAK RIDG SC Cammi A, 2012, NUCL ENG DES, V246, P12, DOI 10.1016/j.nucengdes.2011.08.002 Cheng MS, 2014, NUCL SCI TECH, V25 DeHart MD, 2011, NUCL TECHNOL, V174, P196, DOI 10.13182/NT174-196 Doligez X, 2014, ANN NUCL ENERGY, V64, P430, DOI 10.1016/j.anucene.2013.09.009 Duderstadt J. J., 1976, NUCL REACTOR ANAL Engel J.R., 1980, CONCEPTUAL DESIGN CH Feng B, 2016, ANN NUCL ENERGY, V94, P300, DOI 10.1016/j.anucene.2016.03.002 Fiorina C, 2014, ANN NUCL ENERGY, V64, P485, DOI 10.1016/j.anucene.2013.08.003 Fiorina C, 2013, PROG NUCL ENERG, V68, P153, DOI 10.1016/j.pnucene.2013.06.006 Gauld I. C., 2011, NUCL TECHNOL, V174 Gehin JC, 2016, NUCL TECHNOL, V194, P152, DOI 10.13182/NT15-124 Goluoglu S, 2011, NUCL TECHNOL, V174, P214, DOI 10.13182/NT10-124 Heidet Florent, 2015, Reviews of Accelerator Science and Technology, V8, P99, DOI 10.1142/S1793626815300066 Heuer D, 2014, ANN NUCL ENERGY, V64, P421, DOI 10.1016/j.anucene.2013.08.002 Heuer D., 2010, CONTRIBUTION A0115 IAEA Safeguards Glossary, INT NUCL VERIFICATIO, V3 Jeong Y, 2016, J NUCL SCI TECHNOL, V53, P529, DOI 10.1080/00223131.2015.1062812 Kee C. W., 1976, ORNLTM4210 KERLIN TW, 1971, NUCL TECHNOL, V10, P118, DOI 10.13182/NT71-A30920 Kophazi J, 2009, NUCL SCI ENG, V163, P118, DOI 10.13182/NSE163-118 Krepel J, 2008, NUCL TECHNOL, V164, P34, DOI 10.13182/NT08-A4006 Krepel J, 2007, ANN NUCL ENERGY, V34, P449, DOI 10.1016/j.anucene.2006.12.011 LUDWIG S.B., 1989, ORNLTM11018 MCNP, GEN M CARL N PART MC Mourogov A, 2006, ENERG CONVERS MANAGE, V47, P2761, DOI 10.1016/j.enconman.2006.02.013 Nuttin A, 2005, PROG NUCL ENERG, V46, P77, DOI 10.1016/j.pnucene.2004.11.001 Park J, 2015, INT J ENERG RES, V39, P1673, DOI 10.1002/er.3371 Powers J.J., 2013, P INT C MATH COMP ME Powers J. J., 2014, P INT C PHYS 2014 KY Rearden B.T., 2016, ORNLTM200539 Rimpault G., 2002, P INT C PHYS 2002 SE Robertson R.C., 1970, ORNL4528 Robertson R.C, 1971, ORNL4541 Sen S., 2013, MULTIRECYCLING PLUTO Serp J, 2014, PROG NUCL ENERG, V77, P308, DOI 10.1016/j.pnucene.2014.02.014 SERPENT, 2011, PSG2 SERP M CARL REA Sheu RJ, 2013, ANN NUCL ENERGY, V53, P1, DOI 10.1016/j.anucene.2012.10.017 Shi CB, 2016, NUCL ENG DES, V305, P378, DOI 10.1016/j.nucengdes.2016.05.034 SHIMAZU Y, 1978, J NUCL SCI TECHNOL, V15, P514, DOI 10.3327/jnst.15.514 Smith J., 1974, 956 AEEWR Stauff NE, 2015, J NUCL SCI TECHNOL, V52, P1058, DOI 10.1080/00223131.2015.1032380 TAUBE M, 1974, ANN NUCL SCI ENG, V1, P277, DOI 10.1016/0302-2927(74)90045-2 Taube M., 1974, 249 INT REAKT WUR SC Toppel BJ., 1983, ANL832 US DOE, 2015, GAT ACC INN NUCL US DOE, 2016, GAT ACC INN NUCL van Rossum Guido, 1995, CSR9526 Wigeland R., 2014, INLEXT1431465 Xu Z., 2002, IMPROVED MCNPORIGEN Zhou JJ, 2015, NUCL ENG DES, V282, P93, DOI 10.1016/j.nucengdes.2014.11.026 NR 64 TC 21 Z9 23 U1 1 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD MAR PY 2017 VL 101 BP 489 EP 503 DI 10.1016/j.anucene.2016.11.040 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EI8OU UT WOS:000392767800051 DA 2021-04-21 ER PT J AU Liu, QB Li, J Liu, J AF Liu, Qingbin Li, Jiang Liu, Jie TI ParaView visualization of Abaqus output on the mechanical deformation of complex microstructures SO COMPUTERS & GEOSCIENCES LA English DT Article DE Abaqus (R); Post-processing; Python script; ParaView; Parallel visualization ID MICROTOMOGRAPHY AB Abaqus (R) is a popular software suite for finite element analysis. It delivers linear and nonlinear analyses of mechanical and fluid dynamics, includes multi-body system and multi-physics coupling. However, the visualization capability of Abaqus using its CAE module is limited. Models from microtomography have extremely complicated structures, and datasets of Abaqus output are huge, requiring a visualization tool more powerful than Abaqus/CAE. We convert Abaqus output into the XML-based VTK format by developing a Python script and then using ParaView to visualize the results. Such capabilities as volume rendering, tensor glyphs, superior animation and other filters allow ParaView to offer excellent visualizing manifestations. ParaView's parallel visualization makes it possible to visualize very big data. To support full parallel visualization, the Python script achieves data partitioning by reorganizing all nodes, elements and the corresponding results on those nodes and elements. The data partition scheme minimizes data redundancy and works efficiently. Given its good readability and extendibility, the script can be extended to the processing of more different problems in Abaqus. We share the script with Abaqus users on GitHub. C1 [Liu, Qingbin] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. [Liu, Qingbin; Liu, Jie] Sun Yat Sen Univ, Sch Earth Sci & Geol Engn, Guangzhou 510275, Guangdong, Peoples R China. [Li, Jiang] Natl Supercomp Ctr Guangzhou, Guangzhou 510006, Guangdong, Peoples R China. [Liu, Jie] Guangdong Prov Key Lab Mineral Resources & Geol P, Guangzhou 510275, Guangdong, Peoples R China. EM liujie86@mail.sysu.edu.cn FU Fundamental Research Funds of China for the Central Universities [14Igjc12] FX We thank Andrew Squelch (Curtin University, Australia), Thomas Poulet (Energy Flagship of CSIRO, Australia), and Guihua Shan and Zhenyu Ba (Computer Network Information Center, Chinese Academy of Science) for their help on the use of ParaView and Python. The work reported here was partially supported by the 'Fundamental Research Funds of China (Grant no. 14Igjc12) for the Central Universities'. CR Arns CH, 2002, GEOPHYSICS, V67, P1396, DOI 10.1190/1.1512785 Ayachit U., 2015, PARAVIEW GUIDE PARAL, P276 Charleux L., 2016, ABAPY DOCUMENTATION Dassault Systemes Simulia Corp, 2014, AB 6 14SCRIPT US GUI, P324 Hergert T, 2010, NAT GEOSCI, V3, P132, DOI 10.1038/NGEO739 Karrech A, 2011, J GEOPHYS RES-SOL EA, V116, DOI 10.1029/2010JB007501 Kitware Inc, 2010, THE VTK US GUID, P536 Kurfess D, 2009, COMPUT GEOSCI-UK, V35, P1959, DOI 10.1016/j.cageo.2008.10.019 Liu J, 2016, COMPUT GEOSCI-UK, V89, P107, DOI 10.1016/j.cageo.2016.01.014 Liu J, 2015, J EARTH SCI-CHINA, V26, P53, DOI 10.1007/s12583-015-0520-4 Liu J, 2014, GEOPHYS J INT, V198, P1319, DOI 10.1093/gji/ggu200 Regenauer-Lieb K, 2006, NATURE, V442, P67, DOI 10.1038/nature04868 Romano F, 2014, SCI REP-UK, V4, DOI 10.1038/srep05631 Rosenbaum G, 2010, J GEOPHYS RES-SOL EA, V115, DOI 10.1029/2009JB006696 Schrank CE, 2012, GEOCHEM GEOPHY GEOSY, V13, DOI 10.1029/2012GC004085 Wang HS, 2013, NAT GEOSCI, V6, P38, DOI [10.1038/ngeo1652, 10.1038/NGEO1652] Zysset Philippe K, 2013, Bonekey Rep, V2, P386, DOI 10.1038/bonekey.2013.120 NR 17 TC 5 Z9 5 U1 4 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD FEB PY 2017 VL 99 BP 135 EP 144 DI 10.1016/j.cageo.2016.11.008 PG 10 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA EI7PR UT WOS:000392690900015 DA 2021-04-21 ER PT J AU Liu, HB Chen, HC Chen, K Kierstead, J Lanni, F Takai, H Jin, G AF Liu, Hong-Bin Chen, Hu-Cheng Chen, Kai Kierstead, James Lanni, Francesco Takai, Helio Jin, Ge TI Development of an ADC radiation tolerance characterization system for the upgrade of the ATLAS LAr calorimeter SO CHINESE PHYSICS C LA English DT Article DE radiation tolerance characterization; high-speed multi-channel ADC; total ionization dose; single event effect AB ATLAS LAr calorimeter will undergo its Phase-I upgrade during the long shutdown (LS2) in 2018, and a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multi-channel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for the LTDB. To evaluate the radiation tolerance of these backup commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, with ADC drivers and clock distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as a DAQ board. The data from the ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed with Python, and all the commands are sent to the DAQ board through Gigabit Ethernet by this program. Two ADC boards have been designed for the ADC, ADS52J90 from Texas Instruments and AD9249 from Analog Devices respectively. TID tests for both ADCs have been performed at BNL, and an SEE test for the ADS52J90 has been performed at Massachusetts General Hospital (MGH). Test results have been analyzed and presented. The test results demonstrate that this test system is very versatile, and works well for the radiation tolerance characterization of commercial multi-channel high-speed ADCs for the upgrade of the ATLAS LAr calorimeter. It is applicable to other collider physics experiments where radiation tolerance is required as well. C1 [Liu, Hong-Bin; Jin, Ge] Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China. [Liu, Hong-Bin; Jin, Ge] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [Liu, Hong-Bin; Chen, Hu-Cheng; Chen, Kai; Kierstead, James; Lanni, Francesco; Takai, Helio] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Liu, HB (corresponding author), Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China.; Liu, HB (corresponding author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China.; Liu, HB (corresponding author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM hliu2@bnl.gov RI Liu, Hongbin/AAM-3489-2020; Chen, Kai/B-2271-2015 OI Chen, Kai/0000-0003-4936-3825; Chen, Hucheng/0000-0002-9936-0115 FU U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-SC001270] FX Supported by the U.S. Department of Energy (DE-SC001270) CR American National Standards Institute, 2010, FMC STAND Analog Devices, 2013, AD9249 DAT Cascio EW, 2003, 2003 IEEE RADIATION EFFECTS DATA WORKSHOP RECORD, P141, DOI 10.1109/REDW.2003.1281365 Chen K, 2015, J INSTRUM, V10, DOI 10.1088/1748-0221/10/08/P08009 Hu XY, 2014, NUCL SCI TECH, V25, DOI 10.13538/j.1001-8042/nst.25.060403 Sexton FW, 2003, IEEE T NUCL SCI, V50, P603, DOI 10.1109/TNS.2003.813137 Texas Instrumentation, 2015, ADS52J90 DAT Xilinx Inc, 2015, ZC706 US GUID NR 8 TC 0 Z9 0 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1674-1137 EI 2058-6132 J9 CHINESE PHYS C JI Chin. Phys. C PD FEB PY 2017 VL 41 IS 2 AR 026101 DI 10.1088/1674-1137/41/2/026101 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EO4CE UT WOS:000396641300018 DA 2021-04-21 ER PT J AU Chilenski, MA Faust, IC Walk, JR AF Chilenski, M. A. Faust, I. C. Walk, J. R. TI eqtools. Modular, extensible, open-source, cross-machine Python tools for working with magnetic equilibria SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Plasma physics; Tokamaks; Magnetic equilibrium; Data analysis ID ALCATOR C-MOD AB As plasma physics research for fusion energy transitions to an increasing emphasis on cross-machine collaboration and numerical simulation, it becomes increasingly important that portable tools be developed to enable data from diverse sources to be analyzed in a consistent manner. This paper presents eqtools, a modular, extensible, open-source toolkit implemented in the Python programming language for handling magnetic equilibria and associated data from tokamaks. eqtools provides a single interface for working with magnetic equilibrium data, both for handling derived quantities and mapping between coordinate systems, extensible to function with data from different experiments, data formats, and magnetic reconstruction codes, replacing the diverse, non-portable solutions currently in use. Moreover, while the open-source Python programming language offers a number of advantages as a scripting language for research purposes, the lack of basic tokamak-specific functionality has impeded the adoption of the language for regular use. Implementing equilibrium-mapping tools in Python removes a substantial barrier to new development in and porting legacy code into Python. In this paper, we introduce the design of the eqtools package and detail the workflow for usage and expansion to additional devices. The implementation of a novel three-dimensional spline solution (in two spatial dimensions and in time) is also detailed. Finally, verification and benchmarking for accuracy and speed against existing tools are detailed. Wider deployment of these tools will enable efficient sharing of data and software between institutions and machines as well as self-consistent analysis of the shared data. Program summary Program title: eqtools Catalogue identifier: AFBICv1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFBICv1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL v3 No. of lines in distributed program, including test data, etc.: 27204 No. of bytes in distributed program, including test data, etc.: 1217844 Distribution format: tar.gz Programming language: Python, C. Computer: PCs. Operating system: Linux, Macintosh OS X, Microsoft Windows. RAM: Several megabytes," depends on resolution of data Classification: 19.4. External routines: F2PY [1], matplotlib [2], MDSplus [3], NumPy [4], SciPy [5] Nature of problem: Access to results from magnetic equilibrium reconstruction code, conversion between various coordinate systems tied to the magnetic equilibrium. Solution method: Data are stored in an object-oriented data structure with human-readable getter methods. Coordinates are converted using bivariate or trivariate splines. Running time: Coordinate transformations on a 66x66 point spatial grid take between 1 and 5 ms per time slice, depending on the transformation used and how many intermediate results have been stored. References: [1] P. Peterson, F2PY: a tool for connecting Fortran and Python programs, International Journal of Computational Science and Engineering 4 (4) (2009) 296-305. [2] J. D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science and Engineering, 9 (3) (2007) 90-95. [3] J. A. Stillerman, T. W. Fredian, K. A. Klare, G. Manduchi, MDSplus data acquisition system, Review of Scientific Instruments 68 (1) (1997) 939-942. [4] S. van der Walt, S. C. Colbert and G. Varoquaux, The NumPy array: a structure for efficient numerical computation, Computing in Science and Engineering 13 (2) (2011) 22-30. [5] E. Jones, T. Oliphant, P Peterson, et al., SciPy: Open source scientific tools for Python (2001-). (C) 2016 Elsevier B.V. All rights reserved. C1 [Chilenski, M. A.; Faust, I. C.; Walk, J. R.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Walk, J. R.] Cinch Financial, 24 Sch St, Boston, MA 02108 USA. RP Chilenski, MA (corresponding author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM markchil@mit.edu; faustian@mit.edu; jrwalk@mit.edu OI Chilenski, Mark/0000-0002-3616-8484 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy SciencesUnited States Department of Energy (DOE) [DE-FC02-99ER54512]; U.S. Department of Energy Office of Science Graduate Research Fellowship Program (DOE SCGF) by American Recovery and Reinvestment Act [DE-AC05-06OR23100] FX This material is based upon work conducted using the Alcator C-Mod tokamak, a DOE Office of Science user facility. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FC02-99ER54512. This material is based upon work supported in part by the U.S. Department of Energy Office of Science Graduate Research Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract number DE-AC05-06OR23100. CR [Anonymous], 2007, GNU GEN PUBLIC LICEN Basse NP, 2007, FUSION SCI TECHNOL, V51, P476, DOI 10.13182/FST07-A1434 Chilenski MA, 2015, NUCL FUSION, V55, DOI 10.1088/0029-5515/55/2/023012 Chilenski M. A., 2015, EQTOOLS PYTHON PACKA Chilenski M. A., 2015, PROFILETOOLS CLASSES Chilenski M. A., 2015, EQTOOLS TOOLS INTERA Chilenski M. A., 2015, EQTOOLS PYTHON TOOLS Chilenski M. A., 2015, GPTOOLS GAUSSIAN PRO Dierckx P., 1993, CURVE SURFACE FITTIN Faust I., REV SCI INSTRUM, V85 Faust I. C., TOROIDAL RAD INVERSI Granetz R. S., 1991, International School of Plasma Physics `Piero Caldirola' Diagnostics for Contemporary Fusion Experiments. Proceedings of the Workshop, P425 Hughes JW, 2003, REV SCI INSTRUM, V74, P1667, DOI 10.1063/1.1532764 Hughes JW, 2001, REV SCI INSTRUM, V72, P1107, DOI 10.1063/1.1319367 Jones E., 2001, SCIPY OPEN SOURCE SC Kouatchou J, 2009, COMP PYTHON NUMPY MA LAO LL, 1985, NUCL FUSION, V25, P1611, DOI 10.1088/0029-5515/25/11/007 Lekien F, 2005, INT J NUMER METH ENG, V63, P455, DOI 10.1002/nme.1296 Peterson P, 2009, INT J COMPUT SCI ENG, V4, P296, DOI 10.1504/IJCSE.2009.029165 Puget J. F., 2016, SPEED COMP C JULIA P Stillerman JA, 1997, REV SCI INSTRUM, V68, P939, DOI 10.1063/1.1147719 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 NR 22 TC 3 Z9 3 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JAN PY 2017 VL 210 BP 155 EP 162 DI 10.1016/j.cpc.2016.09.011 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EF7KC UT WOS:000390507500015 DA 2021-04-21 ER PT S AU Bos, SP Haffert, SY Keller, CU AF Bos, Steven P. Haffert, Sebastiaan Y. Keller, Christoph U. BE Shaw, JA Snik, F TI Rigorous vector wave propagation for arbitrary flat media SO POLARIZATION SCIENCE AND REMOTE SENSING VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Polarization Science and Remote Sensing VIII CY AUG 08-09, 2017 CL San Diego, CA SP SPIE DE Vector Wave Propagation; Polarization; Polarization Aberrations; Simulations; Modal Methods ID POLARIZATION ABERRATIONS; FORMULATION; OPTICS AB Precise modelling of the (off-axis) point spread function (PSF) to identify geometrical and polarization aberrations is important for many optical systems. In order to characterise the PSF of the system in all Stokes parameters, an end-to-end simulation of the system has to be performed in which Maxwell's equations are rigorously solved. We present the first results of a python code that we are developing to perform multiscale end-to-end wave propagation simulations that include all relevant physics. Currently we can handle plane-parallel near-and far-field vector diffraction effects of propagating waves in homogeneous isotropic and anisotropic materials, refraction and reflection of flat parallel surfaces, interference effects in thin films and unpolarized light. We show that the code has a numerical precision on the order of similar to 10(16) for non-absorbing isotropic and anisotropic materials. For absorbing materials the precision is on the order of similar to 10(8). The capabilities of the code are demonstrated by simulating a converging beam reflecting from a flat aluminium mirror at normal incidence. C1 [Bos, Steven P.; Haffert, Sebastiaan Y.; Keller, Christoph U.] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. RP Bos, SP (corresponding author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM stevenbos@strw.leidenuniv.nl CR Aiello A, 2009, PHYS REV A, V80, DOI 10.1103/PhysRevA.80.061801 Bass M., 2009, HDB OPTICS, VII BERREMAN DW, 1972, J OPT SOC AM, V62, P502, DOI 10.1364/JOSA.62.000502 Bindel D, 2002, ACM T MATH SOFTWARE, V28, P206, DOI 10.1145/567806.567809 Born M., 2013, PRINCIPLES OPTICS EL Breckinridge JB, 2015, PUBL ASTRON SOC PAC, V127, P445, DOI 10.1086/681280 Chipman R. A., 2015, SPIE OPTICAL ENG APP FRANCIS J, 1961, COMPUT J, V4, P265, DOI 10.1093/comjnl/4.3.265 FRANCIS JGF, 1962, COMPUT J, V4, P332, DOI 10.1093/comjnl/4.4.332 Hansen E. W., 1988, Proceedings of the SPIE - The International Society for Optical Engineering, V891, P190 Hecht E., 2002, OPTICS Kublanovskaya V. N., 1962, USSR COMP MATH MATH, V1, P637, DOI DOI 10.1016/0041-5553(63)90168-X Lavrinenko A. V., 2015, NUMERICAL METHODS PH Li LF, 1996, J OPT SOC AM A, V13, P1024, DOI 10.1364/JOSAA.13.001024 Lvovsky A. I., 2013, ENCY OPTICAL ENG, P1 McCall MW., 2014, BIREFRINGENT THIN FI MCGUIRE JP, 1990, J OPT SOC AM A, V7, P1614, DOI 10.1364/JOSAA.7.001614 McLeod RR, 2014, ADV OPT PHOTONICS, V6, P368, DOI 10.1364/AOP.6.000368 McPeak KM, 2015, ACS PHOTONICS, V2, P326, DOI 10.1021/ph5004237 Melville DOS, 2011, J VAC SCI TECHNOL B, V29, DOI 10.1116/1.3662090 Merano M, 2007, OPT EXPRESS, V15, P15928, DOI 10.1364/OE.15.015928 Ruoff J, 2009, J MICRO-NANOLITH MEM, V8, DOI 10.1117/1.3173803 Semel M, 2003, ASTRON ASTROPHYS, V401, P1, DOI 10.1051/0004-6361:20021606 Soummer R, 2007, OPT EXPRESS, V15, P15935, DOI 10.1364/OE.15.015935 Wang TL, 2002, MATH COMPUT, V71, P1473 Weenink J. G., 2012, A A UNPUB Wolf E., 2007, INTRO THEORY COHEREN NR 27 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-1272-3; 978-1-5106-1271-6 J9 PROC SPIE PY 2017 VL 10407 AR UNSP 1040709 DI 10.1117/12.2273341 PG 19 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BJ1XF UT WOS:000418369900006 DA 2021-04-21 ER PT B AU Wilke, B Semwal, SK AF Wilke, Brian Semwal, Sudhanshu K. BE Claudio, AP Bechmann, D Braz, J TI Generative Animation in a Physics Engine using Motion Captures SO PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 1 LA English DT Proceedings Paper CT 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP) CY FEB 27-MAR 01, 2017 CL Porto, PORTUGAL SP Inst Syst & Technologies Informat, Control & Commun, ACM SIGGRAPH, AFIG, Eurographics DE Articulated Motion; Motion Capture; Novel Application; Asymmetric Scaling; Under Controlling ID INTERPOLATION AB Motion captures are an industry standard for producing high-quality, realistic animations. However, generating novel animations from motion captures remains a complex, non-trivial problem. Many techniques have been developed, including kinematics and manually solving the equations of motion. We present a new technique using a physics engine to generate novel animations. Motion captures are effectively simulated within a popular open-source physics engine, Bullet, and two generative techniques are applied. These generative techniques - asymmetric scaling and under-controlling - are shown to be simple and straight-forward. The techniques and methods were implemented in Python and C++, and show new promising avenues for generative animation using existing motion captures. C1 [Wilke, Brian; Semwal, Sudhanshu K.] Univ Colorado, Dept Comp Sci, Colorado Springs, CO 80918 USA. RP Wilke, B (corresponding author), Univ Colorado, Dept Comp Sci, Colorado Springs, CO 80918 USA. CR Ashraf G, 2000, PROC GRAPH INTERF, P45 Baraff D., 1989, Computer Graphics, V23, P223 BARAFF D, 1991, COMP GRAPH, V25, P31 Beazley D. M, 2011, PLY PYTHON LEX YACC Boulic R., 1990, Visual Computer, V6, P344, DOI 10.1007/BF01901021 Calvert T, 2003, CARNEGIE MELLON U MO CALVERT TW, 1982, IEEE COMPUT GRAPH, V2, P41 Coumans E., 2012, BULLET 2 80 PHYS SDK Evans C, 2011, YAML Glardon P, 2004, ICOMPUTER GRAPHICS I Hodgins J, 1996, ROB AUT 1996 P 1996, V4 Knuth D. E, 1998, IEEE COMPUT GRAPH, P232 Macchietto A, 2009, IACM T GRAPHICS, V28, P2009 Multon F, 1999, J VISUAL COMP ANIMAT, V10, P39 OpenGL, 2013, PYTH OP BIND Rose C, 1998, IEEE COMPUT GRAPH, V18, P32, DOI 10.1109/38.708559 Ryan R, 1990, IADAMS MULTIBODY SYS, P361 Schreiner L. K. J., 2002, ACM SIGGRAPH EUR S C SciPy, 2013, SCIPY V0 12 REF GUID NR 19 TC 0 Z9 0 U1 1 U2 2 PU SCITEPRESS PI SETUBAL PA AV D MANUELL, 27A 2 ESQ, SETUBAL, 2910-595, PORTUGAL BN 978-989-758-224-0 PY 2017 BP 250 EP 257 DI 10.5220/0006134702500257 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Imaging Science & Photographic Technology SC Computer Science; Imaging Science & Photographic Technology GA BK9SL UT WOS:000444939100025 OA Other Gold DA 2021-04-21 ER PT B AU Urcelay-Olabarria, I Lazkoz, R Urrestilla, J Leonardo, A Igartua, JM AF Urcelay-Olabarria, Irene Lazkoz, Ruth Urrestilla, Jon Leonardo, Aritz Igartua, Josu M. BE Escudeiro, P Costagliola, G Zvacek, S Uhomoibhi, J McLaren, BM TI Jupyter Notebook as the Physics Experimental Laboratory's Logbook First Approach SO PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION (CSEDU), VOL 1 LA English DT Proceedings Paper CT 9th International Conference on Computer Supported Education (CSEDU) CY APR 21-23, 2017 CL Porto, PORTUGAL SP Inst Syst & Technologies Informat, Control & Commun, Int Soc Engn Educ, IEEE Portugal Sect, IEEE Portugal Educ Chapter DE Jupyter Notebook; Virtual Laboratory; Python ID LINEAR-REGRESSION ANALYSIS; LAB AB In the Physics Degree it is of fundamental importance to practice in an Experimental Laboratory. The standard Laboratory Sessions consist of two main parts: data handling and data processing. The session should also have a prologue, where students get to know the underlaying theory of the practical session and an epilogue, where students present the results obtained and the difficulties encountered. The prologue and the epilogue naturally decouple from the work in the laboratory. Data processing, in most cases, is effectively decoupled from the work in the laboratory, as well. In this short paper we present a tool, the Jupyter Notebook, an electronic laboratory logbook, which conveniently facilitates the decoupling of the data handling and processing, but which merges almost completely into an electronic notebook the four parts of the laboratory practical session: theory, data, processing and presentation. But, interestingly, the notebook goes beyond that: it allows the students to explore the data in an interactive way (simulating variants), to acquire a deeper knowledge of the data (by digitally altering the experiment or simulating new ones), to propose new experiments, etcetera. We strongly believe that this tool can also motivate the students: the results are obtained interactively, immediately, visually, and they can be shared and even improved. Moreover, the laboratory sessions get optimized: simulations make the sessions be focused on obtaining data and in its variants. C1 [Urcelay-Olabarria, Irene] Euskal Herriko Unibertsitatea UPV EHU, Bilboko Ingn Eskola, Fis Aplikatua Saila 1, Urkixo Zumarkalea Z-G, Bilbao, Spain. [Lazkoz, Ruth; Urrestilla, Jon] Univ Basque Country UPV EHU, Dept Theoret Phys & Hist Sci, Bilbao 48040, Spain. [Leonardo, Aritz; Igartua, Josu M.] Univ Basque Country UPV EHU, Fac Sci & Technol, Appl Phys Dept 2, B Sarriena S-N, Leioa, Bizkaia, Spain. RP Urcelay-Olabarria, I (corresponding author), Euskal Herriko Unibertsitatea UPV EHU, Bilboko Ingn Eskola, Fis Aplikatua Saila 1, Urkixo Zumarkalea Z-G, Bilbao, Spain. RI Igartua, Josu M./Z-5395-2019; Liceranzu, Aritz Leonardo/AAA-9337-2019; Urcelay-Olabarria, Irene/H-9024-2015 OI Igartua, Josu M./0000-0001-7983-5331; Liceranzu, Aritz Leonardo/0000-0002-5942-2270; Urcelay-Olabarria, Irene/0000-0001-7228-8531 CR Bernhard J, 2003, PHYS LEARNING MICROC, P313 COLLINS LA, 1974, AM J PHYS, V42, P560, DOI 10.1119/1.1987777 Damyanov DS, 2015, EUR J PHYS, V36, DOI 10.1088/0143-0807/36/5/055047 Dounas-Frazer D, 2016, ARXIV E PRINTS Eshach H, 2016, CAN J PHYS, V94, P1205, DOI 10.1139/cjp-2016-0308 Harms U, 2003, P 2 EUR C PHYS TEACH HMURCIK L, 1989, AM J PHYS, V57, P135, DOI 10.1119/1.16110 Jupyter, 2017, JUP NOT Ricci MLM, 2007, AM J PHYS, V75, P707, DOI 10.1119/1.2742400 OREAR J, 1991, AM J PHYS, V59, P87, DOI 10.1119/1.16706 Sassi E, 2001, PHYS TEACHER ED, P57 Stanley J. T, 2016, ARXIV E PRINTS Vicentini E. S. E. M, 2008, CONNECTING RES PHYS, P1 Wilcox B. R, 2017, PHYS REV X Wilcox BR, 2016, PHYS REV PHYS EDUC R, V12, DOI 10.1103/PhysRevPhysEducRes.12.020132 NR 15 TC 0 Z9 0 U1 0 U2 8 PU SCITEPRESS PI SETUBAL PA AV D MANUELL, 27A 2 ESQ, SETUBAL, 2910-595, PORTUGAL BN 978-989-758-239-4 PY 2017 BP 458 EP 463 DI 10.5220/0006352104580463 PG 6 WC Computer Science, Interdisciplinary Applications; Education & Educational Research; Education, Scientific Disciplines SC Computer Science; Education & Educational Research GA BK9IM UT WOS:000444645500050 OA Other Gold DA 2021-04-21 ER PT S AU Blandon, JS Grisales, JP Riascos, H AF Blandon, J. S. Grisales, J. P. Riascos, H. BE PerezTaborda, JA TI Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package SO 5TH COLOMBIAN CONFERENCE OF ENGINEERING PHYSICS (V CNIF) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 5th Colombian Conference of Engineering Physics (V CNIF) CY SEP 26-30, 2016 CL Medellin, COLOMBIA SP EAFIT Univ, Natl Univ Colombia, Colombian Soc Engn Phys AB Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed. C1 [Blandon, J. S.; Grisales, J. P.; Riascos, H.] Univ Tecnol Pereira, Plasma Laser & Applicat Grp, Pereira, Colombia. RP Blandon, JS (corresponding author), Univ Tecnol Pereira, Plasma Laser & Applicat Grp, Pereira, Colombia. EM jsblandon@utp.edu.co; jpgrisales@utp.edu.co; hriascos@utp.edu.co FU Plasma, Laser and Applications Group(GPLA); Universidad Tecnologica de Pereira (UTP) FX We would like to thanks to Henry Riascos Landazuri, director of the Plasma, Laser and Applications Group(GPLA) and Universidad Tecnologica de Pereira (UTP), for his support to develop this work. Also, we acknowledge the resources given by SENA and Colciencias to do this simulation project. CR Analytics C, 2016, AN SOFTW DISTR BIRDSALL CK, 1984, PLASMA PHYS VIA COMP Fitzpatrick R, 2006, COMPUTATIONAL PHYS I FORSLUND DW, 1985, SPACE SCI REV, V42, P3, DOI 10.1007/BF00218219 Francis FC, 1974, INTRO PLASMA PHYS Gibbon P, 2014, ESPIC PY Guasp J, 1976, ELEMENTOS TEORIA CIN Lapenta G, 2006, CENTRUM PLASMA ASTRO Lindman E. L., 1970, Journal of Computational Physics, V5, P13, DOI 10.1016/0021-9991(70)90049-5 Markidis S, 2016, PIC M Markidis S, 2014, DISPERSION M Markidis S, 2011, J COMPUT PHYS, V230, P7037, DOI 10.1016/j.jcp.2011.05.033 Martin D, 2007, ELECTROSTATIC PIC SI Matsumoto H, 1985, COMPUTER SIMULATIONS McMillan S, 2013, COMPUTATIONAL PHYS MORSE RL, 1969, PHYS REV LETT, V23, P1087, DOI 10.1103/PhysRevLett.23.1087 WOOLFSON MM, 1999, INTRO COMPUTER SIMUL NR 17 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2017 VL 850 AR 012007 DI 10.1088/1742-6596/850/1/012007 PG 8 WC Physics, Multidisciplinary SC Physics GA BK4YT UT WOS:000437878400007 OA Bronze DA 2021-04-21 ER PT B AU Sanjaya, WSM Anggraeni, D Zakaria, K Juwardi, A Munawwaroh, M AF Sanjaya, W. S. Mada Anggraeni, Dyah Zakaria, Kiki Juwardi, Atip Munawwaroh, Madinatul BE Wibowo, FW TI The Design of Face Recognition and Tracking for Human-Robot Interaction SO 2017 2ND INTERNATIONAL CONFERENCES ON INFORMATION TECHNOLOGY, INFORMATION SYSTEMS AND ELECTRICAL ENGINEERING (ICITISEE): OPPORTUNITIES AND CHALLENGES ON BIG DATA FUTURE INNOVATION LA English DT Proceedings Paper CT 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE) CY NOV 01-02, 2017 CL Yogyakarta, INDONESIA SP Univ Amikom Yogyakarta,IEEE Student Branch, STMIK AMIKOM Purwokerto, Univ Gadjah Mada, IEEE Indonesia DE Face Recognition; Social Robot; Arduino; Python 2.7; Human-Robot Interaction; SyPEHUL ID FACIAL EXPRESSION RECOGNITION AB This paper discusses the development of Social Robot named SyPEHUL (System of Physic, Electronic, Humanoid Robot and Machine Learning) which can recognize and tracking human face. Face recognition and tracking process use Cascade Classification and LBPH (Local Binary Pattern Histogram) Face Recognizer method based on OpenCV library and Python 2.7. The social robot hardware based on Arduino microcontroller contains by 12 DoF (Degree of Freedom) motor servos to actuate robotic head and its face. The face recognition system has been implemented to Social Robot which can recognize and tracking human face and then mentioned the person name. The face recognition system of Social Robot result shows a good accuracy for Human-Robot Interaction. C1 [Sanjaya, W. S. Mada; Anggraeni, Dyah; Zakaria, Kiki; Juwardi, Atip; Munawwaroh, Madinatul] UIN Sunan Gunung Djati, Fac Sci & Technol, Dept Phys, Bandung, Indonesia. [Sanjaya, W. S. Mada; Anggraeni, Dyah; Zakaria, Kiki; Juwardi, Atip; Munawwaroh, Madinatul] CV Sanjaya Star Grp, Bolabot Techno Robot Inst, Bandung, Indonesia. RP Sanjaya, WSM (corresponding author), UIN Sunan Gunung Djati, Fac Sci & Technol, Dept Phys, Bandung, Indonesia.; Sanjaya, WSM (corresponding author), CV Sanjaya Star Grp, Bolabot Techno Robot Inst, Bandung, Indonesia. EM madasws@gmail.com RI Sanjaya, W. S. Mada/S-3109-2019 OI Sanjaya, W. S. Mada/0000-0003-1963-193X CR Boda R., 2016, ARPN J ENG APPL SCI, V11, P13472 Breazeal C, 2003, ROBOT AUTON SYST, V42, P167, DOI 10.1016/S0921-8890(02)00373-1 Buss M., 2006, INT C INT ROB SYST, P3113 Cid F, 2014, SENSORS-BASEL, V14, P7711, DOI 10.3390/s140507711 Dabhi M. K., 2016, INT J SCI RES, V5, P2015 Doroftei I., 2016, 7 INT C ADV CONC MEC, V147 Hajari P. V., 2015, INT J ADV RES COMPUT, V4, P232 Hedaoo S.V., 2014, INT J ENG TRENDS TEC, V8, P517 Hegel F, 2010, 2010 IEEE RO-MAN, P107, DOI 10.1109/ROMAN.2010.5598691 Kalas M. S., 2014, IJSCAI, V2, P41 Khan MI, 2009, INT J COMPUT SCI NET, V9, P300 Manjunatha R., 2017, INT RES J ENG TECHNO, V4, P437 Punitha A, 2013, INT J EMERGING TECHN, V3, P180 Rahim M.A., 2013, GLOBAL J COMPUTER SC, V13 Rajesham J., 2013, INT J SCI ENG RES, V4, P1540 Sadek NO, 2017, INT J ADV COMPUT SC, V8, P303 Sanjaya W. S. M., 2018, ICCSE, P1 Shan CF, 2009, IMAGE VISION COMPUT, V27, P803, DOI 10.1016/j.imavis.2008.08.005 Sharma N., 2016, INT J INNOVATIVE RES, V5, p10 357 Shayganfar M., 2012, INT C INT ROB SYST, V12 Shi Y., 2015, INT J COMPUTER TREND, V25, P54 Thakare Nita, 2016, INT J COMPUTER SCI M, V5, P74 Tikoo S., 2016, INT J COMPUTER SCI M, V5, P288 Vijay LHC, 2010, INT J COMPUTER THEOR, V2, P552 Viola P, 2004, INT J COMPUT VISION, V57, P137, DOI 10.1023/B:VISI.0000013087.49260.fb Viola P., 2001, TECH REP Vit P., 2016, INT J SIGNAL PROCESS, V9, P143, DOI DOI 10.14257/IJSIP.2016.9.2.13 Zhan C., 2008, INT J COMPUTER GAMES, V2008, P1 NR 28 TC 2 Z9 2 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5386-0658-2 PY 2017 BP 315 EP 320 PG 6 WC Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BJ6SX UT WOS:000426942900060 DA 2021-04-21 ER PT S AU Chen, J Cao, LZ Zhao, CQ Liu, ZY AF Chen, Jun Cao, Liangzhi Zhao, Chuanqi Liu, Zhouyu BE Capriotti, L Cao, L Jimenez, G TI Development of Subchannel Code SUBSC for high-fidelity multi-physics coupling application SO INTERNATIONAL YOUTH NUCLEAR CONGRESS 2016, IYNC2016 SE Energy Procedia LA English DT Proceedings Paper CT 9th International Youth Nuclear Congress (IYNC) CY JUL 24-30, 2016 CL Hangzhou, PEOPLES R CHINA DE Subchannel; SUBSC; PSBT benchmark; OpenMC; Coupling ID NEUTRON-TRANSPORT; SIMULATIONS; CHALLENGES; REACTORS AB PWR core phenomena can be simulated and predicted more precisely and in more details with high-fidelity neutronics and thermal-hydraulics coupling calculation. An in-house subchannel code SUBSC was developed as the thermal-hydraulics solver. The steady-state bundle benchmark of PSBT benchmark was calculated to validate SUBSC; the results showed that the channel averaged quality provided by SUBSC agreed well with the measured data at various conditions. Then a coupling code written in python language was employed to couple SUBSC and the Monte Carlo code OpenMC. The coupling code SUBSC/OpenMC was applied for a typical PWR 3x3 pin cluster coupling calculation. The numerical results demonstrated that the subchannel code SUBSC developed in this paper is applicable for high-fidelity coupling calculation. (C) 2017 The Authors. Published by Elsevier Ltd. C1 [Chen, Jun; Cao, Liangzhi; Liu, Zhouyu] Xi An Jiao Tong Univ, Sch Nucl Sci & Technol, Xian 710049, Shaanxi, Peoples R China. [Zhao, Chuanqi] Nucl & Radiat Safety Ctr, Beijing 100082, Peoples R China. RP Liu, ZY (corresponding author), Xi An Jiao Tong Univ, Sch Nucl Sci & Technol, Xian 710049, Shaanxi, Peoples R China. EM zhouyuliu@mail.xjtu.edu.cn FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11522544] FX This work was supported by the Project 11522544 supported by National Natural Science Foundation of China. CR Brian N A, 2016, P ANS REACT PHYS TOP, P243 Clarno K.T., 2015, P ANS JOINT INT C MA Daeubler M, 2015, ANN NUCL ENERGY, V83, P352, DOI 10.1016/j.anucene.2015.03.040 Ivanov K, 2007, ANN NUCL ENERGY, V34, P501, DOI 10.1016/j.anucene.2007.02.016 Jung YS, 2013, ANN NUCL ENERGY, V62, P357, DOI 10.1016/j.anucene.2013.06.031 Kochunas B., 2014, CASLU20140051000 Romano PK, 2013, ANN NUCL ENERGY, V51, P274, DOI 10.1016/j.anucene.2012.06.040 Rubin A.J., 2011, OECD NRC BENCHMARK B Sanchez V, 2009, AM NUCL SOC INT C MA, P3472 Seker V, 2007, P JOINT INT TOP M MA Short MP, 2013, J NUCL MATER, V443, P579, DOI 10.1016/j.jnucmat.2013.08.014 Turinsky PJ, 2016, J COMPUT PHYS, V313, P367, DOI 10.1016/j.jcp.2016.02.043 NR 12 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1876-6102 J9 ENRGY PROCED PY 2017 VL 127 BP 264 EP 274 DI 10.1016/j.egypro.2017.08.121 PG 11 WC Energy & Fuels; Nuclear Science & Technology SC Energy & Fuels; Nuclear Science & Technology GA BJ6OA UT WOS:000426883700031 OA Other Gold DA 2021-04-21 ER PT S AU Sweitzer, JC AF Sweitzer, Justin C. BE Burchell, MJ TI Energy based distribution for multi-layer fragmentation SO 14TH HYPERVELOCITY IMPACT SYMPOSIUM (HVIS 2017) SE Procedia Engineering LA English DT Proceedings Paper CT 14th Hypervelocity Impact Symposium (HVIS) CY APR 24-28, 2017 CL Univ Kent, Canterbury Campus, Canterbury, ENGLAND HO Univ Kent, Canterbury Campus DE fragmentation; energy based; fracture ID DYNAMIC FRAGMENTATION; SIZE DISTRIBUTIONS; CRACK-GROWTH; STATISTICS; FRACTURE; SOLIDS AB A closed form, energy based statistical model of dynamic fragmentation is presented with application to traditional and multi-layer processes. Modern fragmentation predictive tools generally rely on the Mott & Linfoot distribution(1) alongside the Mott physics-based(2) average fragment size. Multi-layer fragmentation sleeves have been observed to produce larger fragments than those predicted by the Mott physics-based model(3). The experiments that indicate this effect were performed as a part of Insensitive Munitions (IM) efforts to protect munitions from unintentional initiation by adding a barrier layer to the fragmenting sleeve. The present model is developed with the intent of application to this class of multi-layer devices. The energy-based(1-9) extensions to Mott's theory, meant to reconcile the effect of energy absorption during crack formation, were investigated as a starting point for the present model. The present model is formulated by building the energy-based theory of Kipp & Grady(9). Modification to the Kipp & Grady theory is made by closing the calculation of average fragment size through the introduction of crack velocity. The crack velocity is used to determine the time required for a fracture to proceed to completion, leading to the average distance a tensile release wave propagates on the formation interval. Multi-layer effects are treated through a method of statistical mixtures. This paper will discuss the model formulation, to include the physical basis and supporting calculations for crack velocity. The model has been integrated with the ALE3D(10) hydrocode through the VisIt Python(11-13) interface, and the implementation will be briefly summarized Application to fragmentation of a uniformly expanding cylinder and impact fragmentation of flat plates will be presented with supporting experimental results. (C) 2017 The Authors. Published by Elsevier Ltd. C1 [Sweitzer, Justin C.] Pract Energet Res LLC, 7500 Mem Pkwy SW, Huntsville, AL 35803 USA. RP Sweitzer, JC (corresponding author), Pract Energet Res LLC, 7500 Mem Pkwy SW, Huntsville, AL 35803 USA. EM justin.sweitzer@per-hq.com FU Presto Foundation FX Initial development of the fragmentation model was funded in part under a grant from the Presto Foundation. Spectra Technologies, LLC and Practical Energetics Research, LLC provided early validation tests and test articles. Further development was also made possible by Practical Energetics Research, LLC. CR [Anonymous], 2013, VISIT PYTHON INTERFA Childs H., 2013, VISIT END USER TOOL Daniels A., 2007, 2007 INS MUN EN MAT Dehn J., 1981, PROBABILITY FORMULAS Dehn J. T., 1980, TERMINAL EFFECTIVENE DULANEY EN, 1960, J APPL PHYS, V31, P2233, DOI 10.1063/1.1735529 Elek P, 2009, FME TRANS, V37, P129 Engelkemier D., 2012, AM PIMS NO PIMS COMP FREUND LB, 1985, J MECH PHYS SOLIDS, V33, P169, DOI 10.1016/0022-5096(85)90029-8 FREUND LB, 1986, ENG FRACT MECH, V23, P119, DOI 10.1016/0013-7944(86)90181-5 Gao Y., 2008, INT C NAN NAN, P25 GLENN LA, 1986, J APPL PHYS, V59, P1379, DOI 10.1063/1.336532 Gold V. M., 2001, METHOD PREDICTING FR, V21 Gold V. M., 2009, EFFECT EXPLOSIVE DET, P1, DOI [10.1016/0734-743X(88)90011-5, DOI 10.1016/0734-743X(88)90011-5] Gold V. M., 2007, PROGRAM Gold VM, 2008, ENG FRACT MECH, V75, P275, DOI 10.1016/j.engfracmech.2007.02.025 Grady D., 2007, FRAGMENTATION RINGS Grady DE, 2003, INT J IMPACT ENG, V29, P293, DOI 10.1016/j.ijimpeng.2003.09.026 GRADY DE, 1985, J APPL PHYS, V58, P1210, DOI 10.1063/1.336139 GRADY DE, 1981, J GEOPHYS RES, V86, P1047, DOI 10.1029/JB086iB02p01047 GRADY DE, 1990, J APPL PHYS, V68, P6099, DOI 10.1063/1.347188 GRADY DE, 1982, J APPL PHYS, V53, P322, DOI 10.1063/1.329934 Grady DE, 2015, J APPL PHYS, V117, DOI 10.1063/1.4918603 Grady DE, 2010, INT J FRACTURE, V163, P85, DOI 10.1007/s10704-009-9418-4 KIPP ME, 1985, J MECH PHYS SOLIDS, V33, P399, DOI 10.1016/0022-5096(85)90036-5 Li YL, 2015, COMP MATER SCI, V104, P212, DOI 10.1016/j.commatsci.2015.04.011 Mott N. F., 1948, ENGINEERING, V165 MOTT NF, 1947, PROC R SOC LON SER-A, V189, P300, DOI 10.1098/rspa.1947.0042 Mott NF., 1943, THEORY FRAGMENTATION Nichols A., 2007, USERS MANUAL ALE3D A Peterson NR, 2015, PROCEDIA ENGINEER, V103, P475, DOI 10.1016/j.proeng.2015.04.062 Pichugin A., 2008, PEOPLE BRUNEL AC UK, V2, P1 Rayleigh L, 1885, P LOND MATH SOC, Vs1-17, P4, DOI [10.1112/plms/s1-17.1.4, DOI 10.1112/PLMS/S1-17.1.4] Sweitzer J. C., 2016, HIGH VELOCITY IMPACT Sweitzer J. C., 2016, JOINT CLASS BOMBS WA, P1 van Rossum Jr G, 2011, PYTHON LANGUAGE REFE Zhou F, 2006, APPL PHYS LETT, V88, DOI 10.1063/1.2216892 NR 37 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-7058 J9 PROCEDIA ENGINEER PY 2017 VL 204 BP 162 EP 169 DI 10.1016/j.proeng.2017.09.769 PG 8 WC Engineering, Mechanical SC Engineering GA BJ6AA UT WOS:000426435000018 OA Other Gold DA 2021-04-21 ER PT S AU Morgan, R Turmon, M Delacroix, C Savransky, D Garrett, D Lowrance, P Liu, XC Nunez, P AF Morgan, Rhonda Turmon, Michael Delacroix, Christian Savransky, Dmitry Garrett, Daniel Lowrance, Patrick Liu, Xiang Cate Nunez, Paul BE Shaklan, S TI ExEP Yield Modeling Tool and Validation Test Results SO TECHNIQUES AND INSTRUMENTATION FOR DETECTION OF EXOPLANETS VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Techniques and Instrumentation for Detection of Exoplanets VIII CY AUG 08-10, 2017 CL San Diego, CA SP SPIE DE exoplanets; yield modeling; software testing; EXOSIMS; Design Reference Mission simulation; high contrast imaging; coronagraph; starshade AB EXOSIMS is an open-source simulation tool for parametric modeling of the detection yield and characterization of exoplanets. EXOSIMS has been adopted by the Exoplanet Exploration Programs Standards Definition and Evaluation Team (ExSDET) as a common mechanism for comparison of exoplanet mission concept studies. To ensure trustworthiness of the tool, we developed a validation test plan that leverages the Python-language unit-test framework, utilizes integration tests for selected module interactions, and performs end-to-end crossvalidation with other yield tools. This paper presents the test methods and results, with the physics-based tests such as photometry and integration time calculation treated in detail and the functional tests treated summarily. The test case utilized a 4m unobscured telescope with an idealized coronagraph and an exoplanet population from the IPAC radial velocity (RV) exoplanet catalog. The known RV planets were set at quadrature to allow deterministic validation of the calculation of physical parameters, such as working angle, photon counts and integration time. The observing keepout region was tested by generating plots and movies of the targets and the keepout zone over a year. Although the keepout integration test required the interpretation of a user, the test revealed problems in the L2 halo orbit and the parameterization of keepout applied to some solar system bodies, which the development team was able to address. The validation testing of EXOSIMS was performed iteratively with the developers of EXOSIMS and resulted in a more robust, stable, and trustworthy tool that the exoplanet community can use to simulate exoplanet direct-detection missions from probe class, to WFIRST, up to large mission concepts such as HabEx and LUVOIR. C1 [Morgan, Rhonda; Turmon, Michael; Nunez, Paul] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Delacroix, Christian; Savransky, Dmitry; Garrett, Daniel] Cornell Univ, Space Imaging & Opt Syst Lab, Ithaca, NY 14853 USA. [Delacroix, Christian; Savransky, Dmitry] Cornell Univ, Carl Sagan Inst, Ithaca, NY 14853 USA. [Lowrance, Patrick; Liu, Xiang Cate] CALTECH, IPAC, Pasadena, CA 91125 USA. RP Morgan, R (corresponding author), 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Rhonda.Morgan@jpl.nasa.gov RI Savransky, Dmitry/M-1298-2014 OI Savransky, Dmitry/0000-0002-8711-7206; Lowrance, Patrick/0000-0001-8014-0270; Garrett, Daniel/0000-0002-4252-7017 FU National Aeronautics and Space AdministrationNational Aeronautics & Space Administration (NASA); U.S. Government sponsorship; Exoplanet Exploration Program office; NASA funds FX Copyright 2017. All rights reserved. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. U.S. Government sponsorship acknowledged; this work was partially supported by the Exoplanet Exploration Program office, and NASA funds to Cornell. CR Cahoy KL, 2010, ASTROPHYS J, V724, P189, DOI 10.1088/0004-637X/724/1/189 Delacroix C., 2017, EXOPLANET OPEN SOURC Delacroix C, 2016, PROC SPIE, V9911, DOI 10.1117/12.2233913 Fortney JJ, 2007, ASTROPHYS J, V668, P1267, DOI 10.1086/521435 Fortney JJ, 2007, ASTROPHYS J, V659, P1661, DOI 10.1086/512120 Garrett D., 2016, AAS M ABSTRACTS, V227 Leinert C, 1998, ASTRON ASTROPHYS SUP, V127, P1, DOI 10.1051/aas:1998105 Morgan R., 2016, AAS M ABSTRACTS, V227 NASA Navigation and Ancillary Information Facility, 2017, SPICE OBS GEOM SYST Nemati B., 2014, P SOC PHOTO-OPT INS, V9143, P9143 Savransky D., 2017, EXOSIMS EXOPLANET OP Savransky D, 2016, J ASTRON TELESC INST, V2, DOI 10.1117/1.JATIS.2.1.011006 Stark C, 2017, COMMUNICATION Stark CC, 2015, ASTROPHYS J, V808, DOI 10.1088/0004-637X/808/2/149 Stark CC, 2014, ASTROPHYS J, V795, DOI 10.1088/0004-637X/795/2/122 Traub WA, 2016, J ASTRON TELESC INST, V2, DOI 10.1117/1.JATIS.2.1.011020 NR 16 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-1258-7; 978-1-5106-1257-0 J9 PROC SPIE PY 2017 VL 10400 AR UNSP 104001K DI 10.1117/12.2274468 PG 14 WC Astronomy & Astrophysics; Instruments & Instrumentation; Physics, Applied SC Astronomy & Astrophysics; Instruments & Instrumentation; Physics GA BJ3MH UT WOS:000423870900043 OA Green Accepted DA 2021-04-21 ER PT S AU Li, L Yan, H Xu, W Yu, DT Heroux, A Lee, WK Campbell, SI Chu, YS AF Li, Li Yan, Hanfei Xu, Wei Yu, Dantong Heroux, Annie Lee, Wah-Keat Campbell, Stuart I. Chu, Yong S. BE Lai, B Somogyi, A TI PyXRF: Python-Based X-ray Fluorescence Analysis Package SO X-RAY NANOIMAGING: INSTRUMENTS AND METHODS III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on X-Ray Nanoimaging - Instruments and Methods III CY AUG 07-08, 2017 CL San Diego, CA SP SPIE, XIA LLC DE X-ray fluorescence; quantitative analysis ID SPECTRA AB We developed a python-based fluorescence analysis package (PyXRF) at the National Synchrotron Light Source II (NSLS-II) for the X-ray fluorescence-microscopy beamlines, including Hard X-ray Nanoprobe (HXN), and Submicron Resolution X-ray Spectroscopy (SRX). This package contains a high-level fitting engine, a comprehensive commandline/GUI design, rigorous physics calculations, and a visualization interface. PyXRF offers a method of automatically finding elements, so that users do not need to spend extra time selecting elements manually. Moreover, PyXRF provides a convenient and interactive way of adjusting fitting parameters with physical constraints. This will help us perform quantitative analysis, and find an appropriate initial guess for fitting. Furthermore, we also create an advanced mode for expert users to construct their own fitting strategies with a full control of each fitting parameter. PyXRF runs single-pixel fitting at a fast speed, which opens up the possibilities of viewing the results of fitting in real time during experiments. A convenient I/O interface was designed to obtain data directly from NSLS-II's experimental database. PyXRF is under open-source development and designed to be an integral part of NSLS-II's scientific computation library. C1 [Li, Li; Yan, Hanfei; Heroux, Annie; Lee, Wah-Keat; Campbell, Stuart I.; Chu, Yong S.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Xu, Wei; Yu, Dantong] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA. RP Li, L (corresponding author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM lili@bnl.gov RI Campbell, Stuart I/A-8485-2010; Campbell, Stuart/ABA-6344-2020; Yan, Hanfei/F-7993-2011 OI Campbell, Stuart I/0000-0001-7079-0878; Campbell, Stuart/0000-0001-7079-0878; Yan, Hanfei/0000-0001-6824-0367 FU DOE Office of ScienceUnited States Department of Energy (DOE) [DE-SC0012704] FX This research used the Hard X-ray Nanoprobe (HXN) Beamline (3-ID) of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. The authors acknowledge the support from all the group members at Data Acquisition, Management and Analysis group at NSLS-II of BNL. We especially thank Eric Dill, Kenneth Lauer, Thomas Caswell, Arman Arkilic and Daniel Allan for useful discussions on GUI development and data I/O. We thank Stefan Vogt at Advanced Photon Source of Argonne National Laboratory for fruitful discussions at the early stage of this project. We thank Yao Shun at Computational Science Initiative of BNL for contributions to this work. We also thank Garth Williams, Yu-chen Karen Chen-Wiegart and Juergen Thieme at SRX of NSLS-II for all the comments on, and suggestions for this work. We acknowledge Mingyuan Ge, Wen Hu, Xiaojing Huang and Sebastian Kalbfleisch for experimental support at the HXN beamline for producing the XRF maps used for this work. We are deeply grateful to Hirofumi Sumi and Toshio Suzuki from Materials and Chemistry Department at National Institute of Advanced Industrial Science and Technology in Japan for giving us permission to use their microscopy images of a Ni-GDC sample, taken at the HXN beamline of the NSLS-II. CR Alfeld M, 2014, J PHYS CONF SER, V499, DOI 10.1088/1742-6596/499/1/012013 Chang C., 2013, P 10 INT C EXP EM TE, DOI [10.1109/CEWIT.2013.6713744, DOI 10.1109/CEWIT.2013.6713744] Da Silva JC, 2017, OPTICA, V4, P492, DOI 10.1364/OPTICA.4.000492 Denizer B, 2014, MATER SCI FORUM, V772, P39, DOI 10.4028/www.scientific.net/MSF.772.39 FARROW R, 1995, NUCL INSTRUM METH B, V97, P567, DOI 10.1016/0168-583X(94)00370-X Huang XJ, 2013, SCI REP-UK, V3, DOI 10.1038/srep03562 Lawson C.L., 1995, SOLVING LEAST SQUARE Lerotic M, 2004, ULTRAMICROSCOPY, V100, P35, DOI 10.1016/j.ultramic.2004.01.008 Levenberg K., 1944, Quarterly of Applied Mathematics, V2, P164 MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P431, DOI 10.1137/0111030 Miqueles EX, 2010, PHYS MED BIOL, V55, P1007, DOI 10.1088/0031-9155/55/4/007 Paunesku T, 2006, J CELL BIOCHEM, V99, P1489, DOI 10.1002/jcb.21047 RYAN CG, 1988, NUCL INSTRUM METH B, V34, P396, DOI 10.1016/0168-583X(88)90063-8 Schoonjans T, 2011, SPECTROCHIM ACTA B, V66, P776, DOI 10.1016/j.sab.2011.09.011 Schroer CG, 2001, APPL PHYS LETT, V79, P1912, DOI 10.1063/1.1402643 Sole VA, 2007, SPECTROCHIM ACTA B, V62, P63, DOI 10.1016/j.sab.2006.12.002 Stone SS, 2008, J PARALLEL DISTR COM, V68, P1307, DOI 10.1016/j.jpdc.2008.05.013 Tsuji K., 2004, XRAY SPECTROMETRY RE Van Grieken R., 2001, HDB XRAY SPECTROMETR Vogt S, 2003, J PHYS IV, V104, P635, DOI 10.1051/jp4:20030160 Wu CQ, 2015, IEEE T CLOUD COMPUT, V3, P169, DOI 10.1109/TCC.2014.2358220 Wu HR, 2012, J PHYS D APPL PHYS, V45, DOI 10.1088/0022-3727/45/24/242001 Yan HF, 2016, SCI REP-UK, V6, DOI 10.1038/srep20112 NR 23 TC 16 Z9 16 U1 1 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-1236-5; 978-1-5106-1235-8 J9 PROC SPIE PY 2017 VL 10389 AR UNSP 103890U DI 10.1117/12.2272585 PG 8 WC Nanoscience & Nanotechnology; Instruments & Instrumentation; Optics; Physics, Applied SC Science & Technology - Other Topics; Instruments & Instrumentation; Optics; Physics GA BJ0ZW UT WOS:000417335200008 DA 2021-04-21 ER PT S AU Ghalila, H Ammar, A Varadharajan, S Majdi, Y Zghal, M Lahmar, S Lakshminarayanan, V AF Ghalila, H. Ammar, A. Varadharajan, S. Majdi, Y. Zghal, M. Lahmar, S. Lakshminarayanan, V. BE Liu, X Zhang, XC TI Optics Simulations: A Python Workshop SO 14TH CONFERENCE ON EDUCATION AND TRAINING IN OPTICS AND PHOTONICS (ETOP 2017) SE Proceedings of SPIE LA English DT Proceedings Paper CT 14th Conference on Education and Training in Optics and Photonics (ETOP) CY MAY 29-31, 2017 CL Hangzhou, PEOPLES R CHINA SP Int Commiss Opt, IEEE Photon Soc, Opt Soc, SPIE, Chinese Opt Soc, Chinese Natl Steering Comm Opt & Photon, Opt Soc Zhejiang Province, Zhejiang Univ, Fac Informat Technol, Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat DE Active learning; Optics simulations; Python programming language; Numerical experiments AB Numerical simulations allow teachers and students to indirectly perform sophisticated experiments that cannot be realizable otherwise due to cost and other constraints. During the past few decades there has been an explosion in the development of numerical tools concurrently with open source environments such as Python software. This availability of open source software offers an incredible opportunity for advancing teaching methodologies as well as in research. More specifically it is possible to correlate theoretical knowledge with experimental measurements using "virtual" experiments. We have been working on the development of numerical simulation tools using the Python program package and we have concentrated on geometric and physical optics simulations. The advantage of doing hands-on numerical experiments is that it allows the student learner to be an active participant in the pedagogical/learning process rather than playing a passive role as in the traditional lecture format. Even in laboratory classes because of constraints of space, lack of equipment and often-large numbers of students, many students play a passive role since they work in groups of 3 or more students. Furthermore these new tools help students get a handle on numerical methods as well simulations and impart a "feel" for the physics under investigation. C1 [Ghalila, H.; Ammar, A.; Majdi, Y.; Lahmar, S.] Univ Tunis El Manar, Lab Spect Atom Mol & Applicat, Fac Sci Tunis, Tunis, Tunisia. [Ghalila, H.; Ammar, A.; Majdi, Y.; Zghal, M.; Lahmar, S.] Soc Tunisienne Opt, Tunis, Tunisia. [Lakshminarayanan, V.] Univ Waterloo, Sch Optometry & Vis Sci, Waterloo, ON N2L 3G1, Canada. [Varadharajan, S.] LV Prasad Eye Inst, Brien Holden Inst Optometry & Vis Sci, Hyderabad, Andhra Prades, India. [Varadharajan, S.] LV Prasad Eye Inst, Prof Brien Holden Eye Res Ctr, Hyderabad, Andhra Prades, India. [Zghal, M.] Univ Carthage, Engn Sch Commun Tunis SupCom, GreSCom Lab, Ghazala Technopk, Ariana 2083, Tunisia. RP Lakshminarayanan, V (corresponding author), Univ Waterloo, Sch Optometry & Vis Sci, Waterloo, ON N2L 3G1, Canada. RI ; Lakshminarayanan, Vasudevan/L-6055-2018 OI GHALILA, Hassen/0000-0001-5105-3389; Lakshminarayanan, Vasudevan/0000-0002-3473-1245 CR Alarcon M., ACTIVE LEARNING OPTI Alarcon M., ETOP 2010 Alarcon M., ETOP 2005 Ammar A, 2015, PROC SPIE, V9793, DOI 10.1117/12.2223072 Ben Lakhdar Z., ACTIVE LEARNING PHYS Carnicer A., 2005, Proceedings of the SPIE, V9664, DOI 10.1117/12.2207725 Eylon B., 1996, J SCI EDUC TECHNOL, V5, P93, DOI DOI 10.1007/BF01575150 Foley John T., 2003, Proceedings of the SPIE, V9663, DOI 10.1117/12.2207350 Ghalila H, 2014, PROC SPIE, V9289, DOI 10.1117/12.2070776 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Lakshminarayanan V., 2015, PHOTONICS SPECTRA Lakshminarayanan V., 2015, OPTICS TUTORIALS PYT Lakshminarayanan V., 2017, UNDERSTANDING OPTICS Lakshminarayanan V, 2011, PROC SPIE, V8065, DOI 10.1117/12.889508 Zghal M., ETOP 2009 NR 15 TC 2 Z9 2 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-1382-9; 978-1-5106-1381-2 J9 PROC SPIE PY 2017 VL 10452 AR UNSP 1045218 DI 10.1117/12.2268377 PN 1 PG 9 WC Education, Scientific Disciplines; Optics SC Education & Educational Research; Optics GA BI3TK UT WOS:000411458900032 OA Bronze DA 2021-04-21 ER PT B AU McIntire, MG Keshavarzi, E Tumer, IY Hoyle, C AF McIntire, Matthew G. Keshavarzi, Elham Tumer, Irem Y. Hoyle, Christopher GP ASME TI FUNCTIONAL MODELS WITH INHERENT BEHAVIOR: TOWARDS A FRAMEWORK FOR SAFETY ANALYSIS EARLY IN THE DESIGN OF COMPLEX SYSTEMS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 11 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE2016) CY NOV 11-17, 2016 CL Phoenix, AZ SP Amer Soc Mech Engineers AB This paper represents a step toward a more complete framework of safety analysis early in the design process, specifically during functional modeling. This would be especially useful when designing in a new domain, where many functions have yet to be solved, or for a problem where the functional architecture space is large. In order to effectively analyze the inherent safety of a design only described by its functions and flows, we require some way to simulate it. As an already-available function failure reasoning tool, Function Failure Identification and Propagation (FFIP) utilizes two distinct system models: a behavioral model, and a functional model. The behavioral model simulates system component behavior, and PEEP maps specific component behaviors to functions in the functional model. We have created a new function-failure reasoning method which generalizes failure behavior directly to functions, by which the engineer can create functional models to simulate the functional failure propagations a system may experience early in the design process without a separate behavioral model. We give each basis-defined function-flow element a pre-defined behavior consisting of nominal and failure operational modes, and the resultant effect each mode has on its functions connected flows. Flows are represented by a two-variable object reminiscent of a bond from bond graphs: the state of each flow is represented by an effort variable and a flow-rate variable. The functional model may be thought of as a bond graph where each functional element is a state machine. Users can quickly describe functional models with consistent behavior by constructing their models as Python NetworkX graph objects, so that they may quickly model multiple functional architectures of their proposed system. We are implementing the method in Python to be used in conjunction with other function-failure analysis tools. We also introduce a new method for the inclusion of time in a state machine model, so that dynamic systems may be modeled as fast-evaluating state machines. State machines have no inherent representation of time, while physics-based models simulate along repetitive time steps. We use a more middle-ground pseudo time approach. State transitions may impose a time delay once all of their connected flow conditions are met. Once the entire system model has reached steady state in a timeless sense, the C1 [McIntire, Matthew G.; Keshavarzi, Elham; Tumer, Irem Y.; Hoyle, Christopher] Oregon State Univ, Mech Engn, Corvallis, OR 97331 USA. RP Hoyle, C (corresponding author), Oregon State Univ, Mech Engn, Corvallis, OR 97331 USA. EM mcintima@oregonstate.edu; keshavae@oregonstate.edu; irem.tumer@oregonstate.edu; chris.hoyle@oregonstate.edu FU National Science FoundationNational Science Foundation (NSF) [CMMI-1363509, CMMI-1363349] FX This research is supported by the National Science Foundation award numbers CMMI-1363509 and CMMI-1363349. Any opinions or findings of this work are the responsibility of the authors, and do not necessarily reflect the views of the sponsors or collaborators. CR Backman B., 2000, ICASE SERIES RISK BA Choi K., 2001, ICASE SERIES RISK BA Coatanea E, 2011, J MECH DESIGN, V133, DOI 10.1115/1.4005230 Defense D, 1980, MIL1629A Directorate E. S. M., 2005, TECH REP Grantham-Lough K., 2008, J IND SYSTEMS ENG, V2, P126 Greenfield MA, 2001, SCI TECH, V102, P153 Hirtz J, 2002, RES ENG DES, V13, P65, DOI 10.1007/s00163-001-0008-3 Jensen D., 2009, ASME 2009 INT DES EN, P1033 Jensen DC., 2008, ASME 2008 INT MECH E, P283 Krus D., 2007, ASME 2007 INT DES EN, P407 Kurtoglu, 2009, DESIGN ELECT POWER S Kurtoglu T, 2010, RES ENG DES, V21, P209, DOI 10.1007/s00163-010-0086-1 Kurtoglu T, 2008, J MECH DESIGN, V130, DOI 10.1115/1.2885181 Lough KG, 2009, J ENG DESIGN, V20, P155, DOI 10.1080/09544820701684271 Mahadevan S., 2003, TECH REP Minhas R, 2014, P 10 INT MOD C Papakonstantinou N., 2011, ASME 2011 INT DES EN, P1045 regulatory Commission U. N, 1981, FAULT TREE HDB Sierla S, 2012, MECHATRONICS, V22, P137, DOI 10.1016/j.mechatronics.2012.01.003 Smith N, 2003, J SPACECRAFT ROCKETS, V40, P411, DOI 10.2514/2.3961 Stone RB, 2005, RES ENG DES, V16, P96, DOI [10.1007/s00163-005-0005-z, 10.1007/s00163-005-0005-Z] Stone RB, 2005, J MECH DESIGN, V127, P397, DOI 10.1115/1.1862678 Tumer IY, 2011, IEEE T COMPUT, V60, P1072, DOI 10.1109/TC.2010.245 Venkatasubramanian V, 2000, COMPUT CHEM ENG, V24, P2291, DOI 10.1016/S0098-1354(00)00573-1 Zang T., 2002, NASA TM NR 26 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5065-7 PY 2017 AR V011T15A035 PG 8 WC Engineering, Mechanical SC Engineering GA BH5FW UT WOS:000400879300035 DA 2021-04-21 ER PT S AU Campos-Rozo, JI Dominguez, SV AF Campos-Rozo, J. I. Dominguez, S. Vargas BE Dominguez, SV Kosovichev, AG Antolin, P Harra, L TI A Python-based interface to examine motions in time series of solar images SO FINE STRUCTURE AND DYNAMICS OF THE SOLAR ATMOSPHERE SE IAU Symposium Proceedings Series LA English DT Proceedings Paper CT 327th Symposium of the International-Astronomical-Union (IAU) on Fine Structure and Dynamics of the Solar Atmosphere CY OCT 09-14, 2016 CL Cartagena de Indias, COLOMBIA SP Int Astron Union DE GUI; Solar Physics; Python; Sunpy; LCT AB Python is considered to be a mature programming language, besides of being widely accepted as an engaging option for scientific analysis in multiple areas, as will be presented in this work for the particular case of solar physics research. SunPy is an open-source library based on Python that has been recently developed to furnish software tools to solar data analysis and visualization. In this work we present a graphical user interface (GUI) based on Python and Qt to effectively compute proper motions for the analysis of time series of solar data. This user-friendly computing interface, that is intended to be incorporated to the Sunpy library, uses a local correlation tracking technique and some extra tools that allows the selection of different parameters to calculate, vizualize and analyze vector velocity fields of solar data, i.e. time series of solar filtergrams and magnetograms. C1 [Campos-Rozo, J. I.; Dominguez, S. Vargas] Univ Nacl Colombia, Observ Astron Nacl, Bogota, Colombia. RP Campos-Rozo, JI (corresponding author), Univ Nacl Colombia, Observ Astron Nacl, Bogota, Colombia. EM jicamposr@unal.edu.co; svargasd@unal.edu.co OI Vargas Dominguez, Santiago/0000-0002-5999-4842 CR Campos Rozo J. I., 2014, CEAB, V38, P67 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones E., 2001, SCIPY OPEN SOURCE SC LANGTANGEN HP, 2004, PYTHON SCRIPTING COM NOVEMBER LJ, 1988, ASTROPHYS J, V333, P427, DOI 10.1086/166758 Robitaille TP, 2013, ASTRON ASTROPHYS, V558, DOI 10.1051/0004-6361/201322068 SunPy Community, 2015, APJ COMP SCI DISC, V8 NR 7 TC 0 Z9 0 U1 2 U2 4 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND SN 1743-9213 EI 1743-9221 BN 978-1-10717-004-9 J9 IAU SYMP P SERIES JI IAU Symposium Proc. Series PY 2017 VL 12 IS S327 BP 25 EP 27 DI 10.1017/S1743921317003568 PG 3 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BL7NR UT WOS:000455235900004 DA 2021-04-21 ER PT J AU Lambert, N Matsuzaki, Y Kakuyanagi, K Ishida, N Saito, S Nori, F AF Lambert, Neill Matsuzaki, Yuichiro Kakuyanagi, Kosuke Ishida, Natsuko Saito, Shiro Nori, Franco TI Superradiance with an ensemble of superconducting flux qubits SO PHYSICAL REVIEW B LA English DT Article ID OPEN QUANTUM-SYSTEMS; DICKE SUPERRADIANCE; ARTIFICIAL ATOMS; PYTHON FRAMEWORK; PHASE-TRANSITION; METAMATERIALS; RADIATION; CIRCUITS; DYNAMICS; CAVITY AB Superconducting flux qubits are a promising candidate for realizing quantum information processing and quantum simulations. Such devices behave like artificial atoms, with the advantage that one can easily tune the "atoms" internal properties. Here, by harnessing this flexibility, we propose a technique to minimize the inhomogeneous broadening of a large ensemble of flux qubits by tuning only the external flux. In addition, as an example of many-body physics in such an ensemble, we show how to observe superradiance, and its quadratic scaling with ensemble size, using a tailored microwave control pulse that takes advantage of the inhomogeneous broadening itself to excite only a subensemble of the qubits. Our scheme opens up an approach to using superconducting circuits to explore the properties of quantum many-body systems. C1 [Lambert, Neill; Ishida, Natsuko; Nori, Franco] RIKEN, CEMS, Wako, Saitama 3510198, Japan. [Matsuzaki, Yuichiro; Kakuyanagi, Kosuke; Saito, Shiro] NTT Corp, NTT Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan. [Nori, Franco] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Lambert, N (corresponding author), RIKEN, CEMS, Wako, Saitama 3510198, Japan. EM nwlambert@riken.jp; matsuzaki.yuichiro@lab.ntt.co.jp RI Nori, Franco/B-1222-2009; Saito, Shiro/C-1848-2018; Lambert, Neill W/B-4998-2009; Matsuzaki, Yuichiro/M-7347-2017 OI Nori, Franco/0000-0003-3682-7432; FU JSPS KAKENHIMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [15K17732, 25220601]; Commissioned Research of NICT [158]; MEXT KAKENHIMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [15H05870]; Sir John Templeton Foundation; RIKEN iTHES Project; MURI Center for Dynamic Magneto-Optics via the AFOSR [FA9550-14-1-0040]; IMPACT program of JST, CREST; Grants-in-Aid for Scientific ResearchMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [15K17732, 15H05870, 15H02118] Funding Source: KAKEN FX This work was supported by JSPS KAKENHI Grant No. 15K17732, JSPS KAKENHI Grant No. 25220601, the Commissioned Research No. 158 of NICT, and MEXT KAKENHI Grant No. 15H05870. F.N. and N.L. acknowledge support from the Sir John Templeton Foundation. F.N. acknowledges support from the RIKEN iTHES Project, the MURI Center for Dynamic Magneto-Optics via the AFOSR Award No. FA9550-14-1-0040, the IMPACT program of JST, CREST, and a Grant-in-Aid for Scientific Research (A). N.L. and Y.M. contributed equally to this work. CR Amsuss R, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.060502 Bartels B, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.052315 Bennett SD, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.156402 Buluta I, 2011, REP PROG PHYS, V74, DOI 10.1088/0034-4885/74/10/104401 Buluta I, 2009, SCIENCE, V326, P108, DOI 10.1126/science.1177838 Bylander J, 2011, NAT PHYS, V7, P565, DOI [10.1038/NPHYS1994, 10.1038/nphys1994] Chen Z., ARXIV160201584 Clarke J, 2008, NATURE, V453, P1031, DOI 10.1038/nature07128 Delanty M, 2011, NEW J PHYS, V13, DOI 10.1088/1367-2630/13/5/053032 DeVoe RG, 1996, PHYS REV LETT, V76, P2049, DOI 10.1103/PhysRevLett.76.2049 Diniz I, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.063810 Emary C, 2003, PHYS REV E, V67, DOI 10.1103/PhysRevE.67.066203 Eschner J, 2001, NATURE, V413, P495, DOI 10.1038/35097017 Filipp S, 2011, PHYS REV A, V83, DOI 10.1103/PhysRevA.83.063827 Forn-Diaz P, 2017, NAT PHYS, V13, P39, DOI [10.1038/nphys3905, 10.1038/NPHYS3905] Georgescu IM, 2014, REV MOD PHYS, V86, P153, DOI 10.1103/RevModPhys.86.153 GROSS M, 1976, PHYS REV LETT, V36, P1035, DOI 10.1103/PhysRevLett.36.1035 HEPP K, 1973, ANN PHYS-NEW YORK, V76, P360, DOI 10.1016/0003-4916(73)90039-0 Imamoglu A, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.083602 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Julsgaard B, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.250503 Kakuyanagi K, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.210503 Keaveney J, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.173601 KITAGAWA M, 1993, PHYS REV A, V47, P5138, DOI 10.1103/PhysRevA.47.5138 Knee GC, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13253 Kubo Y, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.064514 Kubo Y, 2012, PHYS REV A, V85, DOI 10.1103/PhysRevA.85.012333 Kubo Y, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.220501 Kubo Y, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.140502 Lambert N, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.073602 Lambert N, 2016, PHYS REV A, V94, DOI 10.1103/PhysRevA.94.012105 Lambert N, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.165308 Ma J, 2011, PHYS REP, V509, P89, DOI 10.1016/j.physrep.2011.08.003 Macha P, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6146 Marcos D, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.210501 Matsuzaki Y, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.184501 Meiser D, 2010, PHYS REV A, V81, DOI 10.1103/PhysRevA.81.033847 Mlynek JA, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6186 Nobauer T, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.190801 Orlando TP, 1999, PHYS REV B, V60, P15398, DOI 10.1103/PhysRevB.60.15398 RAIMOND JM, 1982, PHYS REV LETT, V49, P117, DOI 10.1103/PhysRevLett.49.117 Rakhmanov AL, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.144507 Rohlsberger R, 2010, SCIENCE, V328, P1248, DOI 10.1126/science.1187770 Roof SJ, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.073003 Saito S, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.107008 Scheibner M, 2007, NAT PHYS, V3, P106, DOI 10.1038/nphys494 Schuster DI, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.140501 SKRIBANO.N, 1973, PHYS REV LETT, V30, P309, DOI 10.1103/PhysRevLett.30.309 Soukoulis CM, 2011, NAT PHOTONICS, V5, P523, DOI [10.1038/NPHOTON.2011.154, 10.1038/nphoton.2011.154] Tanaka T, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.170801 Temnov VV, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.243602 Twamley J, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.241202 van Loo AF, 2013, SCIENCE, V342, P1494, DOI 10.1126/science.1244324 WANG YK, 1973, PHYS REV A, V7, P831, DOI 10.1103/PhysRevA.7.831 Wesenberg JH, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.070502 Wu H, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.140503 Xiang ZL, 2013, REV MOD PHYS, V85, P623, DOI 10.1103/RevModPhys.85.623 Yoshihara F, 2017, NAT PHYS, V13, P44, DOI [10.1038/NPHYS3906, 10.1038/nphys3906] Yoshihara F, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.020503 You JQ, 2011, NATURE, V474, P589, DOI 10.1038/nature10122 Zhang J., ARXIV14078536 Zheludev NI, 2012, NAT MATER, V11, P917, DOI [10.1038/NMAT3431, 10.1038/nmat3431] Zhu XB, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4524 Zhu XB, 2011, NATURE, V478, P221, DOI 10.1038/nature10462 NR 65 TC 19 Z9 19 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 15 PY 2016 VL 94 IS 22 AR 224510 DI 10.1103/PhysRevB.94.224510 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA EF3UV UT WOS:000390251100002 OA Bronze DA 2021-04-21 ER PT J AU Sugandhi, R Swamy, R Khirwadkar, S AF Sugandhi, Ritesh Swamy, Rajamannar Khirwadkar, Samir TI Use of EPICS and Python technology for the development of a computational toolkit for high heat flux testing of plasma facing components SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 10th IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research CY APR 20-24, 2015 CL Inst Plasma Res, Ahmedabad, INDIA SP IAEA HO Inst Plasma Res DE Critical heat flux; Plasma facing component; Numerical optimization; EPICS; Python AB The high heat flux testing and characterization of the divertor and first wall components are a challenging engineering problem of a tokamak. These components are subject to steady state and transient heat load of high magnitude. Therefore, the accurate prediction and control of the cooling parameters is crucial to prevent burnout. The prediction of the cooling parameters is based on the numerical solution of the critical heat flux (CHF) model. In a test facility for high heat flux testing of plasma facing components (PFC), the integration of computations and experimental control is an essential requirement. Experimental physics and industrial control system (EPICS) provides powerful tools for steering controls, data simulation, hardware interfacing and wider usability. Python provides an open source alternative for numerical computations and scripting. We have integrated these two open source technologies to develop a graphical software for a typical high heat flux experiment. The implementation uses EPICS based tools namely IOC (I/O controller) server, control system studio (CSS) and Python based tools namely Numpy, Scipy, Matplotlib and NOSE. EPICS and Python are integrated using PyEpics library. This toolkit is currently under operation at high heat flux test facility at Institute for Plasma Research (IPR) and is also useful for the experimental labs working in the similar research areas. The paper reports the software architectural design, implementation tools and rationale for their selection, test and validation. (C) 2016 Elsevier B.V. All rights reserved. C1 [Sugandhi, Ritesh; Swamy, Rajamannar; Khirwadkar, Samir] Inst Plasma Res, Gandhinagar 382428, India. RP Sugandhi, R (corresponding author), Inst Plasma Res, Gandhinagar 382428, India. EM ritesh@ipr.res.in; rajamannar@ipr.res.in; sameer@ipr.res.in RI Sugandhi, Ritesh/J-2132-2019 OI Sugandhi, Ritesh/0000-0003-1319-7888 CR [Anonymous], 2016, CONTROL SYSTEM STUDI [Anonymous], 2016, NOSE TEST FRAMEWORK [Anonymous], 2016, EPICS HARDWARE SUPPO [Anonymous], 2016, THEMOPHYSICAL PROPER Baek W.-P., 1997, J KOREAN NUCL SOC, V29, P348 Boscary J, 1999, INT J HEAT MASS TRAN, V42, P287, DOI 10.1016/S0017-9310(98)00108-2 Khirwadkar SS, 2011, FUSION ENG DES, V86, P1736, DOI 10.1016/j.fusengdes.2011.01.111 Marshall TD, 2001, FUSION TECHNOL, V39, P849, DOI 10.13182/FST01-A11963345 Patil Y, 2013, J NUCL MATER, V437, P326, DOI 10.1016/j.jnucmat.2013.02.014 Powell MJD, 1994, ADV OPTIMIZATION NUM, P51, DOI DOI 10.1007/978-94-015-8330-5_4 Singh K.P., 2011, FUSION ENG DES, V86, P1741 Tong L.S., 1975, PHENOMENOLOGICAL STU, P75 NR 12 TC 1 Z9 3 U1 0 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV 15 PY 2016 VL 112 BP 783 EP 787 DI 10.1016/j.fusengdes.2016.04.036 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EC1AV UT WOS:000387836800114 DA 2021-04-21 ER PT J AU Dexter, J AF Dexter, Jason TI A public code for general relativistic, polarised radiative transfer around spinning black holes SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; black hole physics; radiative transfer; relativistic processes; Galaxy: centre; galaxies: jets ID SAGITTARIUS A-ASTERISK; THIN ACCRETION DISK; MONTE-CARLO CODE; SYNCHROTRON-RADIATION; SGR-A; GALACTIC-CENTER; TRANSFER EQUATIONS; MAGNETIC-FIELD; KERR SPACETIME; EVENT-HORIZON AB Ray tracing radiative transfer is a powerful method for comparing theoretical models of black hole accretion flows and jets with observations. We present a public code, GRTRANS, for carrying out such calculations in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics. The code is written in FORTRAN 90 and efficiently parallelises with OPENMP, and the full code and several components have PYTHON interfaces. We describe several tests which are used for verifiying the code, and we compare the results for polarised thin accretion disc and semi-analytic jet problems with those from the literature as examples of its use. Along the way, we provide accurate fitting functions for polarised synchrotron emission and transfer coefficients from thermal and power-law distribution functions, and compare results from numerical integration and quadrature solutions of the polarised radiative transfer equations. We also show that all transfer coefficients can play an important role in predicted images and polarisation maps of the Galactic centre black hole, Sgr A*, at submillimetre wavelengths. C1 [Dexter, Jason] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. RP Dexter, J (corresponding author), Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. EM jdexter@mpe.mpg.de OI Dexter, Jason/0000-0003-3903-0373 FU International Space Science Institute; Sofja Kovalevskaja Award from the Alexander von Humboldt Foundation of GermanyAlexander von Humboldt Foundation FX JD thanks S. Alwin Mao for significant contributions to the development and testing of the code presented here, J. Davelaar, A. Pandya, and M. Moscibrodzka for helpful feedback on the code and manuscript, C. Gammie for useful discussions, the anonymous referee for constructive comments, and the International Space Science Institute for hospitality and support. This work was supported by a Sofja Kovalevskaja Award from the Alexander von Humboldt Foundation of Germany. CR Abramowitz M., 1970, HDB MATH FUNCTIONS F Agol E, 2000, ASTROPHYS J, V528, P161, DOI 10.1086/308177 Agol E., 1997, THESIS Akiyama K, 2015, ASTROPHYS J, V807, DOI 10.1088/0004-637X/807/2/150 BALBUS SA, 1991, ASTROPHYS J, V376, P214, DOI 10.1086/170270 BARDEEN JM, 1972, ASTROPHYS J, V178, P347, DOI 10.1086/151796 Beckwith K, 2008, MON NOT R ASTRON SOC, V390, P21, DOI 10.1111/j.1365-2966.2008.13710.x BLUMENTHAL GR, 1970, REV MOD PHYS, V42, P237, DOI 10.1103/RevModPhys.42.237 Bower GC, 2015, ASTROPHYS J, V802, DOI 10.1088/0004-637X/802/1/69 Broderick A, 2004, MON NOT R ASTRON SOC, V349, P994, DOI 10.1111/j.1365-2966.2004.07582.x Broderick A. E, 2004, THESIS Broderick AE, 2006, ASTROPHYS J, V636, pL109, DOI 10.1086/500008 Broderick AE, 2005, MON NOT R ASTRON SOC, V363, P353, DOI 10.1111/j.1365-2966.2005.09458.x Broderick AE, 2009, ASTROPHYS J, V697, P1164, DOI 10.1088/0004-637X/697/2/1164 Broderick AE, 2009, ASTROPHYS J, V697, P45, DOI 10.1088/0004-637X/697/1/45 Bromley BC, 2001, ASTROPHYS J, V555, pL83, DOI 10.1086/322862 Chan CK, 2015, ASTROPHYS J, V799, DOI 10.1088/0004-637X/799/1/1 Chandrasekhar, 1983, MATH THEORY BLACK HO Chandrasekhar S, 1950, RAD TRANSFER Chen B, 2015, ASTROPHYS J SUPPL S, V218, DOI 10.1088/0067-0049/218/1/4 CONNORS PA, 1980, ASTROPHYS J, V235, P224, DOI 10.1086/157627 CONNORS PA, 1977, NATURE, V269, P128, DOI 10.1038/269128a0 CUNNINGHAM CT, 1975, ASTROPHYS J, V202, P788, DOI 10.1086/154033 Dauser T, 2010, MON NOT R ASTRON SOC, V409, P1534, DOI 10.1111/j.1365-2966.2010.17393.x Davis SW, 2006, ASTROPHYS J SUPPL S, V164, P530, DOI 10.1086/503549 De Villiers JP, 2003, ASTROPHYS J, V589, P458, DOI 10.1086/373949 DEGL'INNOCENTI EL, 1985, SOL PHYS, V97, P239, DOI 10.1007/BF00165988 Dexter J, 2012, J PHYS CONF SER, V372, DOI 10.1088/1742-6596/372/1/012023 Dexter J, 2011, THESIS Dexter J, 2012, MON NOT R ASTRON SOC, V426, pL71, DOI 10.1111/j.1745-3933.2012.01328.x Dexter J, 2012, MON NOT R ASTRON SOC, V421, P1517, DOI 10.1111/j.1365-2966.2012.20409.x Dexter J, 2011, ASTROPHYS J, V730, DOI 10.1088/0004-637X/730/1/36 Dexter J, 2011, ASTROPHYS J LETT, V727, DOI 10.1088/2041-8205/727/1/L24 Dexter J, 2010, ASTROPHYS J, V717, P1092, DOI 10.1088/0004-637X/717/2/1092 Dexter J, 2009, ASTROPHYS J LETT, V703, pL142, DOI 10.1088/0004-637X/703/2/L142 Dexter J, 2009, ASTROPHYS J, V696, P1616, DOI 10.1088/0004-637X/696/2/1616 Doeleman S, 2009, ASTRO2010 ASTRONOMY, V2010, P68 Doeleman SS, 2012, SCIENCE, V338, P355, DOI 10.1126/science.1224768 Dolence JC, 2009, ASTROPHYS J SUPPL S, V184, P387, DOI 10.1088/0067-0049/184/2/387 Eisenhauer F., 2008, P SPIE C SER, V7013, P2 Falcke H, 1998, ASTROPHYS J, V499, P731, DOI 10.1086/305687 Font JA, 1999, MON NOT R ASTRON SOC, V305, P920, DOI 10.1046/j.1365-8711.1999.02459.x Gammie CF, 2003, ASTROPHYS J, V589, P444, DOI 10.1086/374594 Gammie CF, 2012, ASTROPHYS J, V752, DOI 10.1088/0004-637X/752/2/123 GINZBURG VL, 1969, ANNU REV ASTRON ASTR, V7, P375, DOI 10.1146/annurev.aa.07.090169.002111 GINZBURG VL, 1965, ANNU REV ASTRON ASTR, V3, P297, DOI 10.1146/annurev.aa.03.090165.001501 Gold R., 2016, ARXIV E PRINTS Hindmarsh A.C., 1983, SCI COMPUT, P55 Huang L, 2011, MON NOT R ASTRON SOC, V416, P2574, DOI 10.1111/j.1365-2966.2011.19207.x Huang L, 2009, ASTROPHYS J, V703, P557, DOI 10.1088/0004-637X/703/1/557 Johnson MD, 2015, SCIENCE, V350, P1242, DOI 10.1126/science.aac7087 JONES TW, 1977, ASTROPHYS J, V214, P522, DOI 10.1086/155278 JONES TW, 1979, ASTROPHYS J, V228, P268, DOI 10.1086/156843 Krolik JH, 2005, ASTROPHYS J, V622, P1008, DOI 10.1086/427932 Kulkarni A. K., 2011, MNRAS, P620 LEGG MPC, 1968, ASTROPHYS J, V154, P499, DOI 10.1086/149777 Li LX, 2005, ASTROPHYS J SUPPL S, V157, P335, DOI 10.1086/428089 LUMINET JP, 1979, ASTRON ASTROPHYS, V75, P228 Mahadevan R, 1996, ASTROPHYS J, V465, P327, DOI 10.1086/177422 Mao, 2016, IN PRESS Melrose D.B, 1980, ARXIV E PRINTS, V2 MELROSE DB, 1971, ASTROPHYS SPACE SCI, V12, P172, DOI 10.1007/BF00656148 Melrose DB, 1997, J PLASMA PHYS, V58, P735, DOI 10.1017/S0022377897006284 MELROSE DB, 1980, PLASMA ASTROPHYSICS, V1 MICHEL FC, 1972, ASTROPHYS SPACE SCI, V15, P153, DOI 10.1007/BF00649949 Moscibrodzka M., 2015, ARXIV E PRINTS Moscibrodzka M, 2009, ASTROPHYS J, V706, P497, DOI 10.1088/0004-637X/706/1/497 Noble SC, 2006, ASTROPHYS J, V641, P626, DOI 10.1086/500349 Noble SC, 2007, CLASSICAL QUANT GRAV, V24, pS259, DOI 10.1088/0264-9381/24/12/S17 Noble SC, 2011, ASTROPHYS J, V743, DOI 10.1088/0004-637X/743/2/115 Noble SC, 2009, ASTROPHYS J, V703, P964, DOI 10.1088/0004-637X/703/1/964 PAGE DN, 1974, ASTROPHYS J, V191, P499, DOI 10.1086/152990 Pandya A., 2016, ARXIV E PRINTS RAUCH KP, 1994, ASTROPHYS J, V421, P46, DOI 10.1086/173625 REES DE, 1989, ASTROPHYS J, V339, P1093, DOI 10.1086/167364 Rybicki G.B., 1979, RAD PROCESSES ASTROP SAZONOV VN, 1969, SOV ASTRON, V13, P396 Schnittman JD, 2006, ASTROPHYS J, V651, P1031, DOI 10.1086/507421 Schnittman JD, 2013, ASTROPHYS J, V777, DOI 10.1088/0004-637X/777/1/11 Schnittman JD, 2009, ASTROPHYS J, V701, P1175, DOI 10.1088/0004-637X/701/2/1175 SHAKURA NI, 1973, ASTRON ASTROPHYS, V24, P337 SHAPIRO SL, 1973, ASTROPHYS J, V185, P69, DOI 10.1086/152396 SHAPIRO SL, 1973, ASTROPHYS J, V180, P531, DOI 10.1086/151982 Shcherbakov RV, 2008, ASTROPHYS J, V688, P695, DOI 10.1086/592326 Shcherbakov RV, 2012, ASTROPHYS J, V755, DOI 10.1088/0004-637X/755/2/133 Shcherbakov RV, 2011, MON NOT R ASTRON SOC, V410, P1052, DOI 10.1111/j.1365-2966.2010.17502.x Sobolev V. V., 1963, TREATISE RAD TRANSFE VIERGUTZ SU, 1993, ASTRON ASTROPHYS, V272, P355 Vincent FH, 2011, CLASSICAL QUANT GRAV, V28, DOI 10.1088/0264-9381/28/22/225011 WALKER M, 1970, COMMUN MATH PHYS, V18, P265, DOI 10.1007/BF01649445 WESTFOLD KC, 1959, ASTROPHYS J, V130, P241, DOI 10.1086/146713 Yuan F, 2003, ASTROPHYS J, V598, P301, DOI 10.1086/378716 NR 92 TC 57 Z9 57 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2016 VL 462 IS 1 BP 115 EP 136 DI 10.1093/mnras/stw1526 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DW3BI UT WOS:000383516700034 OA Bronze DA 2021-04-21 ER PT J AU Kaczmarczyk, J Weimer, H Lemeshko, M AF Kaczmarczyk, J. Weimer, H. Lemeshko, M. TI Dissipative preparation of antiferromagnetic order in the Fermi-Hubbard model SO NEW JOURNAL OF PHYSICS LA English DT Article DE Hubbard model; ultracold gases; antiferromagnetic phase; lattice fermion models; dissipative preparation ID OPEN QUANTUM-SYSTEMS; OPTICAL LATTICE; ULTRACOLD FERMIONS; HEISENBERG-MODEL; PYTHON FRAMEWORK; GROUND-STATE; TRAPPED IONS; GASES; ATOMS; DYNAMICS AB The Fermi-Hubbard model is one of the key models of condensed matter physics, which holds a potential for explaining the mystery of high-temperature superconductivity. Recent progress in ultracold atoms in optical lattices has paved the way to studying the model's phase diagram using the tools of quantum simulation, which emerged as a promising alternative to the numerical calculations plagued by the infamous sign problem. However, the temperatures achieved using elaborate laser cooling protocols so far have been too high to show the appearance of antiferromagnetic (AF) and superconducting quantum phases directly. In this work, we demonstrate that using the machinery of dissipative quantum state engineering, one can observe the emergence of the AF order in the Fermi-Hubbard model with fermions in optical lattices. The core of the approach is to add incoherent laser scattering in such a way that the AF state emerges as the dark state of the driven-dissipative dynamics. The proposed controlled dissipation channels described in this work are straightforward to add to already existing experimental setups. C1 [Kaczmarczyk, J.; Lemeshko, M.] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria. [Weimer, H.] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany. RP Kaczmarczyk, J (corresponding author), IST Austria, Campus 1, A-3400 Klosterneuburg, Austria. EM jan.kaczmarczyk@ist.ac.at; mikhail.lemeshko@ist.ac.at RI Weimer, Hendrik/AAP-1707-2020 OI Weimer, Hendrik/0000-0002-4551-377X; Kaczmarczyk, Jan/0000-0002-1629-3675 FU People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7) under REA grant [291734]; Volkswagen FoundationVolkswagen; DFGGerman Research Foundation (DFG)European Commission [SFB 1227] FX We acknowledge stimulating discussions with Ken Brown, Tommaso Calarco, Andrew Daley, Suzanne McEndoo, Tobias Osborne, Cindy Regal, Luis Santos, Michal Tomza, and Martin Zwierlein. The work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. [291734], by the Volkswagen Foundation, and by DFG within SFB 1227 (DQ-mat). CR Aikawa K, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.263201 Alharbi AF, 2010, PHYS REV A, V82, DOI 10.1103/PhysRevA.82.054103 AZZOUZ M, 1993, PHYS REV B, V48, P6136, DOI 10.1103/PhysRevB.48.6136 Barreiro JT, 2011, NATURE, V470, P486, DOI 10.1038/nature09801 Barreiro JT, 2010, NAT PHYS, V6, P943, DOI [10.1038/nphys1781, 10.1038/NPHYS1781] Bermudez A, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.110502 Bernier JS, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.205125 Bernier JS, 2009, PHYS REV A, V79, DOI 10.1103/PhysRevA.79.061601 Bloch I, 2008, REV MOD PHYS, V80, P885, DOI 10.1103/RevModPhys.80.885 Bohn JL, 1999, PHYS REV A, V59, P3660, DOI 10.1103/PhysRevA.59.3660 Budich JC, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.042117 CARMICHAEL HJ, 1993, PHYS REV LETT, V70, P2273, DOI 10.1103/PhysRevLett.70.2273 Carr AW, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.033607 Chan CK, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.051601 Cheuk LW, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.193001 Chin C, 2010, REV MOD PHYS, V82, P1225, DOI 10.1103/RevModPhys.82.1225 Chin JK, 2006, NATURE, V443, P961, DOI 10.1038/nature05224 Colome-Tatche M, 2011, NEW J PHYS, V13, DOI 10.1088/1367-2630/13/11/113021 DALIBARD J, 1992, PHYS REV LETT, V68, P580, DOI 10.1103/PhysRevLett.68.580 Derzhko O, 2003, PHYSICA A, V320, P407, DOI 10.1016/S0378-4371(02)01595-9 Derzhko O., 2001, Journal of Physical Studies, V5, P49 Diehl S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.227001 Diehl S, 2008, NAT PHYS, V4, P878, DOI 10.1038/nphys1073 Diehl S, 2011, NAT PHYS, V7, P971, DOI [10.1038/nphys2106, 10.1038/NPHYS2106] Diehl S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.015702 Dutta O, 2015, REP PROG PHYS, V78, DOI 10.1088/0034-4885/78/6/066001 Dzhioev AA, 2015, J PHYS A-MATH THEOR, V48, DOI 10.1088/1751-8113/48/1/015004 Edge G J A, 2015, PHYS REV A, V92 Esslinger T, 2010, ANNU REV CONDEN MA P, V1, P129, DOI 10.1146/annurev-conmatphys-070909-104059 Finazzi S, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.080604 FRADKIN E, 1989, PHYS REV LETT, V63, P322, DOI 10.1103/PhysRevLett.63.322 Georgescu IM, 2014, REV MOD PHYS, V86, P153, DOI 10.1103/RevModPhys.86.153 Gommers R, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.073003 Greif D, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.260401 Greif D, 2013, SCIENCE, V340, P1307, DOI 10.1126/science.1236362 Haller E, 2015, NAT PHYS, V11, P738, DOI [10.1038/nphys3403, 10.1038/NPHYS3403] Hart RA, 2015, NATURE, V519, P211, DOI 10.1038/nature14223 Heidrich-Meisner F, 2009, PHYS REV A, V80, DOI 10.1103/PhysRevA.80.041603 Ho TL, 2009, P NATL ACAD SCI USA, V106, P6916, DOI 10.1073/pnas.0809862105 Jin JS, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.163605 Jordens R, 2008, NATURE, V455, P204, DOI 10.1038/nature07244 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Jotzu G, 2014, NATURE, V515, P237, DOI 10.1038/nature13915 Keimer B, 2015, NATURE, V518, P179, DOI 10.1038/nature14165 Kordas G, 2012, EPL-EUROPHYS LETT, V100, DOI 10.1209/0295-5075/100/30007 Kraus B, 2008, PHYS REV A, V78, DOI 10.1103/PhysRevA.78.042307 Krauser JS, 2012, NAT PHYS, V8, P813, DOI [10.1038/nphys2409, 10.1038/NPHYS2409] Krauter H, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.080503 Le Boite A, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.233601 Le Hur K, 2009, ANN PHYS-NEW YORK, V324, P1452, DOI 10.1016/j.aop.2009.02.004 Lee TE, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.257204 Lee TE, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.031402 Lemeshko M, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3230 Lemeshko M, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.035301 Lewenstein M, 2007, ADV PHYS, V56, P243, DOI 10.1080/00018730701223200 Lin Y, 2013, NATURE, V504, P415, DOI 10.1038/nature12801 Liu WV, 2004, PHYS REV A, V70, DOI 10.1103/PhysRevA.70.033603 Lu MW, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.215301 Lucia A, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.040302 Mazzucchi G, 2016, SCI REP-UK, V6, DOI 10.1038/srep31196 Medley P, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.195301 MOLMER K, 1993, J OPT SOC AM B, V10, P524, DOI 10.1364/JOSAB.10.000524 Murmann S, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.215301 Naylor B, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.011603 Otterbach J, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.070401 Overbeck VR, 2016, PHYS REV A, V93, DOI 10.1103/PhysRevA.93.012106 Parsons MF, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.213002 Prosen T, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/4/043026 Rao DDB, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.033606 Regal CA, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.040403 Schindler P, 2013, NAT PHYS, V9, P361, DOI [10.1038/NPHYS2630, 10.1038/nphys2630] Schneider U, 2008, SCIENCE, V322, P1520, DOI 10.1126/science.1165449 Shankar S, 2013, NATURE, V504, P419, DOI 10.1038/nature12802 Sieberer LM, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.195301 Taie S, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.190401 Tomadin A, 2011, PHYS REV A, V83, DOI 10.1103/PhysRevA.83.013611 Uehlinger T, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.185307 Verstraete F, 2009, NAT PHYS, V5, P633, DOI 10.1038/NPHYS1342 WANG YR, 1991, PHYS REV B, V43, P3786, DOI 10.1103/PhysRevB.43.3786 Watanabe G, 2012, PHYS REV A, V85, DOI 10.1103/PhysRevA.85.023604 Weimer H, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.063401 Weimer H, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.040402 Weimer H, 2013, MOL PHYS, V111, P1753, DOI 10.1080/00268976.2013.789567 Weimer H, 2010, NAT PHYS, V6, P382, DOI 10.1038/NPHYS1614 Williams JR, 2010, PHYS REV A, V82, DOI 10.1103/PhysRevA.82.011610 Witthaut D, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.200402 Yi W, 2012, NEW J PHYS, V14, DOI 10.1088/1367-2630/14/5/055002 NR 88 TC 9 Z9 9 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 22 PY 2016 VL 18 AR 093042 DI 10.1088/1367-2630/18/9/093042 PG 10 WC Physics, Multidisciplinary SC Physics GA DZ0GY UT WOS:000385516800002 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Hocker, D Kosut, R Rabitz, H AF Hocker, David Kosut, Robert Rabitz, Herschel TI PEET: a Matlab tool for estimating physical gate errors in quantum information processing systems SO QUANTUM INFORMATION PROCESSING LA English DT Article DE Quantum computation; Quantum simulation; Quantum control; Open quantum system; Decoherence; Matlab ID PYTHON FRAMEWORK; DYNAMICS; QUTIP AB A Physical Error Estimation Tool (PEET) is introduced in Matlab for predicting physical gate errors of quantum information processing (QIP) operations by constructing and then simulating gate sequences for a wide variety of user-defined, Hamiltonian-based physical systems. PEET is designed to accommodate the interdisciplinary needs of quantum computing design by assessing gate performance for users familiar with the underlying physics of QIP, as well as those interested in higher-level computing operations. The structure of PEET separates the bulk of the physical details of a system into Gate objects, while the construction of quantum computing gate operations are contained in GateSequence objects. Gate errors are estimated by Monte Carlo sampling of noisy gate operations. The main utility of PEET, though, is the implementation of QuantumControl methods that act to generate and then test gate sequence and pulse-shaping techniques for QIP performance. This work details the structure of PEET and gives instructive examples for its operation. C1 [Hocker, David; Rabitz, Herschel] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Kosut, Robert] SC Solut Inc, 1261 Oakmead Pkwy, Sunnyvale, CA 94085 USA. RP Hocker, D (corresponding author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. EM dhocker@princeton.edu FU National Science Foundation Graduate Research Fellowship ProgramNational Science Foundation (NSF) [DGE 1148900]; National Science FoundationNational Science Foundation (NSF) [CHE-1058644]; ARO-MURIMURI [W911NF-11-1-2068]; Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center [D11PC20165]; Division Of ChemistryNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS) [1464569] Funding Source: National Science Foundation FX This material is based upon work supported by the (D.H.) National Science Foundation Graduate Research Fellowship Program under Grant No. (DGE 1148900), (H.R.for the basic concepts) National Science Foundation (CHE-1058644) and (R.K.) ARO-MURI (W911NF-11-1-2068). This work was also supported by the (R.K.) (H.R. for the illustrations) Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center Contract No. D11PC20165. The US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the US Government. CR Brif C, 2010, NEW J PHYS, V12, DOI 10.1088/1367-2630/12/7/075008 Brockwell P, 2002, INTRO TIME SERIES FO Bruer H.-P., 2002, THEORY OPEN QUANTUM Clark CR, 2009, PHYS REV A, V79, DOI 10.1103/PhysRevA.79.062314 Dawson CM, 2006, QUANTUM INFORM COMPU, V6, P81 Devitt SJ, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3524 Green A.S., CORR Grover L.K., 1996, P 28 ACM S THEOR COM, V212, P212, DOI DOI 10.1145/237814.237866 Ho TS, 2009, PHYS REV A, V79, DOI 10.1103/PhysRevA.79.013422 Hocker D., QUANT INF PROC UNPUB Hocker D, 2014, PHYS REV A, V90, DOI 10.1103/PhysRevA.90.062309 Hsieh M, 2009, J CHEM PHYS, V130, DOI 10.1063/1.2981796 Hsieh MH, 2008, PHYS REV A, V78, DOI 10.1103/PhysRevA.78.042306 Iglin S., 2013, GRTHEORY 2004 MATLAB Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Jones NC, 2012, PHYS REV X, V2, DOI 10.1103/PhysRevX.2.031007 Kabytayev C, 2014, PHYS REV A, V90, DOI 10.1103/PhysRevA.90.012316 Khodjasteh K, 2012, PHYS REV A, V86, DOI 10.1103/PhysRevA.86.042329 Khodjasteh K, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.090501 Khodjasteh K, 2009, PHYS REV A, V80, DOI 10.1103/PhysRevA.80.032314 Khodjasteh K, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.080501 Kosu RL, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.052326 Merrill J. T., 2014, PROGR COMPENSATING P Moore KW, 2011, PHYS REV A, V83, DOI 10.1103/PhysRevA.83.012326 Nielsen M. A., 2000, QUANTUM COMPUTATION Quantiki.org, 2015, LIST QC SIM Rabitz H, 2006, PHYS REV A, V74, DOI 10.1103/PhysRevA.74.012721 Rabitz H, 2005, PHYS REV A, V72, DOI 10.1103/PhysRevA.72.052337 Rabitz HA, 2004, SCIENCE, V303, P1998, DOI 10.1126/science.1093384 Rothman A, 2005, PHYS REV A, V72, DOI 10.1103/PhysRevA.72.023416 Rothman A, 2006, PHYS REV A, V73, DOI 10.1103/PhysRevA.73.053401 Saffman M, 2005, PHYS REV A, V72, DOI 10.1103/PhysRevA.72.022347 Saffman M, 2010, REV MOD PHYS, V82, P2313, DOI 10.1103/RevModPhys.82.2313 Schwabl F, 2002, QUANTUM MECH Shor PW, 1997, SIAM J COMPUT, V26, P1484, DOI 10.1137/S0097539795293172 Sorber L., 2011, KRON MATLAB CENTRAL Stark H., 1986, PROBABILITY RANDOM P Suchara M, 2013, ARXIV13122316 SUZUKI M, 1992, PHYS LETT A, V165, P387, DOI 10.1016/0375-9601(92)90335-J Tibbetts KWM, 2012, PHYS REV A, V86, DOI 10.1103/PhysRevA.86.062309 Viola L, 1998, PHYS REV A, V58, P2733, DOI 10.1103/PhysRevA.58.2733 Viola L, 1999, PHYS REV LETT, V82, P2417, DOI 10.1103/PhysRevLett.82.2417 NR 43 TC 2 Z9 2 U1 2 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1570-0755 EI 1573-1332 J9 QUANTUM INF PROCESS JI Quantum Inf. Process. PD SEP PY 2016 VL 15 IS 9 BP 3489 EP 3518 DI 10.1007/s11128-016-1337-5 PG 30 WC Quantum Science & Technology; Physics, Multidisciplinary; Physics, Mathematical SC Physics GA DU4DN UT WOS:000382162400001 DA 2021-04-21 ER PT J AU Coelho, RCV Neumann, RF AF Coelho, Rodrigo C. V. Neumann, Rodrigo F. TI Fluid dynamics in porous media with Sailfish SO EUROPEAN JOURNAL OF PHYSICS LA English DT Article DE fluid dynamics; computational physics; porous media; statistical physics ID LATTICE-BOLTZMANN; FLOW; PERMEABILITY; SIMULATION; FORM AB In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny-Carman equation, which is a well-known permeability-porosity relation, to our artificial samples. C1 [Coelho, Rodrigo C. V.] Univ Fed Rio de Janeiro UFRJ, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, Brazil. [Coelho, Rodrigo C. V.; Neumann, Rodrigo F.] IBM Res, Ave Pasteur 138 & 146, BR-22290240 Rio De Janeiro, Brazil. RP Coelho, RCV (corresponding author), Univ Fed Rio de Janeiro UFRJ, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, Brazil.; Coelho, RCV (corresponding author), IBM Res, Ave Pasteur 138 & 146, BR-22290240 Rio De Janeiro, Brazil. EM rcvcoelho@if.ufrj.br; rneumann@br.ibm.com RI Ferreira, Rodrigo Neumann Barros/D-8111-2013; Coelho, Rodrigo C V/N-9867-2018 OI Ferreira, Rodrigo Neumann Barros/0000-0003-4435-0507; Coelho, Rodrigo C V/0000-0001-8904-0778 FU CNPqNational Council for Scientific and Technological Development (CNPq) FX RCVC thanks CNPq for financial support. CR Andra H, 2013, COMPUT GEOSCI-UK, V50, P33, DOI 10.1016/j.cageo.2012.09.008 Andra H, 2013, COMPUT GEOSCI-UK, V50, P25, DOI 10.1016/j.cageo.2012.09.005 BHATNAGAR PL, 1954, PHYS REV, V94, P511, DOI 10.1103/PhysRev.94.511 Carman PC, 1997, CHEM ENG RES DES, V75, pS32, DOI 10.1016/S0263-8762(97)80003-2 Clennell M. B., 1997, GEOL SOC SPEC PUBL, V122, P299 Coelho RCV, 2014, PHYS REV E, V89, DOI 10.1103/PhysRevE.89.043302 Darcy H., 1969, THEORY GROUND WATER, P287 Deane A., 2006, PARALLEL COMPUTATION Geller S, 2006, COMPUT FLUIDS, V35, P888, DOI 10.1016/j.compfluid.2005.08.009 Huang HB, 2011, COMPUT MATH APPL, V61, P3606, DOI 10.1016/j.camwa.2010.06.034 Januszewski M, 2014, COMPUT PHYS COMMUN, V185, P2350, DOI 10.1016/j.cpc.2014.04.018 Jenkins DR, 2013, J CHEM PHYS, V138, DOI 10.1063/1.4790691 Kaviany M., 1995, PRINCIPLES HEAT TRAN Khabbazi AE, 2013, COMPUT FLUIDS, V75, P35, DOI 10.1016/j.compfluid.2013.01.008 Klockner A, 2012, PARALLEL COMPUT, V38, P157, DOI 10.1016/j.parco.2011.09.001 Koponen A, 1996, PHYS REV E, V54, P406, DOI 10.1103/PhysRevE.54.406 Koponen A, 1997, PHYS REV E, V56, P3319, DOI 10.1103/PhysRevE.56.3319 Kozeny J., 1927, Sitzungsberichte der Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, V136, P271 Kremer GM, 2010, INTERACT MECH MATH, P1, DOI 10.1007/978-3-642-11696-4 Lowell S., 2012, PARTICLE TECHNOLOGY MASSAIOLI F, 2002, 4 EUR WORKSH OPENMP Matyka M, 2012, AIP CONF PROC, V1453, P17, DOI 10.1063/1.4711147 MCNAMARA GR, 1988, PHYS REV LETT, V61, P2332, DOI 10.1103/PhysRevLett.61.2332 Mohamad AA, 2011, LATTICE BOLTZMANN METHOD: FUNDAMENTALS AND ENGINEERING APPLICATIONS WITH COMPUTER CODES, P1, DOI 10.1007/978-0-85729-455-5 Mourzenko V, 2008, PHYS REV E, V77, DOI 10.1103/PhysRevE.77.066306 Pan CX, 2006, COMPUT FLUIDS, V35, P898, DOI 10.1016/j.compfluid.2005.03.008 Philippi PC, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.056702 Rabbani A, 2014, J PETROL SCI ENG, V123, P164, DOI 10.1016/j.petrol.2014.08.020 Ren B, 2016, COAST ENG, V107, P14, DOI 10.1016/j.coastaleng.2015.10.004 Sheidegger AE, 1974, PHYS FLOW POROUS MED Suvachittanont S, 1996, ADV POWDER TECHNOL, V7, P91, DOI 10.1016/S0921-8831(08)60504-X Tolke J, 2008, INT J COMPUT FLUID D, V22, P443, DOI 10.1080/10618560802238275 WHITAKER S, 1986, TRANSPORT POROUS MED, V1, P3, DOI 10.1007/BF01036523 Xu P, 2008, ADV WATER RESOUR, V31, P74, DOI 10.1016/j.advwatres.2007.06.003 Yazdchi K, 2011, VALIDITY CARMAN KOZE NR 35 TC 5 Z9 5 U1 0 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0143-0807 EI 1361-6404 J9 EUR J PHYS JI Eur. J. Phys. PD SEP PY 2016 VL 37 IS 5 AR 055102 DI 10.1088/0143-0807/37/5/055102 PG 13 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA DT9KV UT WOS:000381819000011 DA 2021-04-21 ER PT J AU Roberts, JA Langston, M Nichols, D Schlaikjer, E Schlaikjer, G Bindra, H AF Roberts, Jeremy A. Langston, Max Nichols, Daniel Schlaikjer, Eric Schlaikjer, Graham Bindra, Hitesh TI A nonlinear reactivity method with application to accident-tolerant fuels SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Nonlinear reactivity model; Nodal parameter model; Coupled physics; Accident-tolerant fuel; Educational tools AB A nonlinear reactivity model with thermal-hydraulic feedback is presented for analysis of PWR fuel with various cladding materials. The simplified, batch-wise neutronic model requires batch reactivities and migration areas as predetermined functions of burnup, temperature (fuel and coolant), and any design parameters having neutronic significance (e.g., enrichment or cladding composition). Here, such functions are found by using symbolic regression, a unique approach that finds both a functional form and any model coefficients simultaneously. Core thermal-hydraulics are modeled using single-channel, axially-averaged values. The models were implemented in an open-source, Python-based tool, used here to the analyze fuel with Zr-based cladding having outer, protective layers of either FeCrAl or SiC, two materials proposed for use in next-generation, accident-tolerant fuel. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Roberts, Jeremy A.; Langston, Max; Nichols, Daniel; Schlaikjer, Eric; Schlaikjer, Graham; Bindra, Hitesh] Kansas State Univ, Dept Mech & Nucl Engn, Manhattan, KS 66506 USA. RP Roberts, JA (corresponding author), 3002 Rathbone Hall, Manhattan, KS 66506 USA. EM jaroberts@ksu.edu FU U.S. Department of Energy via Idaho National Laboratory [DE-AC07-05ID14517]; KSU's Department of Mechanical and Nuclear Engineering Undergraduate Research Program FX The material presented is based upon work supported in part by the U.S. Department of Energy via Idaho National Laboratory under Prime Contract No. DE-AC07-05ID14517. In addition, the work of M.L., D.N., E.S., and E.G. was further supported by KSU's Department of Mechanical and Nuclear Engineering Undergraduate Research Program. CR BRAGG-SITTON S. M., 2015, NUCL NEWS Cisneros AT, 2013, NUCL TECHNOL, V183, P331, DOI 10.13182/NT13-A19422 Driscoll M.J., 1990, AM NUCL SOC George NM, 2015, ANN NUCL ENERGY, V75, P703, DOI 10.1016/j.anucene.2014.09.005 Hales J., 2013, INLEXT1329930 Knott D., 2010, HDB NUCL ENG, P913, DOI DOI 10.1007/978-0-387-98149-9_9 Machiels A., 2011, BENCHMARKS QUANTIFYI Muller E., 2007, P INT C NUCL EN NEW Roberts J., 2015, NRM COUPLED NEUTRONI Schmidt M., 2014, EUREQA VERSION 0 98 Schmidt M, 2009, SCIENCE, V324, P81, DOI 10.1126/science.1165893 Stacey W.M., 2007, NUCL REACTOR PHYS Stedwell M.J., 1964, TECHNICAL REPORT TODREAS N., 2011, NUCL SYSTEMS Tombakoglu Y., 2002, P INT C NUCL EN NEW Wu X., 2015, ANN NUCL ENERGY Wu X, 2014, INLEXT1432591 Xu Y., 2006, TECHNICAL REPORT NR 18 TC 2 Z9 2 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD AUG PY 2016 VL 94 BP 581 EP 588 DI 10.1016/j.anucene.2016.03.021 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DN7BZ UT WOS:000377231600063 DA 2021-04-21 ER PT J AU Aichhorn, M Pourovskii, L Seth, P Vildosola, V Zingl, M Peil, OE Deng, XY Mravlje, J Kraberger, GJ Martins, C Ferrero, M Parcollet, O AF Aichhorn, Markus Pourovskii, Leonid Seth, Priyanka Vildosola, Veronica Zingl, Manuel Peil, Oleg E. Deng, Xiaoyu Mravlje, Jernej Kraberger, Gernot J. Martins, Cyril Ferrero, Michel Parcollet, Olivier TI TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Many-body physics; Strongly-correlated electrons; Dynamical mean-field theory; ab-initio calculations ID 3D(1)-CORRELATED METAL CA1-XSRXVO3; ELECTRONIC-STRUCTURE CALCULATIONS; OPTICAL-PROPERTIES; WANNIER-FUNCTIONS; BANDWIDTH CONTROL; SYSTEMS; SPECTRA; SOLVER AB We present the TRIQS/DFTTools package, an application based on the TRIQS library that connects this toolbox to realistic materials calculations based on density functional theory (DFT). In particular, TRIQS/DFTTools together with TRIQS allows an efficient implementation of DFT plus dynamical mean field theory (DMFT) calculations. It supplies tools and methods to construct Wannier functions and to perform the DMFT self-consistency cycle in this basis set. Post-processing tools, such as band-structure plotting or the calculation of transport properties are also implemented. The package comes with a fully charge self-consistent interface to the Wien2k band structure code, as well as a generic interface that allows to use TRIQS/DFTTools together with a large variety of DFT codes. It is distributed under the GNU General Public License (GPLv3). Program summary Program title: TRIQS/DFTTools Project homepage: https://triqs.ipht.cnrs.fr/applications/dft_tools Catalogue identifier: AFAF_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFAF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3np No. of lines in distributed program, including test data, etc.: 164018 No. of bytes in distributed program, including test data, etc.: 4916969 Distribution format: tar.gz Programming language: Fortran/Python. Computer: Any architecture with suitable compilers including PCs and clusters. Operating system: Unix, Linux, OSX. RAM: Highly problem dependent Classification: 6.5, 7.3, 7.7, 7.9. External routines: TRIQS, cmake Nature of problem: Setting up state-of-the-art methods for an ab initio description of correlated systems from scratch requires a lot of code development. In order to make these calculations possible for a larger community there is need for high-level methods that allow the construction of DFT+DMFT calculations in a modular and efficient way. Solution method: We present a Fortran/Python open-source computational library that provides high-level abstractions and modules for the combination of DFT with many-body methods, in particular the dynamical mean-field theory. It allows the user to perform fully-fledged DFF+DMFT calculations using simple and short Python scripts. Running time: Tests take less than a minute; otherwise highly problem dependent. (C) 2016 Elsevier B.V. All rights reserved. C1 [Aichhorn, Markus; Zingl, Manuel; Kraberger, Gernot J.] NAWI Graz, TU Graz, Inst Theoret & Computat Phys, Petersgasse 16, A-8010 Graz, Austria. [Pourovskii, Leonid; Seth, Priyanka; Ferrero, Michel] Univ Paris Saclay, Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France. [Pourovskii, Leonid; Ferrero, Michel] Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France. [Seth, Priyanka; Parcollet, Olivier] CEA, CNRS, UMR CNRS 3681, Inst Phys Theor IPhT, F-91191 Gif Sur Yvette, France. [Vildosola, Veronica] CNEA, GlyA, Dept Fis Mat Condensada, RA-1650 San Martin, Buenos Aires, Argentina. [Vildosola, Veronica] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Peil, Oleg E.] Univ Geneva, Dept Quantum Matter Phys, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland. [Deng, Xiaoyu] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Mravlje, Jernej] Jozef Stefan Inst, Jamova 39, Ljubljana, Slovenia. [Martins, Cyril] CNRS, IRSAMC, UMR 5626, Lab Chim & Phys Quant, 118 Route Narbonne, F-31062 Toulouse, France. [Martins, Cyril] Univ Toulouse UPS, 118 Route Narbonne, F-31062 Toulouse, France. RP Aichhorn, M (corresponding author), NAWI Graz, TU Graz, Inst Theoret & Computat Phys, Petersgasse 16, A-8010 Graz, Austria. EM aichhorn@tugraz.at; leonid@cpht.polytechnique.fr; priyanka.seth@cea.fr; vildosol@tandar.cnea.gov.ar; manuel.zingl@tugraz.at; oleg.peil@unige.ch; xiaoyu.deng@gmail.com; jernej.mravlje@ijs.si; gkraberger@tugraz.at; cyril.martins@irsamc.ups-tlse.fr; michel.ferrero@polytechnique.edu; olivier.parcollet@cea.fr RI Peil, Oleg/N-4346-2018; Parcollet, Olivier/C-2340-2008; Ferrero, Michel/Q-3628-2019; Parcollet, Olivier/AAE-2863-2021; Aichhorn, Markus/L-5872-2013; Pourovskii, Leonid V./F-1764-2015 OI Peil, Oleg/0000-0001-9828-4483; Parcollet, Olivier/0000-0002-0389-2660; Aichhorn, Markus/0000-0003-1034-5187; Pourovskii, Leonid V./0000-0003-4003-3539; Ferrero, Michel/0000-0003-1882-2881; Zingl, Manuel/0000-0002-1890-4812 FU Austrian Science FundAustrian Science Fund (FWF) [Y746, P26220, F04103]; Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISTS [K3-2015-038]; Swiss National Science FoundationSwiss National Science Foundation (SNSF)European Commission; ERCEuropean Research Council (ERC)European Commission [617196, 278472]; Slovenian Research Agency (ARRS)Slovenian Research Agency - Slovenia [P1-0044]; [ECOS-A13E04]; Austrian Science Fund (FWF)Austrian Science Fund (FWF) [P 26220] Funding Source: researchfish FX We gratefully acknowledge discussions, comments, and feedback from the user community, and ongoing collaborations with A. Georges and S. Biermann. M. Aichhorn, M. Zingl, and G. J. Kraberger acknowledge financial support from the Austrian Science Fund (Y746, P26220, F04103), and great hospitality at College de France, Ecole Polytechnique, and CEA Saclay. L. Pourovskii acknowledges the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISTS (No. K3-2015-038). L. Pourovskii and V. Vildosola acknowledge financial support from ECOS-A13E04. O. E. Peil acknowledges support from the Swiss National Science Foundation (program NCCR-MARVEL). P. Seth acknowledges support from ERC Grant No. 617196-CorrelMat. O. Parcollet and P. Seth acknowledge support from ERC Grant No. 278472-MottMetals. J. Mravlje acknowledges discussions with J. Tomczak and support of Slovenian Research Agency (ARRS) under Program P1-0044. CR Aichhorn M, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.054529 Aichhorn M, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.085101 Amadon B, 2012, J PHYS-CONDENS MAT, V24, DOI 10.1088/0953-8984/24/7/075604 Ambrosch-Draxl C, 2006, COMPUT PHYS COMMUN, V175, P1, DOI 10.1016/j.cpc.2006.03.005 Andersen OK, 2000, PHYS REV B, V62, P16219, DOI 10.1103/PhysRevB.62.R16219 Anisimov VI, 2005, PHYS REV B, V71, DOI 10.1103/PhysRevB.71.125119 Anisimov VI, 1997, J PHYS-CONDENS MAT, V9, P7359, DOI 10.1088/0953-8984/9/35/010 Anisimov VI, 1997, J PHYS-CONDENS MAT, V9, P767, DOI 10.1088/0953-8984/9/4/002 Assmann E, 2016, COMPUT PHYS COMMUN, V202, P1, DOI 10.1016/j.cpc.2015.12.010 Beach K. S. D., ARXIV0403055 Blaha P., 2001, WIEN2K AUGMENTED PLA Dang HT, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.107003 DOUGIER P, 1975, J SOLID STATE CHEM, V14, P247, DOI 10.1016/0022-4596(75)90029-8 Georges A, 1996, REV MOD PHYS, V68, P13, DOI 10.1103/RevModPhys.68.13 Gull E, 2011, REV MOD PHYS, V83, P349, DOI 10.1103/RevModPhys.83.349 Haule K, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.155113 Haule K, 2010, PHYS REV B, V81, DOI 10.1103/PhysRevB.81.195107 Held K, 2007, ADV PHYS, V56, P829, DOI 10.1080/00018730701619647 Imada M, 1998, REV MOD PHYS, V70, P1039, DOI 10.1103/RevModPhys.70.1039 Inoue IH, 1998, PHYS REV B, V58, P4372, DOI 10.1103/PhysRevB.58.4372 Jarrell M, 1996, PHYS REP, V269, P133, DOI 10.1016/0370-1573(95)00074-7 KHURANA A, 1990, PHYS REV LETT, V64, P1990, DOI 10.1103/PhysRevLett.64.1990 Kokalj A, 2003, COMP MATER SCI, V28, P155, DOI 10.1016/S0927-0256(03)00104-6 Korotin D, 2008, EUR PHYS J B, V65, P91, DOI 10.1140/epjb/e2008-00326-3 Kotliar G, 2006, REV MOD PHYS, V78, P865, DOI 10.1103/RevModPhys.78.865 Kresse G, 1996, PHYS REV B, V54, P11169, DOI 10.1103/PhysRevB.54.11169 Kresse G, 1999, PHYS REV B, V59, P1758, DOI 10.1103/PhysRevB.59.1758 Kunes J, 2010, COMPUT PHYS COMMUN, V181, P1888, DOI 10.1016/j.cpc.2010.08.005 Lechermann F, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.125120 Makino H, 1998, PHYS REV B, V58, P4384, DOI 10.1103/PhysRevB.58.4384 Martins C, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.266404 Marzari N, 1997, PHYS REV B, V56, P12847, DOI 10.1103/PhysRevB.56.12847 Mravlje J, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.096401 Parcollet O, 2015, COMPUT PHYS COMMUN, V196, P398, DOI 10.1016/j.cpc.2015.04.023 Park H, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.235103 Pchelkina ZV, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.035122 Pourovskii LV, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.235101 Rubtsov AN, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.035122 Seth P, 2016, COMPUT PHYS COMMUN, V200, P274, DOI 10.1016/j.cpc.2015.10.023 Singh DJ, 1994, PLANE WAVES PSEUDOPO Souza I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.035109 Werner P, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.155107 Werner P, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.076405 NR 43 TC 57 Z9 57 U1 1 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2016 VL 204 BP 200 EP 208 DI 10.1016/j.cpc.2016.03.014 PG 9 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DN7BW UT WOS:000377231300021 OA Green Accepted DA 2021-04-21 ER PT J AU Jeong, Y Park, J Lee, HC Lee, D AF Jeong, Yongjin Park, Jinsu Lee, Hyun Chul Lee, Deokjung TI Equilibrium core design methods for molten salt breeder reactor based on two-cell model SO JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY LA English DT Article DE MCNP; online processing; molten-salt; MSR; unit-cell AB Two unit-cell-based core design methods are presented for a molten salt breeder reactor (MSBR) equilibrium core with online reprocessing and refueling: a single-cell method and a two-cell method. The single-cell method adopts a representative single unit cell which has the same fuel-to-moderator volume ratio as the average value of an MSBR core which actually consists of two zones with different ratios. The two-cell method uses two representative unit cells, one for each zone, with each zone having the appropriate fuel-to-moderator ratio. It is demonstrated that the two-cell-based method is able to catch the neutron physics of spectral interaction of the two zones with different neutron energy spectra, whereas the single-cell method cannot accurately predict the breeding ratio nor the resonance escape probability of the MSBR core. A new code system was established using MCNP6/PYTHON script language for modeling of the online reprocessing of molten fuel, and the depletion and online refueling of the MSBR core. C1 [Jeong, Yongjin; Park, Jinsu; Lee, Deokjung] Ulsan Natl Inst Sci & Technol, School Mech & Nucl Engn, UNIST Gil 50, Ulsan 689798, South Korea. [Lee, Hyun Chul] Korea Atom Energy Res Inst, 150 Deokjin Dong, Taejon 305353, South Korea. RP Lee, D (corresponding author), Ulsan Natl Inst Sci & Technol, School Mech & Nucl Engn, UNIST Gil 50, Ulsan 689798, South Korea. EM deokjung@unist.ac.kr RI Lee, Deokjung/R-7496-2019 OI Lee, Deokjung/0000-0002-3935-5058 FU National Research Foundation of Korea (NRF) - Korea government (MSIP); Future Challenge Research Fund of UNIST (Ulsan National Institute of Science and Technology) [1.140018.01] FX This work was partially supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP). This work was partially supported by the 2014 Future Challenge Research Fund [Project no. 1.140018.01] of UNIST (Ulsan National Institute of Science and Technology). CR BETTIS ES, 1957, NUCL SCI ENG, V2, P804, DOI 10.13182/NSE57-A35495 HAUBENREICH PN, 1970, NUCL APPL TECHNOL, V8, P118, DOI 10.13182/NT8-2-118 Lewis EE, 2008, FUNDAMENTALS OF NUCLEAR REACTOR PHYSICS, P1 Park J, INT J ENERG RES Pelowitz DB, 2013, LACP1300634 LOS AL N Powers JJ, 2013, P M C MAY 5 9 SUN VA Robertson R.C, 1971, ORNL4541 NR 7 TC 6 Z9 6 U1 0 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0022-3131 EI 1881-1248 J9 J NUCL SCI TECHNOL JI J. Nucl. Sci. Technol. PD APR 2 PY 2016 VL 53 IS 4 BP 529 EP 536 DI 10.1080/00223131.2015.1062812 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DE9SL UT WOS:000370979000009 OA Green Published DA 2021-04-21 ER PT J AU Grieco, S Nyanteh, YD Masson, PJ AF Grieco, Salvatore Nyanteh, Yaw D. Masson, Philippe J. TI Monte Carlo Design Space Exploration of Superconducting Wind Generator Using MgB2 and YBCO Conductors SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Finite-element analysis; high-temperature superconductivity; MgB2; Monte Carlo design space exploration; wind turbine generators; YBCO AB Considering the global outcry over climate change and the need for increased penetration of clean forms of energy in ever-increasing aspects of the modern economic sphere, wind power installations, particularly offshore, are expected to rise in the next decades. However, the main obstacle to this trend will be represented by the high installation costs. In order to reduce these costs, the wind turbines generators require to be manufactured to yield higher torque density with lower material input in terms of weight. One way to pursue this requirement is to employ high-temperature superconductor (HTS) technology for the rotor windings and/or the stator windings, making it possible to design cheaper generators for 10-MW applications. This work considers the impact of HTS conductors in wind turbine generators to complement material research work at the University of Houston HTS material research work. Four topologies of generators were investigated: two partially superconducting generators employing YBCO and MgB2 as conductor for the rotor windings and two fully superconducting generators employing MgB2. The electromagnetic physics governing the machine was simulated by finite-element analysis software, i.e., FlexPDE; then, a numerical analysis of thousands of models was realized by Python. An exploration of the results was carried out making use of an optimum criterion considering a simple aggregation of the generator mass active, the copper, ac stator windings losses, and the amount of superconductor needed. Trends of these optimization criteria with reference to design parameters are shown in detailed plots. According to the specific aims of the designer, the investigation provided interesting clues regarding, among others, the number of pair of poles and the amount of superconductor employed characterizing the best models. C1 [Grieco, Salvatore] Univ Bologna, I-40126 Bologna, Italy. [Nyanteh, Yaw D.; Masson, Philippe J.] Univ Houston, Houston, TX 77004 USA. RP Nyanteh, YD (corresponding author), Univ Houston, Houston, TX 77004 USA. EM nyantehyaw@gmail.com CR Bumby J. R., 1983, SUPERCONDUCTING ROTA Elliott D, 2002, 2002 IEEE POWER ENGINEERING SOCIETY WINTER MEETING, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, P346, DOI 10.1109/PESW.2002.985013 Kalsi SS., 2011, APPL HIGH TEMPERATUR, V1st edn Nyanteh Y., 2014, P IEEE POW EN SOC GE, P1 Snitchler G, 2011, IEEE T APPL SUPERCON, V21, P1089, DOI 10.1109/TASC.2010.2100341 Umashankar S., 2011, P IEEE IICPE IND, P1 NR 6 TC 3 Z9 3 U1 1 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 EI 1558-2515 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD APR PY 2016 VL 26 IS 3 AR 5206405 DI 10.1109/TASC.2016.2524563 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DO6RD UT WOS:000377910100001 DA 2021-04-21 ER PT J AU von Asseldonk, D Erdmann, M Fischer, R Glaser, C Muller, G Quast, T Rieger, M Urban, M AF von Asseldonk, D. Erdmann, M. Fischer, R. Glaser, C. Mueller, G. Quast, T. Rieger, M. Urban, M. TI The VISPA Internet Platform for Students SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE university; teaching; online; physics education; internet-based education; cooperative learning AB The VISPA internet platform enables users to remotely run Python scripts and view resulting plots or inspect their output data. With a standard web browser as the only user requirement on the client-side, the system becomes suitable for blended learning approaches for university physics students. VISPA was used in two consecutive years each by approx. 100 third year physics students at the RWTH Aachen University for their homework assignments. For example, in one exercise students gained a deeper understanding of Einsteins mass-energy relation by analyzing experimental data of electron-positron pairs revealing J/Psi and Z particles. Because the students were free to choose their working hours, only few users accessed the platform simultaneously. The positive feedback from students and the stability of the platform lead to further development of the concept. This year, students accessed the platform in parallel while they analyzed the data recorded by demonstrated experiments live in the lecture hall. The platform is based on experience in the development of professional analysis tools. It combines core technologies from previous projects: an object-oriented C++ library, a modular data-driven analysis flow, and visual analysis steering. We present the platform and discuss its benefits in the context of teaching based on surveys that are conducted each semester. C1 [von Asseldonk, D.; Erdmann, M.; Fischer, R.; Glaser, C.; Mueller, G.; Quast, T.; Rieger, M.; Urban, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. RP Fischer, R (corresponding author), Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. EM rfischer@physik.rwth-aachen.de OI Erdmann, Martin/0000-0002-1653-1303 CR Bender H., 2002, BLENDED LEARNING EFF Erdmann M, 2014, EUR J PHYS, V35, DOI 10.1088/0143-0807/35/3/035018 NR 2 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2581 EP 2583 DI 10.1016/j.nuclphysbps.2015.09.466 PG 3 WC Physics, Particles & Fields SC Physics GA EF4KW UT WOS:000390295200461 OA Green Published, Other Gold DA 2021-04-21 ER PT J AU Cirio, M De Liberato, S Lambert, N Nori, F AF Cirio, Mauro De Liberato, Simone Lambert, Neill Nori, Franco TI Ground State Electroluminescence SO PHYSICAL REVIEW LETTERS LA English DT Article ID CIRCUIT QUANTUM ELECTRODYNAMICS; ULTRASTRONG-COUPLING REGIME; LIGHT-MATTER INTERACTION; SUPERCONDUCTING CIRCUITS; PYTHON FRAMEWORK; ATOM; SYSTEMS; RESONATOR; DYNAMICS; VACUUM AB Electroluminescence, the emission of light in the presence of an electric current, provides information on the allowed electronic transitions of a given system. It is commonly used to investigate the physics of strongly coupled light-matter systems, whose eigenfrequencies are split by the strong coupling with the photonic field of a cavity. Here we show that, together with the usual electroluminescence, systems in the ultrastrong light-matter coupling regime emit a uniquely quantum radiation when a flow of current is driven through them. While standard electroluminescence relies on the population of excited states followed by spontaneous emission, the process we describe herein extracts bound photons from the dressed ground state and it has peculiar features that unequivocally distinguish it from usual electroluminescence. C1 [Cirio, Mauro] RIKEN, Interdisciplinary Theoret Sci Res Grp iTHES, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [De Liberato, Simone] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Lambert, Neill; Nori, Franco] RIKEN, CEMS, Wako, Saitama 3510198, Japan. [Nori, Franco] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Cirio, M (corresponding author), RIKEN, Interdisciplinary Theoret Sci Res Grp iTHES, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. RI Lambert, Neill W/B-4998-2009; Nori, Franco/B-1222-2009 OI Nori, Franco/0000-0003-3682-7432 FU RIKENiTHES Project; MURI Center for Dynamic Magneto-Optics via the AFOSR [FA9550-14-1-0040]; IMPACT program of JST; Canon Foundation in EuropeCanon Foundation; RIKEN iTHES program; FY Incentive Research Project; Engineering and Physical Sciences Research Council (EPSRC)UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/L020335/1]; Engineering and Physical Sciences Research CouncilUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/L020335/1] Funding Source: researchfish FX The authors thank L. Garziano, S. Savasta, R. Stassi, and A. Stockklauser for useful and inspirational discussions. This work is partially supported by the RIKENiTHES Project, the MURI Center for Dynamic Magneto-Optics via the AFOSR Award No. FA9550-14-1-0040, the IMPACT program of JST, and a Grant-in-Aid for Scientific Research (A). M. C. is supported by the Canon Foundation in Europe and the RIKEN iTHES program. N. L. is partially supported by the FY2015 Incentive Research Project. S. D. L. is a Royal Society Research Fellow. S. D. L. acknowledges support from the Engineering and Physical Sciences Research Council (EPSRC), Research Grant No. EP/L020335/1. CR Agnesi A, 2009, J PHYS CONF SER, V161, DOI 10.1088/1742-6596/161/1/012028 Anappara AA, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.201303 Ashhab S, 2009, NEW J PHYS, V11, DOI 10.1088/1367-2630/11/2/023030 Askenazi B, 2014, NEW J PHYS, V16, DOI 10.1088/1367-2630/16/4/043029 Astafiev O, 2007, NATURE, V449, P588, DOI 10.1038/nature06141 Auer A, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.235140 Baksic A, 2013, PHYS REV A, V87, DOI 10.1103/PhysRevA.87.023813 Bamba M., ARXIV14103912 Baust A., ARXIV14127372 Beaudoin F, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.043832 Braak D, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.100401 Breuer HP., 2002, THEORY OPEN QUANTUM Carusotto I, 2012, PHYS REV A, V85, DOI 10.1103/PhysRevA.85.023805 Ciuti C, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.115303 Cwik J. A., ARXIV150608974 De Liberato S, 2009, PHYS REV A, V80, DOI 10.1103/PhysRevA.80.053810 De Liberato S, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.103602 De Liberato S, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.125433 De Liberato S, 2014, PHYS REV A, V89, DOI 10.1103/PhysRevA.89.017801 De Liberato S, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.016401 De Liberato S, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.155321 De Liberato S, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.075317 Delbecq MR, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2407 Delbecq MR, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.256804 Deng GW, 2015, NANO LETT, V15, P6620, DOI 10.1021/acs.nanolett.5b02400 Devoret M, 2007, ANN PHYS-BERLIN, V16, P767, DOI 10.1002/andp.200710261 Dodonov VV, 2006, J PHYS B-AT MOL OPT, V39, pS749, DOI 10.1088/0953-4075/39/15/S20 Faccio D, 2011, EPL-EUROPHYS LETT, V96, DOI 10.1209/0295-5075/96/24006 Feist J, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.196402 Frey T, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.115303 Frey T, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.046807 Galego J, 2015, PHYS REV X, V5, DOI 10.1103/PhysRevX.5.041022 Gambino S, 2014, ACS PHOTONICS, V1, P1042, DOI 10.1021/ph500266d Garcia-Ripoll JJ, 2015, SCI REP-UK, V5, DOI 10.1038/srep16055 Garziano L, 2014, PHYS REV A, V90, DOI 10.1103/PhysRevA.90.043817 Garziano L, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.063829 Garziano L, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.063830 Geiser M, 2012, APPL PHYS LETT, V101, DOI 10.1063/1.4757611 Geiser M, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.106402 Goryachev M, 2014, PHYS REV APPL, V2, DOI 10.1103/PhysRevApplied.2.054002 Gubbin CR, 2014, APPL PHYS LETT, V104, DOI 10.1063/1.4871271 Gunter G, 2009, NATURE, V458, P178, DOI 10.1038/nature07838 Hauss J, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.037003 HUTCHISON JA, 2012, ANGEW CHEM, V124, P1624, DOI DOI 10.1002/ANGE.201107033 Hutchison JA, 2013, ADV MATER, V25, P2481, DOI 10.1002/adma.201203682 Johansson JR, 2013, PHYS REV A, V87, DOI 10.1103/PhysRevA.87.043804 Johansson JR, 2013, COMPUT PHYS COMMUN, V184, P1234, DOI 10.1016/j.cpc.2012.11.019 Johansson JR, 2012, COMPUT PHYS COMMUN, V183, P1760, DOI 10.1016/j.cpc.2012.02.021 Johansson JR, 2010, PHYS REV A, V82, DOI 10.1103/PhysRevA.82.052509 Johansson JR, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.147003 Jouy P, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.045322 Khalifa AA, 2008, APPL PHYS LETT, V92, DOI 10.1063/1.2844860 Lambert N, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.073602 Lambert N, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.216803 Lambert N, 2013, EPL-EUROPHYS LETT, V103, DOI 10.1209/0295-5075/103/17005 Lambrecht A, 1996, PHYS REV LETT, V77, P615, DOI 10.1103/PhysRevLett.77.615 Liu YY, 2015, SCIENCE, V347, P285, DOI 10.1126/science.aaa2501 Liu YY, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.036801 Lodden GH, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3599058 Lolli J, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.183601 Maissen C, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.205309 McKeever J, 2003, NATURE, V425, P268, DOI 10.1038/nature01974 MU Y, 1992, PHYS REV A, V46, P5944, DOI 10.1103/PhysRevA.46.5944 Muravev VM, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.075309 Nataf P, 2010, NAT COMMUN, V1, DOI 10.1038/ncomms1069 Nation PD, 2012, REV MOD PHYS, V84, P1, DOI 10.1103/RevModPhys.84.1 Niemczyk T, 2010, NAT PHYS, V6, P772, DOI 10.1038/NPHYS1730 Orgiu E, 2015, NAT MATER, V14, P1123, DOI [10.1038/NMAT4392, 10.1038/nmat4392] Petersson KD, 2012, NATURE, V490, P380, DOI 10.1038/nature11559 Porer M, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.081302 Ridolfo A, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.193602 Rodrigues DA, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.067204 Sapienza L, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.136806 Scalari G, 2012, SCIENCE, V335, P1323, DOI 10.1126/science.1216022 Schwartz T, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.196405 Stassi R, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.243601 Stassi R., ARXIV150909064 Stassi R, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.013830 Stockklauser A, 2015, PHYS REV LETT, V115, DOI 10.1103/PhysRevLett.115.046802 Toida H, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.066802 Tsintzos SI, 2008, NATURE, V453, P372, DOI 10.1038/nature06979 Viennot JJ, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.165404 Wallraff A, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.249701 Wilson CM, 2011, NATURE, V479, P376, DOI 10.1038/nature10561 Xiang ZL, 2013, REV MOD PHYS, V85, P623, DOI 10.1103/RevModPhys.85.623 You JQ, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.104516 You JQ, 2011, NATURE, V474, P589, DOI 10.1038/nature10122 You JQ, 2005, PHYS TODAY, V58, P42, DOI 10.1063/1.2155757 Zhang XF, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.156401 NR 89 TC 44 Z9 44 U1 0 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 17 PY 2016 VL 116 IS 11 AR 113601 DI 10.1103/PhysRevLett.116.113601 PG 7 WC Physics, Multidisciplinary SC Physics GA DG9VU UT WOS:000372432700007 PM 27035302 OA Bronze, Green Accepted DA 2021-04-21 ER PT J AU Spitznagel, B Pritchett, PR Messina, TC Goadrich, M Rodriguez, J AF Spitznagel, Benjamin Pritchett, Paige R. Messina, Troy C. Goadrich, Mark Rodriguez, Juan TI An undergraduate laboratory activity on molecular dynamics simulations SO BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION LA English DT Article DE molecular dynamics; simulation; modeling; biophysics; structure-function; curricular enhancement; undergraduate laboratory activity ID PROTEINS AB Vision and Change [AAAS, 2011] outlines a blueprint for modernizing biology education by addressing conceptual understanding of key concepts, such as the relationship between structure and function. The document also highlights skills necessary for student success in 21st century Biology, such as the use of modeling and simulation. Here we describe a laboratory activity that allows students to investigate the dynamic nature of protein structure and function through the use of a modeling technique known as molecular dynamics (MD). The activity takes place over two lab periods that are 3 hr each. The first lab period unpacks the basic approach behind MD simulations, beginning with the kinematic equations that all bioscience students learn in an introductory physics course. During this period students are taught rudimentary programming skills in Python while guided through simple modeling exercises that lead up to the simulation of the motion of a single atom. In the second lab period students extend concepts learned in the first period to develop skills in the use of expert MD software. Here students simulate and analyze changes in protein conformation resulting from temperature change, solvation, and phosphorylation. The article will describe how these activities can be carried out using free software packages, including Abalone and VMD/NAMD. (c) 2016 by The International Union of Biochemistry and Molecular Biology, 44:130-139, 2016. C1 [Spitznagel, Benjamin; Rodriguez, Juan] St Louis Coll Pharm, Dept Basic Sci, St Louis, MO 63110 USA. [Pritchett, Paige R.] Centenary Coll Louisiana, Dept Biophys, Shreveport, LA 71104 USA. [Messina, Troy C.] Berea Coll, Dept Phys, Berea, KY 40404 USA. [Goadrich, Mark] Hendrix Coll, Dept Math & Comp Sci, Conway, AR 72032 USA. RP Rodriguez, J (corresponding author), St Louis Coll Pharm, Dept Basic Sci, St Louis, MO 63110 USA. EM juan.rodriguez@stlcop.edu FU Creative Teaching Fund grant from St. Louis College of Pharmacy FX This project was supported in part by a Creative Teaching Fund grant from the St. Louis College of Pharmacy awarded to B.S. and J.R. CR ALDER BJ, 1959, J CHEM PHYS, V31, P459, DOI 10.1063/1.1730376 American Association for the Advancement of Science, 2011, VIS CANG UND BIOL ED Chiang H, 2013, BIOCHEM MOL BIOL EDU, V41, P402, DOI 10.1002/bmb.20737 Cochran AG, 2001, P NATL ACAD SCI USA, V98, P5578, DOI 10.1073/pnas.091100898 Comer J, 2014, J CHEM THEORY COMPUT, V10, P5276, DOI 10.1021/ct500874p Durrant JD, 2011, BMC BIOL, V9, DOI 10.1186/1741-7007-9-71 Henzler-Wildman K, 2007, NATURE, V450, P964, DOI 10.1038/nature06522 Honda S, 2004, STRUCTURE, V12, P1507, DOI 10.1016/j.str.2004.05.022 Humphrey W, 1996, J MOL GRAPH MODEL, V14, P33, DOI 10.1016/0263-7855(96)00018-5 KOSHLAND DE, 1966, BIOCHEMISTRY-US, V5, P365, DOI 10.1021/bi00865a047 MONOD J, 1965, J MOL BIOL, V12, P88, DOI 10.1016/S0022-2836(65)80285-6 Pelaez NJ, 2005, ADV PHYSIOL EDUC, V29, P172, DOI 10.1152/advan.00022.2004 Phillips JC, 2005, J COMPUT CHEM, V26, P1781, DOI 10.1002/jcc.20289 SWOPE WC, 1982, J CHEM PHYS, V76, P637, DOI 10.1063/1.442716 NR 14 TC 3 Z9 3 U1 0 U2 17 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1470-8175 EI 1539-3429 J9 BIOCHEM MOL BIOL EDU JI Biochem. Mol. Biol. Educ. PD MAR-APR PY 2016 VL 44 IS 2 BP 130 EP 139 DI 10.1002/bmb.20939 PG 10 WC Biochemistry & Molecular Biology; Education, Scientific Disciplines SC Biochemistry & Molecular Biology; Education & Educational Research GA DH7XT UT WOS:000373008100004 PM 26751047 OA Bronze DA 2021-04-21 ER PT J AU Moon, C Yoshinuma, M Emoto, M Ida, K AF Moon, Chanho Yoshinuma, Mikirou Emoto, Masahiko Ida, Katsumi TI MyView2, a new visualization software tool for analysis of LHD data SO FUSION ENGINEERING AND DESIGN LA English DT Article DE LHD; MyView2; Python; Data visualization software; Portable structure ID REMOTE PARTICIPATION; TECHNOLOGY AB The Large Helical Device (LHD) at the National Institute for Fusion Science (NIFS) is the world's largest superconducting helical fusion device, providing a scientific research center to elucidate important physics research such as plasma transport, turbulence dynamics, and other topics. Furthermore, many types of advanced diagnostic devices are used to measure the confinement plasma characteristics, and these valuable physical data are registered over the 131,000 discharges in the LHD database. However, it is difficult to investigate the experimental data even though much physical data has been registered. In order to improve the efficiency for investigating plasma physics in LHD, we have developed a new data visualization software, MyView2, which consists of Python-based modules that can be easily set up and updated. MyView2 provides immediate access to experimental results, cross-shot analysis, and a collaboration point for scientific research. In particular, the MyView2 software is a portable structure for making viewable LHD experimental data in on- and off-site web servers, which is a capability not previously available in any general use tool. We will also discuss the benefits of using the MyView2 software for in-depth analysis of LHD experimental data. (C) 2016 Elsevier B.V. All rights reserved. C1 [Moon, Chanho; Yoshinuma, Mikirou; Emoto, Masahiko; Ida, Katsumi] Natl Inst Fus Sci, 322-6 Oroshi, Toki, Gifu 5095292, Japan. RP Moon, C (corresponding author), Natl Inst Fus Sci, 322-6 Oroshi, Toki, Gifu 5095292, Japan. EM moon@nifs.ac.jp RI MOON, Chanho/AAJ-1235-2021; Ida, Katsumi/E-4731-2016 OI MOON, Chanho/0000-0002-0929-774X; Ida, Katsumi/0000-0002-0585-4561 FU JSPS JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science [15H02336] FX The authors acknowledge all the members of the LHD Experiment Group for their assistance. This work is supported by a Grant-in-Aid for Scientific Research (No. 15H02336) of JSPS Japan. CR Bracco G, 1999, FUSION ENG DES, V43, P425, DOI 10.1016/S0920-3796(98)00414-1 Davis WM, 2012, FUSION ENG DES, V87, P2229, DOI 10.1016/j.fusengdes.2012.04.013 Emoto M, 2006, FUSION ENG DES, V81, P2051, DOI 10.1016/j.fusengdes.2006.04.004 Emoto M, 2006, FUSION ENG DES, V81, P2019, DOI 10.1016/j.fusengdes.2006.04.030 Emoto M, 2014, FUSION ENG DES, V89, P758, DOI 10.1016/j.fusengdes.2014.02.014 Emoto M, 2010, FUSION ENG DES, V85, P622, DOI 10.1016/j.fusengdes.2010.03.065 Emoto M, 2002, FUSION ENG DES, V60, P367, DOI 10.1016/S0920-3796(02)00034-0 Emoto M, 2012, FUSION ENG DES, V87, P2076, DOI 10.1016/j.fusengdes.2012.02.127 Forrest RA, 2001, FUSION ENG DES, V54, P387, DOI 10.1016/S0920-3796(00)00557-3 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Lunt T, 2010, NUCL INSTRUM METH A, V623, P812, DOI 10.1016/j.nima.2010.04.150 Moon C., 2015, J PLASMA FUSION RES, V10 Motojima O, 2003, NUCL FUSION, V43, P1674, DOI 10.1088/0029-5515/43/12/013 Nagayama Y, 2012, FUSION ENG DES, V87, P2218, DOI 10.1016/j.fusengdes.2012.09.012 Schachter J, 2000, FUSION ENG DES, V48, P91, DOI 10.1016/S0920-3796(00)00139-3 Suzuki C, 2013, PLASMA PHYS CONTR F, V55, DOI 10.1088/0741-3335/55/1/014016 NR 16 TC 2 Z9 2 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD MAR PY 2016 VL 104 BP 56 EP 60 DI 10.1016/j.fusengdes.2016.01.076 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DH3GI UT WOS:000372675100008 DA 2021-04-21 ER PT J AU Seth, P Krivenko, I Ferrero, M Parcollet, O AF Seth, Priyanka Krivenko, Igor Ferrero, Michel Parcollet, Olivier TI TRIQS/CTHYB: A continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Many-body physics; Impurity solvers; Strongly-correlated systems; DMFT; Monte Carlo; C plus; Python ID MEAN-FIELD THEORY; SYSTEMS; MODELS AB We present TRIQS/CTHYB, a state-of-the art open-source implementation of the continuous-time hybridisation expansion quantum impurity solver of the TRIQS package. This code is mainly designed to be used with the TRIQS library in order to solve the self-consistent quantum impurity problem in a multi-orbital dynamical mean field theory approach to strongly-correlated electrons, in particular in the context of realistic electronic structure calculations. It is implemented in C++ for efficiency and is provided with a high-level Python interface. The code ships with a new partitioning algorithm that divides the local Hilbert space without any user knowledge of the symmetries and quantum numbers of the Hamiltonian. Furthermore, we implement higher-order configuration moves and show that such moves are necessary to ensure ergodicity of the Monte Carlo in common Hamiltonians even without symmetry-breaking. Program summary Program title: TRIQS/CTHYB Catalogue identifier: AEYU_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEYU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: GNU General Public Licence (GPLv3) No. of lines in distributed program, including test data, etc.: 159,017 No. of bytes in distributed program, including test data, etc.: 10,215,893 Distribution format: tar.gz Programming language: C++/Python. Computer: Any architecture with suitable compilers including PCs and clusters. Operating system: Unix, Linux, OSX. RAM: Highly problem-dependent Classification: 7.3, 4.4. External routines: TRIQS, cmake. Nature of problem: Accurate solvers for quantum impurity problems are needed in condensed matter theory. Solution method: We present an efficient C++/Python open -source implementation of a continuous-time hybridisation expansion solver. Running time: Tests take less than a minute. Otherwise it is highly problem dependent (from minutes to several days). (C) 2015 Elsevier B.V. All rights reserved. C1 [Seth, Priyanka; Ferrero, Michel] Ecole Polytech, CNRS, F-91128 Palaiseau, France. [Seth, Priyanka; Parcollet, Olivier] CEA, CNRS, UMR 3681, IPhT, F-91191 Gif Sur Yvette, France. [Krivenko, Igor] Univ Hamburg, Inst Theoret Phys 1, Jungiusstr 9, D-20355 Hamburg, Germany. [Ferrero, Michel] Coll France, 11 Pl Marcelin Berthelot, F-75005 Paris, France. RP Seth, P (corresponding author), CEA, CNRS, UMR 3681, IPhT, F-91191 Gif Sur Yvette, France. EM priyanka.seth@cea.fr; ikrivenk@physnet.uni-hamburg.de; michel.ferrero@polytechnique.edu; olivier.parcollet@cea.fr RI Ferrero, Michel/Q-3628-2019; Parcollet, Olivier/C-2340-2008; Parcollet, Olivier/AAE-2863-2021 OI Parcollet, Olivier/0000-0002-0389-2660; Ferrero, Michel/0000-0003-1882-2881; Seth, Priyanka/0000-0001-8280-8430 FU ERCEuropean Research Council (ERC)European Commission [278472-MottMetals, 617196-CorrelMat]; Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [SFB 668-A3] FX We thank S. Biermann, E. Gull and P. Werner for useful discussions, and M. Aichhorn, B. Amadon, T. Ayral, P. Delange, P. Hansmann, M. Harland, L. Pourovskii, W. Rowe, M. Zingl for their feedback on the code. The TRIQS and TRILIS/CTHYB projects are supported by the ERC Grant No. 278472-MottMetals. I. K. acknowledges support from Deutsche Forschungsgemeinschaft via Project SFB 668-A3. P. S. acknowledges support from ERC Grant No. 617196-CorrelMat. CR Antipov A.E., 2015, POMEROL 1 1 Augustinsky P, 2013, COMPUT PHYS COMMUN, V184, P2119, DOI 10.1016/j.cpc.2013.04.005 Boehnke L, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.075145 Georges A, 1996, REV MOD PHYS, V68, P13, DOI 10.1103/RevModPhys.68.13 Gull E, 2008, EPL-EUROPHYS LETT, V82, DOI 10.1209/0295-5075/82/57003 Gull E., 2008, THESIS ETH ZURICH Gull E, 2011, REV MOD PHYS, V83, P349, DOI 10.1103/RevModPhys.83.349 Haule K, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.155113 Huang L, 2015, COMPUT PHYS COMMUN, V195, P140, DOI 10.1016/j.cpc.2015.04.020 Kotliar G, 2006, REV MOD PHYS, V78, P865, DOI 10.1103/RevModPhys.78.865 Maier T, 2005, REV MOD PHYS, V77, P1027, DOI 10.1103/RevModPhys.77.1027 Parcollet O, 2015, COMPUT PHYS COMMUN, V196, P398, DOI 10.1016/j.cpc.2015.04.023 Parragh N, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.155158 Rubtsov AN, 2012, ANN PHYS-NEW YORK, V327, P1320, DOI 10.1016/j.aop.2012.01.002 Rubtsov AN, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.033101 Rubtsov AN, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.035122 Sedgewick R., ALGORITHMS 1 Sedgewick R., 2008, LEFT LEANING R UNPUB Sedgewick R., 2011, ALGORITHMS Semon P, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.075149 Semon P, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.165113 TARJAN RE, 1975, J ACM, V22, P215, DOI 10.1145/321879.321884 Toschi A, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.045118 Werner P, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.155107 Werner P, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.076405 Yee C.-H., 2012, THESIS RUTGERS U NR 26 TC 99 Z9 99 U1 2 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAR PY 2016 VL 200 BP 274 EP 284 DI 10.1016/j.cpc.2015.10.023 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DC8EE UT WOS:000369451900024 DA 2021-04-21 ER PT J AU Lin, JYY Smith, HL Granroth, GE Abernathy, DL Lumsden, MD Winn, B Aczel, AA Aivazis, M Fultz, B AF Lin, Jiao Y. Y. Smith, Hillary L. Granroth, Garrett E. Abernathy, Douglas L. Lumsden, Mark D. Winn, Barry Aczel, Adam A. Aivazis, Michael Fultz, Brent TI MCViNE - An object oriented Monte Carlo neutron ray tracing simulation package SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron scattering; Monte Carlo simulation; Ray-tracing; Inelastic; Spectrometry ID EUROPEAN SPALLATION SOURCE; SCATTERING EXPERIMENTS; INSTRUMENT; RESOLUTION; MCSTAS; GUIDE; SPECTROMETER; PERFORMANCE; VANADIUM; PROGRAM AB MCViNE (Monte-Carlo Virtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics. (C) 2015 Elsevier B.V. All rights reserved. C1 [Lin, Jiao Y. Y.; Aivazis, Michael] CALTECH, Caltech Ctr Adv Comp Res, Pasadena, CA 91125 USA. [Lin, Jiao Y. Y.; Smith, Hillary L.; Fultz, Brent] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA. [Lin, Jiao Y. Y.; Granroth, Garrett E.] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat Div, Oak Ridge, TN 37831 USA. [Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry; Aczel, Adam A.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN USA. RP Lin, JYY (corresponding author), CALTECH, Caltech Ctr Adv Comp Res, Pasadena, CA 91125 USA.; Fultz, B (corresponding author), CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA.; Granroth, GE (corresponding author), Oak Ridge Natl Lab, Neutron Data Anal & Visualizat Div, Oak Ridge, TN 37831 USA. EM linjiao@ornl.gov; granrothge@ornl.gov; btf@caltech.edu RI Lumsden, Mark/F-5366-2012; Lin, Jiao/A-2529-2016; Abernathy, Douglas L/A-3038-2012; Granroth, Garrett E/G-3576-2012; BL18, ARCS/A-3000-2012; Aczel, Adam/A-6247-2016 OI Lumsden, Mark/0000-0002-5472-9660; Lin, Jiao/0000-0001-9233-0100; Abernathy, Douglas L/0000-0002-3533-003X; Granroth, Garrett E/0000-0002-7583-8778; Aczel, Adam/0000-0003-1964-1943; Smith, Hillary/0000-0001-6155-7812 FU NSFNational Science Foundation (NSF) [DMR-0520547]; U. S. Department of Energy, Office of Basic Energy SciencesUnited States Department of Energy (DOE); Scientific User Facilities DivisionUnited States Department of Energy (DOE) FX The development of the MCViNE software was begun by J.Y.Y.L. under the DANSE project supported by the NSF award DMR-0520547. The research on simulations of experiments in the ARCS, SEQUOIA, and HYSPEC instruments was supported by the U. S. Department of Energy, Office of Basic Energy Sciences. G.E.G., A. A.A., D.L.A., M.D.L., B.A. were fully supported, J.Y.Y.L. and H.L.S. partially supported by the Scientific User Facilities Division. We thank M. E. Hagen, A. Payzant, and P. Willendrup for stimulating discussions. We also thank L. Li and A. Dementsov for developing the powder diffraction scattering kernel for MCViNE, A. Fang for building MCViNE adaptations of some McStas components, and M. Reuter and S. Campbell for updating the MANTID code to read in the Monte Carlo generated data. CR Abernathy DL, 2012, REV SCI INSTRUM, V83, DOI 10.1063/1.3680104 Aczel AA, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms2117 Alianelli L, 2004, NUCL INSTRUM METH A, V529, P231, DOI 10.1016/j.nima.2004.04.161 Arnold O, 2014, NUCL INSTRUM METH A, V764, P156, DOI 10.1016/j.nima.2014.07.029 Bertelsen M, 2013, NUCL INSTRUM METH A, V729, P387, DOI 10.1016/j.nima.2013.07.062 BISCHOFF FG, 1970, THESIS RENSSELAER PO Boin M, 2011, J APPL CRYSTALLOGR, V44, P1040, DOI 10.1107/S0021889811025970 Boin M, 2012, J APPL CRYSTALLOGR, V45, P603, DOI 10.1107/S0021889812016056 Brown P.J., 1983, INT TABLES CRYSTALLO, P391 COLELLA R, 1970, PHYS REV B, V1, P3913, DOI 10.1103/PhysRevB.1.3913 COPLEY JRD, 1986, COMPUT PHYS COMMUN, V40, P337, DOI 10.1016/0010-4655(86)90118-9 Daemen L.L., SPIE P, V3771 Dederichs P., 1981, PHONON STATES ALLOYS, V1 Delaire O, 2011, P NATL ACAD SCI USA, V108, P4725, DOI 10.1073/pnas.1014869108 Ehlers G, 2011, REV SCI INSTRUM, V82, DOI 10.1063/1.3626935 Farhi E, 2014, J NEUTRON RES, V17, P63, DOI 10.3233/JNR-130007 Farhi E, 2009, J COMPUT PHYS, V228, P5251, DOI 10.1016/j.jcp.2009.04.006 Farhi E., 2011, COLLECTION SFN, V12, P303 Friemel G, 2013, J PHYS CONF SER, V449, DOI 10.1088/1742-6596/449/1/012016 Gamma E., 1995, DESIGN PATTERNS ELEM Ghali S, 2008, INTRO GEOMETRIC COMP GILAT G, 1966, PHYS REV, V143, P487, DOI 10.1103/PhysRev.143.487 Granroth GE, 2006, PHYSICA B, V385-86, P1104, DOI 10.1016/j.physb.2006.05.379 Granroth GE, 2010, J PHYS CONF SER, V251, DOI 10.1088/1742-6596/251/1/012058 Granroth G.E., 2003, P ICANS 16, P289 Granroth GE, 2007, J NEUTRON RES, V15, P91, DOI 10.1080/10238160601046092 GUPTA OP, 1978, NUOVO CIMENTO B, V45, P255, DOI 10.1007/BF02894684 HAGEN M, COMMUNICATION Hahn SE, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.014420 Houben A, 2012, NUCL INSTRUM METH A, V680, P124, DOI 10.1016/j.nima.2012.03.015 Hugouvieux V, 2004, PHYSICA B, V350, P151, DOI 10.1016/j.physb.2004.04.015 Hugouvieux V, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.104208 Izaola Z, 2010, J PHYS CONF SER, V251, DOI 10.1088/1742-6596/251/1/012064 Klinkby EB, 2014, J PHYS CONF SER, V528, DOI 10.1088/1742-6596/528/1/012032 Kresch M, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.024301 Kynde S, 2014, NUCL INSTRUM METH A, V764, P133, DOI 10.1016/j.nima.2014.06.084 Lee WT, 2002, APPL PHYS A-MATER, V74, pS1502, DOI 10.1007/s003390201723 Lefmann K, 2008, J NEUTRON RES, V16, P97, DOI 10.1080/10238160902819684 Lefmann K., 1999, NEUTRON NEWS, V10, P20, DOI DOI 10.1080/10448639908233684 Li CW, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.175501 Lin JYY, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.144302 Lumsden MD, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.214424 Maradudin A., 1971, THEORY LATTICE DYNAM, V2nd ed. MASON TE, SPALLATION NEUTRON S Niedziela J.L., HIGH TEMPERATU UNPUB Perring T.G., 1991, HIGH ENERGY MAGNETIC Plumb KW, 2014, PHYS REV B, V89, DOI 10.1103/PhysRevB.89.180410 Proffen T, 1997, J APPL CRYSTALLOGR, V30, P171, DOI 10.1107/S002188989600934X Proffen T, 1999, J APPL CRYSTALLOGR, V32, P838, DOI [10.1107/S0021889899004860, DOI 10.1107/S0021889899004860] Prokhnenko O, 2014, NUCL INSTRUM METH A, V764, P30, DOI 10.1016/j.nima.2014.07.013 Riedel RA, 2012, NUCL INSTRUM METH A, V664, P366, DOI 10.1016/j.nima.2011.08.038 Saroun J, 1997, PHYSICA B, V234, P1102, DOI 10.1016/S0921-4526(97)00037-9 Sears VF, 1992, NEUTRON NEWS, V3, P26, DOI [10.1080/10448639208218770, DOI 10.1080/10448639208218770] Shirane G., 2002, NEUTRON SCATTERING T Skoulatos M, 2011, NUCL INSTRUM METH A, V647, P100, DOI 10.1016/j.nima.2011.05.037 Stone MB, 2014, REV SCI INSTRUM, V85, DOI 10.1063/1.4870050 Tang XL, 2010, PHYS REV B, V82, DOI 10.1103/PhysRevB.82.184301 Taylor J., B AM PHYS SOC, V57 Tregenna-Piggott PLW, 2008, J NEUTRON RES, V16, P13, DOI 10.1080/10238160802348446 Udby L, 2011, NUCL INSTRUM METH A, V634, pS138, DOI 10.1016/j.nima.2010.06.235 Walters AC, 2009, NAT PHYS, V5, P867, DOI 10.1038/NPHYS1405 Weber F, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.057001 Wildes AR, 2002, APPL PHYS A-MATER, V74, pS1452, DOI 10.1007/s003390101243 Willendrup P.K., COMPONENT MANUAL NEU Willendrup P, 2004, PHYSICA B, V350, pE735, DOI 10.1016/j.physb.2004.03.193 Willendrup PK, 2011, NUCL INSTRUM METH A, V634, pS150, DOI 10.1016/j.nima.2010.06.212 Winn B., EPJ WEB C Wuttke J, 2000, PHYS REV E, V62, P6531, DOI 10.1103/PhysRevE.62.6531 Young R., IUCR MONOGRAPH CRYST, V5 Zsigmond G., 2002, NEUTRON NEWS, V13, P11, DOI [10.1080/10448630208218488, DOI 10.1080/10448630208218488] NR 70 TC 22 Z9 22 U1 0 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2016 VL 810 BP 86 EP 99 DI 10.1016/j.nima.2015.11.118 PG 14 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DB6NY UT WOS:000368632900015 OA Bronze, Green Accepted DA 2021-04-21 ER PT J AU Shen, C Qiu, Z Song, HC Bernhard, J Bass, S Heinz, U AF Shen, Chun Qiu, Zhi Song, Huichao Bernhard, Jonah Bass, Steffen Heinz, Ulrich TI The iEBE-VISHNU code package for relativistic heavy-ion collisions SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Relativistic heavy-ion collision; Relativistic viscous hydrodynamics; Quark-gluon plasma ID CHARGED-PARTICLE MULTIPLICITY; COLOR GLASS CONDENSATE; EQUATION-OF-STATE; PB COLLISIONS; DYNAMICS; FLOW; DEPENDENCE; MODEL; HYDRODYNAMICS; FIELD AB The iEBE-VISHNU code package performs event-by-event simulations for relativistic heavy-ion collisions using a hybrid approach based on (2 + 1)-dimensional viscous hydrodynamics coupled to a hadronic cascade model. We present the detailed model implementation, accompanied by some numerical code tests for the package. iEBE-VISHNU forms the core of a general theoretical framework for model-data comparisons through large scale Monte-Carlo simulations. A numerical interface between the hydrodynamically evolving medium and thermal photon radiation is also discussed. This interface is more generally designed for calculations of all kinds of rare probes that are coupled to the temperature and flow velocity evolution of the bulk medium, such as jet energy loss and heavy quark diffusion. Program summary Program title: iEBE-VISHNU Catalogue identifier: AEYA_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEYA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5257939 No. of bytes in distributed program, including test data, etc.: 262822421 Distribution format: tar.gz Programming language: Fortran, C++, python, bash, SQLite. Computer: Laptop, desktop, cluster. Operating system: Tested on GNU/Linux Ubuntu 12.04 x64, Red Hat Linux 6, Mac OS X 10.8+. RAM: 2G bytes Classification: 17.11, 17.16, 17.20. External routines: GNU Scientific Library (GSL), HDF5 (Fortran and C++ enabled), Numpy Nature of problem: Relativistic heavy-ion collisions are tiny in size (V approximate to 10(-42) m(3)) and live in a flash (similar to 5 x 10(-23) s). It is impossible to use external probes to study the properties of the quark-gluon plasma (QGP), a novel state of matter created during the collisions. Experiments can only measure the momentum information of stable hadrons, who are the remnants of the collisions. In order to extract the thermal and transport properties of the QGP one needs to rely on Monte-Carlo event-by-event model simulations, which reverse-engineer the experimental measurements to the early time dynamics of the relativistic heavy-ion collisions. Solution method: Relativistic heavy-ion collisions contain multiple stages of evolution. The physics that governs each stage is implemented into individual code components. A general driver script glues all the modular packages as a whole to perform large-scale Monte-Carlo simulations. The final results are stored into SQLite database, which supports standard querying for massive data analysis. By tuning transport coefficients of the QGP as free parameters, e.g. the specific shear viscosity eta/s, we can constrain various transport properties of the QGP through model-data comparisons. Additional comments: !!!!! The distribution file for this program is over 260 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!!! Running time: The following running time is tested on a laptop computer with a 2.4 GHz Intel Core i5 CPU, 4 GB memory. All the C++ and Fortran codes are compiled with the GNU Compiler Collection (GCC) 4.9.2 and -03 optimization (Table 1). (C) 2015 Elsevier B.V. All rights reserved. C1 [Shen, Chun; Qiu, Zhi; Song, Huichao; Heinz, Ulrich] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Shen, Chun] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Song, Huichao] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Song, Huichao] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Bernhard, Jonah; Bass, Steffen] Duke Univ, Dept Phys, Durham, NC 27708 USA. RP Shen, C (corresponding author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM chunshen@physics.mcgill.ca; heinz@mps.ohio-state.edu RI Bass, Steffen A./AAB-9800-2020 OI Bass, Steffen A./0000-0002-9451-0954; Heinz, Ulrich/0000-0003-3941-7789; Shen, Chun/0000-0002-6677-4784; Bernhard, Jonah/0000-0003-2959-954X FU U.S. Department of Energy, Office of Science, Office of Nuclear PhysicsUnited States Department of Energy (DOE) [DE-SC0004286, DE-FG02-05ER41367, DE-SC0004104]; Natural Sciences and Engineering Research Council of CanadaNatural Sciences and Engineering Research Council of Canada (NSERC)CGIAR FX This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Nos. DE-SC0004286, DE-FG02-05ER41367, and (within the framework of the JET Collaboration) DE-SC0004104, and in part by the Natural Sciences and Engineering Research Council of Canada. We gratefully acknowledge important contributions by Scott Moreland during the early stages of the development of the superMC module. CR Abelev B, 2014, PHYS REV C, V90, DOI 10.1103/PhysRevC.90.054901 AICHELIN J, 1988, PHYS REV C, V37, P2451, DOI 10.1103/PhysRevC.37.2451 Akamatsu Y, 2014, J COMPUT PHYS, V256, P34, DOI 10.1016/j.jcp.2013.08.047 Albacete J. L., ARXIV10115161 Albacete JL, 2013, NUCL PHYS A, V897, P1, DOI 10.1016/j.nuclphysa.2012.09.012 Alver B., ARXIV08054411 ANSORGE RE, 1989, Z PHYS C PART FIELDS, V43, P357 Back BB, 2002, PHYS REV C, V65, DOI 10.1103/PhysRevC.65.061901 Barnett RM, 1996, PHYS REV D, V54, P1, DOI 10.1103/PhysRevD.54.1 Bass SA, 1998, PROG PART NUCL PHYS, V41, P255, DOI 10.1016/S0146-6410(98)00058-1 Bazavov A, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.094503 Belkacem M, 1998, PHYS REV C, V58, P1727, DOI 10.1103/PhysRevC.58.1727 Bernhard JE, 2015, PHYS REV C, V91, DOI 10.1103/PhysRevC.91.054910 Bleicher M, 1999, J PHYS G NUCL PARTIC, V25, P1859, DOI 10.1088/0954-3899/25/9/308 Borsanyi S, 2014, PHYS LETT B, V730, P99, DOI 10.1016/j.physletb.2014.01.007 Bozek P, 2013, PHYS REV C, V88, DOI 10.1103/PhysRevC.88.014903 Bozek P, 2012, PHYS REV C, V85, DOI 10.1103/PhysRevC.85.034901 Bozek P, 2012, PHYS REV C, V85, DOI 10.1103/PhysRevC.85.014911 Bozek P, 2010, PHYS REV C, V81, DOI 10.1103/PhysRevC.81.034909 Broniowski W, 2009, COMPUT PHYS COMMUN, V180, P69, DOI 10.1016/j.cpc.2008.07.016 Chatrchyan S, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2014)088 Chatrchyan S, 2013, PHYS LETT B, V724, P213, DOI 10.1016/j.physletb.2013.06.028 Chojnacki M, 2007, ACTA PHYS POL B, V38, P3249 DANIELEWICZ P, 1991, NUCL PHYS A, V533, P712, DOI 10.1016/0375-9474(91)90541-D Del Zanna L, 2013, EUR PHYS J C, V73, DOI 10.1140/epjc/s10052-013-2524-5 Dusling K, 2008, PHYS REV C, V77, DOI 10.1103/PhysRevC.77.034905 Dusling K, 2011, NUCL PHYS A, V850, P69, DOI 10.1016/j.nuclphysa.2010.11.009 Epelbaum T, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.232301 Filip P, 2008, PHYS ATOM NUCL+, V71, P1609, DOI 10.1134/S1063778808090172 Filip P, 2009, PHYS REV C, V80, DOI 10.1103/PhysRevC.80.054903 Gale C, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.012302 Goldschmidt A., ARXIV150703910 Goldschmidt A., ARXIV150200603 Gubser SS, 2011, NUCL PHYS B, V846, P469, DOI 10.1016/j.nuclphysb.2011.01.012 Gubser SS, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.085027 Habich M, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-014-3206-7 Heinz, ARXIVNUCLTH0305084 Heinz U, 2014, NUCL PHYS A, V932, P310, DOI 10.1016/j.nuclphysa.2014.07.020 Heinz U, 2013, J PHYS CONF SER, V455, DOI 10.1088/1742-6596/455/1/012044 Heinz U, 2013, PHYS REV C, V87, DOI 10.1103/PhysRevC.87.034913 Heinz U, 2011, PHYS REV C, V84, DOI 10.1103/PhysRevC.84.054905 Heinz U, 2008, J PHYS G NUCL PARTIC, V35, DOI 10.1088/0954-3899/35/10/104126 Hirano T, 2013, PROG PART NUCL PHYS, V70, P108, DOI 10.1016/j.ppnp.2013.02.002 Hirano T, 2004, NUCL PHYS A, V743, P305, DOI 10.1016/j.nuclphysa.2004.08.003 Hirano T, 2002, PHYS REV C, V66, DOI 10.1103/PhysRevC.66.054905 Hirano T, 2009, PHYS REV C, V79, DOI 10.1103/PhysRevC.79.064904 Holopainen H, 2011, PHYS REV C, V83, DOI 10.1103/PhysRevC.83.034901 Huovinen P, 2010, NUCL PHYS A, V837, P26, DOI 10.1016/j.nuclphysa.2010.02.015 Karpenko I, 2014, COMPUT PHYS COMMUN, V185, P3016, DOI 10.1016/j.cpc.2014.07.010 Khachatryan V, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2011)079 Kharzeev D, 2005, PHYS REV C, V71, DOI 10.1103/PhysRevC.71.054903 Kharzeev D, 2005, NUCL PHYS A, V747, P609, DOI 10.1016/j.nuclphysa.2004.10.018 Kharzeev D, 2001, PHYS LETT B, V507, P121, DOI 10.1016/S0370-2693(01)00457-9 Kovchegov Y. V, 2012, CAMBRIDGE MONOGRAPHS KRUSE H, 1985, PHYS REV C, V31, P1770, DOI 10.1103/PhysRevC.31.1770 Liu J, 2015, PHYS REV C, V91, DOI 10.1103/PhysRevC.91.064906 Loizides C., ARXIV14082549 Luzum M, 2009, PHYS REV C, V79, DOI 10.1103/PhysRevC.79.039903 Luzum M, 2008, PHYS REV C, V78, DOI 10.1103/PhysRevC.78.034915 Marrochio H, 2015, PHYS REV C, V91, DOI 10.1103/PhysRevC.91.014903 Molnar E, 2014, PHYS REV C, V90, DOI 10.1103/PhysRevC.90.044904 Niemi H, 2012, PHYS REV C, V86, DOI 10.1103/PhysRevC.86.014909 Niemi H., ARXIV14047327 Noronha-Hostler J, 2013, PHYS REV C, V88, DOI 10.1103/PhysRevC.88.044916 Pang LG, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.074027 Pang LG, 2012, PHYS REV C, V86, DOI 10.1103/PhysRevC.86.024911 Plumberg C, 2015, PHYS REV C, V91, DOI 10.1103/PhysRevC.91.054905 Qiu Z, 2012, PHYS LETT B, V707, P151, DOI 10.1016/j.physletb.2011.12.041 Ryu S., ARXIV150201675 Schenke B, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.252301 Schenke B, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.042301 Shen C., 2013, P 6 INT C HARD EL PR Shen C., ARXIV150407989 Shen C, 2015, PHYS REV C, V92, DOI 10.1103/PhysRevC.92.014901 Shen C, 2015, PHYS REV C, V91, DOI 10.1103/PhysRevC.91.024908 Shen C, 2014, NUCL PHYS A, V931, P675, DOI 10.1016/j.nuclphysa.2014.08.030 Shen C, 2014, PHYS REV C, V89, DOI 10.1103/PhysRevC.89.044910 Shen C, 2010, PHYS REV C, V82, DOI 10.1103/PhysRevC.82.054904 Song HC, 2008, PHYS REV C, V77, DOI 10.1103/PhysRevC.77.064901 Song HC, 2011, PHYS REV C, V83, DOI 10.1103/PhysRevC.83.024912 Song HC, 2014, PHYS REV C, V89, DOI 10.1103/PhysRevC.89.034919 Song HC, 2008, PHYS REV C, V78, DOI 10.1103/PhysRevC.78.024902 SORGE H, 1989, ANN PHYS-NEW YORK, V192, P266, DOI 10.1016/0003-4916(89)90136-X YARIV Y, 1979, PHYS REV C, V20, P2227, DOI 10.1103/PhysRevC.20.2227 NR 84 TC 170 Z9 175 U1 1 U2 27 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB PY 2016 VL 199 BP 61 EP 85 DI 10.1016/j.cpc.2015.08.039 PG 25 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CZ4ZZ UT WOS:000367113200009 OA Bronze DA 2021-04-21 ER PT S AU Pelupessy, I van Werkhoven, B van Elteren, A Viebahn, J Candy, A Zwart, SP Dijkstra, H AF Pelupessy, Inti van Werkhoven, Ben van Elteren, Arjen Viebahn, Jan Candy, Adam Zwart, Simon Portegies Dijkstra, Henk GP IEEE TI OMUSE: Oceanographic Multipurpose Software Environment SO PROCEEDINGS OF THE 2016 IEEE 12TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE) SE Proceeding IEEE International Conference on e-Science (e-Science) LA English DT Proceedings Paper CT 12th IEEE International Conference on e-Science (e-Science) CY OCT 23-27, 2016 CL Baltimore, MD SP IEEE, Inst Date Intens Engn & Sci, Microsoft, Gordon & Betty Moore Fdn, Alfred P Sloan Fdn ID OCEAN; EDDIES AB This talk will give a brief introduction to OMUSE, the Oceanographic Multipurpose Software Environment, which is currently being developed. OMUSE is a Python framework that provides high-level object-oriented interfaces to existing or newly developed numerical ocean simulation codes, simplifying their use and development. In this way, OMUSE facilitates the efficient design of numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales, for example coupling a global open ocean simulation with a regional coastal ocean model. OMUSE enables its users to write high-level Python scripts that describe simulations. The functionality provided by OMUSE takes care of the low-level integration with the code and deploying simulations on high-performance computing resources, allowing its users to focus on the physics of the simulation. We give an overview of the design of OMUSE and the modules and model components currently included. In particular, we will discuss the process of creating a new OMUSE interface to an existing code, and explain how OMUSE keeps track of the internal state of a running simulation. In addition, we will discuss the grid data types and grid remapping functionality that OMUSE provides. We also give an example of performing online data analysis on a running simulation, which is becoming increasingly important as models simulate a broader range of scales, generating large datasets that cannot be fully stored for offline analysis. C1 [Pelupessy, Inti; Viebahn, Jan; Dijkstra, Henk] Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands. [van Werkhoven, Ben] Netherlands eSci Ctr, Amsterdam, Netherlands. [Pelupessy, Inti; van Elteren, Arjen; Zwart, Simon Portegies] Leiden Univ, Leiden Observ, Leiden, Netherlands. [Candy, Adam] Delft Univ Technol, Delft, Netherlands. RP Pelupessy, I (corresponding author), Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands.; Pelupessy, I (corresponding author), Leiden Univ, Leiden Observ, Leiden, Netherlands. OI Candy, Adam/0000-0002-0132-6833 FU Netherlands eScience Center [027.013.701] FX The ABC-MUSE project is funded by Netherlands eScience Center (file number 027.013.701, 2013-2016). CR CDO, 2015, CLIM DAT OP Drost N, 2012, IEEE SYM PARA DISTR, P150, DOI 10.1109/IPDPSW.2012.14 Gregersen JB, 2007, J HYDROINFORM, V9, P175, DOI 10.2166/hydro.2007.023 Griffies SM, 2015, J CLIMATE, V28, P952, DOI 10.1175/JCLI-D-14-00353.1 Hill C, 2004, COMPUT SCI ENG, V6, P18, DOI 10.1109/MCISE.2004.1255817 Jones PW, 1999, MON WEATHER REV, V127, P2204, DOI 10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2 Larson J, 2005, INT J HIGH PERFORM C, V19, P277, DOI 10.1177/1094342005056115 Le Bars D, 2012, J PHYS OCEANOGR, V42, P1158, DOI 10.1175/JPO-D-11-0119.1 Maltrud M, 2010, ENVIRON FLUID MECH, V10, P275, DOI 10.1007/s10652-009-9154-3 Mason E, 2014, J ATMOS OCEAN TECH, V31, P1181, DOI 10.1175/JTECH-D-14-00019.1 Peckham SD, 2013, COMPUT GEOSCI-UK, V53, P3, DOI 10.1016/j.cageo.2012.04.002 Pelupessy FI, 2013, ASTRON ASTROPHYS, V557, DOI 10.1051/0004-6361/201321252 Seinstra F. J., 2011, GRIDS CLOUDS VIRTUAL, P167 Smith RD, 2010, LAUR1001853 LOS AL N Stocker T.F, 2013, CLIMATE CHANGE 2013 Valcke S, 2013, GEOSCI MODEL DEV, V6, P373, DOI 10.5194/gmd-6-373-2013 van Werkhoven B, 2014, GEOSCI MODEL DEV, V7, P267, DOI 10.5194/gmd-7-267-2014 Viebahn J, 2014, INT J BIFURCAT CHAOS, V24, DOI 10.1142/S0218127414300079 Viebahn J, 2010, OCEAN MODEL, V34, P150, DOI 10.1016/j.ocemod.2010.05.005 Zijlema M, 2010, COAST ENG, V57, P267, DOI 10.1016/j.coastaleng.2009.10.011 Zwart SFP, 2013, COMPUT PHYS COMMUN, V184, P456, DOI 10.1016/j.cpc.2012.09.024 NR 21 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2325-372X BN 978-1-5090-4273-9 J9 P IEEE INT C E-SCI PY 2016 BP 399 EP 399 PG 1 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA BI1CU UT WOS:000405564400046 DA 2021-04-21 ER PT B AU Telenta, M Kos, L Akers, R AF Telenta, M. Kos, L. Akers, Robert CA EUROfusion MST1 Team BE Snoj, L Lengar, I TI CAD Data Storage and Access in IDAM SO 25TH INTERNATIONAL CONFERENCE NUCLEAR ENERGY FOR NEW EUROPE, (NENE 2016) LA English DT Proceedings Paper CT 25th International Conference Nuclear Energy for New Europe (NENE) CY SEP 05-08, 2016 CL Portoroz, SLOVENIA SP NEK, GEN Energija, elmont, SIPRO Inzeniring, Inst Nucl Technol, Westinghouse, NUMIP, ELES, GEN I, ENCONET d o o, IDOM, SFA, QTECHNA, LKB, EiMV, APoSS, Nukel, ZEL EN, European Nucl Soc AB Integrated Data Access Management (IDAM) is a data access tool for analysis, visualisation, and modelling. It is developed at CCFE for MAST-U data access. Data access is based on data objects from within the files. IDAM is also put capable. Metadata from raw and analysed files is written to the IDAM database. The IDAM server uses a plugin architecture for each data resource type. The goal of the presented work is to build a workflow which will access and eventually store CAD data through IDAM. CAD data in IDAM has a single source, i.e. it is stored in a single location as CATIA files. A first step is to build a data resource which will include metadata and a catalogue design. This step includes categorising the resources and recording them to the IDAM database. The data resource will provide CAD data in a STEP format for two workflows. The first workflow is an engineering one, in which more complex 3D models are required in STEP format to be read by COMSOL and ANSYS and perform, for example, electro-magnetic numerical simulations. The second workflow is a scientific one, in which 2D axisymmetric section-cuts are performed on CAD models with different levels of detail. The section cut is performed for a specific angle phi from the horizontal axis. These section-cuts are then converted/exported by a python plug-in to VTK/XML and used by the equilibrium physics code, EFIT++ developed by General Atomic enhanced at CCFE.. Attention is given to the definition of a structure in the STEP file in order to locate different components needed for the code. Generally, it is better to have one file to ensure the data provenance of the workflow. Better efficiency could be achieved with a zero-copy approach type movement, such that no unnecessary copying of the STEP file is done. The second step is to develop an IDAM server plugin to get/put metadata for CAD data objects into an object store. This will serve the data through the plug-in. The IDAM storage includes collection and cataloguing of the metadata during the CAD data handling. This ensures that the CAD data provenance tracking and capture are together with other objects available in the IDAM. [GRAPHICS] . C1 [Telenta, M.; Kos, L.] Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia. [Akers, Robert; EUROfusion MST1 Team] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England. RP Telenta, M (corresponding author), Univ Ljubljana, Fac Mech Engn, Askerceva 6, Ljubljana 1000, Slovenia. EM marijo.telenta@lecad.fs.uni-lj.si; leon.kos@lecad.fs.uni-lj.si; rob.akers@ukaea.uk FU Euratom research and training programme [633053, AWP15-EEG-JSI/Telenta] FX This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 633053, task agreement AWP15-EEG-JSI/Telenta. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Also, the authors would like to acknowledge Ivan Lupelli, David. G. Muir, and Jason Hess from CCFE for helpful discussions. CR Firdaouss M, 2013, J NUCL MATER, V438, pS536, DOI 10.1016/j.jnucmat.2013.01.111 Lupelli I, 2015, FUSION ENG DES, V96-97, P835, DOI 10.1016/j.fusengdes.2015.04.016 Muir DG, 2008, FUSION ENG DES, V83, P406, DOI 10.1016/j.fusengdes.2007.12.018 Muir D. G., 2015, DATA ACCESS ASPIRATI Muir D. G., 2015, ITER IMAS AND IDAM NR 5 TC 0 Z9 0 U1 1 U2 1 PU NUCLEAR SOCIETY SLOVENIA PI 1001 LJUBLJANA PA JAMOVA 39, 1001 LJUBLJANA, SLOVENIA BN 978-961-6207-40-9 PY 2016 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA BH2RT UT WOS:000399192400065 DA 2021-04-21 ER PT S AU Slupski, P Wymyslowski, A Czarczynski, W AF Slupski, Piotr Wymyslowski, Artur Czarczynski, Wojciech BE Swatowska, B Maziarz, W Pisarkiewicz, T Kucewicz, W TI Electromagnetic field patterning or crystal light SO ELECTRON TECHNOLOGY CONFERENCE 2016 SE Proceedings of SPIE LA English DT Proceedings Paper CT 12th Conference on Electron Technology (ELTE) CY SEP 11-14, 2016 CL Wisla, POLAND SP AGH Univ Sci & Technol, Fac Comp Sci, Elect, Dept Elect, Fitech Sp z o o, COMEF Sci & Res Equipment Sp z o o DE photon; patterning; QED; photonics; vacuum; gyrotron; vircator ID GENERATION; VIRCATOR AB Using the orbital angular momentum of light for the development of a vortex interferometer, the underlying physics requires microwave/RF models,1 as well as quantum mechanics for light1,2 and fluid flow for semiconductor devices.3,4 The combination of the aforementioned physical models yields simulations and results such as optical lattices,1 or an Inverse Farday effect.5 The latter is explained as the absorption of optical angular momentum, generating extremely high instantenous magnetic fields due to radiation friction. An algorithmic reduction across the computational methods used in microwaves, lasers, quantum optics and holography is performed in order to explain electromagnetic field interactions in a single computational framework. This work presents a computational model for photon-electron interactions, being a simplified gauge theory described using differentials or disturbances (photons) instead of integrals or fields. The model is based on treating the Z-axis variables as a Laplace fluid with spatial harmonics, and the XY plane as Maxwell's equations on boundaries. The result is a unified, coherent, graphical computational method of describing the photon qualitatively, quantitatively and with proportion. The model relies on five variables and is described using two equations, which use emitted power, cavity wavelength, input frequency, phase and time. Phase is treated as a rotated physical dimension under gauge theory of Feynmann's QED. In essence, this model allows the electromagnetic field to be treated with it's specific crystallography. The model itself is described in Python programming language. C1 [Slupski, Piotr; Wymyslowski, Artur] Wroclaw Univ Technol, Microsyst Elect & Photon, Wroclaw, Poland. [Czarczynski, Wojciech] Wroclaw Univ Technol, Elect Fac, Wroclaw, Poland. RP Slupski, P (corresponding author), Wroclaw Univ Technol, Microsyst Elect & Photon, Wroclaw, Poland. EM piotr.slupski@pwr.edu.pl; artur.wymyslowski@pwr.edu.pl CR Alyokhin B. V., 1994, PLASMA SCI IEEE T, V22, P945 Baryshevsky V, 2013, IEEE T PLASMA SCI, V41, P2712, DOI 10.1109/TPS.2013.2275022 Czarczynski W., 1971, LAMMU MIKROFALOWE Elfsberg M., 2007, EXPT STUDIES ANODE C, P484 GABOR D, 1948, NATURE, V161, P777, DOI 10.1038/161777a0 GERCHBERG RW, 1972, OPTIK, V35, P237 Ghai DP, 2009, OPT COMMUN, V282, P2692, DOI 10.1016/j.optcom.2009.04.032 Gillmour A. J., 2013, KLYSTRONS TRAVELING, V53 Jinseo L., 2004, J KOREAN PHYS SOC, V45 Kurtsiefer C, 2000, PHYS REV LETT, V85, P290, DOI 10.1103/PhysRevLett.85.290 Liseykina TV, 2016, NEW J PHYS, V18, DOI 10.1088/1367-2630/18/7/072001 Moll PJW, 2016, SCIENCE, V351, P1061, DOI 10.1126/science.aac8385 Munk B. A., 2004, FREQUENCY SELECTIVE Olson H.F., 1943, DYNAMICAL ANALOGIES Schultz H., 1993, ELECT BEAM WELDING Schungel E, 2016, J PHYS D APPL PHYS, V49, DOI 10.1088/0022-3727/49/26/265203 SULLIVAN DJ, 1983, IEEE T NUCL SCI, V30, P3426, DOI 10.1109/TNS.1983.4336679 Van Mechelen T, 2016, OPTICA, V3, P118, DOI 10.1364/OPTICA.3.000118 Xiao H., 2016, 160501315 ARXIV Yang S., 2015, SCI REPORTS, P2045 NR 20 TC 0 Z9 0 U1 0 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-5106-0843-6; 978-1-5106-0844-3 J9 PROC SPIE PY 2016 VL 10175 AR UNSP 101750X DI 10.1117/12.2260445 PG 6 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BG7NB UT WOS:000391493400033 DA 2021-04-21 ER PT S AU Cieszewski, R Linczuk, M AF Cieszewski, Radoslaw Linczuk, Maciej BE Romaniuk, RS TI RPython High-Level Synthesis SO PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2016 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments CY MAY 29-JUN 06, 2016 CL Wilga, POLAND SP SPIE, Warsaw Univ Technol, Fac Elect & Informat Technologies, Inst Elect Syst, Photon Soc Poland, Polish Acad Sci, Comm Elect & Telecommunicat, Enhanced European Coordinat Accelerator R&D, Assoc Polish Elect Engineers, Polish Comm Optoelectron, EuroFus Collaborat, EuroFus Poland DE High-Level Synthesis; Rpython; FPGA; Compiler; Algorithmic Synthesis; Behavioral Synthesis; Hot Plasma Physics Experiment; Python AB The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler. C1 [Cieszewski, Radoslaw; Linczuk, Maciej] Warsaw Univ Technol, Inst Elect Syst, Nowowiejska 15-19, PL-00665 Warsaw, Poland. RP Cieszewski, R (corresponding author), Warsaw Univ Technol, Inst Elect Syst, Nowowiejska 15-19, PL-00665 Warsaw, Poland. EM R.Cieszewski@stud.elka.pw.edu.pl CR Asanovic K, 2009, COMMUN ACM, V52, P56, DOI 10.1145/1562764.1562783 Babb J., 1999, Seventh Annual IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No.PR00375), P70, DOI 10.1109/FPGA.1999.803669 Berdychowski PP, 2010, PHOTONICS APPL ASTRO Bowyer B., 2005, EETIMES Bujnowski K., 2007, PHOTONICS APPL ASTRO Cieszewski R., 2015, PHOTONICS APPL ASTRO, V9662 Cong J, 2011, IEEE T COMPUT AID D, V30, P473, DOI 10.1109/TCAD.2011.2110592 Coussy P., 2008, HIGH LEVEL SYNTHESIS Coussy P, 2009, IEEE DES TEST COMPUT, V26, P8, DOI 10.1109/MDT.2009.69 GAJSKI DD, 1994, IEEE DES TEST COMPUT, V11, P44, DOI 10.1109/54.329454 Gajski DD, 1992, HIGH LEVEL SYNTHESIS, V34 Gokhale M, 1997, 5TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, P165, DOI 10.1109/FPGA.1997.624616 Kolasinski P., 2007, PHOTONICS APPL ASTRO Liang Y, 2012, J ELECTR COMPUT ENG, V2012, DOI 10.1155/2012/649057 Meredith M., 2004, EETIMES, P04 Philippe C., 2008, EURASIP J EMBEDDED S, V2008 Pozniak K., 2013, PHOTONICS APPL ASTRO, V8903 Zabolotny W. M., 2011, PHOTONICS APPL ASTRO Zabolotny WM, 2003, P SOC PHOTO-OPT INS, V5125, P223, DOI 10.1117/12.531581 Zabolotny WM, 2010, PHOTONICS APPL ASTRO Zabolotny WM, 2011, PROC SPIE, V8008, DOI 10.1117/12.905281 Zabolotny WM, 2006, PROC SPIE, V6347, DOI 10.1117/12.714532 NR 22 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-5106-0485-8 J9 PROC SPIE PY 2016 VL 10031 AR UNSP 100314O DI 10.1117/12.2249143 PG 6 WC Astronomy & Astrophysics; Engineering, Electrical & Electronic; Optics; Physics, Particles & Fields SC Astronomy & Astrophysics; Engineering; Optics; Physics GA BF9PJ UT WOS:000385793100168 DA 2021-04-21 ER PT B AU Sachan, UGPS Rajan, SS Malhotra, S Satyamurthy, P AF Sachan, Udai Giri Pratap Singh Rajan, S. Sundar Malhotra, Sanjay Satyamurthy, P. GP IEEE TI Quench Analysis, Detection & Protection of 5-Tesla Superconducting Solenoid Magnet using Numerical Methods SO 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON CONTROL, MEASUREMENT AND INSTRUMENTATION (CMI) LA English DT Proceedings Paper CT 1st IEEE International Conference on Control, Measurement and Instrumentation (CMI) CY JAN 08-10, 2016 CL Jadavpur Univ, Kolkata, INDIA SP IEEE, IEEE Instrumentat & Measurement Soc, IEEE Joint CSS IMS Kolkata Chapter HO Jadavpur Univ DE Superconducting Solenoid Magnet (SC Magnet); Quench; Degradation; Training; Minimum Quench Energy; Quench propagation velocity; Residual Resistivity Ratio (RRR); Finite Element Method (FEM) AB Superconducting (SC) magnets are used in accelerators, high energy physics, material science studies, modalities such as MRI etc. Bhabha Atomic Research Centre in India is constructing a superconducting solenoid magnet for corrosion and Magneto hydro dynamic studies related to development of Lead Lithium cooled ceramic breeder (LLCB). The complete electro-magnet will be maintained at 4.2 K. A sudden irrevocable transition to normal state of SC magnet's operating point is known as quench. During normal operation, the magnet will be storing 2.6 MJ of energy which needs to be dissipated rapidly in the form of heat energy at the time of quench. A quench though not wished to occur is part of normal operation of magnet and has to be explicitly considered while magnet designing for the safety. Uncontrolled quench is catastrophic in nature which may even lead to melt down of windings, punching holes through insulation etc. The possible reasons for quench are lack of stability (design mistakes), transients, conductor movement, resin cracking etc. A quench protection program is written in COMSOL MULTIPHYSICS along with non-linear resistivity module implemented in PYTHON which attempts to estimate the quench parameters for 5 Tesla SC Magnet. This paper discusses the intrinsic quench behavior along with quench parameters (thermal stability limit of SC magnet in terms of MQE, quench propagation velocity, layer voltages) of the SC magnet. C1 [Sachan, Udai Giri Pratap Singh; Rajan, S. Sundar; Malhotra, Sanjay; Satyamurthy, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. RP Sachan, UGPS (corresponding author), Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. CR Bottura L., 2010, IEEE T APPL SUPERCON, V10 Bruzzone P, 2004, PHYSICA C, V401, P7, DOI 10.1016/j.physc.2003.09.005 Denz R, 2006, IEEE T APPL SUPERCON, V16, P1725, DOI 10.1109/TASC.2005.864258 Giulio M., 2011, REV ROXIES MAT PROPE Kim S.-W., 00041 TD DT FERMILAB Marquardt E.D., 2000, CRYOGENIC MAT PROPER Marscin E., 2002, TD02031 FNAL Mints R.G., 1993, IEEE T APPL SUPERCON, V3 SundarRajan S., 2014, ISDEIV Tinkham M., 1975, INTRO SUPERCONDUCTIV Wilson M., 1987, SUPERCONDUCTING MAGN NR 11 TC 0 Z9 0 U1 1 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-1769-3 PY 2016 BP 156 EP 161 PG 6 WC Automation & Control Systems; Engineering, Electrical & Electronic; Instruments & Instrumentation SC Automation & Control Systems; Engineering; Instruments & Instrumentation GA BF7ZH UT WOS:000384644400032 DA 2021-04-21 ER PT B AU Tapaninen, O Myohanen, P Majanen, M Sitomaniemi, A Olkkonen, J Hildenbrand, V Gielen, AWJ Mackenzie, FV Barink, M Smilauer, V Patzak, B AF Tapaninen, Olli Myohanen, Petri Majanen, Mikko Sitomaniemi, Aila Olkkonen, Juuso Hildenbrand, Volker Gielen, Alexander W. J. Mackenzie, Fidel Valega Barink, Marco Smilauer, Vit Patzak, Borek GP IEEE TI Optical and thermal simulation chain for LED package SO 2016 17TH INTERNATIONAL CONFERENCE ON THERMAL, MECHANICAL AND MULTI-PHYSICS SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS (EUROSIME) LA English DT Proceedings Paper CT 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE) CY APR 18-20, 2016 CL Montpellier, FRANCE ID LIGHT-EMITTING-DIODES; PHOSPHOR AB This paper presents a test case for coupling two physical aspects of an LED, optical and thermal, using specific simulation models coupled through an open source platform for distributed multi-physics modelling. The glue code for coupling is written with Python programming language including routines to interface specific simulation models. This approach can also be used for any other software. The main optical simulations are performed with an open source ray tracer software and the main thermal simulations are performed with Comsol Multiphysics. We show how to connect a Mie theory based scattering calculator with the ray tracer. Simulation results are compared to measured samples. The total radiant power emitted by the modelled LED is shown to be up to 3% consistent with the measurements. C1 [Tapaninen, Olli; Myohanen, Petri; Majanen, Mikko; Sitomaniemi, Aila; Olkkonen, Juuso] VTT Tech Res Ctr Finland Ltd, Kaitovayla 1, Oulu 90571, Finland. [Hildenbrand, Volker] Philips Lighting Solut, High Tech Campus 44, NL-5656 AE Eindhoven, Netherlands. [Gielen, Alexander W. J.; Mackenzie, Fidel Valega; Barink, Marco] TNO Tech Sci, Rondom 1, NL-5612 AP Eindhoven, Netherlands. [Smilauer, Vit; Patzak, Borek] Czech Tech Univ, Thakurova 7, Prague 16629 6, Czech Republic. RP Tapaninen, O (corresponding author), VTT Tech Res Ctr Finland Ltd, Kaitovayla 1, Oulu 90571, Finland. EM olli.tapaninen@vtt.fi RI Smilauer, Vit/F-2080-2017; Patzak, Borek/E-2472-2013 OI Patzak, Borek/0000-0002-3373-9333 CR Alexeev A., 2016, THERM MECH MULT SIM [Anonymous], 2007, GNU LESSER GEN PUBLI de Jong I., 2016, PYTHON REMOTE OBJECT Geveci Berk, 2013, PERFORMANCE OPEN SOU Lin CC, 2011, J PHYS CHEM LETT, V2, P1268, DOI 10.1021/jz2002452 Liu ZY, 2010, APPL OPTICS, V49, P247, DOI 10.1364/AO.49.000247 Patzak B, 2013, ADV ENG SOFTW, V60-61, P89, DOI 10.1016/j.advengsoft.2012.09.005 Patzak B., 2015, MULTIPHYSICS INTEGRA Saad Y, 2000, J COMPUT APPL MATH, V123, P1, DOI 10.1016/S0377-0427(00)00412-X Ye HY, 2014, APPL THERM ENG, V63, P588, DOI 10.1016/j.applthermaleng.2013.11.058 Yuan C, 2013, INT J HEAT MASS TRAN, V56, P206, DOI 10.1016/j.ijheatmasstransfer.2012.09.053 NR 11 TC 6 Z9 6 U1 0 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-5090-2106-2 PY 2016 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BF4WM UT WOS:000381743700057 DA 2021-04-21 ER PT J AU Baehr, S Sander, O Heck, M Feindt, M Becker, J AF Baehr, S. Sander, O. Heck, M. Feindt, M. Becker, J. TI A framework for porting the NeuroBayes machine learning algorithm to FPGAs SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics (TWEPP) CY SEP 28-OCT 02, 2015 CL Lisbon, PORTUGAL DE Online farms and online filtering; Hardware and accelerator control systems; Data acquisition concepts; Pattern recognition, cluster finding, calibration and fitting methods ID II PIXEL DETECTOR; REDUCTION SYSTEM AB The NeuroBayes machine learning algorithm is deployed for online data reduction at the pixel detector of Belle II. In order to test, characterize and easily adapt its implementation on FPGAs, a framework was developed. Within the framework an HDL model, written in python using MyHDL, is used for fast exploration of possible configurations. Under usage of input data from physics simulations figures of merit like throughput, accuracy and resource demand of the implementation are evaluated in a fast and flexible way. Functional validation is supported by usage of unit tests and HDL simulation for chosen configurations. C1 [Baehr, S.; Sander, O.; Becker, J.] Karlsruhe Inst Technol ITIV, Engesserstr 5, D-76021 Karlsruhe, Germany. [Heck, M.; Feindt, M.] Karlsruhe Inst Technol IEKP, Karlsruhe, Germany. RP Baehr, S (corresponding author), Karlsruhe Inst Technol ITIV, Engesserstr 5, D-76021 Karlsruhe, Germany. EM Steffen.baehr@kit.edu OI Becker, Jurgen/0000-0002-5082-5487 CR Abe T., ARXIV10110352 [Anonymous], 2012, AMBA AXI ACE PROT SP Feindt M, 2011, NUCL INSTRUM METH A, V654, P432, DOI 10.1016/j.nima.2011.06.008 Furletov S, 2012, J INSTRUM, V7, DOI 10.1088/1748-0221/7/01/C01014 Gessler T, 2015, IEEE T NUCL SCI, V62, P1149, DOI 10.1109/TNS.2015.2414713 KEMMER J, 1987, NUCL INSTRUM METH A, V253, P365, DOI 10.1016/0168-9002(87)90518-3 Knopf J, 2011, J INSTRUM, V6, DOI 10.1088/1748-0221/6/01/C01085 Lemarenko M, 2012, J INSTRUM, V7, DOI 10.1088/1748-0221/7/01/C01069 Levit D., 2014, IEEE REAL TIM C, P1 Levit D., 2013, IEEE NUCL SCI S, P1 Mentor Graphics, MOD US MAN 10 2A Moll A, 2011, J PHYS CONF SER, V331, DOI 10.1088/1742-6596/331/3/032024 Spruck B, 2013, IEEE T NUCL SCI, V60, P3709, DOI 10.1109/TNS.2013.2281571 NR 13 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2016 VL 11 AR C01058 DI 10.1088/1748-0221/11/01/C01058 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DF6MM UT WOS:000371469800058 DA 2021-04-21 ER PT S AU Owsiak, M Plociennik, M Palak, B Zok, T Reux, C Di Gallo, L Kalupin, D Johnson, T Schneider, M AF Owsiak, Michal Plociennik, Marcin Palak, Bartek Zok, Tomasz Reux, Cedric Di Gallo, Luc Kalupin, Denis Johnson, Thomas Schneider, Mireille BE Altintas, I Norman, M Dongarra, J Krzhizhanovskaya, VV Lees, M Sloot, PMA TI Running simultaneous Kepler sessions for the parallelization of parametric scans and optimization studies applied to complex workflows SO INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016) SE Procedia Computer Science LA English DT Proceedings Paper CT 16th Annual International Conference on Computational Science (ICCS) CY JUN 06-08, 2016 CL Univ Calif, San Diego Supercomputer Ctr, San Diego, CA SP Elsevier, Univ Amsterdam, NTU Singapore, Univ Tennessee HO Univ Calif, San Diego Supercomputer Ctr DE Kepler; parallel execution; parametric scan AB In this paper we present an approach taken to run multiple Kepler sessions at the same time. This kind of execution is one of the requirements for Integrated Tokamak Modelling platform developed by the Nuclear Fusion community within the context of EUROFusion project [2]. The platform is unique and original: it entails the development of a comprehensive and completely generic tokamak simulator including both the physics and the machine, which can be applied for any fusion device. All components are linked inside workflows. This approach allows complex coupling of various algorithms while at the same time provides consistency. Workflows are composed of Kepler and Ptolemy II elements as well as set of the native libraries written in various languages (Fortran, C, C++). In addition to that, there are Python based components that are used for visualization of results as well as for pre/post processing. At the bottom of all these components there is a database layer that may vary between software releases, and require different version of access libraries. The community is using shared virtual research environment to prepare and execute workflows. All these constraints make running multiple Kepler sessions really challenging. However, ability to run numerous sessions in parallel is a must - to reduce computation time and to make it possible to run released codes while working with new software at the same time. In this paper we present our approach to solve this issue and examples that show its correctness. C1 [Owsiak, Michal; Plociennik, Marcin; Palak, Bartek; Zok, Tomasz] PAS, IBCh, Poznan Supercomp & Networking Ctr, Poznan, Poland. [Reux, Cedric; Di Gallo, Luc; Schneider, Mireille] CEA, IRFM, F-13108 St Paul Les Durance, France. [Kalupin, Denis] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany. [Johnson, Thomas] KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden. RP Owsiak, M (corresponding author), PAS, IBCh, Poznan Supercomp & Networking Ctr, Poznan, Poland. EM michalo@man.poznan.pl; marcinp@man.poznan.pl; bartek@man.poznan.pl; tzok@man.poznan.pl; cedric.reux@cea.fr; luc.digallo@cea.fr; denis.kalupin@euro-fusion.org; johnso@kth.se; mireille.schneider@cea.fr RI Zok, Tomasz/M-1714-2014 OI Zok, Tomasz/0000-0003-4103-9238 FU Euratom research and training programme [633053] FX This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. CR Asunta O., 2015, 14 ITPA EN PART PHYS Di Gallo L., 2015, COMPUT PHYS COMMUN, P1 Kalupin D, 2013, NUCL FUSION, V53, DOI 10.1088/0029-5515/53/12/123007 Kalupin D., 2015, P EPS LISB Plociennik M., 2013, FUNDAM INF, V128, P1 Reux C., 2015, NUCL FUSION, V55, P7 Schneider M., 2015, BENCHMARKING NEUTRAL Schneider M., 2015, 15 ITPA EN PART PHYS NR 8 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER PI AMSTERDAM PA Radarweg 29, PO Box 211, AMSTERDAM, NETHERLANDS SN 1877-0509 J9 PROCEDIA COMPUT SCI PY 2016 VL 80 BP 690 EP 699 DI 10.1016/j.procs.2016.05.362 PG 10 WC Computer Science, Theory & Methods; Mathematics, Applied SC Computer Science; Mathematics GA BQ2GK UT WOS:000579452200063 OA Other Gold DA 2021-04-21 ER PT J AU Maurer, V AF Maurer, Vinzenz TI T3PS v1.0: Tool for Parallel Processing in Parameter Scans SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Parameter scans; Parallelization; Multiprocessing; Optimization; Monte Carlo ID PROGRAM; SPHENO; FLAVOR AB T3PS is a program that can be used to quickly design and perform parameter scans while easily taking advantage of the multi-core architecture of current processors. It takes an easy to read and write parameter scan definition file format as input. Based on the parameter ranges and other options contained therein, it distributes the calculation of the parameter space over multiple processes and possibly computers. The derived data is saved in a plain text file format readable by most plotting software. The supported scanning strategies include: grid scan, random scan, Markov Chain Monte Carlo, numerical optimization. Several example parameter scans are shown and compared with results in the literature. Program summary Program title: T3PS Catalogue identifier: AEXZ_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEXZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3 No. of lines in distributed program, including test data, etc.: 291799 No. of bytes in distributed program, including test data, etc.: 14864680 Distribution format: tar.gz Programming language: Python 2. Computer: PC running under Linux, should run in every Unix environment. Operating system: Linux, Unix. Has the code been vectorized or parallelized?: Parallelized Classification: 4.9, 4.12, 4.13, 6.5. External routines: Python 2.7; micrOMEGAs, SciPy, SoftSUSY, SPheno (in optional examples) Nature of problem: While current processor architecture firmly goes the way of parallelization even on desktop computers, programs commonly used for parameter scans in physics often lack the capability to take advantage of this. While it is possible to change the source code of some programs, it may not be feasible for every program still in use. Fortunately, current operating systems routinely make use of multiple processor cores already, if multiple processes are running at the same time. The easiest way to make use of this using shell scripts and background tasks or similar, however, turns the problem into an organizational one, as the calculation will run asynchronously. This poses the problem of merging the different data sets into a final complete one and/or makes it hard to implement more advanced scan strategies. Solution method: The parameter scan definition is read in from a simple plain text format. The subdivisions of the parameter scan are then distributed to concurrently running sub-processes, which run the code doing the actual calculation. These sub-processes naturally take advantage of the multiprocessing architecture of modern operating systems without the need for the user to change any code. Restrictions: The program is not supported under Python 3. Unusual features: The parallelization is not restricted to the local computer and can be extended to use remote computers as well with little effort. Running time: Largely dependent on user input; examples take about 5 s, 30 min, I s, 10 s, 30 s, 100 min, 100 min, 5 min, 5 min in order of appearance in the text (i.e. QuickStart, ScalarDM, 3x ChargedLeptons, 4 x HiggsMass) on an Intel Core i7-3770. (C) 2015 Elsevier B.V. All rights reserved. C1 [Maurer, Vinzenz] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. RP Maurer, V (corresponding author), Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland. EM vinzenz.maurer@unibas.ch FU Swiss National Science FoundationSwiss National Science Foundation (SNSF)European Commission FX This work is supported by the Swiss National Science Foundation. We thank Stefan Antusch, Ivo de Medeiros Varzielas, Oliver Fischer, Christian Gross and Constantin Sluka for useful discussions. CR Akerib DS, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.091303 Allanach BC, 2002, COMPUT PHYS COMMUN, V143, P305, DOI 10.1016/S0010-4655(01)00460-X [Anonymous], 2008, MATH VERS 7 0 Antusch S, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2013)115 Arbey A, 2012, PHYS LETT B, V708, P162, DOI 10.1016/j.physletb.2012.01.053 Bechtle P, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-013-2693-2 Belanger G, 2014, COMPUT PHYS COMMUN, V185, P960, DOI 10.1016/j.cpc.2013.10.016 Belanger G, 2002, COMPUT PHYS COMMUN, V149, P103, DOI 10.1016/S0010-4655(02)00596-9 Belanger G, 2012, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2012/04/010 Brooks SP, 1998, STAT COMPUT, V8, P319, DOI 10.1023/A:1008820505350 Gonzalez-Garcia MC, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2012)123 HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.2307/2334940 Mahmoudi F, 2012, COMPUT PHYS COMMUN, V183, P285, DOI 10.1016/j.cpc.2011.10.006 MCDONALD J, 1994, PHYS REV D, V50, P3637, DOI 10.1103/PhysRevD.50.3637 METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114 Olive KA, 2014, CHINESE PHYS C, V38, DOI 10.1088/1674-1137/38/9/090001 Porod W, 2003, COMPUT PHYS COMMUN, V153, P275, DOI 10.1016/S0010-4655(03)00222-4 Porod W, 2012, COMPUT PHYS COMMUN, V183, P2458, DOI 10.1016/j.cpc.2012.05.021 Python Software Foundation, 2014, CONFIGPARSER CONF FI Skands P., 2004, JHEP-Journal of High Energy Physics, V2004, DOI 10.1088/1126-6708/2004/07/036 Storn R, 1996, 1996 BIENNIAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, P519, DOI 10.1109/NAFIPS.1996.534789 Storn R, 1997, J GLOBAL OPTIM, V11, P341, DOI 10.1023/A:1008202821328 Williams T., GNUPLOT 4 4 INTERACT NR 23 TC 2 Z9 2 U1 1 U2 8 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JAN PY 2016 VL 198 BP 195 EP 215 DI 10.1016/j.cpc.2015.08.032 PG 21 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CX0EX UT WOS:000365370800018 DA 2021-04-21 ER PT J AU Shao, HS AF Shao, Hua-Sheng TI HELAC-Onia 2.0: An upgraded matrix-element and event generator for heavy quarkonium physics SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE General, high energy physics and computing; Phase space and event simulation; Quantum chromodynamics; Lattice gauge theory ID MONTE-CARLO APPROACH; P(P)OVER-BAR COLLISIONS; RADIATIVE-CORRECTIONS; PHASE-SPACE; J/PSI; SCATTERING; UPSILON; MASS; PSI AB We present an upgraded version (denoted as version 2.0) of the program HELAC-ONIA for the automated computation of heavy-quarkonium helicity amplitudes within non-relativistic QCD framework. The new code has been designed to include many new and useful features for practical phenomenological simulations. It is designed for job submissions under cluster environment for parallel computations via PYTHON scripts. We have interfaced HELAC-ONIA to the parton shower Monte Carlo programs PYTHIA 8 and QEDPS to take into account the parton-shower effects. Moreover, the decay module guarantees that the program can perform the spin-entangled (cascade-)decay of heavy quarkonium after its generation. We have also implemented a reweighting method to automatically estimate the uncertainties from renormalization and/or factorization scales as well as parton-distribution functions to weighted or unweighted events. A further update is the possibility to generate one-dimensional or two-dimensional plots encoded in the analysis files on the fly. Some dedicated examples are given at the end of the writeup. Program summary Program title: HELAC-Onia 2.0 Catalogue identifier: AEPR_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEPR_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1513282 No. of bytes in distributed program, including test data, etc.: 17036140 Distribution format: tar.gz Programming language: Python, Fortran 77, Fortran 90, C++. Operating system: Unix-like platform. Classification: 4.4, 11.1, 11.2, 11.5. Catalogue identifier of previous version: AEPR_v1_0 Journal reference of previous version: Comput. Phys. Comm. 184(2013)2562 External routines: LHAPDF Does the new version supersede the previous version?: Yes Nature of problem: Heavy quarkonium production processes provide an important way to investigate QCD in its poorly known non-perturbative regime. Its production mechanism has attracted extensive interests from the high-energy physics community in decades. The qualitative and quantitative description of heavy-quarkonium production requires complex perturbative computations for high-multiplicity processes in the framework of the well established non-relativistic effective theory, NRQCD, and reliable Monte Carlo simulations to reproduce the collider environment. Solution method: Based on a recursion relation, the program is able to calculate the helicity amplitudes of the high-multiplicity heavy- quarkonium-production processes. Several modules are also designed for dedicated simulations: 1. The code has been interfaced with the parton shower Monte Carlo programs; 2. A decay module to let heavy quarkonia decay with correct spin-correlations has been implemented; 3. The code estimates the theoretical uncertainties and analyzes the generated events on the fly; 4. The code is compliant with multi-threading/multi-core usage or cluster processors. Reasons for new version: Improved and expanded functionalities. Summary of revisions: Many new features were added and several important bugs were fixed. The new features extend the range of the physical applications. With the new interface, it also helps to improve the user-friendliness of the program. Running time: It depends on the process to be calculated and the required accuracy. (C) 2015 Elsevier B.V. All rights reserved. C1 [Shao, Hua-Sheng] CERN, PH Dept, TH Unit, CH-1211 Geneva 23, Switzerland. RP Shao, HS (corresponding author), CERN, PH Dept, TH Unit, CH-1211 Geneva 23, Switzerland. EM huasheng.shao@cern.ch OI Shao, Huasheng/0000-0002-4158-0668 FU ERCEuropean Research Council (ERC)European Commission [291377] FX I thank Jean-Philippe Lansberg for motivating me to improve the tool by its applications on several relevant physics projects, and for proofreading the manuscript. I am grateful to Chole Gray, Darren Price, Barbara Trzeciak for the feedback on using the program. Finally, I would also like to thank the authors of MADGRApH5_AMC@NLO to collaborate on the amazing MADGRApHs_AMC@NLO project, from which I indeed learned a lot on how to improve the user friendliness of HELAC-ONIA. This work was supported by ERC grant 291377 "LHCtheory: Theoretical predictions and analyses of LHC physics: advancing the precision frontier". CR Aad G, 2014, J HIGH ENERGY PHYS, P1, DOI 10.1007/JHEP05(2014)071 Aaij R, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-2100-4 Aaltonen T, 2009, PHYS REV D, V80, DOI 10.1103/PhysRevD.80.031103 Abe F, 1997, PHYS REV LETT, V79, P578, DOI 10.1103/PhysRevLett.79.578 ABE F, 1992, PHYS REV LETT, V69, P3704, DOI 10.1103/PhysRevLett.69.3704 Abe F, 1997, PHYS REV LETT, V79, P572, DOI 10.1103/PhysRevLett.79.572 ALTARELLI G, 1977, NUCL PHYS B, V126, P298, DOI 10.1016/0550-3213(77)90384-4 Alwall J, 2008, EUR PHYS J C, V53, P473, DOI 10.1140/epjc/s10052-007-0490-5 Alwall J, 2007, COMPUT PHYS COMMUN, V176, P300, DOI 10.1016/j.cpc.2006.11.010 Alwall J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)079 Alwall J, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/09/028 Alwall J, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2011)128 Andronic A., HEAVY FLAVOUR QUARKO Artoisenet P, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.152001 Artoisenet P, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/02/102 Artuso M, 2009, PHYS REV D, V80, DOI 10.1103/PhysRevD.80.112003 Bahr M, 2008, EUR PHYS J C, V58, P639, DOI 10.1140/epjc/s10052-008-0798-9 Bellm J., HERWIG 2 7 RELEASE N BERENDS FA, 1988, NUCL PHYS B, V306, P759, DOI 10.1016/0550-3213(88)90442-7 BERGER EL, 1981, PHYS REV D, V23, P1521, DOI 10.1103/PhysRevD.23.1521 Bodwin G, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.053003 Bodwin GT, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.022001 BODWIN GT, 1995, PHYS REV D, V51, P1125, DOI 10.1103/PhysRevD.51.1125 BOOS E, HEPPH0109068 Brambilla N, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-010-1534-9 Brambilla N, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.034001 BRAMBILLA N, HEPPH0412158 QUARK W Brodsky SJ, 2013, PHYS REP, V522, P239, DOI 10.1016/j.physrep.2012.10.001 BUCHMULLER W, 1981, PHYS REV D, V24, P132, DOI 10.1103/PhysRevD.24.132 Butenschoen M, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.092004 Butenschoen M, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.172002 Butenschoen M, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.051501 Butenschon M, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.022003 Cacciari M, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1896-2 Cafarella A, 2009, COMPUT PHYS COMMUN, V180, P1941, DOI 10.1016/j.cpc.2009.04.023 Campbell J, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.252002 Campbell JM, 2010, NUCL PHYS B-PROC SUP, V205-06, P10, DOI 10.1016/j.nuclphysbps.2010.08.011 Chao KT, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.242004 Chatrchyan S, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2012)011 Corcella G, 2001, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2001/01/010 Corcella G., HEPPH0210213 den Dunnen WJ, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.212001 Dobbs M, 2001, COMPUT PHYS COMMUN, V134, P41, DOI 10.1016/S0010-4655(00)00189-2 Dokshitzer Y. L., 1977, SOV PHYS JETP, V46, P641, DOI DOI 10.1016/0550-3213(77)90384-4 Drees M, 1996, PHYS REV LETT, V77, P4142, DOI 10.1103/PhysRevLett.77.4142 DYSON FJ, 1949, PHYS REV, V75, P1736, DOI 10.1103/PhysRev.75.1736 EICHTEN EJ, 1995, PHYS REV D, V52, P1726, DOI 10.1103/PhysRevD.52.1726 Faccioli P, 2014, PHYS LETT B, V736, P98, DOI 10.1016/j.physletb.2014.07.006 Ferreiro EG, 2013, PHYS REV C, V88, DOI 10.1103/PhysRevC.88.047901 Ferreiro EG, 2009, PHYS LETT B, V680, P50, DOI 10.1016/j.physletb.2009.07.076 Frederix R., 2012, JHEP, V1202, P099 FUJIMOTO J, 1994, PROG THEOR PHYS, V91, P333, DOI 10.1143/PTP.91.333 FUJIMOTO J, 1993, PROG THEOR PHYS, V90, P177, DOI 10.1143/PTP.90.177 Gaunt JR, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2010)005 GLOVER EWN, 1988, Z PHYS C PART FIELDS, V38, P473, DOI 10.1007/BF01584398 Gong B, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.232001 Gong B, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.042002 GRIBOV VN, 1972, SOV J NUCL PHYS+, V15, P438 H.F.A. Group, WINT 2014 UPD UN TRI Han H., ETAC PRODUCTION LHC Han H., GAMMA NS CHIB NP PRO JAMES F, 1975, COMPUT PHYS COMMUN, V10, P343, DOI 10.1016/0010-4655(75)90039-9 Jamin M, 1997, NUCL PHYS B, V507, P334, DOI 10.1016/S0550-3213(97)00558-0 Kanaki A, 2000, COMPUT PHYS COMMUN, V132, P306, DOI 10.1016/S0010-4655(00)00151-X KANAKI A, HEPPH0012004 KATO K, 1989, PHYS REV D, V39, P156, DOI 10.1103/PhysRevD.39.156 Khachatryan V., 2014, JHEP, V1409 Kharchilava A, 2000, PHYS LETT B, V476, P73, DOI 10.1016/S0370-2693(00)00120-9 KLEISS R, 1986, COMPUT PHYS COMMUN, V40, P359, DOI 10.1016/0010-4655(86)90119-0 Kom CH, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.082002 Lange DJ, 2001, NUCL INSTRUM METH A, V462, P152, DOI 10.1016/S0168-9002(01)00089-4 Lansberg J.-P., DOUBLE QUARKONIUM PR Lansberg J.-P., J PSI PAIR PRODUCTIO Lansberg JP, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.122001 LEPAGE GP, 1978, J COMPUT PHYS, V27, P192 Ma YQ, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.192301 Ma YQ, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.114001 Ma YQ, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.111503 Ma YQ, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.042002 Maltoni F, 2004, PHYS REV D, V70, DOI 10.1103/PhysRevD.70.054014 Maltoni F, 2003, PHYS REV D, V67, DOI 10.1103/PhysRevD.67.014026 Mangano ML, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/01/013 Martin AD, 2009, EUR PHYS J C, V63, P189, DOI 10.1140/epjc/s10052-009-1072-5 MARTIN AD, 1988, PHYS REV D, V37, P1161, DOI 10.1103/PhysRevD.37.1161 Massacrier L., FEASIBILITY STUDIES Mocsy A, 2013, INT J MOD PHYS A, V28, DOI 10.1142/S0217751X13400125 Mrenna S, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/05/040 Munehisa T, 1996, PROG THEOR PHYS, V95, P375, DOI 10.1143/PTP.95.375 Nason P., MINT COMPUTER PROGRA Papadopoulos CG, 2001, COMPUT PHYS COMMUN, V137, P247, DOI 10.1016/S0010-4655(01)00163-1 PAPADOPOULOS CG, HEPPH0606320 Plehn T, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.034029 Plehn T, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2010)078 Plehn T, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.111801 Pumplin J, 2002, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2002/07/012 Ryd A., EVTGEN MONTE CARLO G SCHWINGER J, 1951, P NATL ACAD SCI USA, V37, P452, DOI 10.1073/pnas.37.7.452 SCHWINGER J, 1951, P NATL ACAD SCI USA, V37, P455, DOI 10.1073/pnas.37.7.455 Shao H.-S., PROBING HEAVY QUARKO Shao HS, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2015)103 Shao HS, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.014002 Shao HS, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.182003 Shao HS, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2014)182 Shao HS, 2013, COMPUT PHYS COMMUN, V184, P2562, DOI 10.1016/j.cpc.2013.05.023 Sjostrand T, 2008, COMPUT PHYS COMMUN, V178, P852, DOI 10.1016/j.cpc.2008.01.036 Sjostrand T, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/05/026 Sjostrand T, 2015, COMPUT PHYS COMMUN, V191, P159, DOI 10.1016/j.cpc.2015.01.024 Sun P, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.054008 Tao J., PRODUCTION GAMMAGAMM THOOFT G, 1974, NUCL PHYS B, VB 72, P461, DOI 10.1016/0550-3213(74)90154-0 WHALLEY MR, HEPPH0508110 Zhang HF, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.092006 Zhang Y.-J., LEPTONIC DECAY UPSIL NR 113 TC 57 Z9 59 U1 0 U2 9 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JAN PY 2016 VL 198 BP 238 EP 259 DI 10.1016/j.cpc.2015.09.011 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CX0EX UT WOS:000365370800022 DA 2021-04-21 ER PT J AU Manhart, M Kion-Crosby, W Morozov, AV AF Manhart, Michael Kion-Crosby, Willow Morozov, Alexandre V. TI Path statistics, memory, and coarse-graining of continuous-time random walks on networks SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DIFFUSION; DYNAMICS; EVOLUTION; LATTICES; FLUX AB Continuous-time random walks (CTRWs) on discrete state spaces, ranging from regular lattices to complex networks, are ubiquitous across physics, chemistry, and biology. Models with coarse-grained states (for example, those employed in studies of molecular kinetics) or spatial disorder can give rise to memory and non-exponential distributions of waiting times and first-passage statistics. However, existing methods for analyzing CTRWs on complex energy landscapes do not address these effects. Here we use statistical mechanics of the nonequilibrium path ensemble to characterize first-passage CTRWs on networks with arbitrary connectivity, energy landscape, and waiting time distributions. Our approach can be applied to calculating higher moments (beyond the mean) of path length, time, and action, as well as statistics of any conservative or non-conservative force along a path. For homogeneous networks, we derive exact relations between length and time moments, quantifying the validity of approximating a continuous-time process with its discrete-time projection. For more general models, we obtain recursion relations, reminiscent of transfer matrix and exact enumeration techniques, to efficiently calculate path statistics numerically. We have implemented our algorithm in PathMAN (Path Matrix Algorithm for Networks), a Python script that users can apply to their model of choice. We demonstrate the algorithm on a few representative examples which underscore the importance of non-exponential distributions, memory, and coarse-graining in CTRWs. (C) 2015 AIP Publishing LLC. C1 [Manhart, Michael; Kion-Crosby, Willow; Morozov, Alexandre V.] Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. [Manhart, Michael] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. RP Manhart, M (corresponding author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. EM mmanhart@fas.harvard.edu; morozov@physics.rutgers.edu RI Morozov, Alexandre/E-1984-2016 OI Morozov, Alexandre/0000-0003-2598-7000; Manhart, Michael/0000-0003-3791-9056 FU NIHUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [F32 GM116217]; Alfred P. Sloan Research FellowshipAlfred P. Sloan Foundation; NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCESUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of General Medical Sciences (NIGMS) [F32GM116217, F32GM116217, F32GM116217, F32GM116217] Funding Source: NIH RePORTER FX We thank Pavel Khromov and William Jacobs for careful reading of the manuscript and helpful comments. M.M. was supported by NIH under Award No. F32 GM116217 and A.V.M. was supported by an Alfred P. Sloan Research Fellowship. CR Albert R, 2002, REV MOD PHYS, V74, P47, DOI 10.1103/RevModPhys.74.47 Angelani L, 1998, PHYS REV LETT, V81, P4648, DOI 10.1103/PhysRevLett.81.4648 ARGYRAKIS P, 1995, PHYS REV E, V52, P3623, DOI 10.1103/PhysRevE.52.3623 Bel G, 2010, PHYS BIOL, V7, DOI 10.1088/1478-3975/7/1/016003 ben-Avraham D., 2000, DIFFUSION REACTIONS Bollt EM, 2005, NEW J PHYS, V7, DOI 10.1088/1367-2630/7/1/026 CAMPBELL IA, 1988, PHYS REV B, V37, P3825, DOI 10.1103/PhysRevB.37.3825 Comtet L., 1974, ADV COMBINATORICS AR Condamin S, 2007, NATURE, V450, P77, DOI 10.1038/nature06201 CURTIS CW, 1984, LINEAR ALGEBRA INTRO Enver T, 2009, CELL STEM CELL, V4, P387, DOI 10.1016/j.stem.2009.04.011 Filyukov A. A., 1967, J ENG PHYS THERMOPH+, V13, P416, DOI DOI 10.1007/BF00828961 Flomenbom O, 2007, PHYS REV E, V76, DOI 10.1103/PhysRevE.76.041101 Flomenbom O, 2005, PHYS REV LETT, V95, DOI 10.1103/PhysRevLett.95.098105 Flomenbom O, 2005, P NATL ACAD SCI USA, V102, P2368, DOI 10.1073/pnas.0409039102 Flomenbom O, 2007, J CHEM PHYS, V127, DOI 10.1063/1.2743969 Gallos LK, 2007, P NATL ACAD SCI USA, V104, P7746, DOI 10.1073/pnas.0700250104 Goel N.S., 1974, STOCHASTIC MODELS BI Harland B, 2007, J CHEM PHYS, V127, DOI 10.1063/1.2775439 HARRISON PG, 2002, SIGMETRICS PERFORM E, V30, P77 HAUS JW, 1987, PHYS REP, V150, P263, DOI 10.1016/0370-1573(87)90005-6 HUNTER JJ, 1969, ADV APPL PROBAB, V1, P188 Iomin A, 2006, PHYS REV E, V73, DOI 10.1103/PhysRevE.73.061918 Jones E., 2001, SCIPY OPEN SOURCE SC Lane TJ, 2011, J AM CHEM SOC, V133, P18413, DOI 10.1021/ja207470h Lang AH, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003734 MAJID I, 1984, PHYS REV B, V30, P1626, DOI 10.1103/PhysRevB.30.1626 Manhart M, 2014, 1 PASSAGE PHENOMENA Manhart M, 2015, P NATL ACAD SCI USA, V112, P1797, DOI 10.1073/pnas.1415895112 Manhart M, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.088102 Metzner P, 2009, MULTISCALE MODEL SIM, V7, P1192, DOI 10.1137/070699500 MONTROLL EW, 1965, J MATH PHYS, V6, P167, DOI 10.1063/1.1704269 Mustonen V, 2010, P NATL ACAD SCI USA, V107, P4248, DOI 10.1073/pnas.0907953107 Noe F, 2009, P NATL ACAD SCI USA, V106, P19011, DOI 10.1073/pnas.0905466106 Press W. H., 1992, NUMERICAL RECIPES C Prinz JH, 2011, J CHEM PHYS, V134, DOI 10.1063/1.3565032 Redner S., 2001, GUIDE 1 PASSAGE PROC Reuveni S, 2014, P NATL ACAD SCI USA, V111, P4391, DOI 10.1073/pnas.1318122111 Sabelko J, 1999, P NATL ACAD SCI USA, V96, P6031, DOI 10.1073/pnas.96.11.6031 Stuart A., 1994, KENDALLS ADV THEORY, VI Sun SX, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.210602 Wang J, 2008, P NATL ACAD SCI USA, V105, P12271, DOI 10.1073/pnas.0800579105 Weinreich DM, 2006, SCIENCE, V312, P111, DOI 10.1126/science.1123539 WEISS GH, 1987, PHILOS MAG B, V56, P941, DOI 10.1080/13642818708215329 Weiss GH., 1994, ASPECTS APPL RANDOM Yang H, 2003, SCIENCE, V302, P262, DOI 10.1126/science.1086911 YAO DD, 1985, J APPL PROBAB, V22, P939, DOI 10.2307/3213962 Yeomans J. M., 1992, STAT MECH PHASE TRAN NR 48 TC 5 Z9 5 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 7 PY 2015 VL 143 IS 21 AR 214106 DI 10.1063/1.4935968 PG 22 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DD3EZ UT WOS:000369806000008 PM 26646868 OA Green Published DA 2021-04-21 ER PT J AU Cockett, R Kang, S Heagy, LJ Pidlisecky, A Oldenburg, DW AF Cockett, Rowan Kang, Seogi Heagy, Lindsey J. Pidlisecky, Adam Oldenburg, Douglas W. TI SIMPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications SO COMPUTERS & GEOSCIENCES LA English DT Review DE Geophysics; Numerical modeling; Inversion; Electromagnetics; Sensitivities; Object-oriented programming ID GENERALIZED CROSS-VALIDATION; 3-D INVERSION; JOINT INVERSION; SYSTEM; PYTHON; MESH; WAVE AB Inverse modeling is a powerful tool for extracting information about the subsurface from geophysical data. Geophysical inverse problems are inherently multidisciplinary, requiring elements from the relevant physics, numerical simulation, and optimization, as well as knowledge of the geologic setting, and a comprehension of the interplay between all of these elements. The development and advancement of inversion methodologies can be enabled by a framework that supports experimentation, is flexible and extensible, and allows the knowledge generated to be captured and shared. The goal of this paper is to propose a framework that supports many different types of geophysical forward simulations and deterministic inverse problems. Additionally, we provide an open source implementation of this framework in Python called SIMPEG (Simulation and Parameter Estimation in Geophysics, http://simpeg.xyz). Included in SIMPEG are staggered grid, mimetic finite volume discretizations on a number of structured and semi-structured meshes, convex optimization programs, inversion routines, model parameterizations, useful utility codes, and interfaces to standard numerical solver packages. The framework and implementation are modular, allowing the user to explore, experiment with, and iterate over a variety of approaches to the inverse problem. SIMPEG provides an extensible, documented, and well-tested framework for inverting many types of geophysical data and thereby helping to answer questions in geoscience applications. Throughout the paper we use a generic direct current resistivity problem to illustrate the framework and functionality of SIMPEG. (C) 2015 The Authors. Published by Elsevier Ltd. C1 [Cockett, Rowan; Kang, Seogi; Heagy, Lindsey J.; Oldenburg, Douglas W.] Univ British Columbia, Geophys Invers Facil, Vancouver, BC V5Z 1M9, Canada. [Pidlisecky, Adam] Univ Calgary, Calgary, AB T2N 1N4, Canada. RP Cockett, R (corresponding author), Univ British Columbia, Geophys Invers Facil, Vancouver, BC V5Z 1M9, Canada. EM rcockett@eos.ubc.ca OI Cockett, Rowan/0000-0002-7859-8394; Heagy, Lindsey/0000-0002-1551-5926; KANG, SEOGI/0000-0002-9963-936X FU Vanier Canada Graduate Scholarships Program; University of British Columbia [NSERC 22R47082]; University of Calgary (NSERC Discovery Grant) FX We would like to thank Dr. Eldad Haber for his invaluable guidance and advice in the development process of our framework and SIMPEG implementation. Dr. Dave Marchant, Dr. Lars Ruthotto, Luz Angelica Caudillo-Mata, Gudni Rosenkjaer, and Dr. Brendan Smithyman have contributed to the SIMPEG code base and are always willing to talk through problems and ideas. The funding for this work is provided through the Vanier Canada Graduate Scholarships Program, and Grants through The University of British Columbia (NSERC 22R47082) and the University of Calgary (NSERC Discovery Grant for A. Pidlisecky). We also acknowledge and thank three reviewers, Peter Lelievre, Thomas Hansen, and an anonymous reviewer for their thoughtful and constructive comments on this paper. CR CLAERBOUT JF, 1973, GEOPHYSICS, V38, P826, DOI 10.1190/1.1440378 CONSTABLE SC, 1987, GEOPHYSICS, V52, P289, DOI 10.1190/1.1442303 Doetsch J, 2010, GEOPHYSICS, V75, pG53, DOI 10.1190/1.3496476 Ekblom H., 1973, BIT (Nordisk Tidskrift for Informationsbehandling), V13, P292, DOI 10.1007/BF01951940 Farquharson CG, 2004, GEOPHYS J INT, V156, P411, DOI 10.1111/j.1365-246X.2004.02190.x Farquharson CG, 1998, GEOPHYS J INT, V134, P213, DOI 10.1046/j.1365-246x.1998.00555.x Feller J., 2000, P 21 INT C INF SYST, P58 Fomel S, 2009, COMPUT SCI ENG, V11, P5, DOI 10.1109/MCSE.2009.14 Fullagar Peter K, 2008, Leading Edge, V27, P98, DOI 10.1190/1.2831686 Gao GZ, 2012, GEOPHYSICS, V77, pWA3, DOI [10.1190/geo2011-0157.1, 10.1190/GEO2011-0157.1] Golub GH, 1997, J COMPUT GRAPH STAT, V6, P1, DOI 10.2307/1390722 GOLUB GH, 1979, TECHNOMETRICS, V21, P215, DOI 10.1080/00401706.1979.10489751 Haber E, 2000, INVERSE PROBL, V16, P1263, DOI 10.1088/0266-5611/16/5/309 Haber E, 2000, COMPUTAT GEOSCI, V4, P41, DOI 10.1023/A:1011599530422 Haber E, 2014, INVERSE PROBL, V30, DOI 10.1088/0266-5611/30/5/055011 Haber E, 1997, INVERSE PROBL, V13, P63, DOI 10.1088/0266-5611/13/1/006 Haber E., 2015, COMPUTATIONAL METHOD Haber E, 2007, J COMPUT PHYS, V223, P783, DOI 10.1016/j.jcp.2006.10.012 Hansen P.C, 1998, MATH MODEL COMPUT, DOI 10.1137/1.9780898719697 HANSEN PC, 1992, SIAM REV, V34, P561, DOI 10.1137/1034115 Hansen TM, 2013, COMPUT GEOSCI-UK, V52, P481, DOI 10.1016/j.cageo.2012.10.001 Harbaugh AW, 2005, US GEOLOGICAL SURVEY Heagy L.J., 2015, MODELLING ELECTROMAG, P2 Heagy L. J., 2014, PARAMETRIZED INVERSI Hewett R., 2013, PYSIT PYTHON SEISMIC Holscher E, 2010, READ THE DOCS Holtham E., 2010, 3 DIMENSIONAL INVERS, P655 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Hyman J, 2002, COMPUTAT GEOSCI, V6, P333, DOI 10.1023/A:1021282912658 Hyman JM, 1999, J COMPUT PHYS, V151, P881, DOI 10.1006/jcph.1999.6225 Jones E., 2001, SCIPY OPEN SOURCE SC Kalderimis J., 2011, TRAVIS CI GMBH Kang S., 2014, RECOVERING INDUCED P, P1785 Kang S., 2015, SEG TECHN PROGR, P5000, DOI [10.1190/segam201 5- 5930379.1., DOI 10.1190/SEGAM2015-5930379.1] KANG ST, 2015, ADV MATER SCI ENG, V2015, P1, DOI DOI 10.1155/2015/308725 Kelbert A, 2014, COMPUT GEOSCI-UK, V66, P40, DOI 10.1016/j.cageo.2014.01.010 Lelievre PG, 2009, EXPLOR GEOPHYS, V40, P334, DOI 10.1071/EG09012 Li MK, 2010, GEOPHYS PROSPECT, V58, P455, DOI 10.1111/j.1365-2478.2009.0824.x Li YG, 1998, GEOPHYSICS, V63, P109, DOI 10.1190/1.1444302 Li YG, 2000, GEOPHYSICS, V65, P540, DOI 10.1190/1.1444749 Li YG, 1996, GEOPHYSICS, V61, P394, DOI 10.1190/1.1443968 Li YG, 2000, GEOPHYSICS, V65, P148, DOI 10.1190/1.1444705 Li YG, 2007, GEOPHYSICS, V72, pWA51, DOI 10.1190/1.2432262 Lin JWB, 2012, B AM METEOROL SOC, V93, P1823, DOI 10.1175/BAMS-D-12-00148.1 LINES LR, 1988, GEOPHYSICS, V53, P8, DOI 10.1190/1.1442403 Merwin N., 2015, COVERALLS Nocedal J., 1999, NUMERICAL OPTIMIZATI Oldenburg D.W., 2005, NEAR SURFACE GEOPHYS, P89, DOI [DOI 10.1190/1.9781560801719, 10.1190/1.9781560801719.ch5] OLDENBURG DW, 1984, IEEE T GEOSCI REMOTE, V22, P665, DOI 10.1109/TGRS.1984.6499187 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Ollivier-Gooch C, 2002, J COMPUT PHYS, V181, P729, DOI 10.1006/jcph.2002.7159 Parker R.L.R.L., 1994, GEOPHYS INVERSE THEO PARKER RL, 1977, ANNU REV EARTH PL SC, V5, P35, DOI 10.1146/annurev.ea.05.050177.000343 Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Pidlisecky A, 2007, GEOPHYSICS, V72, pH1, DOI 10.1190/1.2402499 Pidlisecky A, 2011, GEOPHYS J INT, V187, P214, DOI 10.1111/j.1365-246X.2011.05131.x Robitaille TP, 2013, ASTRON ASTROPHYS, V558, DOI 10.1051/0004-6361/201322068 Schmidt Michael, 2002, BRIT ATLANTIC WORLD, pxix Strong D, 2003, INVERSE PROBL, V19, pS165, DOI 10.1088/0266-5611/19/6/059 TARANTOLA A, 1982, REV GEOPHYS, V20, P219, DOI 10.1029/RG020i002p00219 Tarantula A., 2005, SOC IND APPL MATH Tikhonov A.N., 1977, SOLUTION ILL POSED P Uieda Leonardo, 2014, FATIANDO TERRA PYTHO Van Rossum G., 1995, PYTHON REFERENCE MAN Wahba Grace, 1990, SPLINE MODELS OBSERV, V59 Wilson G, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001745 Yang DK, 2014, GEOPHYS J INT, V196, P1492, DOI 10.1093/gji/ggt465 NR 67 TC 52 Z9 53 U1 0 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD DEC PY 2015 VL 85 BP 142 EP 154 DI 10.1016/j.cageo.2015.09.015 PN A PG 13 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA CW5QI UT WOS:000365051100015 OA Other Gold DA 2021-04-21 ER PT J AU Alwall, J Duhr, C Fuks, B Mattelaer, O Ozturk, DG Shen, CH AF Alwall, Johan Duhr, Claude Fuks, Benjamin Mattelaer, Olivier Oeztuerk, Deniz Gizem Shen, Chia-Hsien TI Computing decay rates for new physics theories with FEYNRULES and MADGRAPH 5_AMC@NLO SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Model building ID ONE-LOOP CALCULATIONS; CALCULATING 2-BODY; PROGRAM PACKAGE; PARTICLE DECAYS; FORTRAN CODE; FEYNARTS; INTERFACE; MASSES; LEVEL AB We present new features of the FEYNRULES and MADGRAPH 5_AMC@NLO programs for the automatic computation of decay widths that consistently include channels of arbitrary final-state multiplicity. The implementations are generic enough so that they can be used in the framework of any quantum field theory, possibly including higher-dimensional operators. We extend at the same time the conventions of the Universal FEYNRULES Output (or UFO) format to include decay tables and information on the total widths. We finally provide a set of representative examples of the usage of the new functions of the different codes in the framework of the Standard Model, the Higgs Effective Field Theory, the Strongly Interacting Light Higgs model and the Minimal Supersymmetric Standard Model and compare the results to available literature and programs for validation purposes. Program summary Program title: MadWidth Catalogue identifier: AEXY_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEXY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1854258 No. of bytes in distributed program, including test data, etc.: 21136244 Distribution format: tar.gz Programming language: Mathematica and Python. Computer: Platforms on which Mathematica and Python are available. Operating system: Operating systems on which Mathematica and Python are available. Classification: 11.1, 11.6. External routines: FeynRules 2.0 or higher, MadGraph5_aMC@NLO 2.2 or higher. Nature of problem: The program is a module for the FeynRules and MadGraph5_aMC@NLO packages that allows the computation of tree-level decay widths for arbitrary BSM models. The module consists of two parts: 1. A FeynRules part, which allows one to compute analytically all tree-level two-body decay rates and to output them in the UFO format. 2. A MadGraph5_aMC@NLO part, which allows the numerical computation of many-body decay rates. Solution method: 1. For the FeynRules part, the analytic expressions for the three-point vertices can be squared to obtain analytic formulas for two-body decay rates. 2. For the MadGraph5_aMC@NLO part, MadGraph is used to generate all Feynman diagrams contributing to the decay, and diagrams that correspond to cascade decays are removed. Restrictions: Mathematica version 7 to 9. As the package is a module relying on FeynRules and MadGraph5_aMC@NLO all restrictions of these packages apply. Running time: The computation of the Feynman rules from a Lagrangian, as well as the computation of the decay rates, varies with the complexity of the model, and runs from a few seconds to several minutes. See Section 5 of the present manuscript for more information. (C) 2015 Elsevier B.V. All rights reserved. C1 [Alwall, Johan; Shen, Chia-Hsien] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Duhr, Claude] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. [Fuks, Benjamin] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland. [Fuks, Benjamin] Univ Strasbourg, Dept Rech Subatom, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, F-67037 Strasbourg, France. [Mattelaer, Olivier] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, B-1347 Louvain, Belgium. [Oeztuerk, Deniz Gizem] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Shen, Chia-Hsien] CALTECH, Pasadena, CA 91125 USA. RP Duhr, C (corresponding author), Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. EM claude.duhr@cern.ch OI Fuks, Benjamin/0000-0002-0041-0566; Duhr, Claude/0000-0001-5820-3570 FU French ANRFrench National Research Agency (ANR) [12 JS05 002 01]; Theory-LHC-France initiative of the CNRS/IN2P3; DOEUnited States Department of Energy (DOE) [DE-SC0010255]; Theoretische Forschungen auf dem Gebiet der Elementarteilchen (SNF); Research Executive Agency (REA) of the European Union [PITN-GA-2010-264564]; MCnetITN FP7 Marie Curie Initial Training Network [PITN-GA-2012-315877]; IISN "MadGraph" conventionFonds de la Recherche Scientifique - FNRS [4.4511.10]; IISN "Fundamental interactions" conventionFonds de la Recherche Scientifique - FNRS [4.4517.08]; Belgian Federal Science Policy Office through the Interuniversity Attraction PoleBelgian Federal Science Policy Office [P7/37] FX We want to thank C. Degrande and F. Maltoni for useful discussions on this project and D. Goncalves Netto and K. Mawatari for their constructive bug reports. OM wants to thank the IPPP center for its hospitality during the time of this project. BF was supported in part by the French ANR 12 JS05 002 01 BATS@LHC and by the Theory-LHC-France initiative of the CNRS/IN2P3. CHS is supported by the DOE under grant number DE-SC0010255. DGO is supported by Theoretische Forschungen auf dem Gebiet der Elementarteilchen (SNF). OM is 'Chercheur scientifique logistique postdoctoral F.R.S.-FNRS', Belgium. This work was partly supported by the Research Executive Agency (REA) of the European Union under the Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet), by MCnetITN FP7 Marie Curie Initial Training Network PITN-GA-2012-315877, by the IISN "MadGraph" convention 4.4511.10, by the IISN "Fundamental interactions" convention 4.4517.08, and in part by the Belgian Federal Science Policy Office through the Interuniversity Attraction Pole P7/37. CR Agrawal S., ARXIV11120124, V7 Allanach BC, 2002, COMPUT PHYS COMMUN, V143, P305, DOI 10.1016/S0010-4655(01)00460-X Allanach BC, 2002, EUR PHYS J C, V25, P113, DOI 10.1007/s10052-002-0949-3 Alloul A, 2014, COMPUT PHYS COMMUN, V185, P2250, DOI 10.1016/j.cpc.2014.04.012 Alloul A, 2013, EUR PHYS J C, V73, DOI 10.1140/epjc/s10052-013-2325-x Alwall J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)079 Alwall J, 2008, AIP CONF PROC, V1078, P84, DOI 10.1063/1.3052056 Alwall J, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2011)128 Artoisenet P, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2013)015 Artoisenet P, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2010)068 Bahr M, 2008, EUR PHYS J C, V58, P639, DOI 10.1140/epjc/s10052-008-0798-9 Baglio J, 2014, COMPUT PHYS COMMUN, V185, P3372, DOI 10.1016/j.cpc.2014.08.005 Bellm J., ARXIV13106877 Belyaev A, 2013, COMPUT PHYS COMMUN, V184, P1729, DOI 10.1016/j.cpc.2013.01.014 Boos E, 2004, NUCL INSTRUM METH A, V534, P250, DOI 10.1016/j.nima.2004.07.096 Bozzi G, 2007, NUCL PHYS B, V787, P1, DOI 10.1016/j.nuclphysb.2007.05.031 BYCKLING E, 1969, NUCL PHYS B, VB 9, P568, DOI 10.1016/0550-3213(69)90271-5 Christensen ND, 2013, EUR PHYS J C, V73, DOI 10.1140/epjc/s10052-013-2580-x Christensen N, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1541-5 Christensen ND, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1990-5 Christensen ND, 2009, COMPUT PHYS COMMUN, V180, P1614, DOI 10.1016/j.cpc.2009.02.018 Contino R, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2013)035 Cullen G, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1889-1 Das D, 2012, COMPUT PHYS COMMUN, V183, P774, DOI 10.1016/j.cpc.2011.11.021 Degrande C, 2012, COMPUT PHYS COMMUN, V183, P1201, DOI 10.1016/j.cpc.2012.01.022 Djouadi A, 1998, COMPUT PHYS COMMUN, V108, P56, DOI 10.1016/S0010-4655(97)00123-9 Duhr C, 2011, COMPUT PHYS COMMUN, V182, P2404, DOI 10.1016/j.cpc.2011.06.009 Eriksson D, 2010, COMPUT PHYS COMMUN, V181, P189, DOI 10.1016/j.cpc.2009.09.011 Frederix R, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/10/003 Frisch W, 2011, COMPUT PHYS COMMUN, V182, P2219, DOI 10.1016/j.cpc.2011.05.007 Fuks B, 2012, INT J MOD PHYS A, V27, DOI 10.1142/S0217751X12300074 Giudice GF, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/06/045 Gleisberg T, 2004, J HIGH ENERGY PHYS Gleisberg T, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/02/007 Hahn T, 2008, COMPUT PHYS COMMUN, V178, P217, DOI 10.1016/j.cpc.2007.09.004 Hahn T, 1999, COMPUT PHYS COMMUN, V118, P153, DOI 10.1016/S0010-4655(98)00173-8 Hahn T, 2006, NUCL PHYS B-PROC SUP, V160, P101, DOI 10.1016/j.nuclphysbps.2006.09.035 Hahn T, 2001, COMPUT PHYS COMMUN, V140, P418, DOI 10.1016/S0010-4655(01)00290-9 Hahn T., 2008, POS ACAT, P121 Heinemeyer S, 2000, COMPUT PHYS COMMUN, V124, P76, DOI 10.1016/S0010-4655(99)00364-1 Hirschi V, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2011)044 Hlucha H, 2012, COMPUT PHYS COMMUN, V183, P2307, DOI 10.1016/j.cpc.2012.05.022 James F., MONTE CARLO PHASE SP Kilian W, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1742-y Klasen M, 2003, INT J MOD PHYS C, V14, P1273, DOI 10.1142/S012918310300539X KNIEHL BA, 1995, Z PHYS C PART FIELDS, V69, P77, DOI 10.1007/s002880050007 Maltoni Fabio, 2003, JHEP, V02 MEADE P, ARXIVHEPPH0703031, P82004 Moretti M., ARXIVHEPPH0102195 Muhlleitner MM, 2007, ACTA PHYS POL B, V38, P635 Muhlleitner M, 2005, COMPUT PHYS COMMUN, V168, P46, DOI 10.1016/j.cpc.2005.01.012 Porod W, 2003, COMPUT PHYS COMMUN, V153, P275, DOI 10.1016/S0010-4655(03)00222-4 Pukhov A., ARXIVHEPPH9908288 Pukhov A., ARXIVHEPPH0412191 Shifman M.A., 1979, SOV J NUCL PHYS, V30, P711 NR 55 TC 55 Z9 55 U1 0 U2 2 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD DEC PY 2015 VL 197 BP 312 EP 323 DI 10.1016/j.cpc.2015.08.031 PG 12 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CT6JO UT WOS:000362919500031 OA Bronze, Green Accepted DA 2021-04-21 ER PT J AU Nelson, D Pillepich, A Genel, S Vogelsberger, M Springel, V Torrey, P Rodriguez-Gomez, V Sijackif, D Snyder, GF Griffen, B Marinacci, F Blecha, L Sales, L Xu, D Hernquist, L AF Nelson, D. Pillepich, A. Genel, S. Vogelsberger, M. Springel, V. Torrey, P. Rodriguez-Gomez, V. Sijackif, D. Snyder, G. F. Griffen, B. Marinacci, F. Blecha, L. Sales, L. Xu, D. Hernquist, L. TI The illustris simulation: Public data release SO ASTRONOMY AND COMPUTING LA English DT Article DE Methods: data analysis; Methods: numerical; Galaxies: formation; Galaxies: evolution; Data management systems; Data access methods ID MOVING-MESH COSMOLOGY; DIGITAL SKY SURVEY; MASSIVE BLACK-HOLES; HYDRODYNAMICAL SIMULATIONS; RADIATIVE FEEDBACK; SATELLITE GALAXIES; NEUTRAL HYDROGEN; IA SUPERNOVAE; STELLAR; DARK AB We present the full public release of all data from the Illustris simulation project. Illustris is a suite of large volume, cosmological hydrodynamical simulations run with the moving-mesh code AREPO and including a comprehensive set of physical models critical for following the formation and evolution of galaxies across cosmic time. Each simulates a volume of (106.5 Mpc)(3) and self-consistently evolves five different types of resolution elements from a starting redshift of z = 127 to the present day, z = 0. These components are: dark matter particles, gas cells, passive gas tracers, stars and stellar wind particles, and supermassive black holes. This data release includes the snapshots at all 136 available redshifts, halo and subhalo catalogs at each snapshot, and two distinct merger trees. Six primary realizations of the Illustris volume are released, including the flagship Illustris-1 run. These include three resolution levels with the fiducial "full" baryonic physics model, and a dark matter only analog for each. In addition, we provide four distinct, high time resolution, smaller volume "subboxes". The total data volume is 265 TB, including 800 full volume snapshots and similar to 30,000 subbox snapshots. We describe the released data products as well as tools we have developed for their analysis. All data may be directly downloaded in its native HDF5 format. Additionally, we release a comprehensive, web-based API which allows programmatic access to search and data processing tasks. In both cases we provide example scripts and a getting-started guide in several languages: currently, IDL, Python, and Matlab. This paper addresses scientific issues relevant for the interpretation of the simulations, serves as a pointer to published and on-line documentation of the project, describes planned future additional data releases, and discusses technical aspects of the release. (C) 2015 Elsevier B.V. All rights reserved. C1 [Nelson, D.; Pillepich, A.; Genel, S.; Rodriguez-Gomez, V.; Hernquist, L.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Genel, S.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Vogelsberger, M.; Torrey, P.; Griffen, B.; Marinacci, F.] MIT, Dept Phys, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Springel, V.] Heidelberg Inst Theoret Studies, D-69118 Heidelberg, Germany. [Springel, V.] Heidelberg Univ, Zentrum Astron, ARI, D-69120 Heidelberg, Germany. [Sijackif, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Sijackif, D.] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Torrey, P.] CALTECH, TAPIR, Pasadena, CA 91125 USA. [Snyder, G. F.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Sales, L.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Blecha, L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Blecha, L.] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. RP Nelson, D (corresponding author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM dnelson@cfa.harvard.edu OI Lang, Simon/0000-0002-6267-652X; Pillepich, Annalisa/0000-0003-1065-9274; Torrey, Paul/0000-0002-5653-0786; Springel, Volker/0000-0001-5976-4599; Lang, Simon/0000-0002-5901-5800; Sales, Laura V./0000-0002-3790-720X; Rodriguez-Gomez, Vicente/0000-0002-9495-0079; Genel, Shy/0000-0002-3185-1540; /0000-0003-3816-7028; Lang, Simon/0000-0001-5931-2322; Lang, Simon/0000-0002-4052-1623; Nelson, Dylan/0000-0001-8421-5890 FU HST [HST-AR-13897, HST-AR-12856.01-A, HST-AR-13887.004-A, 12856, 13887]; NASA through Hubble FellowshipNational Aeronautics & Space Administration (NASA) [HST-HF2-51341 001-A]; STScISpace Telescope Science Institute; NASANational Aeronautics & Space Administration (NASA) [NAS5-26555]; European Research Council under ERC-StG grantEuropean Research Council (ERC) [EXAGAL-308037]; DFG Priority Program SPPEXA through project EXAMAG; NASA ATP Grant [NNX14AH35G]; NASA through Einstein Fellowship [PF2-130093]; NASA grantNational Aeronautics & Space Administration (NASA) [NNX12AC67G]; NSFNational Science Foundation (NSF) [AST-1312095]; Science and Technology Facilities CouncilUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) [ST/L000725/1] Funding Source: researchfish FX DN would like to thank Research Computing and the Odyssey cluster at Harvard University for significant computational resources. AP acknowledges support from the HST grant HST-AR-13897. SG acknowledges support provided by NASA through Hubble Fellowship grant HST-HF2-51341 001-A awarded by the STScI, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. VS acknowledges support by the European Research Council under ERC-StG grant EXAGAL-308037, and by the DFG Priority Program SPPEXA through project EXAMAG. PT acknowledges support from NASA ATP Grant NNX14AH35G. GS acknowledges support from HST grants HST-AR-12856.01-A and HST-AR-13887.004-A. Funding for HST programs #12856 and #13887 is provided by NASA through grants from STScI. LB acknowledges support provided by NASA through Einstein Fellowship grant PF2-130093. LH acknowledges support from NASA grant NNX12AC67G and NSF grant AST-1312095. The authors would like to thank many people for contributing to analysis and understanding of the Illustris simulations and their results: Andreas Bauer, Simeon Bird, Akos Bogdan, Aaron Bray, Eddie Chua, Benjamin Cook, Chris Hayward, Rahul Kannan, Luke Kelley, Cristina Popa, Kevin Schaal, Martin Sparre, Joshua Suresh, Sarah Wellons. CR Barro G, 2013, ASTROPHYS J, V765, DOI 10.1088/0004-637X/765/2/104 Bauer A, 2015, MON NOT R ASTRON SOC, V453, P3593, DOI 10.1093/mnras/stv1893 Behroozi PS, 2013, ASTROPHYS J, V763, DOI 10.1088/0004-637X/763/1/18 Bernyk M., 2014, ARXIV14035270 Bertin E, 2015, ASTRON COMPUT, V10, P43, DOI 10.1016/j.ascom.2014.12.006 Bird S, 2015, MON NOT R ASTRON SOC, V447, P1834, DOI 10.1093/mnras/stu2542 Bird S, 2014, MON NOT R ASTRON SOC, V445, P2313, DOI 10.1093/mnras/stu1923 Bird S, 2013, MON NOT R ASTRON SOC, V429, P3341, DOI 10.1093/mnras/sts590 Blecha L., 2015, ARXIV150801524 Bogdan A., 2015, ARXIV150301107 Boylan-Kolchin M, 2009, MON NOT R ASTRON SOC, V398, P1150, DOI 10.1111/j.1365-2966.2009.15191.x Brammer GB, 2012, ASTROPHYS J SUPPL S, V200, DOI 10.1088/0067-0049/200/2/13 Bruzual G, 2003, MON NOT R ASTRON SOC, V344, P1000, DOI 10.1046/j.1365-8711.2003.06897.x Bryan GL, 1998, ASTROPHYS J, V495, P80, DOI 10.1086/305262 BUSER R, 1978, ASTRON ASTROPHYS, V62, P411 Byna S., 2012, P INT C HIGH PERF CO CEN R, 1992, ASTROPHYS J SUPPL S, V78, P341, DOI 10.1086/191630 Chabrier G, 2003, PUBL ASTRON SOC PAC, V115, P763, DOI 10.1086/376392 Chou JR, 2011, IEEE INT C CL COMP, P455, DOI 10.1109/CLUSTER.2011.86 Ciotti L, 2007, ASTROPHYS J, V665, P1038, DOI 10.1086/519833 Crocce M, 2010, MON NOT R ASTRON SOC, V403, P1353, DOI 10.1111/j.1365-2966.2009.16194.x Dahlen T, 2004, ASTROPHYS J, V613, P189, DOI 10.1086/422899 Dark Energy Survey Collaboration, 2005, ARXIVASTROPH0510346 DAVIS M, 1985, ASTROPHYS J, V292, P371, DOI 10.1086/163168 Davis M., 2003, SPIE, V4834, P161, DOI DOI 10.1117/12.457897 De Lucia G, 2007, MON NOT R ASTRON SOC, V375, P2, DOI 10.1111/j.1365-2966.2006.11287.x Di Matteo T, 2005, NATURE, V433, P604, DOI 10.1038/nature03335 Di Matteo T, 2008, ASTROPHYS J, V676, P33, DOI 10.1086/524921 Dubois Y, 2014, MON NOT R ASTRON SOC, V444, P1453, DOI 10.1093/mnras/stu1227 Ferland GJ, 1998, PUBL ASTRON SOC PAC, V110, P761, DOI 10.1086/316190 Fielding R.T., 2000, AAI9980887 Genel S., 2015, ARXIV150301117 Genel S, 2014, MON NOT R ASTRON SOC, V445, P175, DOI 10.1093/mnras/stu1654 Genel S, 2013, MON NOT R ASTRON SOC, V435, P1426, DOI 10.1093/mnras/stt1383 Giguere CAF, 2009, ASTROPHYS J, V703, P1416, DOI 10.1088/0004-637X/703/2/1416 Gray J., 2002, ARXIVCS02022014 Greggio L, 2005, ASTRON ASTROPHYS, V441, P1055, DOI 10.1051/0004-6361:20052926 Grogin NA, 2011, ASTROPHYS J SUPPL S, V197, DOI 10.1088/0067-0049/197/2/35 Guo Q, 2011, MON NOT R ASTRON SOC, V413, P101, DOI 10.1111/j.1365-2966.2010.18114.x Hahn O, 2010, MON NOT R ASTRON SOC, V405, P274, DOI 10.1111/j.1365-2966.2010.16494.x HERNQUIST L, 1989, ASTROPHYS J SUPPL S, V70, P419, DOI 10.1086/191344 Karakas AI, 2010, MON NOT R ASTRON SOC, V403, P1413, DOI 10.1111/j.1365-2966.2009.16198.x KATZ N, 1992, ASTROPHYS J, V399, pL109, DOI 10.1086/186619 Katz N, 1996, ASTROPHYS J SUPPL S, V105, P19, DOI 10.1086/192305 Keres D, 2012, MON NOT R ASTRON SOC, V425, P2027, DOI 10.1111/j.1365-2966.2012.21548.x Khandai N., 2014, ARXIV14020888 Kim J, 2011, J KOREAN ASTRON SOC, V44, P217, DOI 10.5303/JKAS.2011.44.6.217 Klypin AA, 2011, ASTROPHYS J, V740, DOI 10.1088/0004-637X/740/2/102 Lemson Gerard, 2011, Scientific and Statistical Database Management. Proceedings 23rd International Conference, SSDBM 2011, P509, DOI 10.1007/978-3-642-22351-8_34 Lemson G., 2009, MEMORIE SOC ASTRONOM, V80, P342 Lemson G., 2014, ARXIV14024744 Lemson G, 2006, ASP C SER, V351, P212 Lemson G., 2006, ARXIVASTROPH0608019 Li N, 2008, COMPUT SCI ENG, V10, P18, DOI 10.1109/MCSE.2008.6 Lotz JM, 2004, ASTRON J, V128, P163, DOI 10.1086/421849 LSST Science Collaboration, 2009, ARXIV09120201 LSST S Maoz D, 2012, MON NOT R ASTRON SOC, V426, P3282, DOI 10.1111/j.1365-2966.2012.21871.x Marinacci F, 2014, MON NOT R ASTRON SOC, V437, P1750, DOI 10.1093/mnras/stt2003 Matteucci F, 2006, MON NOT R ASTRON SOC, V372, P265, DOI 10.1111/j.1365-2966.2006.10848.x Nelson D, 2015, MON NOT R ASTRON SOC, V448, P59, DOI 10.1093/mnras/stv017 Nelson D, 2013, MON NOT R ASTRON SOC, V429, P3353, DOI 10.1093/mnras/sts595 Okamoto T, 2010, MON NOT R ASTRON SOC, V406, P208, DOI 10.1111/j.1365-2966.2010.16690.x Oppenheimer BD, 2008, MON NOT R ASTRON SOC, V387, P577, DOI 10.1111/j.1365-2966.2008.13280.x Oppenheimer BD, 2006, MON NOT R ASTRON SOC, V373, P1265, DOI 10.1111/j.1365-2966.2006.10989.x Overzier R, 2013, MON NOT R ASTRON SOC, V428, P778, DOI 10.1093/mnras/sts076 Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Pillepich A, 2014, MON NOT R ASTRON SOC, V444, P237, DOI 10.1093/mnras/stu1408 Portinari L, 1998, ASTRON ASTROPHYS, V334, P505 PRESS WH, 1974, ASTROPHYS J, V187, P425, DOI 10.1086/152650 Puchwein E, 2013, MON NOT R ASTRON SOC, V428, P2966, DOI 10.1093/mnras/sts243 Rahmati A, 2015, MON NOT R ASTRON SOC, V452, P2034, DOI 10.1093/mnras/stv1414 Rahmati A, 2013, MON NOT R ASTRON SOC, V430, P2427, DOI 10.1093/mnras/stt066 Rasera Y, 2010, AIP CONF PROC, V1241, P1134, DOI 10.1063/1.3462610 Riebe K, 2013, ASTRON NACHR, V334, P691, DOI 10.1002/asna.201211900 Rodriguez-Gomez V, 2015, MON NOT R ASTRON SOC, V449, P49, DOI 10.1093/mnras/stv264 Sales LV, 2015, MON NOT R ASTRON SOC, V447, pL6, DOI 10.1093/mnrasl/slu173 Sazonov SY, 2005, MON NOT R ASTRON SOC, V358, P168, DOI 10.1111/j.1365-2966.2005.08763.x Schaal K, 2015, MON NOT R ASTRON SOC, V446, P3992, DOI 10.1093/mnras/stu2386 Schaller M., 2014, ARXIV14098617, DOI [10.1093/mnras/stv1067, DOI 10.1093/MNRAS/STV1067] Schaye J, 2015, MON NOT R ASTRON SOC, V446, P521, DOI 10.1093/mnras/stu2058 Sijacki D., 2014, ARXIV14086842, DOI [10.1093/mnras/stv1340, DOI 10.1093/MNRAS/STV1340] Sijacki D, 2007, MON NOT R ASTRON SOC, V380, P877, DOI 10.1111/j.1365-2966.2007.12153.x Sijacki D, 2012, MON NOT R ASTRON SOC, V424, P2999, DOI 10.1111/j.1365-2966.2012.21466.x Sijacki D, 2009, MON NOT R ASTRON SOC, V400, P100, DOI 10.1111/j.1365-2966.2009.15452.x Skillman S. W., 2014, ARXIV14072600 Smith B, 2008, MON NOT R ASTRON SOC, V385, P1443, DOI [10.1111/j.1365-2966.2008.12922.x, 10.1111/J.1365-2966.2008.12922.x] Snyder G. F., 2015, ARXIV150207747 Sparre M, 2015, MON NOT R ASTRON SOC, V447, P3548, DOI 10.1093/mnras/stu2713 Springel V, 2005, NATURE, V435, P629, DOI 10.1038/nature03597 Springel V, 2005, MON NOT R ASTRON SOC, V364, P1105, DOI 10.1111/j.1365-2966.2005.09655.x Springel V, 2003, MON NOT R ASTRON SOC, V339, P289, DOI 10.1046/j.1365-8711.2003.06206.x Springel V, 2005, MON NOT R ASTRON SOC, V361, P776, DOI 10.1111/j.1365-2966.2005.09238.x Springel V, 2008, MON NOT R ASTRON SOC, V391, P1685, DOI 10.1111/j.1365-2966.2008.14066.x Springel V, 2001, MON NOT R ASTRON SOC, V328, P726, DOI 10.1046/j.1365-8711.2001.04912.x Springel V, 2001, NEW ASTRON, V6, P79, DOI 10.1016/S1384-1076(01)00042-2 Springel V, 2010, MON NOT R ASTRON SOC, V401, P791, DOI 10.1111/j.1365-2966.2009.15715.x Srisawat C, 2013, MON NOT R ASTRON SOC, V436, P150, DOI 10.1093/mnras/stt1545 Stoughton C, 2002, ASTRON J, V123, P485, DOI 10.1086/324741 Suresh J, 2015, MON NOT R ASTRON SOC, V448, P895, DOI 10.1093/mnras/stu2762 Szalay A.S., 2002, ARXIVCS0202013 Szalay AS, 2002, PROC SPIE, V4836, P333, DOI 10.1117/12.461427 Szalay AS, 2000, ASTR SOC P, V216, P405 Thielemann FK, 2003, NUCL PHYS A, V718, p139C, DOI 10.1016/S0375-9474(03)00704-8 Torrey P, 2015, MON NOT R ASTRON SOC, V447, P2753, DOI 10.1093/mnras/stu2592 Torrey P, 2014, MON NOT R ASTRON SOC, V438, P1985, DOI 10.1093/mnras/stt2295 Torrey P, 2012, MON NOT R ASTRON SOC, V427, P2224, DOI 10.1111/j.1365-2966.2012.22082.x Travaglio C, 2004, ASTRON ASTROPHYS, V425, P1029, DOI 10.1051/0004-6361:20041108 Vogelsberger M, 2014, NATURE, V509, P177, DOI 10.1038/nature13316 Vogelsberger M, 2014, MON NOT R ASTRON SOC, V444, P1518, DOI 10.1093/mnras/stu1536 Vogelsberger M, 2013, MON NOT R ASTRON SOC, V436, P3031, DOI 10.1093/mnras/stt1789 Vogelsberger M, 2012, MON NOT R ASTRON SOC, V425, P3024, DOI 10.1111/j.1365-2966.2012.21590.x Wang Y, 2013, IEEE ACM INT SYMP, P335, DOI 10.1109/CCGrid.2013.9 Wellons S, 2015, MON NOT R ASTRON SOC, V449, P361, DOI 10.1093/mnras/stv303 Wiersma RPC, 2009, MON NOT R ASTRON SOC, V399, P574, DOI 10.1111/j.1365-2966.2009.15331.x Wiersma RPC, 2009, MON NOT R ASTRON SOC, V393, P99, DOI 10.1111/j.1365-2966.2008.14191.x Xu D., 2015, ARXIV150707937 Yepes G, 1997, MON NOT R ASTRON SOC, V284, P235, DOI 10.1093/mnras/284.1.235 York DG, 2000, ASTRON J, V120, P1579, DOI 10.1086/301513 Yu QJ, 2002, MON NOT R ASTRON SOC, V335, P965, DOI 10.1046/j.1365-8711.2002.05532.x NR 119 TC 264 Z9 267 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD NOV PY 2015 VL 13 BP 12 EP 37 DI 10.1016/j.ascom.2015.09.003 PG 26 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA DE2MA UT WOS:000370460200002 OA Green Published, Green Accepted DA 2021-04-21 ER PT J AU Kim, JS Schmeier, D Tattersall, J Rolbiecki, K AF Kim, Jong Soo Schmeier, Daniel Tattersall, Jamie Rolbiecki, Krzysztof TI A framework to create customised LHC analyses within CheckMATE SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Analysis; Detector simulation; Delphes; ATLAS; CMS; Tool ID TRANSVERSE ENERGY; MEASURING MASSES; MISSING ENERGY; ELECTRONS AB CheckMATE is a framework that allows the user to conveniently test simulated BSM physics events against current LHC data in order to derive exclusion limits. For this purpose, the data runs through a detector simulation and is then processed by a user chosen selection of experimental analyses. These analyses are all defined by signal regions that can be compared to the experimental data with a multitude of statistical tools. Due to the large and continuously growing number of experimental analyses available, users may quickly find themselves in the situation that the study they are particularly interested in has not (yet) been implemented officially into the CheckMATE framework. However, the code includes a rather simple framework to allow users to add new analyses on their own. This document serves as a guide to this. In addition, CheckMATE serves as a powerful tool for testing and implementing new search strategies. To aid this process, many tools are included to allow a rapid prototyping of new analyses. Website: http://checkmate.hepforge.org/ Program summary Program title: CheckMATE, AnalysisManager Catalogue identifier: AEUT_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUT_vl_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 181436 No. of bytes in distributed program, including test data, etc.: 2169369 Distribution format: tar.gz Programming language: C++, Python. Computer: PC, Mac. Operating system: Linux, Mac OS. Catalogue identifier of previous version: AEUT v1_0 Journal reference of previous version: Comput. Phys. Comm. 187(2015)227 Classification: 11.9. External routines: ROOT, Python, Delphes (included with the distribution) Does the new version supersede the previous version?: Yes Nature of problem: The LHC has delivered a wealth of new data that is now being analysed. Both ATLAS and CMS have performed many searches for new physics that theorists are eager to test their model against. However, tuning the detector simulations, understanding the particular analysis details and interpreting the results can be a tedious and repetitive task. Furthermore, new analyses are being constantly published by the experiments and might be not yet included in the official CheckMATE distribution. Solution method: The AnalysisManager within CheckMATE framework allows the user to easily include new experimental analyses as they are published by the collaborations. Furthermore, completely novel analyses can be designed and added by the user in order to test models at higher centre-of-mass energy and/or luminosity. Reasons for new version: New features, bug fixes, additional validated analyses. Summary of revisions: New kinematic variables M_CT, M_T2b1, m_T, alpha_T, razor; internal likelihood calculation; missing energy smearing; efficiency tables; validated tau-tagging; improved AnalysisManager and code structure; new analyses; bug fixes. Restrictions: Only a subset of available experimental results have been implemented. Additional comments: Checkmate is built upon the tools and hard work of many people. If Checkmate is used in your publication it is extremely important that all of the following citations are included, Delphes 3 [1]. FastJet [2,3]. Anti-k(t) jet algorithm [4]. CL, prescription [5]. In analyses that use the M-T2 kinematical discriminant we use the Oxbridge Kinetics Library [6,7] and the algorithm developed by Cheng and Han [8] which also includes the M(T2)(b)l variable [9]. In analyses that use the M-CT. family of kinematical discriminants we use MctLib [10,11] which also includes the M-CT perpendicular to and Mall variables [12]. All experimental analyses that were used to set limits in the study. The Monte Carlo event generator that was used. Running time: The running time scales about linearly with the number of input events provided by the user. The detector simulation/analysis of 20000 events needs about 50s/ls for a single core calculation on an Intel Core i5-3470 with 3.2 GHz and 8 GB RAM. (C) 2015 Elsevier B.V. All rights reserved. C1 [Kim, Jong Soo; Rolbiecki, Krzysztof] Inst Fis Teor UAM CSIC, Madrid, Spain. [Schmeier, Daniel] Univ Bonn, Inst Phys, Bonn, Germany. [Schmeier, Daniel] Univ Bonn, Bethe Ctr Theoret Phys, Bonn, Germany. [Tattersall, Jamie] Heidelberg Univ, Inst Theoret Phys, Heidelberg, Germany. [Rolbiecki, Krzysztof] Uniwersytet Warszawski, Inst Fizyki Teoretycznej, Warsaw, Poland. RP Rolbiecki, K (corresponding author), Inst Fis Teor UAM CSIC, Madrid, Spain. EM jong.kim@csic.es; daschm@th.physik.uni-bonn.de; j.tattersall@thphys.uni-heidelberg.de; rolbiecki.krzysztof@csic.es RI Rolbiecki, Krzysztof/A-5402-2017; , Krzysztof/R-3697-2019; Kim, Jong Soo/G-6307-2018 OI Rolbiecki, Krzysztof/0000-0002-9645-9670; , Krzysztof/0000-0002-9645-9670; Kim, Jong Soo/0000-0002-1244-4181 FU MINECO, Spain [FPA2013-44773-P]; Consolider-Ingenio CPANSpanish Government [CSD2007-00042]; Spanish MINECO Centro de excelencia Severo Ochoa Program [SEV-2012-0249]; JAE-Doc programme FX We would all like to thank Sabine Kraml and LPSC Grenoble for support and hospitality while part of this manuscript was prepared. We would also like to thank Liang Shang for the careful reading of our manuscript. J.T. would like to thank Herbi Dreiner and Bonn University for additional kind support. The work of J.S. Kim and K. Rolbiecki has been partially supported by the MINECO, Spain, under contract FPA2013-44773-P; Consolider-Ingenio CPAN CSD2007-00042 and the Spanish MINECO Centro de excelencia Severo Ochoa Program under grant SEV-2012-0249. K. Rolbiecki was also supported by JAE-Doc programme. CR Aad G, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.052008 Aad G, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2014)169 Allanach BC, 2009, COMPUT PHYS COMMUN, V180, P8, DOI 10.1016/j.cpc.2008.08.004 Alwall J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)079 [Anonymous], 2013, ATLASCONF2013047 CER ARNISON G, 1983, PHYS LETT B, V122, P103, DOI 10.1016/0370-2693(83)91177-2 Bahr M, 2008, EUR PHYS J C, V58, P639, DOI 10.1140/epjc/s10052-008-0798-9 Bai Y, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2012)110 BANNER M, 1983, PHYS LETT B, V122, P476, DOI 10.1016/0370-2693(83)91605-2 BARGER V, 1987, PHYS REV D, V36, P295, DOI 10.1103/PhysRevD.36.295 Barr A, 2003, J PHYS G NUCL PARTIC, V29, P2343, DOI 10.1088/0954-3899/29/10/304 Barr AJ, 2010, J PHYS G NUCL PARTIC, V37, DOI 10.1088/0954-3899/37/12/123001 Beenakker W, 1999, PHYS REV LETT, V83, P3780, DOI 10.1103/PhysRevLett.83.3780 Beenakker W., HEPPH9611232 Boehm C., 2014, J COSMOL ASTROPART P, V1405, P009 BUCKLEY A, ARXIV10030694 Cacciari M, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/04/063 Cacciari M, 2006, PHYS LETT B, V641, P57, DOI 10.1016/j.physletb.2006.08.037 Cacciari M, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1896-2 Calibbi L., ARXIV14105730 Cao JJ, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2014)056 Chatrchyan S, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.012004 Cheng HC, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/12/063 Conte E, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-014-3103-0 Conte E, 2013, COMPUT PHYS COMMUN, V184, P222, DOI 10.1016/j.cpc.2012.09.009 de Favereau J., ARXIV13076346 de Favereau J., 2013, DELPHES 3 MODULAR FR Drees M, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.035024 Drees M., ARXIV13122591 Dumont B., ARXIV14073278 Gleisberg T, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/02/007 Holdom B, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.013015 Kaminska A, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2014)153 Khachatryan V, 2011, PHYS LETT B, V698, P196, DOI 10.1016/j.physletb.2011.03.021 Khachatryan V., ARXIV15020030 Kim J.S., ARXIV14060858 Kim JS, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3281-4 Lai HL, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.074024 Lester CG, 1999, PHYS LETT B, V463, P99, DOI 10.1016/S0370-2693(99)00945-4 Matchev KT, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.061801 Polesello G, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2010)030 Randall L, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.221803 Read AL, 2002, J PHYS G NUCL PARTIC, V28, P2693, DOI 10.1088/0954-3899/28/10/313 Rogan C., ARXIV10062727 Sjostrand T, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/05/026 Skands P, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/07/036 SMITH J, 1983, PHYS REV LETT, V50, P1738, DOI 10.1103/PhysRevLett.50.1738 Tovey DR, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/04/034 TOVEY DR, 2008, JHEP, V804 van Neerven W., LEPTON JET EVENTS SI NR 50 TC 47 Z9 48 U1 0 U2 7 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV PY 2015 VL 196 BP 535 EP 562 DI 10.1016/j.cpc.2015.06.002 PG 28 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CT1ZX UT WOS:000362602900049 DA 2021-04-21 ER PT J AU Parcollet, O Ferrero, M Ayral, T Hafermann, H Krivenko, I Messio, L Seth, P AF Parcollet, Olivier Ferrero, Michel Ayral, Thomas Hafermann, Hartmut Krivenko, Igor Messio, Laura Seth, Priyanka TI TRIQS: A toolbox for research on interacting quantum systems SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Many-body physics; Strongly-correlated systems; DMFT; Monte Carlo; ab initio calculations; C plus; Python ID MEAN-FIELD THEORY; IMPURITY MODELS; MONTE-CARLO AB We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it. Program summary Program title: TRIQS Catalogue identifier: AEWR_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEWR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License (GPLv3) No. of lines in distributed program, including test data, etc.: 93228 No. of bytes in distributed program, including test data, etc.: 2979367 Distribution format: tar.gz Programming language: C++/Python. Computer: Any architecture with suitable compilers including PCs and clusters. Operating system: Unix, Linux, OSX. RAM: Highly problem-dependent Classification: 7.3, 20. External routines: cmake, mpi, boost, FFTW, GMP, BIAS, LAPACK, HDF5, NumPy, SciPy, h5py, mpi4py, mako. Nature of problem: Need for a modern programming framework to quickly write simple, efficient and higher-level code applicable to the studies of strongly-correlated electron systems. Solution method: We present a C++/Python open-source computational library that provides high-level abstractions for common objects and various tools in the field of quantum many-body physics, thus forming a framework for developing applications. Running time: Tests take less than a minute. Otherwise it is highly problem dependent (from minutes to several days). (C) 2015 Elsevier B.V. All rights reserved. C1 [Parcollet, Olivier; Ayral, Thomas; Hafermann, Hartmut; Messio, Laura] CEA, CNRS, Inst Phys Theor IPhT, F-91191 Gif Sur Yvette, France. [Ferrero, Michel; Ayral, Thomas; Seth, Priyanka] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France. [Krivenko, Igor] Univ Hamburg, Inst Theoret Phys 1, D-20355 Hamburg, Germany. [Messio, Laura] Univ Paris 06, CNRS, UMR 7600, LPTMC, F-75252 Paris, France. RP Parcollet, O (corresponding author), CEA, CNRS, Inst Phys Theor IPhT, F-91191 Gif Sur Yvette, France. EM olivier.parcollet@cea.fr; michel.ferrero@polytechnique.edu; thomas.ayral@polytechnique.edu; hartmut.hafermann@cea.fr; ikrivenk@physnet.uni-hamburg.de; messio@lptmc.jussieu.fr; priyanka.seth@polytechnique.edu RI Ayral, Thomas/AAC-3789-2019; Laura, Messio/S-2083-2018; Parcollet, Olivier/AAE-2863-2021; Ferrero, Michel/Q-3628-2019; Parcollet, Olivier/C-2340-2008 OI Ayral, Thomas/0000-0003-0960-4065; Laura, Messio/0000-0002-4048-9838; Parcollet, Olivier/0000-0002-0389-2660; Ferrero, Michel/0000-0003-1882-2881 FU ERCEuropean Research Council (ERC)European Commission [278472-MottMetals, 617196-CorrelMat]; Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [SFB 668-A3] FX The TRIQS project is supported by the ERC Grant No. 278472-MottMetals. We acknowledge contributions to the library and feedbacks from M. Aichhorn, A. Antipov, L. Boehnke, L. Pourovskii, as well as feedback from our user community. I.K. acknowledges support from Deutsche Forschungsgemeinschaft via Project SFB 668-A3. P.S. acknowledges support from ERC Grant No. 617196-CorrelMat. CR [Anonymous], 1949, ANN MATH STAT, V20, P620 Bauer B, 2011, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2011/05/P05001 Blackford LS, 2002, ACM T MATH SOFTWARE, V28, P135, DOI 10.1145/567806.567807 Georges A, 1996, REV MOD PHYS, V68, P13, DOI 10.1103/RevModPhys.68.13 Gull E, 2008, EPL-EUROPHYS LETT, V82, DOI 10.1209/0295-5075/82/57003 Gull E, 2011, REV MOD PHYS, V83, P349, DOI 10.1103/RevModPhys.83.349 Huang L., ARXIV14097573 Kotliar G, 2006, REV MOD PHYS, V78, P865, DOI 10.1103/RevModPhys.78.865 Lauchli AM, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.235117 Lawson C. L., 1979, ACM Transactions on Mathematical Software, V5, P324, DOI 10.1145/355841.355848 Maier T, 2005, REV MOD PHYS, V77, P1027, DOI 10.1103/RevModPhys.77.1027 Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Rubtsov AN, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.033101 Rubtsov AN, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.035122 Schollwock U, 2005, REV MOD PHYS, V77, P259, DOI 10.1103/RevModPhys.77.259 SHERMAN J, 1950, ANN MATH STAT, V21, P124, DOI 10.1214/aoms/1177729893 Toschi A, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.045118 van Loon EGCP, 2014, PHYS REV B, V90, DOI 10.1103/PhysRevB.90.235135 Werner P, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.076405 NR 19 TC 156 Z9 156 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV PY 2015 VL 196 BP 398 EP 415 DI 10.1016/j.cpc.2015.04.023 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CT1ZX UT WOS:000362602900038 DA 2021-04-21 ER PT J AU Wiebusch, M AF Wiebusch, Martin TI HEPMath 1.4: A mathematica package for semi-automatic computations in high energy physics SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE High energy physics; Feynman amplitudes; Tensor algebra; Code generation; Python ID AUTOMATIC-GENERATION; FEYNMAN-RULES; FEYNARTS; FORMCALC AB This article introduces the Mathematica package HEPMath which provides a number of utilities and algorithms for High Energy Physics computations in Mathematica. Its functionality is similar to packages like FormCalc or FeynCalc, but it takes a more complete and extensible approach to implementing common High Energy Physics notations in the Mathematica language, in particular those related to tensors and index contractions. It also provides a more flexible method for the generation of numerical code which is based on new features for C code generation in Mathematica. In particular it can automatically generate Python extension modules which make the compiled functions callable from Python, thus eliminating the need to write any code in a low-level language like C or Fortran. It also contains seamless interfaces to LHAPDF, FeynArts, and LoopTools. Program summary Program title: HEPMath Catalogue identifier: AEWU_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEWU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27360 No. of bytes in distributed program, including test data, etc.: 668749 Distribution format: tar.gz Programming language: Mathematica, C and python. Computer: Workstation. Operating system: Linux. Classification: 11.1, 5, 4.4. External routines: FeynArts (optional), LoopTools (optional), LHAPDF (optional) Nature of problem: Automatisation of (Feynman diagrammatic) computations in High Energy Physics, representation and manipulation of tensors with symbolic indices in the Mathematica language, generation of numerical code and interface to Python. Solution method: A Mathematica package which provides functions to construct and manipulate tensor expressions in Mathematica and interface to other popular tools in High Energy Physics. Unusual features: A code generation method which uses Mathematica's byte code compiler (Compile) rather than CForm/FortranForm and the automatic generation of Python extension modules. Running time: The examples provided only take a few seconds to run. (C) 2015 Elsevier B.V. All rights reserved. C1 Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, Durham CH1 3LE, England. RP Wiebusch, M (corresponding author), Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, Durham CH1 3LE, England. EM martin.wiebusch@durham.ac.uk CR Alioli S, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2010)043 Alloul A, 2014, COMPUT PHYS COMMUN, V185, P2250, DOI 10.1016/j.cpc.2014.04.012 Alwall J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)079 Alwall J, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/09/028 Belyaev A, 2013, COMPUT PHYS COMMUN, V184, P1729, DOI 10.1016/j.cpc.2013.01.014 Bern Z, 2014, J PHYS CONF SER, V523, DOI 10.1088/1742-6596/523/1/012051 Boos E, 2004, NUCL INSTRUM METH A, V534, P250, DOI 10.1016/j.nima.2004.07.096 Cafarella A, 2009, COMPUT PHYS COMMUN, V180, P1941, DOI 10.1016/j.cpc.2009.04.023 Cascioli F, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.111601 Christensen N, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1541-5 Christensen ND, 2009, COMPUT PHYS COMMUN, V180, P1614, DOI 10.1016/j.cpc.2009.02.018 Ghosh D., ARXIV14112029HEPPH Gleisberg T, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/02/007 Hahn T, 2008, COMPUT PHYS COMMUN, V178, P217, DOI 10.1016/j.cpc.2007.09.004 Hahn T, 1999, COMPUT PHYS COMMUN, V118, P153, DOI 10.1016/S0010-4655(98)00173-8 Hahn T, 2006, NUCL PHYS B-PROC SUP, V160, P101, DOI 10.1016/j.nuclphysbps.2006.09.035 Hahn T, 2004, NUCL PHYS B-PROC SUP, V135, P333, DOI 10.1016/j.nuclphysbps.2004.09.018 Hahn T, 2003, NUCL PHYS B-PROC SUP, V116, P363, DOI 10.1016/S0920-5632(03)80200-1 Hahn T, 2001, COMPUT PHYS COMMUN, V140, P418, DOI 10.1016/S0010-4655(01)00290-9 Hahn T., 2005, ECONF C, P0604 Hahn T, 2006, NUCL PHYS B-PROC SUP, V157, P236, DOI 10.1016/j.nuclphysbps.2006.03.026 Hirschi V., 2011, JHEP, V1105 JAMIN M, 1993, COMPUT PHYS COMMUN, V74, P265, DOI 10.1016/0010-4655(93)90097-V Kanaki A, 2000, COMPUT PHYS COMMUN, V132, P306, DOI 10.1016/S0010-4655(00)00151-X Kilian W, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1742-y Krauss F, 2002, J HIGH ENERGY PHYS KUBLBECK J, 1990, COMPUT PHYS COMMUN, V60, P165, DOI 10.1016/0010-4655(90)90001-H MERTIG R, 1991, COMPUT PHYS COMMUN, V64, P345, DOI 10.1016/0010-4655(91)90130-D Moretti M., ARXIVHEPPH0102195HEP Semenov AV, 2009, COMPUT PHYS COMMUN, V180, P431, DOI 10.1016/j.cpc.2008.10.012 Semenov AV, 1997, NUCL INSTRUM METH A, V389, P293, DOI 10.1016/S0168-9002(97)00096-X Staub F, 2014, COMPUT PHYS COMMUN, V185, P1773, DOI 10.1016/j.cpc.2014.02.018 Staub F, 2010, COMPUT PHYS COMMUN, V181, P1077, DOI 10.1016/j.cpc.2010.01.011 STELZER T, 1994, COMPUT PHYS COMMUN, V81, P357, DOI 10.1016/0010-4655(94)90084-1 Vermaseren J. A. M., ARXIVMATHPH0010025MA Yuasa F, 2000, PROG THEOR PHYS SUPP, P18 NR 36 TC 11 Z9 11 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD OCT PY 2015 VL 195 BP 172 EP 190 DI 10.1016/j.cpc.2015.04.022 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA CM5SY UT WOS:000357750100017 DA 2021-04-21 ER PT J AU Bernon, J Dumont, B AF Bernon, Jeremy Dumont, Beranger TI Lilith: a tool for constraining new physics from Higgs measurements SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID STANDARD MODEL; CP PROPERTIES; BOSON; COUPLINGS; DECAYS; MASS AB The properties of the observed Higgs boson with mass around 125 GeV can be affected in a variety of ways by new physics beyond the Standard Model (SM). The wealth of experimental results, targeting the different combinations for the production and decay of a Higgs boson, makes it a non-trivial task to assess the patibility of a non-SM-like Higgs boson with all available results. In this paper we present Lilith, a new public tool for constraining new physics from signal strength measurements performed at the LHC and the Tevatron. Lilith is a Python library that can also be used in C and C++/ROOT programs. The Higgs likelihood is based on experimental results stored in an easily extensible XML database, and is evaluated from the user input, given in XML format in terms of reduced couplings or signal strengths. The results of Lilith can be used to constrain a wide class of new physics scenarios. C1 [Bernon, Jeremy; Dumont, Beranger] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, F-38026 Grenoble, France. [Dumont, Beranger] Inst for Basic Sci Korea, Ctr Theoret Phys Universe, Taejon 305811, South Korea. RP Bernon, J (corresponding author), Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Ave Martyrs, F-38026 Grenoble, France. EM bernon@lpsc.in2p3.fr; dum33@ibs.re.kr FU ANRFrench National Research Agency (ANR); Investissements d'avenir, Labex ENIGMASSFrench National Research Agency (ANR); IBSCentre National de la Recherche Scientifique (CNRS) [IBS-R018-D1]; CTPU-IBS FX We are deeply indebted to Sabine Kraml for her support at all stages of the project and for comments on the manuscript. We would also like to thank Genevieve Belanger, Ulrich Ellwanger, John F. Gunion and Sabine Kraml for the fruitful collaboration on Higgs coupling fits in 2012 and 2013, from which the idea of Lilith originated. This work was supported in part by the ANR project DMAstroLHC, the "Investissements d'avenir, Labex ENIGMASS", and by the IBS under Project Code IBS-R018-D1. JB thanks the CTPU-IBS for hospitality and financial support for a research stay during which this work was finished. CR Aad G, 2015, PHYS REV D, V92, DOI 10.1103/PhysRevD.92.012006 Aad G, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2015)117 Aad G, 2015, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2015)069 Aad G, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.112015 Aad G, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.201802 Aad G, 2013, PHYS LETT B, V726, P88, DOI 10.1016/j.physletb.2013.08.010 Aad G, 2012, PHYS LETT B, V716, P1, DOI 10.1016/j.physletb.2012.08.020 Aad G., 2015, PHYS REV D, V91 Aaltonen T, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.052014 [Anonymous], 2014, ATLASCONF2014009 CER [Anonymous], 2014, ATLASCONF2014011 CER [Anonymous], 2011, CMSNOTE2011005 CERN [Anonymous], 2014, ATLASCONF2014010 CER Arnold K, 2009, COMPUT PHYS COMMUN, V180, P1661, DOI 10.1016/j.cpc.2009.03.006 ATLAS Collab, 2013, JHEP UNPUB ATLAS Collaboration, DAT FIG 7 MEAS HIGGS, DOI [10.7484/INSPIREHEP.DATA.A78C.HK44, DOI 10.7484/INSPIREHEP.DATA.A78C.HK44] Banerjee S, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.053010 Bechtle P, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2014)039 Bechtle P, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-013-2711-4 Belanger G, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.075008 Belanger G, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2013)053 Belanger G, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.095023 Belanger G, 2013, PHYS LETT B, V726, P773, DOI 10.1016/j.physletb.2013.09.059 Belyaev A, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.035012 Berge S, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-014-3164-0 Bergstrom J, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.075008 Bernon J, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.071301 Boudjema F., ARXIV13075865 Brooijmans G., 2013, ARXIV14051617 Cacciapaglia G, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2013)029 Cao JJ, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2014)150 Carena M, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2012)175 Chatrchyan S, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-014-2980-6 Chatrchyan S, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.092007 Chatrchyan S, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.012003 Chatrchyan S, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2014)096 Chatrchyan S, 2012, PHYS LETT B, V716, P30, DOI 10.1016/j.physletb.2012.08.021 Cheung K., ARXIV150103552 Cheung K, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.095009 Cheung K, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2014)085 Choi S, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2013)225 Ciuchini M., ARXIV14106940 CMS Collaboration, 2014, NAT PHYS, V10, P557, DOI 10.1038/NPHYS3005 Cranmer K, 2015, PHYS REV D, V91, DOI 10.1103/PhysRevD.91.054032 David A., ARXIV12090040 LHG HI de Blas J., ARXIV14104204 Demartin F, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-014-3065-2 Djouadi A, 1998, COMPUT PHYS COMMUN, V108, P56, DOI 10.1016/S0010-4655(97)00123-9 Djouadi A, 2008, PHYS REP, V459, P1, DOI 10.1016/j.physrep.2007.10.005 Djouadi A, 2013, EUR PHYS J C, V73, DOI 10.1140/epjc/s10052-013-2512-9 Dumont B, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.055018 Dumont B, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.035021 Dumont B, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2013)065 Ellis J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2014)036 Ellis J, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2013)103 Endo M, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2014)139 Falkowski A, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP11(2013)111 Fan JJ, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2014)031 Frederix R, 2011, PHYS LETT B, V701, P427, DOI 10.1016/j.physletb.2011.06.012 Giardino PP, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2014)046 Godbole R., ARXIVHEPPH0404024 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 JAMES F, 1975, COMPUT PHYS COMMUN, V10, P343, DOI 10.1016/0010-4655(75)90039-9 Khachatryan V, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3351-7 Khachatryan V, 2014, EUR PHYS J C, V74, DOI 10.1140/epjc/s10052-014-3076-z Khachatryan V., 2014, JHEP, V1409 Kitahara T, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2013)035 Kraml S., ARXIVHEPPH0608079 LHC Higgs Cross Section Working Group, 2013, CERN2013004, DOI [10.5170/CERN-2013-004, DOI 10.5170/CERN-2013-004] Lopez-Val D, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2013)134 Martin AD, 2009, EUR PHYS J C, V63, P189, DOI 10.1140/epjc/s10052-009-1072-5 Robens T, 2015, EUR PHYS J C, V75, DOI 10.1140/epjc/s10052-015-3323-y Skands P, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/07/036 SPIRA M, ARXIVHEPPH9510347 Wang L, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2014)128 NR 75 TC 37 Z9 37 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD SEP 21 PY 2015 VL 75 IS 9 AR 440 DI 10.1140/epjc/s10052-015-3645-9 PG 30 WC Physics, Particles & Fields SC Physics GA CS0CI UT WOS:000361724400001 OA DOAJ Gold DA 2021-04-21 ER PT J AU Swingler, K AF Swingler, K. TI Soil Physics with Python SO EUROPEAN JOURNAL OF SOIL SCIENCE LA English DT Book Review CR Bittelli M., 2015, SOIL PHYS PYTHON NR 1 TC 0 Z9 0 U1 0 U2 21 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1351-0754 EI 1365-2389 J9 EUR J SOIL SCI JI Eur. J. Soil Sci. PD SEP PY 2015 VL 66 IS 5 BP 963 EP 963 DI 10.1111/ejss.12287 PG 1 WC Soil Science SC Agriculture GA CR2UU UT WOS:000361187000016 DA 2021-04-21 ER PT J AU Kumar, R Kudinov, P Bechta, S Curnier, F Marques, M AF Kumar, Ranjan Kudinov, Pavel Bechta, Sevostian Curnier, Florence Marques, Michel TI Dynamic Hybrid Reliability Studies of a Decay Heat Removal System SO INTERNATIONAL JOURNAL OF RELIABILITY QUALITY & SAFETY ENGINEERING LA English DT Article DE Probabilistic safety assessment; dynamic reliability; decay heat removal system; stochastic hybrid automata; piecewise deterministic Markov process AB Some critical safety systems exhibit the characteristics of hybrid stochastic class whose performance depends on the dynamic interactions of deterministic variables of physical phenomena and probabilistic variables of system failures. However, conventional probabilistic safety assessment (PSA) method involves static event and linked fault tree analysis and does not capture the dynamic interactions of such hybrid stochastic systems. Additionally, the existing dynamic PSA methods do not consider any repair possibility of some failed components during safety assessment. To address these issues, this paper presents a dynamic hybrid reliability assessment scheme for performance studies of repairable nuclear safety systems during a mission time. This scheme combines the features of reliability block diagram (RBD) for system compositions and partial differential equations for system physics using a customized stochastic hybrid automata tool implemented on Python platform. A case study of decay heat removal (DHR) systems has been performed using the introduced scheme. The impacts of failure rates and repair rates on sodium temperature evolution over a mission time have been analyzed. The results provide useful safety insights in mission safety tests of DHR systems. In sum, this work advances the dynamic safety assessment approach for complex system designs including nuclear power plants. C1 [Kumar, Ranjan; Kudinov, Pavel; Bechta, Sevostian] KTH Royal Inst Technol, Nucl Power Safety, SE-10691 Stockholm, Sweden. [Curnier, Florence; Marques, Michel] CEN Cadarache, DEN CAD DER SESI, F-13108 St Paul Les Durance, France. RP Kumar, R (corresponding author), KTH Royal Inst Technol, Nucl Power Safety, SE-10691 Stockholm, Sweden. EM rankum@kth.se; pkudinov@kth.se; bechta@kth.se; florence.curnier@cea.fr; michel.marques@cea.fr OI Kudinov, Pavel/0000-0002-0683-9136; Bechta, Sevostian/0000-0001-7816-8442 CR ACOSTA C, 1993, RELIAB ENG SYST SAFE, V41, P135, DOI 10.1016/0951-8320(93)90027-V Aldemir T, 2013, ANN NUCL ENERGY, V52, P113, DOI 10.1016/j.anucene.2012.08.001 Amendola G. R., 1984, DYLAM 1 SOFTWARE PAC [Anonymous], 1991, IAEATECDOC626 Babykina G., 2013, ANN C EUR SAF REL AM Bouissou M., 2013, 4 IFAC WORKSH DEP CO, V4 Bouissou M., 2002, P 6 PROB SAF ASS MAN Catalyurek U, 2010, RELIAB ENG SYST SAFE, V95, P278, DOI 10.1016/j.ress.2009.10.008 Chraibi H., 2013, PSAM TOP C TOK, P14 Curnier F., 2014, P INT C ADV NUCL POW DAVIS MHA, 1984, J ROY STAT SOC B MET, V46, P353 DEVOOGHT J, 1992, NUCL SCI ENG, V111, P229, DOI 10.13182/NSE92-A23937 Fetcher C. D., 1992, RELAP5 MOD3 USER GUI GARRETT CJ, 1995, IEEE T SYST MAN CYB, V25, P824, DOI 10.1109/21.376495 Gauthe P., 2013, P FRONT RES 2013 PAR Goebel R, 2009, IEEE CONTR SYST MAG, V29, P28, DOI 10.1109/MCS.2008.931718 Hsueh KS, 1996, RELIAB ENG SYST SAFE, V52, P297, DOI 10.1016/0951-8320(95)00140-9 Kloos M, 2006, NUCL SCI ENG, V153, P137, DOI 10.13182/NSE06-A2601 Labeau PE, 2000, RELIAB ENG SYST SAFE, V68, P219, DOI 10.1016/S0951-8320(00)00017-X Lin Y. H., 2014, P EUR SAF REL WROCL MARSAN MA, 1995, MODELING GENERALIZED Marseguerra M, 1998, MATH COMPUT SIMULAT, V47, P371, DOI 10.1016/S0378-4754(98)00112-8 MATSUOKA T, 1988, NUCL SCI ENG, V98, P64, DOI 10.13182/NSE88-A23526 Nayak AK, 2014, FRONT ENERGY RES, DOI 10.3389/fenrg.2014.00040 Castaneda GAP, 2011, P I MECH ENG O-J RIS, V225, P28, DOI 10.1177/1748006XJRR312 Saez M., 2013, P FRONT RES 2013 PAR Swaminathan S, 1999, RELIAB ENG SYST SAFE, V65, P103, DOI 10.1016/S0951-8320(98)00092-1 U.S. Nuclear Regulatory Commission, 1975, WASH1400 US NUCL REG Verlinden S, 2012, RELIAB ENG SYST SAFE, V101, P35, DOI 10.1016/j.ress.2012.01.004 Young M.F., 2005, MELCOR COMPUTER CODE, VVolume 1 Zhang HY, 2008, P I MECH ENG H, V222, P583, DOI 10.1243/09544119JEIM346 NR 31 TC 1 Z9 1 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-5393 EI 1793-6446 J9 INT J RELIAB QUAL SA JI Int. J. Reliab. Qual. Saf. Eng. PD AUG PY 2015 VL 22 IS 4 AR 1550020 DI 10.1142/S0218539315500205 PG 17 WC Engineering, Multidisciplinary SC Engineering GA V0P0R UT WOS:000216429200005 DA 2021-04-21 ER PT J AU Wittek, P AF Wittek, Peter TI Algorithm 950: Ncpol2sdpa-Sparse Semidefinite Programming Relaxations for Polynomial Optimization Problems of Noncommuting Variables SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Design; Algorithms; Performance; Semidefinite programming; noncommuting variables; ground state energy; quantum correlations ID GLOBAL OPTIMIZATION; MOMENTS AB A hierarchy of semidefinite programming (SDP) relaxations approximates the global optimum of polynomial optimization problems of noncommuting variables. Generating the relaxation, however, is a computationally demanding task, and only problems of commuting variables have efficient generators. We develop an implementation for problems of noncommuting variables that creates the relaxation to be solved by SDPA-a high-performance solver that runs in a distributed environment. We further exploit the inherent sparsity of optimization problems in quantum physics to reduce the complexity of the resulting relaxations. Constrained problems with a relaxation of order two may contain up to a hundred variables. The implementation is available in Python. The tool helps solve such as finding the ground state energy or testing quantum correlations. C1 Univ Boras, Swedish Sch Lib & Informat Sci, S-50190 Boras, Sweden. RP Wittek, P (corresponding author), Univ Boras, Swedish Sch Lib & Informat Sci, Allegatan 1, S-50190 Boras, Sweden. EM peter@peterwittek.com FU European CommissionEuropean CommissionEuropean Commission Joint Research Centre [FP7-601138 PERICLES]; AWS in Education Machine Learning Grant award; Red Espanola de Supercomputacion [FI-2013-1-0008, FI-2013-3-0004] FX This work was supported by the European Commission 7th Framework Programme under Grant Agreement Number FP7-601138 PERICLES, by the AWS in Education Machine Learning Grant award, and by the Red Espanola de Supercomputacion grants number FI-2013-1-0008 and FI-2013-3-0004. CR Cafuta K, 2011, OPTIM METHOD SOFTW, V26, P363, DOI 10.1080/10556788.2010.544312 Cimpric J, 2010, J MATH ANAL APPL, V369, P443, DOI 10.1016/j.jmaa.2010.03.045 Fujisawa K., 2012, P SC 12 INT C HIGH P Helton J., 2012, NCALGEBRA MATH PACKA Henrion D, 2003, ACM T MATH SOFTWARE, V29, P165, DOI 10.1145/779359.779363 Henrion D, 2009, OPTIM METHOD SOFTW, V24, P761, DOI 10.1080/10556780802699201 Joyner D., 2012, ACM COMMUN COMPUT AL, V45, P225, DOI [10.1145/2110170.2110185, DOI 10.1145/2110170.2110185] Lasserre JB, 2001, SIAM J OPTIMIZ, V11, P796, DOI 10.1137/S1052623400366802 Lofberg J., 2004, COMP AID CONTR SYST, P284, DOI DOI 10.1109/CACSD.2004.1393890 Navascues M, 2013, NEW J PHYS, V15, DOI 10.1088/1367-2630/15/2/023026 Navascues M, 2012, INT SER OPER RES MAN, V166, P601, DOI 10.1007/978-1-4614-0769-0_21 Navascues M, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/7/073013 Pironio S, 2010, SIAM J OPTIMIZ, V20, P2157, DOI 10.1137/090760155 Sagnol G., 2012, 1248 ZUS I BERL Vandenberghe L, 1996, SIAM REV, V38, P49, DOI 10.1137/1038003 Waki H, 2008, ACM T MATH SOFTWARE, V35, DOI 10.1145/1377612.1377619 Yamashita M, 2003, PARALLEL COMPUT, V29, P1053, DOI 10.1016/S0167-8191(03)00087-5 NR 17 TC 21 Z9 22 U1 0 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 EI 1557-7295 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD JUN PY 2015 VL 41 IS 3 AR 21 DI 10.1145/2699464 PG 12 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA CJ7JJ UT WOS:000355670800009 DA 2021-04-21 ER PT J AU Overholt, KJ Ezekoye, OA AF Overholt, Kristopher J. Ezekoye, Ofodike A. TI Quantitative Testing of Fire Scenario Hypotheses: A Bayesian Inference Approach SO FIRE TECHNOLOGY LA English DT Article DE Fire investigation; Hypothesis testing; Bayesian inference; Uncertainty quantification ID PYROLYSIS; PYTHON; MODELS AB Fire models are routinely used to evaluate life safety aspects of building design projects and are being used more often in fire and arson investigations as well as reconstructions of firefighter line-of-duty deaths and injuries. A fire within a compartment effectively leaves behind a record of fire activity and history (i.e., fire signatures). Fire and arson investigators can utilize these fire signatures in the determination of cause and origin during fire reconstruction exercises. Researchers conducting fire experiments can utilize this record of fire activity to better understand the underlying physics. In all of these applications, the heat release rate and location of a fire are important parameters that govern the evolution of thermal conditions within a fire compartment. These input parameters can be a large source of uncertainty in fire models, especially in scenarios in which experimental data or detailed information on fire behavior are not available. A methodology is sought to estimate the amount of certainty (or degree of belief) in the input parameters for hypothesized scenarios. To address this issue, an inversion framework was applied to scenarios that have relevance in fire scene reconstructions. Rather than using point estimates of input parameters, a statistical inversion framework based on the Bayesian inference approach was used to calculate probability distributions of input parameters. These probability distributions contain uncertainty information about the input parameters and can be propagated through fire models to obtain uncertainty information about predicted quantities of interest. The Bayesian inference approach was applied to various fire problems using different models: empirical correlations, zone models, and computational fluid dynamics fire models. Example applications include the estimation of steady-state fire sizes in a compartment and the location of a fire. C1 [Overholt, Kristopher J.] NIST, Gaithersburg, MD 20899 USA. [Ezekoye, Ofodike A.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. RP Ezekoye, OA (corresponding author), Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. EM dezekoye@mail.utexas.edu OI Ezekoye, Ofodike/0000-0002-8135-696X CR Andrieu C, 2003, MACH LEARN, V50, P5, DOI 10.1023/A:1020281327116 [Anonymous], 2011, 921 NFPA Babrauskas V, 2005, FIRE SAFETY J, V40, P528, DOI 10.1016/j.firesaf.2005.05.006 Bal N, 2013, FIRE SAFETY J, V61, P36, DOI 10.1016/j.firesaf.2013.08.015 Bayes T., 1763, PHIL T ROY SOC LOND, V53, P370, DOI DOI 10.1098/RSTL.1763.0053 Bolstad W.M., 2010, UNDERSTANDING COMPUT Chaos M, 2011, P COMBUST INST, V33, P2599, DOI 10.1016/j.proci.2010.07.018 Cowlard A, 2010, FIRE TECHNOL, V46, P719, DOI 10.1007/s10694-008-0069-1 Drysdale D., 2002, INTRO FIRE DYNAMICS Fleury R, 2010, THESIS U CANTERBURY Fonnesbeck C, 2011, SCIPY 2011 C AUST TU Gelman A, 2003, BAYESIAN DATA ANAL Holladay KL, 2011, P 13 ANN C COMP GEN, P655 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jahn W, 2012, ADV ENG SOFTW, V47, P114, DOI 10.1016/j.advengsoft.2011.12.005 Jones E., 2001, SCIPY OPEN SOURCE SC Kirk P, 1997, KIRKS FIRE INVESTIGA Koo SH, 2010, FIRE SAFETY J, V45, P193, DOI 10.1016/j.firesaf.2010.02.003 Kruse C, 2013, SOC STUD SCI, V43, P657, DOI 10.1177/0306312712472572 Lautenberger C., 2011, FIRE SAFETY SCI, V10, P751, DOI [10.3801/IAFSS.FSS.10-751, DOI 10.3801/IAFSS.FSS.10-751] Lautenberger C, 2006, FIRE SAFETY J, V41, P204, DOI 10.1016/j.firesaf.2005.12.004 Lautenberger C, 2009, FIRE SAFETY J, V44, P819, DOI 10.1016/j.firesaf.2009.03.011 Marquis DM, 2013, COMBUST FLAME, V160, P818, DOI 10.1016/j.combustflame.2012.12.008 McGrattan K., 2013, FIRE DYNAMICS SIMULA, V6th ed. McGrattan K, 2011, METROLOGIA, V48, P173, DOI 10.1088/0026-1394/48/3/011 Miki K, 2013, COMBUST FLAME, V160, P861, DOI 10.1016/j.combustflame.2013.01.020 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Oliphant Travis E., 2006, A GUIDE TO NUMPY, V1 Overholt KJ, 2013, THESIS U TEXAS AUSTI Overholt KJ, 2012, FIRE TECHNOL, V48, P893, DOI 10.1007/s10694-011-0250-9 Patil A, 2010, J STAT SOFTW, V35, P1 Peacock R. D., 2005, SPECIAL PUBLICATION, V1041 Petrovich WP, 1998, FIRE INVESTIGATORS H Redsicker DR, 1997, PRACTICAL FIRE ARSON Rein G, 2006, COMBUST FLAME, V146, P95, DOI 10.1016/j.combustflame.2006.04.013 Steckler KD, 1982, 822520 NBSIR Wang JB, 2005, INT J HEAT MASS TRAN, V48, P15, DOI 10.1016/j.ijheatmasstransfer.2004.08.009 Yuen K.V., 2010, BAYESIAN METHODS STR NR 38 TC 13 Z9 14 U1 1 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0015-2684 EI 1572-8099 J9 FIRE TECHNOL JI Fire Technol. PD MAR PY 2015 VL 51 IS 2 BP 335 EP 367 DI 10.1007/s10694-013-0384-z PG 33 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA CC4WR UT WOS:000350356300009 DA 2021-04-21 ER PT J AU Tygier, S Appleby, RB Garland, JM Hock, K Owen, H Kelliher, DJ Sheehy, SL AF Tygier, S. Appleby, R. B. Garland, J. M. Hock, K. Owen, H. Kelliher, D. J. Sheehy, S. L. TI The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Accelerator physics; FFAG; Dynamic aperture ID TRACKING AB We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices, Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Tygier, S.; Appleby, R. B.; Garland, J. M.; Owen, H.] Univ Manchester, Cockcroft Accelerator Grp, Manchester M13 9PL, Lancs, England. [Hock, K.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Kelliher, D. J.; Sheehy, S. L.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. RP Tygier, S (corresponding author), Univ Manchester, Cockcroft Accelerator Grp, Manchester M13 9PL, Lancs, England. EM sam.tygier@hep.manchester.ac.uk; robert.appleby@manchester.ac.uk RI Owen, Hywel/AAH-4337-2020; Appleby, Robert/A-3224-2016; Sheehy, Suzie L/C-3304-2013 OI Owen, Hywel/0000-0001-5028-2841; Sheehy, Suzie L/0000-0002-7653-7205; Tygier, Sam/0000-0002-7495-8655; Kelliher, David/0000-0001-9583-7804 FU STFCUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) [ST/K002503/1]; Science and Technology Facilities CouncilUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC) [John Adams Institute, ST/G008531/1, ST/K002503/1, ST/J002011/1 John Adams Inst, ST/K001582/1, ST/J002011/1, ST/G008248/1] Funding Source: researchfish FX We wish to thank Francois Meot for all his help with understanding the Zgoubi code. We would also like to thank Ken Peach for his help in checking the PAMELA results. Additionally we would like to thank Scott Berg for his great help in understanding many theoretical concepts in beam dynamics and lattice design. Research supported by STFC Grant number ST/K002503/1 "Racetrack FFAGs for medical, PRISM and energy applications". CR Aiba M., 2000, P EPAC, V581 Barlow R, 2010, NUCL INSTRUM METH A, V624, P1, DOI 10.1016/j.nima.2010.08.109 Berg J., 2010, P IPAC, P4235 Berg JS, 2008, NUCL INSTRUM METH A, V596, P276, DOI 10.1016/j.nima.2008.08.068 Berg JS, 2003, PROCEEDINGS OF THE 2003 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, P3413 Borland M, 2000, LS287 ADV PHOT SOURC Craddock M., 2004, REBIRTH FFAG Enge H. A., 1964, REV SCI INSTRUM, V35, P278 Fourrier J, 2008, NUCL INSTRUM METH A, V589, P133, DOI 10.1016/j.nima.2008.01.082 Giovannozzi M, 1998, PHYS REV E, V57, P3432, DOI 10.1103/PhysRevE.57.3432 Giovannozzi M., 1996, PART ACCEL, V56, P195 Iselin F.C., MAD PROGRAM PHYS MET Johnstone C, 2003, NUCL INSTRUM METH A, V503, P445, DOI 10.1016/S0168-9002(03)00997-5 Johnstone C., 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366), P3068, DOI 10.1109/PAC.1999.792155 Kolomenskii caron A.A., 1957, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, V33, P298 Lemuet F, 2005, NUCL INSTRUM METH A, V547, P638, DOI 10.1016/j.nima.2005.03.156 Machida S, 2003, PROCEEDINGS OF THE 2003 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, P3452 Machida S, 2012, NAT PHYS, V8, P243, DOI [10.1038/NPHYS2179, 10.1038/nphys2179] Meol F., 2006, P EPAC, P2308 Meot F., 2007, BEAM DYNAMICS NEWSLE, V43, P44 Meot F., 2014, NUCL INSTRUMENTS M A Meot F., 2014, ZGOUBI Meot F., 2013, C P IPAC13 Meot F., 2012, BNL987262012IR Muratori B.D., ARXIV14041762 OHKAWA C, 1953, P ANN M JPS Owen H, 2014, CONTEMP PHYS, V55, P55, DOI 10.1080/00107514.2014.891313 Peach KJ, 2013, PHYS REV SPEC TOP-AC, V16, DOI 10.1103/PhysRevSTAB.16.030101 RUBBIA C, 1993, CERNAT9347 Schmidt F., 2005, MAD X USERS GUIDE Sheehy S., 2009, P PAC09 Sheehy S. L., 2010, THESIS U OXFORD Sheehy SL, 2010, PHYS REV SPEC TOP-AC, V13, DOI 10.1103/PhysRevSTAB.13.040101 Symon K., 1954, MURA043 SYMON KR, 1956, PHYS REV, V103, P1837, DOI 10.1103/PhysRev.103.1837 Tanigaki M., 2005, P PAC05, P350 Tygier S., 2014, PYZGOUBI Tygier S., 2011, THESIS U MANCHESTER Witte H, 2012, IEEE T APPL SUPERCON, V22, DOI 10.1109/TASC.2012.2186135 NR 39 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 1 PY 2015 VL 775 BP 15 EP 26 DI 10.1016/j.nima.2014.11.067 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AZ2CA UT WOS:000348040900004 OA Other Gold DA 2021-04-21 ER PT J AU Gopalakrishnan, M Guhr, M AF Gopalakrishnan, Maithreyi Guehr, Markus TI A low-cost mirror mount control system for optics setups SO AMERICAN JOURNAL OF PHYSICS LA English DT Article ID FREE-ELECTRON LASER; OPERATION; ARDUINO AB We describe a flexible, simple to build, low-cost, and computer-controlled optical mirror actuator system, developed for undergraduate research laboratories. Geared motors for hobby robotics are controlled by an Arduino microcontroller in combination with an H bridge to finely position mirror mount actuators. We present a graphical user interface based on the Python script language. The price of the fully controlled actuator system is only a small fraction of the price of a commercial system. It can be quickly implemented due to the use of open-hardware electronics. We discuss the performance of the system and give an outlook for future expansions and use in advanced optical setups. (C) 2015 American Association of Physics Teachers. C1 [Gopalakrishnan, Maithreyi; Guehr, Markus] SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA. [Gopalakrishnan, Maithreyi] Univ Colorado, Boulder, CO 80309 USA. RP Gopalakrishnan, M (corresponding author), SLAC Natl Accelerator Lab, PULSE Inst, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM mguehr@stanford.edu RI Young, Michelle A/N-7228-2017; Guehr, Markus MG/B-7446-2015; Guehr, Markus/X-2744-2019 OI Guehr, Markus MG/0000-0002-9111-8981; FU Office of Science, U. S. Department of EnergyUnited States Department of Energy (DOE); AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of EnergyUnited States Department of Energy (DOE); Office of Science Early Career Research Program through the Office of Basic Energy Sciences, U.S. Department of EnergyUnited States Department of Energy (DOE) FX M. Gopalakrishnan would also like to thank the science undergraduate laboratory internship (SULI) program at SLAC National Accelerator Laboratory sponsored by the Office of Science, U. S. Department of Energy. This work was supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. M. Guhr acknowledges funding via the Office of Science Early Career Research Program through the Office of Basic Energy Sciences, U.S. Department of Energy. We acknowledge fruitful discussions with B. K. McFarland and Matthew Ware. CR Ackermann W, 2007, NAT PHOTONICS, V1, P336, DOI 10.1038/nphoton.2007.76 Anderson M, 2004, AM J PHYS, V72, P1347, DOI 10.1119/1.1737398 Anzalone GC, 2013, SENSORS-BASEL, V13, P5338, DOI 10.3390/s130405338 Emma P, 2010, NAT PHOTONICS, V4, P641, DOI [10.1038/nphoton.2010.176, 10.1038/NPHOTON.2010.176] Jobbins MM, 2012, REV SCI INSTRUM, V83, DOI 10.1063/1.3695001 March AM, 2011, REV SCI INSTRUM, V82, DOI 10.1063/1.3615245 Pearce JM, 2012, SCIENCE, V337, P1303, DOI 10.1126/science.1228183 Pile D, 2011, NAT PHOTONICS, V5, P456, DOI 10.1038/nphoton.2011.178 Severance C, 2014, COMPUTER, V47, P11, DOI 10.1109/MC.2014.19 Severance C, 2013, COMPUTER, V46, P14, DOI 10.1109/MC.2013.349 Storz R, 1998, OPT LETT, V23, P1031, DOI 10.1364/OL.23.001031 Teikari P, 2012, J NEUROSCI METH, V211, P227, DOI 10.1016/j.jneumeth.2012.09.012 Texas Instruments, 1995, SN754410 QUADR HALF NR 13 TC 9 Z9 9 U1 0 U2 18 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 EI 1943-2909 J9 AM J PHYS JI Am. J. Phys. PD FEB PY 2015 VL 83 IS 2 BP 186 EP 190 DI 10.1119/1.4895343 PG 5 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA AZ7CX UT WOS:000348377000015 OA Bronze DA 2021-04-21 ER PT J AU Drees, M Dreiner, HK Kim, JS Schmeier, D Tattersall, J AF Drees, Manuel Dreiner, Herbert K. Kim, Jong Soo Schmeier, Daniel Tattersall, Jamie TI CheckMATE: Confronting your favourite new physics model with LHC data SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Analysis; Confidence limits; Monte Carlo; Detector simulation; Delphes; ROOT; LHC 12.60.-i ID HADRON COLLIDERS; MEASURING MASSES; SUPERSYMMETRY; HIERARCHY; SEARCH; ENERGY; SQUARK AB In the first three years of running, the LHC has delivered a wealth of new data that is now being analysed. With over 20 fb(-1) of integrated luminosity, both ATLAS and CMS have performed many searches for new physics that theorists are eager to test their model against. However, tuning the detector simulations, understanding the particular analysis details and interpreting the results can be a tedious task. CheckmATE (Check Models At Terascale Energies) is a program package which accepts simulated event files in many formats for any model. The program then determines whether the model is excluded or not at 95% C.L. by comparing to many recent experimental analyses. Furthermore the program can calculate confidence limits and provide detailed information about signal regions of interest. It is simple to use and the program structure allows for easy extensions to upcoming LHC results in the future. Program summary Program title: CheckMATE Catalogue identifier: AEUT_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUT_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 179960 No. of bytes in distributed program, including test data, etc.: 6089336 Distribution format: tar.gz Programming language: C++, Python. Computer: PC, Mac. Operating system: Linux, Mac OS. RAM: Bytes Classification: 11.9. External routines: ROOT, Python, Delphes (included with the distribution) Nature of problem: The LHC has delivered a wealth of new data that is now being analysed. Both ATLAS and CMS have performed many searches for new physics that theorists are eager to test their model against. However, tuning the detector simulations, understanding the particular analysis details and interpreting the results can be a tedious and repetitive task. Solution method: CheckMATE is a program package which accepts simulated event files in many formats for any model. The program then determines whether the model is excluded or not at 95% C.L. by comparing to many recent experimental analyses. Furthermore the program can calculate confidence limits and provide detailed information about signal regions of interest. It is simple to use and the program structure allows for easy extensions to upcoming LHC results in the future. Restrictions: Only a subset of available experimental results have been implemented. Additional comments: Checkmate is built upon the tools and hard work of many people. If Checkmate is used in your publication it is extremely important that all of the following citations are included, Delphes 3 [1]. FastJet [2, 3]. Anti-kt jet algorithm [4]. CL s prescription [5]. In analyses that use the MT2 kinematical discriminant we use the Oxbridge Kinetics Library [6, 7] and the algorithm developed by Cheng and Han [8]. All experimental analyses that were used to set limits in the study. The Monte Carlo event generator that was used. Running time: The running time scales about linearly with the number of input events provided by the user. The detector simulation/analysis of 20000 events needs about 50 s/1 s for a single core calculation on an Intel Core i5-3470 with 3.2 GHz and 8 GB RAM. (C) 2014 Elsevier B.V. All rights reserved. C1 [Drees, Manuel; Dreiner, Herbert K.; Schmeier, Daniel; Tattersall, Jamie] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Drees, Manuel; Dreiner, Herbert K.; Schmeier, Daniel; Tattersall, Jamie] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Kim, Jong Soo] Univ Adelaide, ARC Ctr Excellence Particle Phys Terascale, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Kim, Jong Soo] Univ Autonoma Madrid, Inst Fis Teor, E-28049 Madrid, Spain. [Tattersall, Jamie] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany. RP Schmeier, D (corresponding author), Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany. EM drees@th.physik.uni-bonn.de; dreiner@th.physik.uni-bonn.de; jong.kim@csic.es; daschm@th.physik.uni-bonn.de; j.tattersall@thphys.uni-heidelberg.de RI Kim, Jong Soo/G-6307-2018 OI Kim, Jong Soo/0000-0002-1244-4181 CR Aad G, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.072004 Aad G, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1909-1 AAD G, ARXIV09010512 Aad G., ARXIV13082631 Allanach BC, 2002, COMPUT PHYS COMMUN, V143, P305, DOI 10.1016/S0010-4655(01)00460-X Alloul A., ARXIV13101921 Alves D, 2012, J PHYS G NUCL PARTIC, V39, DOI 10.1088/0954-3899/39/10/105005 Alwall J, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2011)128 [Anonymous], 2012, ATLASCONF2012097 CER [Anonymous], 2013, ATLASCONF2013064 CER [Anonymous], 2011, ATLASCONF2011152 CER [Anonymous], 2013, ATLCOMPHYS20131287 C [Anonymous], 2012, ATLASCONF2012039 CER [Anonymous], 2013, ATLASCONF2013024 CER [Anonymous], 2012, ATLASCONF2012043 CER [Anonymous], 2013, ATLASCONF2013062 CER [Anonymous], 2013, ATLASCONF2013089 CER [Anonymous], 2011, ATLASCONF2011102 CER [Anonymous], 2013, CMSPASEXO12048 CERN [Anonymous], 2012, ATLASCONF2012104 CER [Anonymous], 2011, ATLASCONF2011063 CER Arkani-Hamed N, 1998, PHYS LETT B, V429, P263, DOI 10.1016/S0370-2693(98)00466-3 Bahr M, 2008, EUR PHYS J C, V58, P639, DOI 10.1140/epjc/s10052-008-0798-9 Barr A, 2003, J PHYS G NUCL PARTIC, V29, P2343, DOI 10.1088/0954-3899/29/10/304 Beenakker W, 1998, NUCL PHYS B, V515, P3, DOI 10.1016/S0550-3213(98)00014-5 Beenakker W, 1997, NUCL PHYS B, V492, P51, DOI 10.1016/S0550-3213(97)80027-2 Beenakker W, 1999, PHYS REV LETT, V83, P3780, DOI 10.1103/PhysRevLett.83.3780 Beenakker W, 2011, INT J MOD PHYS A, V26, P2637, DOI 10.1142/S0217751X11053560 Beenakker W, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP08(2010)098 Beenakker W, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/12/041 Belyaev A, 2013, COMPUT PHYS COMMUN, V184, P1729, DOI 10.1016/j.cpc.2013.01.014 Bertone G, 2005, PHYS REP, V405, P279, DOI 10.1016/j.physrep.2004.08.031 Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X BUCKLEY A, ARXIV10030694 Cacciari M, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/04/063 Cacciari M, 2006, PHYS LETT B, V641, P57, DOI 10.1016/j.physletb.2006.08.037 Cacciari M, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1896-2 Catani S, 2001, J HIGH ENERGY PHYS Chatrchyan S., ARXIV13032985 Cheng HC, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/12/063 Conte E, 2013, COMPUT PHYS COMMUN, V184, P222, DOI 10.1016/j.cpc.2012.09.009 de Favereau J., ARXIV13076346 Dobbs M, 2001, COMPUT PHYS COMMUN, V134, P41, DOI 10.1016/S0010-4655(00)00189-2 Dreiner H, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.035006 Dreiner HK, 2012, EPL-EUROPHYS LETT, V99, DOI 10.1209/0295-5075/99/61001 Gavin R, 2011, COMPUT PHYS COMMUN, V182, P2388, DOI 10.1016/j.cpc.2011.06.008 Giudice GF, 1999, PHYS REP, V322, P419, DOI 10.1016/S0370-1573(99)00042-3 Gleisberg T, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/02/007 Goodman J, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.116010 HABER HE, 1985, PHYS REP, V117, P75, DOI 10.1016/0370-1573(85)90051-1 Knowles I., ARXIVHEPPH9601212 Kulesza A, 2009, PHYS REV D, V80, DOI 10.1103/PhysRevD.80.095004 Kulesza A, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.111802 Lester CG, 1999, PHYS LETT B, V463, P99, DOI 10.1016/S0370-2693(99)00945-4 Mangano ML, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/01/013 Melnikov K, 2006, PHYS REV D, V74, DOI 10.1103/PhysRevD.74.114017 NILLES HP, 1984, PHYS REP, V110, P1, DOI 10.1016/0370-1573(84)90008-5 Randall L, 1999, PHYS REV LETT, V83, P3370, DOI 10.1103/PhysRevLett.83.3370 Read AL, 2002, J PHYS G NUCL PARTIC, V28, P2693, DOI 10.1088/0954-3899/28/10/313 Rogan C., ARXIV10062727 Salvucci A, 2012, EPJ WEB CONF, V28, DOI 10.1051/epjconf/20122812039 Sjostrand T, 2008, COMPUT PHYS COMMUN, V178, P852, DOI 10.1016/j.cpc.2008.01.036 Sjostrand T, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/05/026 Staub F., ARXIV13097223 SUSSKIND L, 1979, PHYS REV D, V20, P2619, DOI 10.1103/PhysRevD.20.2619 WEINBERG S, 1976, PHYS REV D, V13, P974, DOI 10.1103/PhysRevD.13.974 NR 66 TC 175 Z9 177 U1 0 U2 16 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB PY 2015 VL 187 BP 227 EP 265 DI 10.1016/j.cpc.2014.10.018 PG 39 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AX5GH UT WOS:000346954200024 DA 2021-04-21 ER PT B AU Joshi, R Jadav, HM Kulkarni, SV AF Joshi, Ramesh Jadav, H. M. Kulkarni, S. V. BE Mauri, JL Thampi, SM Wozniak, M Marques, O Krishnaswamy, D Sahni, S Callegari, C Takagi, H Bojkovic, ZS Vinod, M Prasad, NR Calero, JMA Rodrigues, J Que, XY Meghanathan, N Sandhu, R Au, E TI Interfacing ICRH DAC system with WEB SO 2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI) LA English DT Proceedings Paper CT International Conference on Advances in Computing, Communications and Informatics ICACCI CY AUG 10-13, 2015 CL SCMS Grp of Inst, Aluva, INDIA SP SCMS Sch of Engn & Technol, IEEE Commun Soc, IEEE SMC, acm HO SCMS Grp of Inst DE Data acquisition and control; EPICS; MODBUS; Ion cyclotron resonance heating; Control system studio; PLC; CSS; WebOPI AB HTML5 [1] has been recently evolution in web technologies which enables user to create web based control system user interfaces (UI). These user interfaces can work on cross browser and cross device compatible. Control system studio (CSS) Operator Interfaces (OPI) allow user to create user interfaces with drag and drop fashion. These developed interfaces developed in CSS BOY[2] can be seamlessly display in web browsers without any modification in original OPI file using WebOPI [3]. For this purpose, WebOPI was implemented by SNS as a web-based system using Ajax (asynchronous JavaScript and XML) with Experimental physics and instrumentation control system (EPICS) [4]. On the other hand, it uses generic Python/ JavaScript and a generic communication mechanism between the web browser and web server. This interface uses the epics channel access gateway in glue with OPI which enables monitor and control process EPICS variables with different widgets. Apache Tomcat web server has been used to deploy application. Programmable logic controller (PLC) based data acquisition and control (DAC) system has been developed for 45.6 MHz, 100 kW Ion Cyclotron Resonance Heating (ICRH) system using EPICS and MODBUS. It can monitor and control 32 analog inputs, 16 digital inputs, 16 analog outputs and 16 digital outputs using MODBUS protocol. Several python embedded as well as external script have been used in design of the control system software. WebOPI provides seamless interface between with local CSS OPI and EPICS process variables using channel access gateway. Multiple web browser based client can communicate with single instance of user interface simultaneously. This paper introduced WebOPI that facilitate the goal of bringing control system UIs to the web. C1 [Joshi, Ramesh; Jadav, H. M.; Kulkarni, S. V.] Inst Plasma Res, Bhat 382428, Gandhinagar, India. RP Joshi, R (corresponding author), Inst Plasma Res, Bhat 382428, Gandhinagar, India. EM rjoshi@ipr.res.in CR [Anonymous], 2000, ENG DESIGN REPORT ED Chen X.H., 2011, P 2011 PART ACC C NE Chen Y.K., 2010, IPAC 2010 1 INT PART, P2719 Joshi Ramesh, 2013, C P SPRING Kasemir K. U., 2011, P ICALPECS 2011 GREN Touchard D., 2008, PCAPAC 2008 INT WORK, P113 Wu X., 2013, IPAC 2013 P 4 INT PA, P3167 Yoon J. C., 2005, P PART ACC C MAY, P3100 NR 8 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-8792-4 PY 2015 BP 1170 EP 1173 PG 4 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BF2KP UT WOS:000380475900195 DA 2021-04-21 ER PT B AU Sawant, NP Riley, CP Venskus, A Vassilev, DH Wale, JD Wearing, E Michaelides, AM Topping, PJ Matharu, H AF Sawant, Nikhil P. Riley, Christopher P. Venskus, Arturas Vassilev, Danail H. Wale, John D. Wearing, Eddie Michaelides, Alex M. Topping, Philip J. Matharu, Herminder BE Schrefler, B Onate, E Papadrakakis, M TI MULTIPHYSICS SIMULATION TOOLS FOR DESIGNING MOTORS FOR TRACTION APPLICATIONS IN HYBRID AND ELECTRIC VEHICLES SO Coupled Problems in Science and Engineering VI LA English DT Proceedings Paper CT 6th International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS) CY MAY 18-20, 2015 CL Venice, ITALY SP Univ Padova, Dept Civil Environm & Architectural Engn, Tech Univ Catalonia, Int Centre Numerical Methods Engn, Natl Tech Univ Athens DE Multiphysics; motors; electric vehicle; Opera; python; simulation AB Motor manufacturers are facing a difficult challenge in designing traction motors for the latest generation of hybrid and all-electric vehicles. The efficiency with which these motors can perform is critical, as it impacts on the vehicle range and battery life. Many of the issues involved in the motor design have a complex nature which requires multiple fields of physics such as electromagnetics (EM), mechanics and thermal analysis. All these physics are usually interdependent and have to be considered collectively in order to obtain optimal performance for a particular scenario. This paper presents a multiphysics simulation tool that was implemented to address this situation. The Opera FEA software suite [1] was developed to include a multiphysics analysis that can link several EM, thermal and stress analyses. Opera's Machines Environment (parameterised template software for designing motors and generators) has been extended to allow easy setup of coupled multiphysics analyses such as EM to thermal and EM to stress. In order to further facilitate the coupling of different analyses, a link to the Python programming language was embedded in Opera FEA software. The embedded Python facility offers options to perform certain post-processing operations during the solving stage and hence allow data transfer between different stages of the multiphysics analysis. It also extends Opera's capabilities to interact with other FEA software. C1 [Sawant, Nikhil P.; Riley, Christopher P.; Venskus, Arturas; Vassilev, Danail H.] Cobham Tech Serv, Network House, Langford Locks OX5 1LH, Kidlington, England. [Wale, John D.; Wearing, Eddie] Ricardo UK Ltd, Midlands Tech Ctr, Radford Semele CV31 1FQ, Leamington Spa, England. [Michaelides, Alex M.; Topping, Philip J.; Matharu, Herminder] Jaguar Land Rover Ltd, Coventry CV3 4LF, W Midlands, England. RP Sawant, NP (corresponding author), Cobham Tech Serv, Network House, Langford Locks OX5 1LH, Kidlington, England. EM vectorfields.info@cobham.com; electric.drives@ricardo.com; hmathar2@jaguarlandrover.com CR [Anonymous], 2007, ANN EN OUTL 2007 PRO Cobham Technical Services, OP EL FIN EL SOFTW S Ghosh B., 1991, HDB SEQUENTIAL ANAL Granjon P, 2014, CUSUM ALGORITHM SMAL Killick R, 2012, J AM STAT ASSOC, V107, P1590, DOI 10.1080/01621459.2012.737745 Pullen K.R., COMMUNIUCATION Riley C P, 2014, PEMD Wald A., 1947, SEQUENTIAL ANAL NR 8 TC 0 Z9 0 U1 0 U2 0 PU INT CENTER NUMERICAL METHODS ENGINEERING PI 08034 BARCELONA PA GRAN CAPITAN, S-N, CAMPUS NORTE UPC, MODULO C1, 08034 BARCELONA, SPAIN BN 978-84-943928-3-2 PY 2015 BP 428 EP 439 PG 12 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA BF3WZ UT WOS:000380588500037 DA 2021-04-21 ER PT S AU Frank, M Gaede, F Nikiforou, N Petric, M Sailer, A AF Frank, M. Gaede, F. Nikiforou, N. Petric, M. Sailer, A. GP IOP TI DDG4 A Simulation Framework based on the DD4hep Detector Description Toolkit SO 21ST INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2015), PARTS 1-9 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 21st International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY APR 13-17, 2015 CL Okinawa, JAPAN ID ROOT AB The detector description is an essential component that has to be used to analyse and simulate data resulting from particle collisions in high energy physics experiments. Based on the DD4hep detector description toolkit a flexible and data driven simulation framework was designed using the Geant4 tool-kit. We present this framework and describe the guiding requirements and the architectural design, which was strongly driven by ease of use. The goal was, given an existing detector description, to simulate the detector response to particle collisions in high energy physics experiments with minimal effort, but not impose restrictions to support enhanced or improved behaviour. Starting from the ROOT based geometry implementation used by DD4hep an automatic conversion mechanism to Geant4 was developed. The physics response and the mechanism to input particle data from generators was highly formalized and can be instantiated on demand using known factory patterns. A palette of components to model the detector response is provided by default, but improved or more sophisticated components may easily be added using the factory pattern. Only the final configuration of the instantiated components has to be provided by end-users using either C++ or python scripting or an XML based description. C1 [Frank, M.; Nikiforou, N.; Petric, M.; Sailer, A.] CERN, CH-1211 Geneva 23, Switzerland. [Gaede, F.] DESY, D-22607 Hamburg, Germany. RP Frank, M (corresponding author), CERN, CH-1211 Geneva 23, Switzerland. EM Markus.Frank@cern.ch OI Nikiforou, Nikiforos/0000-0003-1267-7740 CR Agostinelli S, 2003, NUCL INSTRUM METH A, V506, P250, DOI 10.1016/S0168-9002(03)01368-8 Aihara H., 2009, ARXIV09110006 Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Brun R, 2003, NUCL INSTRUM METH A, V502, P676, DOI 10.1016/S0168-9002(03)00541-2 Frank M., 2013, INT C COMP HIGH EN N Gaede Frank, 2003, INT C COMP HIGH EN N LHCb Collaboration, 2003030 CERN LHCC LH Ponce S., 2003, INT C COMP HIGH EN N Sailer A., 2015, INT C COMP HIGH EN N The ILD Concept Group, 2009, INT LARG DET LETT IN NR 10 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2015 VL 664 AR 072017 DI 10.1088/1742-6596/664/7/072017 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BE4TH UT WOS:000372140602075 OA Other Gold DA 2021-04-21 ER PT S AU Likhomanenko, T Rogozhnikov, A Baranov, A Khairullin, E Ustyuzhanin, A AF Likhomanenko, Tatiana Rogozhnikov, Alex Baranov, Alexander Khairullin, Egor Ustyuzhanin, Andrey GP IOP TI Reproducible Experiment Platform SO 21ST INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2015), PARTS 1-9 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 21st International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY APR 13-17, 2015 CL Okinawa, JAPAN AB Data analysis in fundamental sciences nowadays is an essential process that pushes frontiers of our knowledge and leads to new discoveries. At the same time we can see that complexity of those analyses increases fast due to a) enormous volumes of datasets being analyzed, b) variety of techniques and algorithms one have to check inside a single analysis, c) distributed nature of research teams that requires special communication media for knowledge and information exchange between individual researchers. There is a lot of resemblance between techniques and problems arising in the areas of industrial information retrieval and particle physics. To address those problems we propose Reproducible Experiment Platform (REP), a software infrastructure to support collaborative ecosystem for computational science. It is a Python based solution for research teams that allows running computational experiments on shared datasets, obtaining repeatable results, and consistent comparisons of the obtained results. We present some key features of REP based on case studies which include trigger optimization and physics analysis studies at the LHCb experiment. C1 [Likhomanenko, Tatiana; Rogozhnikov, Alex; Baranov, Alexander; Khairullin, Egor; Ustyuzhanin, Andrey] YSDA, Moscow, Russia. [Likhomanenko, Tatiana; Rogozhnikov, Alex; Ustyuzhanin, Andrey] Natl Res Univ Higher Sch Econ HSE, Moscow, Russia. [Likhomanenko, Tatiana; Ustyuzhanin, Andrey] NRC Kurchatov Inst, St Petersburg, Russia. [Khairullin, Egor; Ustyuzhanin, Andrey] Moscow Inst Phys & Technol, Moscow, Russia. RP Likhomanenko, T (corresponding author), YSDA, Moscow, Russia. EM axelr@yandex-team.ru; antares@yandex-team.ru RI Ustyuzhanin, Andrey E/K-7189-2013 OI Ustyuzhanin, Andrey E/0000-0001-7865-2357 CR Chacon S., 2014, PRO GIT, V2nd Gulin A., 2011, P LEARN RANK CHALL, P63 Hoecker A., 2007, POS ACAT2007 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Rogozhnikov A, 2015, J INSTRUM, V10, DOI 10.1088/1748-0221/10/03/T03002 NR 5 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2015 VL 664 AR 052022 DI 10.1088/1742-6596/664/5/052022 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BE4TH UT WOS:000372140601069 OA Bronze DA 2021-04-21 ER PT S AU Tamsett, M Group, C AF Tamsett, M. Group, C. GP IOP TI The NOvA software testing framework SO 21ST INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2015), PARTS 1-9 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 21st International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY APR 13-17, 2015 CL Okinawa, JAPAN AB The NOvA experiment at Fermilab is a long-baseline neutrino experiment designed to study v, appearance in a v1 beam. NOvA has already produced more than one million Monte Carlo and detector generated files amounting to more than 1 PB in size. This data is divided between a number of parallel streams such as far and near detector beam spills, cosmic ray backgrounds, a number of data-driven triggers and over 20 different Monte Carlo configurations. Each of these data streams must be processed through the appropriate steps of the rapidly evolving, multi-tiered, interdependent NOvA software framework. In total there are greater than 12 individual software tiers, each of which performs a different function and can be configured differently depending on the input stream. In order to regularly test and validate that all of these software stages are working correctly NOvA has designed a powerful, modular testing framework that enables detailed validation and benchmarking to be performed in a fast, efficient and accessible way with minimal expert knowledge. The core of this system is a novel series of python modules which wrap, monitor and handle the underlying C++ software framework and then report the results to a slick front-end web-based interface. This interface utilises modern, cross-platform, visualisation libraries to render the test results in a meaningful way. They are fast and flexible, allowing for the easy addition of new tests and datasets. In total upwards of 14 individual streams are regularly tested amounting to over 70 individual software processes, producing over 25 GB of output files. The rigour enforced through this flexible testing framework enables NOvA to rapidly verify configurations, results and software and thus ensure that data is available for physics analysis in a timely and robust manner. C1 [Tamsett, M.] Univ Sussex, Falmer, E Sussex, England. [Group, C.] Univ Virginia, Charlottesville, VA USA. RP Tamsett, M (corresponding author), Univ Sussex, Falmer, E Sussex, England. EM m.tamsett@sussex.ac.uk CR Ayres D. S., FERMILAB DESIGN 2007 Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Green C., 2012, J PHYS C SER, V396 Hagmann C, 2009, LLNLUCRLTM229233 NR 4 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2015 VL 664 AR 062062 DI 10.1088/1742-6596/664/6/062062 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BE4TH UT WOS:000372140602052 OA Bronze DA 2021-04-21 ER PT S AU Cieszewski, R Romaniuk, R Pozniak, K Linczuk, M AF Cieszewski, Radoslaw Romaniuk, Ryszard Pozniak, Krzysztof Linczuk, Maciej BE Romaniuk, RS TI Algorithmic synthesis using Python compiler SO PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2015 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments CY MAY 25-31, 2015 CL Wilga, POLAND SP Warsaw Univ Technol, Fac Elect & Informat Technologies, Inst Elect Syst, Photon Soc Poland, SPIE Europe, Polish Acad Sci, Comm Elect & Telecommunicat, Enhanced European Coordinat Accelerator R & D, IEEE Poland Sect, Assoc Polish Elect Engineers, Polish Comm Optoelectron, EuroFus Collaborat, EuroFus Poland DE FPGA; Algorithmic Synthesis; High-Level Synthesis; Behavioral Synthesis; Hot Plasma Physics Experiment; Python; Compiler ID HIGH-LEVEL SYNTHESIS AB This paper presents a python to VHDL compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and translate it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the programmed circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors. and possibly exploiting a greater level of parallelism. This can be achived by using many computational resources at the same time. Creating parallel programs implemented in FPGAs in pure HDL is difficult and time consuming. Using higher level of abstraction and High-Level Synthesis compiler implementation time can be reduced. The compiler has been implemented using the Python language. This article describes design, implementation and results of created tools. C1 [Cieszewski, Radoslaw; Romaniuk, Ryszard; Pozniak, Krzysztof; Linczuk, Maciej] Warsaw Univ Technol, Inst Elect Syst, Nowowiejska 15-19, PL-00665 Warsaw, Poland. RP Cieszewski, R (corresponding author), Warsaw Univ Technol, Inst Elect Syst, Nowowiejska 15-19, PL-00665 Warsaw, Poland. EM R.Cieszewski@stud.elka.pw.edu.pl RI Romaniuk, Ryszard S/B-9140-2011; Pozniak, Krzysztof/AAO-7377-2020 OI Romaniuk, Ryszard S/0000-0002-5710-4041; Pozniak, Krzysztof/0000-0001-5426-1423 CR Asanovic K, 2009, COMMUN ACM, V52, P56, DOI 10.1145/1562764.1562783 Babb J., 1999, Seventh Annual IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No.PR00375), P70, DOI 10.1109/FPGA.1999.803669 Berdychowski PP, 2010, PHOTONICS APPL ASTRO Bowyer B., 2005, EETIMES Bujnowski K., 2007, PHOTONICS APPL ASTRO Cieszewski R, 2014, PROC SPIE, V9290, DOI 10.1117/12.2075988 Cong J, 2011, IEEE T COMPUT AID D, V30, P473, DOI 10.1109/TCAD.2011.2110592 Coussy P., 2008, HIGH LEVEL SYNTHESIS GAJSKI DD, 1994, IEEE DES TEST COMPUT, V11, P44, DOI 10.1109/54.329454 Gajski DD, 1992, HIGH LEVEL SYNTHESIS, V34 Gokhale M, 1997, 5TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, P165, DOI 10.1109/FPGA.1997.624616 Kolasinski P., 2007, PHOTONICS APPL ASTRO Liang Y, 2012, J ELECTR COMPUT ENG, V2012, DOI 10.1155/2012/649057 Meredith M., 2004, EETIMES, P04 Philippe C., 2008, EURASIP J EMBEDDED S, V2008 Zabolotny W. M., 2011, PHOTONICS APPL ASTRO Zabolotny WM, 2003, P SOC PHOTO-OPT INS, V5125, P223, DOI 10.1117/12.531581 Zabolotny WM, 2010, PHOTONICS APPL ASTRO Zabolotny WM, 2011, PROC SPIE, V8008, DOI 10.1117/12.905281 Zabolotny WM, 2006, PROC SPIE, V6347, DOI 10.1117/12.714532 NR 20 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-62841-880-4 J9 PROC SPIE PY 2015 VL 9662 AR 96623J DI 10.1117/12.2205609 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA BD7MA UT WOS:000363279000125 DA 2021-04-21 ER PT S AU Conte, E Dumont, B Fuks, B Schmitt, T AF Conte, Eric Dumont, Beranger Fuks, Benjamin Schmitt, Thibaut GP IOP TI New features of MADANALYSIS 5 for analysis design and reinterpretation SO 16TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2014) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT) CY SEP 01-05, 2014 CL Czech Tech Univ, Fac Civil Engn, Prague, CZECH REPUBLIC SP Western Digital, Brookhaven Natl Lab, Hewlett Packard, DataDirect Networks, M Comp, Bright Comp, Huawei, PDV Systemhaus HO Czech Tech Univ, Fac Civil Engn AB We present MADANALYSIS 5, an analysis package dedicated to phenomenological studies of simulated collisions occurring in high-energy physics experiments. Within this framework, users are invited, through a user-friendly PYTHON interpreter, to implement physics analyses in a very simple manner. A C++ code is then automatically generated, compiled and executed. Very recently, the expert mode of the program has been extended so that analyses with multiple signal/control regions can be handled. Additional observables have also been included, and an interface to several fast detector simulation packages has been developed, one of them being a tune of the DELPHES 3 software. As a result, a recasting of existing ATLAS and CMS analyses can be achieved straightforwardly. C1 [Conte, Eric] Univ Haute Alsace, GRPHE, IUT Colmar, F-68008 Colmar, France. [Dumont, Beranger] Ctr Theoret Phys Universe, IBS, Taejon 305811, South Korea. [Dumont, Beranger] Univ Grenoble Alpes, LPSC, CNRS, IN2P3, F-38026 Grenoble, France. [Fuks, Benjamin] CERN, PH TH, CH-1211 Geneva 23, Switzerland. [Fuks, Benjamin; Schmitt, Thibaut] Univ Strasbourg, CNRS, IN2P3, Inst Pluridisciplinaire Hubert Curien,Dept Rech S, F-67037 Strasbourg, France. RP Conte, E (corresponding author), Univ Haute Alsace, GRPHE, IUT Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France. EM eric.conte@iphc.cnrs.fr; beranger.dumont@lpsc.in2p3.fr; fuks@cern.ch; thibaut.schmitt@iphc.cnrs.fr OI Fuks, Benjamin/0000-0002-0041-0566 CR Alloul A, 2013, JHEP, V1310, P033 Alwall J, 2007, COMPUT PHYS COMMUN, V176, P300, DOI 10.1016/j.cpc.2006.11.010 Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Cacciari M, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1896-2 Chatrchyan S, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.052017 CMS Collaboration, 2014, JHEP Conte E, 2014, PREPRINT Conte E, 2013, COMPUT PHYS COMMUN, V184, P222, DOI 10.1016/j.cpc.2012.09.009 de Favereau J, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP02(2014)057 Dobbs M, 2001, COMPUT PHYS COMMUN, V134, P41, DOI 10.1016/S0010-4655(00)00189-2 Dumont B, 2014, PREPRINT Kraml S, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1976-3 NR 12 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2015 VL 608 AR 012054 DI 10.1088/1742-6596/608/1/012054 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Multidisciplinary SC Computer Science; Physics GA BD1PA UT WOS:000358218000054 OA Bronze DA 2021-04-21 ER PT S AU Roundy, D Krebs, EJ Schulte, JB Mulder, GS AF Roundy, David Krebs, Eric J. Schulte, Jeff B. Mulder, Greg S. GP IEEE TI Look ma, no templates! Problem-based learning of computational physics for novice programmers SO FRONTIERS IN EDUCATION CONFERENCE (FIE), 2015 SE Frontiers in Education Conference LA English DT Proceedings Paper CT 45th Annual Frontiers in Education Conference (FIE) CY OCT 21-24, 2015 CL El Paso, TX SP IEEE Educ Soc, IEEE Comp Soc, ASEE Educ Res & Methods Div, New Mexico State Univ, Univ Texas El Paso, Hewlett Packard, VentureWell, Markkula Ctr Appl Eth, IEEE ID LANGUAGE; PYTHON AB We present a problem-based approach to teach computational physics to junior-level students with a variety of programming skill levels, many of whom have only 10 weeks of prior programming experience. The students solve tasks, relating to their current class topics, which are mathematically challenging but computationally tractable. The tasks are chosen to develop and reinforce student understanding of traditional physics content. We provide students with minimal code examples (47 lines of python code in a one-year lab sequence) and no textbook, and require students to search the internet for help to achieve the tasks assigned. This is effective through the use of a pair-programming pedagogy, when students are given tasks at a suitable level. This pedagogical approach should be transferable to any mathematical discipline for which computation is appropriate. Because student effort is focused towards accomplishing tasks within their discipline, they gain the practical skills needed to use computation effectively. Because we give students no templates or example code, they are forced to develop the skill of learning a programming language, and debugging code. This gives students confidence, and prepares them to learn other programming languages in their future career: a most important skill! C1 [Roundy, David; Krebs, Eric J.; Schulte, Jeff B.] Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA. [Mulder, Greg S.] Linn Benton Community Coll, Dept Phys Sci, Albany, OR 97321 USA. RP Roundy, D (corresponding author), Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA. EM roundyd@physics.oregonstate.edu; mulderg@linnbenton.edu RI Jolugbo, Olajide/D-3216-2017; Roundy, David/AAG-2356-2019 OI Jolugbo, Olajide/0000-0001-6512-4117; Roundy, David/0000-0001-5287-5472 CR Agarwal K., 2008, J COMPUTING SCI COLL, V23, P49 Backer A, 2007, COMPUT SCI ENG, V9, P30, DOI 10.1109/MCSE.2007.48 Borcherds PH, 2007, COMPUT PHYS COMMUN, V177, P199, DOI 10.1016/j.cpc.2007.02.019 Caballero MD, 2014, PHYS TEACH, V52, P38, DOI 10.1119/1.4849153 Caballero MD, 2012, PHYS REV SPEC TOP-PH, V8, DOI 10.1103/PhysRevSTPER.8.020106 Chabay R, 2008, AM J PHYS, V76, P307, DOI 10.1119/1.2835054 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones E., 2001, SCIPY OPEN SOURCE SC Landau R, 2006, COMPUT SCI ENG, V8, P22, DOI 10.1109/MCSE.2006.85 Mannila L, 2006, COMPUT SCI EDUC, V16, P211, DOI 10.1080/08993400600912384 Manogue CA, 2003, PHYS TODAY, V56, P53, DOI 10.1063/1.1620835 McDowell C, 2006, COMMUN ACM, V49, P90, DOI 10.1145/1145287.1145293 Millman KJ, 2011, COMPUT SCI ENG, V13, P9, DOI 10.1109/MCSE.2011.36 Perez F., 2010, COMPUTING SCI ENG Perkins K, 2006, PHYS TEACH, V44, P18, DOI DOI 10.1119/1.2150754 Press W. H., 2007, NUMERICAL RECIPES AR Sander L. M., 2013, EQUILIBRIUM STAT PHY Scherer D, 2000, COMPUT SCI ENG, V2, P56, DOI 10.1109/5992.877397 Spencer RL, 2005, AM J PHYS, V73, P151, DOI 10.1119/1.1842751 Swendsen R H, 2012, INTRO STAT MECH THER Werner L. L., 2004, J ED RESOURCES COMPU, V4, P4 Wieman CE, 2006, NAT PHYS, V2, P290, DOI 10.1038/nphys283 Williams L, 2003, 2003 INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGINEERING, PROCEEDINGS, P143, DOI 10.1109/ISESE.2003.1237973 Williams L., 2002, COMPUTER SCI ED, V12, P197, DOI DOI 10.1076/CSED.12.3.197.8618 NR 24 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0190-5848 BN 978-1-4799-8454-1 J9 PROC FRONT EDUC CONF PY 2015 BP 792 EP 796 PG 5 WC Education, Scientific Disciplines; Engineering, Electrical & Electronic SC Education & Educational Research; Engineering GA BE4GO UT WOS:000371705200134 DA 2021-04-21 ER PT B AU Bittelli, B Campbell, GS Tomei, F AF Bittelli, B Campbell, GS Tomei, F TI Soil Physics with Python: Transport in the Soil-Plant-Atmosphere System SO SOIL PHYSICS WITH PYTHON: TRANSPORT IN THE SOIL-PLANT-ATMOSPHERE SYSTEM LA English DT Book ID PARTICLE-SIZE DISTRIBUTION; GAS-DIFFUSION COEFFICIENT; LONG-WAVE-RADIATION; WATER-CONTENT; HYDRAULIC CONDUCTIVITY; LIQUID WATER; MODEL; VAPOR; FLOW; AIR CR Abramowitz M., 1970, HDB MATH FUNCTIONS Acutis M, 2003, EUR J AGRON, V18, P373, DOI 10.1016/S1161-0301(02)00128-4 Allen T, 1981, PARTICLE SIZE MEASUR BALL BC, 1981, J SOIL SCI, V32, P483, DOI 10.1111/j.1365-2389.1981.tb01724.x Barone V., 2009, ENRICO FERMI ATOMI N, P110 Baveye P., 1997, FRACTALS SOIL SCI Bear J., 1972, DYNAMICS FLUIDS PORO Beazley D., 2006, PYTHON ESSENTIAL REF Bechtold M, 2011, WATER RESOUR RES, V47, DOI 10.1029/2010WR010267 Bird R.B., 2007, TRANSPORT PHENOMENA Bittelli M, 2004, WATER RESOUR RES, V40, DOI 10.1029/2003WR002343 Bittelli M, 1999, SOIL SCI SOC AM J, V63, P782, DOI 10.2136/sssaj1999.634782x Bittelli M, 2008, J HYDROL, V362, P191, DOI 10.1016/j.jhydrol.2008.08.014 Bittelli M, 2008, GEODERMA, V143, P133, DOI 10.1016/j.geoderma.2007.10.022 Bittelli M, 2012, GEOMORPHOLOGY, V173, P161, DOI 10.1016/j.geomorph.2012.06.006 Bittelli M, 2010, ADV WATER RESOUR, V33, P106, DOI 10.1016/j.advwatres.2009.10.013 BRESLER E, 1973, WATER RESOUR RES, V9, P975, DOI 10.1029/WR009i004p00975 Bresler E., 1982, SALINE SODIC SOILS P BRISTOW KL, 1984, SOIL SCI SOC AM J, V48, P266, DOI 10.2136/sssaj1984.03615995004800020007x BRISTOW KL, 1984, AGR FOREST METEOROL, V31, P159, DOI 10.1016/0168-1923(84)90017-0 BRUTSAERT W, 1975, WATER RESOUR RES, V11, P742, DOI 10.1029/WR011i005p00742 BUCHAN GD, 1993, SOIL SCI SOC AM J, V57, P901, DOI 10.2136/sssaj1993.03615995005700040004x BUCK AL, 1981, J APPL METEOROL, V20, P1527, DOI 10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2 Burden R.L., 1997, NUMERICAL ANAL Burdine N. T., 1953, PET T AIME, V198, P71 BURGESS TM, 1980, J SOIL SCI, V31, P315, DOI 10.1111/j.1365-2389.1980.tb02084.x Campbell G., 1998, INTRO ENV BIOPHYSICS Campbell G. S., 1985, SOIL PHYS BASIC TRAN Campbell G.S., 1977, INTRO ENV BIOPHYSICS CAMPBELL GS, 1994, SOIL SCI, V158, P307, DOI 10.1097/00010694-199411000-00001 CAMPBELL GS, 1974, SOIL SCI, V117, P311, DOI 10.1097/00010694-197406000-00001 Campbell Scientific, 2006, CR10X MEAS CONTR DAT CARLSON BC, 1972, AM MATH MON, V79, P615, DOI 10.2307/2317088 Carminati A, 2012, VADOSE ZONE J, V11, DOI 10.2136/vzj2011.0106 Carminati A, 2011, VADOSE ZONE J, V10, P988, DOI 10.2136/vzj2010.0113 Carminati A, 2010, PLANT SOIL, V332, P163, DOI 10.1007/s11104-010-0283-8 Carslaw H., 1959, CONDUCTION HEAT SOLI, V2nd edn Cavazza L., 1981, FISICA TERRENO AGRAR Cheng S. W., 2012, DELAUNEY MESH GENERA CHILDS EC, 1950, PROC R SOC LON SER-A, V201, P392, DOI 10.1098/rspa.1950.0068 Cignoni P, 1998, COMPUT AIDED DESIGN, V30, P333, DOI 10.1016/S0010-4485(97)00082-1 CLINE RG, 1976, ECOLOGY, V57, P367, DOI 10.2307/1934826 CONTE SD, 1972, ELEMENTARY NUMERICAL CORAK SJ, 1987, PLANT PHYSIOL, V84, P582, DOI 10.1104/pp.84.3.582 COWAN I. R., 1965, J APPL ECOL, V2, P221, DOI 10.2307/2401706 CURRIE JA, 1965, J SOIL SCI, V16, P279, DOI 10.1111/j.1365-2389.1965.tb01439.x Cussler E. L, 1997, DIFFUSION MASS TRANS Dagan G., 2005, SUBSURFACE FLOW TRAN Dal Ferro N, 2012, SOIL TILL RES, V119, P13, DOI 10.1016/j.still.2011.12.001 Darcy D, 1856, FONTAINES VILLE DIJO Deresiewicz H., 1958, ADV APPL MECH, V5, P233, DOI DOI 10.1016/S0065-2156(08)70021-8 DeVries D.A., 1963, PHYS PLANT ENV, P210, DOI DOI 10.12691/AEES-2-2-1. DiGiammarco P, 1996, J HYDROL, V175, P267, DOI 10.1016/0022-1694(95)02855-2 Douglas DH., 1973, CARTOGRAPHICA, V10, P112, DOI [DOI 10.3138/FM57-6770-U75U-7727, 10.3138/fm57-6770-u75u-7727] ESRI, 2011, ARCG DESKT REL 10 Flerchinger GN, 1996, WATER RESOUR RES, V32, P2539, DOI 10.1029/96WR01240 Flury M., 2002, METHODS SOIL ANAL 4, P1323, DOI [DOI 10.2136/SSSABOOKSER5.4.C55, DOI 10.2136/SSSAB00KSER5.4.C55] GARDNER W. R., 1958, SOIL SCI, V85, P228, DOI 10.1097/00010694-195804000-00006 GARDNER W. R., 1960, SOIL SCI, V89, P63, DOI 10.1097/00010694-196002000-00001 Gee G.W., 2002, METHODS SOIL ANAL PA, P255, DOI [10.2136/sssabookser5.4.c121, DOI 10.2136/SSSABOOKSER5.4.C12, DOI 10.2136/SSSAB00KSER5.4.C12] Gee GW, 1986, METHODS SOIL ANAL, V9, P383, DOI DOI 10.2136/SSSAB00KSER5.1.2ED.C15 Green WH, 1911, J AGR SCI, V4, P1, DOI 10.1017/S0021859600001441 GRISMER ME, 1987, SOIL SCI, V144, P233, DOI 10.1097/00010694-198709000-00010 GUGGENHEIM EA, 1945, J CHEM PHYS, V13, P253, DOI 10.1063/1.1724033 HALLIKAINEN MT, 1985, IEEE T GEOSCI REMOTE, V23, P25, DOI 10.1109/TGRS.1985.289497 Hantel M., 2005, OBSERVED GLOBAL CLIM Harrison L. P., 1963, HUMIDITY MOISTURE, V3 Hasted J. B., 1973, AQUEOUS DIELECTRICS International Society of Soil Science ISSS, 1927, COMM ON INT C SOIL S Ippisch O, 2006, ADV WATER RESOUR, V29, P1780, DOI 10.1016/j.advwatres.2005.12.011 IUPAC, 1972, MAN SYMB TERM Iwamatsu M, 1996, J COLLOID INTERF SCI, V182, P400, DOI 10.1006/jcis.1996.0480 Johnson W. M., 1960, SOIL SCI, V12, P1 Jury W.A., 1990, TRANSFER FUNCTIONS S Kleinbaum D., 2008, APPL REGRESSION ANAL Kroener E, 2014, WATER RESOUR RES, V50, P6479, DOI 10.1002/2013WR014756 Kroener E, 2014, APPL THERM ENG, V70, P510, DOI 10.1016/j.applthermaleng.2014.05.033 Lai D. C, 2009, LINEAR ALGEBRA ITS A LAI SH, 1976, SOIL SCI SOC AM J, V40, P3, DOI 10.2136/sssaj1976.03615995004000010006x Langtangen H. P, 2009, PYTHON SCRIPTING COM LEDIEU J, 1986, J HYDROL, V88, P319, DOI 10.1016/0022-1694(86)90097-1 LEE J, 1991, INT J GEOGR INF SYST, V5, P267, DOI 10.1080/02693799108927855 Levenberg K., 1944, Quarterly of Applied Mathematics, V2, P164 Lund L.J., 1992, P INT WORKSH IND MET, P317 Lutz M., 2009, LEARNING PYTHON Malicki MA, 1996, EUR J SOIL SCI, V47, P357, DOI 10.1111/j.1365-2389.1996.tb01409.x Mandelbrot B. B., 1975, OBJECTS FRACTALS FOR MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P431, DOI 10.1137/0111030 MARSHALL TJ, 1959, J SOIL SCI, V10, P79, DOI 10.1111/j.1365-2389.1959.tb00667.x MARSHALL TJ, 1958, J SOIL SCI, V9, P1, DOI 10.1111/j.1365-2389.1958.tb01892.x Martelli A, 2006, PYTHON IN A NUTSHELL MILLER EE, 1956, J APPL PHYS, V27, P324, DOI 10.1063/1.1722370 Monteith J.L., 1964, 19 S SOC EXP BIOL, V19, P205 Morton K. W., 1994, NUMERICAL SOLUTION P MUALEM Y, 1976, WATER RESOUR RES, V12, P513, DOI 10.1029/WR012i003p00513 Nellis G, 2009, HEAT TRANSFER-BOOK, P1 Norman J. M., 1983, Advances in Irrigation, V2, P155 ONG SK, 1991, WATER RES, V25, P29, DOI 10.1016/0043-1354(91)90095-8 Or D, 2013, VADOSE ZONE J, V12, DOI 10.2136/vzj2012.0163 Pachepsky Y., 2000, FRACTALS SOIL SCI Panofsky H.A., 1964, STRUCTURE ATMOSPHERI PAPENDICK RI, 1980, WATER POTENTIAL RELA, P1 PASSIOURA JB, 1972, AUST J AGR RES, V23, P745, DOI 10.1071/AR9720745 Patankar S. V, 1992, NUMERICAL HEAT TRANS Penman HL, 1940, J AGR SCI, V30, P437, DOI 10.1017/S0021859600048164 PHILIP J. R., 1957, TRANS AMER GEOPHYS UNION, V38, P222 PHILIP J. R., 1957, SOIL SCI, V83, P345, DOI 10.1097/00010694-195705000-00002 Pieri L, 2007, J HYDROL, V336, P84, DOI 10.1016/j.jhydrol.2006.12.014 Pieri L, 2006, GEODERMA, V135, P118, DOI 10.1016/j.geoderma.2005.11.009 Pistocchi A, 2003, P IT M AGR BOL IT Poling B. E., 2000, PROPERTIES GASES LIQ, V5th Posadas AND, 2003, SOIL SCI SOC AM J, V67, P1361, DOI 10.2136/sssaj2003.1361 Press WH, 1992, NUMERICAL RECIPES AR PRITCHARD DT, 1982, J SOIL SCI, V33, P175, DOI 10.1111/j.1365-2389.1982.tb01757.x PURCELL WR, 1949, T AM I MIN MET ENG, V186, P39 Raju GG., 2003, DIELECTRICS ELECT FI Ramer Urs, 1972, COMPUT GRAPHICS IMAG, V1, P244, DOI [10.1016/S0146-664X(72) 80017-0, DOI 10.1016/S0146-664X(72)80017-0] Ramo S., 1994, FIELDS WAVES COMMUNI Rawls W. J., 1992, P INT WORKSH IND MET RICHARDS LA, 1948, SOIL SCI, V66, P105, DOI 10.1097/00010694-194808000-00003 ROBIN MJL, 1993, WATER RESOUR RES, V29, P2385, DOI 10.1029/93WR00386 ROBINSON RA, 1965, ELECT SOLUTIONS ROTH K, 1990, WATER RESOUR RES, V26, P2267, DOI 10.1029/WR026i010p02267 ROTH K, 1995, WATER RESOUR RES, V31, P2127, DOI 10.1029/95WR00946 RUSSO D, 1981, SOIL SCI SOC AM J, V45, P682, DOI 10.2136/sssaj1981.03615995004500040002x RUSSO D, 1982, SOIL SCI SOC AM J, V46, P20, DOI 10.2136/sssaj1982.03615995004600010004x SALLAM A, 1984, SOIL SCI SOC AM J, V48, P3, DOI 10.2136/sssaj1984.03615995004800010001x Santamarina J.C., 2001, SOILS WAVES PARTICUL Schaap MG, 2001, J HYDROL, V251, P163, DOI 10.1016/S0022-1694(01)00466-8 Scheidegger A. E., 1960, PHYS FLOW POROUS MED SCHOLANDER PF, 1965, SCIENCE, V148, P339, DOI 10.1126/science.148.3668.339 Seaman J. C., 2012, VADOSE ZONE J, P3 SHIOZAWA S, 1991, SOIL SCI, V152, P427, DOI 10.1097/00010694-199112000-00004 Simnek J., 2005, HYDRUS 1D SOFTWARE P SIMUNEK J, 1994, 136 USDA US SAL LAB Slocum Terry A, 2009, THEMATIC CARTOGRAPHY Smith O. L., 1991, SOIL BIOL BIOCHEM, V11, P585 *SOIL SURV DIV STA, 1993, US DEP AGR HDB, V18 Taina IA, 2008, CAN J SOIL SCI, V88, P1, DOI 10.4141/CJSS06027 TAYLOR STERLING A., 1960, SOIL SCI SOC AMER PROC, V24, P243 Tomei F., 2005, THESIS U BOLOGNA ITA Tongyai M. L. C., 1977, THESIS WASHINGTON ST TOPP GC, 1980, WATER RESOUR RES, V16, P574, DOI 10.1029/WR016i003p00574 Tuller M, 2005, WATER RESOUR RES, V41, DOI 10.1029/2005WR004142 Turcotte D. L., 1997, FRACTALS CHAOS GEOLO U.S. Department of Agriculture USDA, 1975, SOIL SURV UNSWORTH MH, 1975, Q J ROY METEOR SOC, V101, P13, DOI 10.1002/qj.49710142703 van Genuchten MT, 1991, EPA, V600, P2, DOI DOI 10.1002/9781118616871 van Kampen N. G., 1981, STOCHASTIC APPROACHE VANDEGRIEND AA, 1994, WATER RESOUR RES, V30, P181, DOI 10.1029/93WR02747 VANDEPOL RM, 1977, SOIL SCI SOC AM J, V41, P10, DOI 10.2136/sssaj1977.03615995004100010008x VANGENUCHTEN MT, 1980, SOIL SCI SOC AM J, V44, P892, DOI 10.2136/sssaj1980.03615995004400050002x Vogel HJ, 2010, COMPUT GEOSCI-UK, V36, P1236, DOI 10.1016/j.cageo.2010.03.007 Vogel HJ, 2002, LECT NOTES PHYS, V600, P75 Warrick A. W., 1980, APPL SOIL PHYS, P224 WEBSTER R, 1977, QUANTITATIVE NUMERIC NR 156 TC 1 Z9 1 U1 0 U2 3 PU OXFORD UNIV PRESS PI NEW YORK PA 198 MADISON AVENUE, NEW YORK, NY 10016 USA BN 978-0-19-968309-3 PY 2015 BP 1 EP 449 DI 10.1093/acprof:oso/9780199683093.001.0001 PG 449 WC Computer Science, Interdisciplinary Applications; Soil Science SC Computer Science; Agriculture GA BH2PB UT WOS:000399093300019 DA 2021-04-21 ER PT B AU Bittelli, M Campbell, GS Tomei, F AF Bittelli, Marco Campbell, Gaylon S. Tomei, Fausto BA Bittelli, B Campbell, GS Tomei, F BF Bittelli, B Campbell, GS Tomei, F TI Soil Physics with Python Transport in the Soil-Plant-Atmosphere System Introduction SO SOIL PHYSICS WITH PYTHON: TRANSPORT IN THE SOIL-PLANT-ATMOSPHERE SYSTEM LA English DT Editorial Material; Book Chapter C1 [Bittelli, Marco] Univ Bologna, Bologna, Italy. [Campbell, Gaylon S.] Decagon Devices Inc, Pullman, WA USA. [Tomei, Fausto] Reg Agcy Environm Protect, Emilia Romagna, Italy. RP Bittelli, M (corresponding author), Univ Bologna, Bologna, Italy. NR 0 TC 0 Z9 0 U1 0 U2 1 PU OXFORD UNIV PRESS PI NEW YORK PA 198 MADISON AVENUE, NEW YORK, NY 10016 USA BN 978-0-19-968309-3 PY 2015 BP 1 EP 2 D2 10.1093/acprof:oso/9780199683093.001.0001 PG 2 WC Computer Science, Interdisciplinary Applications; Soil Science SC Computer Science; Agriculture GA BH2PB UT WOS:000399093300002 DA 2021-04-21 ER PT B AU Bittelli, M Campbell, GS Tomei, F AF Bittelli, Marco Campbell, Gaylon S. Tomei, Fausto BA Bittelli, B Campbell, GS Tomei, F BF Bittelli, B Campbell, GS Tomei, F TI Soil Physics with Python Transport in the Soil-Plant-Atmosphere System Preface SO SOIL PHYSICS WITH PYTHON: TRANSPORT IN THE SOIL-PLANT-ATMOSPHERE SYSTEM LA English DT Editorial Material; Book Chapter C1 [Bittelli, Marco] Univ Bologna, Bologna, Italy. [Campbell, Gaylon S.] Decagon Devices Inc, Pullman, WA USA. [Tomei, Fausto] Reg Agcy Environm Protect, Emilia Romagna, Italy. RP Bittelli, M (corresponding author), Univ Bologna, Bologna, Italy. NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI NEW YORK PA 198 MADISON AVENUE, NEW YORK, NY 10016 USA BN 978-0-19-968309-3 PY 2015 BP V EP + D2 10.1093/acprof:oso/9780199683093.001.0001 PG 9 WC Computer Science, Interdisciplinary Applications; Soil Science SC Computer Science; Agriculture GA BH2PB UT WOS:000399093300001 DA 2021-04-21 ER PT J AU Antusch, S Cefalia, F Nolde, D Orani, S AF Antusch, Stefan Cefalia, Francesco Nolde, David Orani, Stefano TI False vacuum energy dominated inflation with large r and the importance of k(S) SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE inflation; physics of the early universe; cosmological phase transitions ID PARTICLE PHYSICS MODELS; HYBRID AB We investigate to which extent and under which circumstances false vacuum energy (V-0) dominated slow-roll inflation is compatible with a large tensor-to-scalar ratio r = O(0.1), as indicated by the recent BICEP2 measurement. With V-0 we refer to a constant contribution to the inflaton potential, present before a phase transition takes place and absent in the true vacuum of the theory, like e.g. in hybrid inflation. Based on model-independent considerations, we derive an upper bound on the possible amount of V-0 domination and highlight the importance of higher-order runnings of the scalar spectral index (beyond alpha(s)) in order to realise scenarios of V-0 dominated inflation. We study the conditions for V-0 domination explicitly with an inflaton potential reconstruction around the inflaton field value 50 e-folds before the end of inflation, taking into account the present observational data. To this end, we provide the up-to-date parameter constraints within ACDM + r + alpha(s) + K-s using the cosmological parameter estimation code Monte Python together with the Boltzmann code CLASS. C1 [Antusch, Stefan; Cefalia, Francesco; Nolde, David; Orani, Stefano] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Antusch, Stefan] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. RP Antusch, S (corresponding author), Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland. EM stefan.antusch@unibas.ch; f.cefala@unibas.ch; david.nolde@unibas.ch; stefano.orani@unibas.ch FU Swiss National Science FoundationSwiss National Science Foundation (SNSF)European Commission FX This work was supported by the Swiss National Science Foundation. F.C. and D.N. thank Benjamin Audren, Julien Lesgourgues and Thomas Tram for the introduction to CLASS and Monte Python during the "Tools for Cosmology" workshop in Geneva. We also thank Vinzenz Maurer for helpful discussions. CR Abazajian KN, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/08/053 Ade PAR, 2014, ASTRON ASTROPHYS, V571, DOI 10.1051/0004-6361/201321569 Ade PAR, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.241101 Anderson L., ARXIV13124877INSPIRE Aravind A, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/08/058 Ashoorioon A, 2014, PHYS LETT B, V737, P98, DOI 10.1016/j.physletb.2014.08.038 Audren B, 2013, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2013/02/001 Barranco L, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.063007 Ben-Dayan I, 2010, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2010/09/007 Blas D, 2011, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2011/07/034 Bonvin C, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.191303 Bramante J, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.023530 Brummer F., ARXIV14054868INSPIRE Carrillo-Gonzalez M, 2014, PHYS LETT B, V734, P345, DOI 10.1016/j.physletb.2014.05.062 Choi KY, 2014, PHYS REV D, V90, DOI 10.1103/PhysRevD.90.023536 Collins H., ARXIV14034592INSPIRE Cook JL, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.069901 Cook JL, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.023534 Das S., ARXIV14060857INSPIRE Dodelson S, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.101301 Dvorkin C, 2010, PHYS REV D, V81, DOI 10.1103/PhysRevD.81.023518 Flauger R, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/08/039 Hotchkiss S, 2012, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2012/02/008 Hui L, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.103507 Josan AS, 2009, PHYS REV D, V79, DOI 10.1103/PhysRevD.79.103520 Kobayashi T., ARXIV14043102INSPIRE Lesgourgues J., ARXIV11042932INSPIRE Li H., ARXIV14040238INSPIRE LIDDLE AR, 1994, PHYS REV D, V50, P7222, DOI 10.1103/PhysRevD.50.7222 Lidsey JE, 1997, REV MOD PHYS, V69, P373, DOI 10.1103/RevModPhys.69.373 Lizarraga J, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.171301 Lyth DH, 1999, PHYS REP, V314, P1, DOI 10.1016/S0370-1573(98)00128-8 Ma Y.-Z., ARXIV14034585INSPIRE Martin J., 2014, PHYS DARK U IN PRESS Mazumdara A, 2011, PHYS REP, V497, P85, DOI 10.1016/j.physrep.2010.08.001 Mortonson M. J., ARXIV14055857INSPIRE Moss A, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.171302 Mukohyama S, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/08/036 Pallis C, 2014, PHYS LETT B, V736, P261, DOI 10.1016/j.physletb.2014.07.031 Senatore L, 2014, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2014/08/016 Stewart ED, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.103508 Wu FQ, 2014, SCI CHINA PHYS MECH, V57, P1449, DOI 10.1007/s11433-014-5516-z NR 42 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD OCT PY 2014 IS 10 AR 015 DI 10.1088/1475-7516/2014/10/015 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA AW0OA UT WOS:000345990800016 OA Other Gold DA 2021-04-21 ER PT J AU Chekanov, SV May, E Strand, K Van Gemmeren, P AF Chekanov, S. V. May, E. Strand, K. Van Gemmeren, P. TI ProMC: Input-output data format for HEP applications using varint encoding SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Data; Format; IO; Input-output; LHC AB A new data format for Monte Carlo (MC) events, or any structural data, including experimental data, is discussed. The format is designed to store data in a compact binary form using variable-size integer encoding as implemented in the Google's Protocol Buffers package. This approach is implemented in the PRoMC library which produces smaller file sizes for MC records compared to the existing input-output libraries used in high-energy physics (HEP). Other important features of the proposed format are a separation of abstract data layouts from concrete programming implementations, self-description and random access. Data stored in PRoMC files can be written, read and manipulated in a number of programming languages, such C++, JAVA, FORTRAN and PYTHON. Published by Elsevier B.V. C1 [Chekanov, S. V.; May, E.; Van Gemmeren, P.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Strand, K.] Winona State Univ, Dept Phys, Winona, MN 55987 USA. RP Chekanov, SV (corresponding author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chekanov@anl.gov OI Chekanov, Sergei/0000-0001-7314-7247; Strand, Kyle/0000-0003-4556-2974; van Gemmeren, Peter/0000-0002-7227-4006 FU US Department of Energy Office of Science laboratoryUnited States Department of Energy (DOE) [DE-AC02-06CH11357]; Office of Science of the US Department of EnergyUnited States Department of Energy (DOE) [DE-AC02-06CH11357] FX One of us (S.C.) would like to thank J. Proudfoot for a discussion. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the US Department of Energy under contract DE-AC02-06CH11357. CR Alwall J, 2007, COMPUT PHYS COMMUN, V176, P300, DOI 10.1016/j.cpc.2006.11.010 Antcheva I, 2009, COMPUT PHYS COMMUN, V180, P2499, DOI 10.1016/j.cpc.2009.08.005 Belov S, 2010, COMPUT PHYS COMMUN, V181, P1758, DOI 10.1016/j.cpc.2010.06.026 Chekanov S., 2014, HEPSIM REPORSITORY P Chekanov S., 2013, SNOW1300090 Chekanov SV, 2010, SCIENTIFIC DATA ANALYSIS USING JYTHON SCRIPTING AND JAVA, P1, DOI 10.1007/978-1-84996-287-2 de Favereau J., 2013, ARXIV 1307 6346 Dobbs M., HEPMC USER MANUAL Ebke J, 2012, J PHYS CONF SER, V396, DOI 10.1088/1742-6596/396/2/022012 Garren L., STDHEP COMMON OUTPUT Google, 2008, PROT BUFF GOOGL DAT Johnson A., 1996, JAVA BASED ANAL ENV Ovyn S, 2009, TECH REP Sjostrand T, 2008, COMPUT PHYS COMMUN, V178, P852, DOI 10.1016/j.cpc.2008.01.036 Sjostrand T, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/05/026 Zipios, 2013, LIB READ WRIT ZIP FI NR 16 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD OCT PY 2014 VL 185 IS 10 BP 2629 EP 2635 DI 10.1016/j.cpc.2014.06.016 PG 7 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AN1KC UT WOS:000340340200026 DA 2021-04-21 ER PT J AU Sandner, R Vukics, A AF Sandner, Raimar Vukics, Andras TI C++QEDv2 Milestone 10: A C++/Python application-programming framework for simulating open quantum dynamics SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Composite quantum systems; Open quantum systems; Quantum optics; Master equation; Quantum trajectories; Cavity quantum electrodynamics; Multi-array; Compile-time algorithms AB The v2 Milestone 10 release of C++QED is primarily a feature release, which also corrects some problems of the previous release, especially as regards the build system. The adoption of C++11 features has led to many simplifications in the codebase. A full doxygen-based API manual [1] is now provided together with updated user guides. A largely automated, versatile new testsuite directed both towards computational and physics features allows for quickly spotting arising errors. The states of trajectories are now savable and recoverable with full binary precision, allowing for trajectory continuation regardless of evolution method (single/ensemble Monte Carlo wave-function or Master equation trajectory). As the main new feature, the framework now presents Python bindings to the highest-level programming interface, so that actual simulations for given composite quantum systems can now be performed from Python. New version program summary Program title: C++QED Catalogue identifier: AELU_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELU_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 492422 No. of bytes in distributed program, including test data, etc.: 8070987 Distribution format: tar.gz Programming language: C++/Python. Computer: i386-i686, x86 64. Operating system: In principle cross-platform, as yet tested only on UNIX-like systems (including Mac OS X). RAM: The framework itself takes about 60MB, which is fully shared. The additional memory taken by the program which defines the actual physical system (script) is typically less than 1MB. The memory storing the actual data scales with the system dimension for state-vector manipulations, and the square of the dimension for density-operator manipulations. This might easily be GBs, and often the memory of the machine limits the size of the simulated system. Classification: 4.3, 4.13, 6.2. External routines: Boost C++ libraries, GNU Scientific Library, Blitz++, FLENS, NumPy, SciPy Catalogue identifier of previous version: AELU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 1381 Does the new version supersede the previous version?: Yes Nature of problem: Definition of (open) composite quantum systems out of elementary building blocks [2,3]. Manipulation of such systems, with emphasis on dynamical simulations such as Master-equation evolution [4] and Monte Carlo wave-function simulation [5]. Solution method: Master equation, Monte Carlo wave-function method Reasons for new version: The new version is mainly a feature release, but it does correct some problems of the previous version, especially as regards the build system. Summary of revisions: We give an example for a typical Python script implementing the ring-cavity system presented in Sec. 3.3 of Ref. [2]: [GRAPHICS] Restrictions: Total dimensionality of the system. Master equation few thousands. Monte Carlo wave-function trajectory several millions. Unusual features: Because of the heavy use of compile-time algorithms, compilation of programs written in the framework may take a long time and much memory (up to several GBs). Additional comments: The framework is not a program, but provides and implements an application-programming interface for developing simulations in the indicated problem domain. We use several C++11 features which limits the range of supported compilers (g++ 4.7, clang++ 3.1) Documentation, http://cppqed.sourceforge.net/ Running time: Depending on the magnitude of the problem, can vary from a few seconds to weeks. (C) 2014 Elsevier B.V. All rights reserved. C1 [Sandner, Raimar] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Vukics, Andras] Hungarian Acad Sci, Wigner Res Ctr, Inst Solid State Phys & Opt, H-1525 Budapest, Hungary. RP Vukics, A (corresponding author), Hungarian Acad Sci, Wigner Res Ctr, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary. EM raimar.sandner@uibk.ac.at; vukics.andras@wigner.mta.hu FU EU FP7 (ITN) [CCQED-264666]; Hungarian National Office for Research and TechnologyNational Office for Research and Technology [ERC_HU_09 OPTOMECH]; Hungarian Academy of Sciences (Lendulet Program) [LP2011-016]; Janos Bolyai Research Scholarship of the Hungarian Academy of SciencesHungarian Academy of Sciences; Stiftung Aktion Osterreich-Ungarn [86ou17] FX This work was supported by the EU FP7 (ITN, CCQED-264666), the Hungarian National Office for Research and Technology under the contract ERC_HU_09 OPTOMECH, the Hungarian Academy of Sciences (Lendulet Program, LP2011-016), the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, and the Stiftung Aktion Osterreich-Ungarn (86ou17). CR Carmichael H., 1993, OPEN SYSTEMS APPROAC DALIBARD J, 1992, PHYS REV LETT, V68, P580, DOI 10.1103/PhysRevLett.68.580 Vukics A, 2007, EUR PHYS J D, V44, P585, DOI 10.1140/epjd/e2007-00210-x Vukics A, 2012, COMPUT PHYS COMMUN, V183, P1381, DOI 10.1016/j.cpc.2012.02.004 NR 4 TC 5 Z9 5 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD SEP PY 2014 VL 185 IS 9 BP 2380 EP 2382 DI 10.1016/j.cpc.2014.04.011 PG 3 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AK7LD UT WOS:000338608900006 DA 2021-04-21 ER PT J AU van Elteren, A Pelupessy, I Zwart, SP AF van Elteren, Arjen Pelupessy, Inti Zwart, Simon Portegies TI Multi-scale and multi-domain computational astrophysics SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE multi-scale; multi-physics; astrophysics ID EVOLUTION; CODE; MASS; CLUSTERS; MODELS AB Astronomical phenomena are governed by processes on all spatial and temporal scales, ranging from days to the age of the Universe (13.8 Gyr) as well as from kilometre size up to the size of the Universe. This enormous range in scales is contrived, but as long as there is a physical connection between the smallest and largest scales it is important to be able to resolve them all, and for the study of many astronomical phenomena this governance is present. Although covering all these scales is a challenge for numerical modellers, the most challenging aspect is the equally broad and complex range in physics, and the way in which these processes propagate through all scales. In our recent effort to cover all scales and all relevant physical processes on these scales, we have designed the Astrophysics Multipurpose Software Environment (AMUSE). AMUSE is a Python-based framework with production quality community codes and provides a specialized environment to connect this plethora of solvers to a homogeneous problem-solving environment. C1 [van Elteren, Arjen; Pelupessy, Inti; Zwart, Simon Portegies] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. RP Zwart, SP (corresponding author), Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands. EM spz@strw.leidenuniv.nl FU Interuniversity Attraction Poles ProgrammeBelgian Federal Science Policy Office; Belgian Science Policy OfficeBelgian Federal Science Policy Office [IAP P7/08 CHARM]; Netherlands Research Council NWONetherlands Organization for Scientific Research (NWO) [643.200.503, 639.073.803, 614.061.608]; Netherlands Research School for Astronomy (NOVA) FX This research has partially been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (IAP P7/08 CHARM), and is supported by the Netherlands Research Council NWO (grant nos. 643.200.503, 639.073.803 and 614.061.608) and by The Netherlands Research School for Astronomy (NOVA). CR Aarseth SJ, 1999, PUBL ASTRON SOC PAC, V111, P1333, DOI 10.1086/316455 Altay G, 2008, MON NOT R ASTRON SOC, V386, P1931, DOI 10.1111/j.1365-2966.2008.13212.x Bedorf J, 2012, J COMPUT PHYS, V231, P2825, DOI 10.1016/j.jcp.2011.12.024 Chambers JE, 1999, MON NOT R ASTRON SOC, V304, P793, DOI 10.1046/j.1365-8711.1999.02379.x EGGLETON PP, 1971, MON NOT R ASTRON SOC, V151, P351, DOI 10.1093/mnras/151.3.351 Fujii M, 2007, PUBL ASTRON SOC JPN, V59, P1095, DOI 10.1093/pasj/59.6.1095 Glebbeek E, 2008, ASTRON ASTROPHYS, V488, P1007, DOI 10.1051/0004-6361:200809930 Harfst S, 2008, ASTRON NACHR, V329, P885, DOI 10.1002/asna.200811058 Harfst S, 2007, NEW ASTRON, V12, P357, DOI 10.1016/j.newast.2006.11.003 HEGGIE DC, 1986, LECT NOTES PHYS, V267 HERNQUIST L, 1989, ASTROPHYS J SUPPL S, V70, P419, DOI 10.1086/191344 Hurley JR, 2000, MON NOT R ASTRON SOC, V315, P543, DOI 10.1046/j.1365-8711.2000.03426.x Keppens R, 2012, J COMPUT PHYS, V231, P718, DOI 10.1016/j.jcp.2011.01.020 MELLEMA G, 1991, ASTRON ASTROPHYS, V252, P718 Mikkola S, 2008, ASTRON J, V135, P2398, DOI 10.1088/0004-6256/135/6/2398 Paardekooper JP, 2010, ASTRON ASTROPHYS, V515, DOI 10.1051/0004-6361/200913821 Paxton B, 2011, ASTROPHYS J SUPPL S, V192, DOI 10.1088/0067-0049/192/1/3 Pelupessy FI, 2012, MON NOT R ASTRON SOC, V420, P1503, DOI 10.1111/j.1365-2966.2011.20137.x Portegies Zwart S, 2009, NEW ASTRON, V14, P369, DOI 10.1016/j.newast.2008.10.006 Springel V, 2005, MON NOT R ASTRON SOC, V364, P1105, DOI 10.1111/j.1365-2966.2005.09655.x Stone JM, 2008, ASTROPHYS J SUPPL S, V178, P137, DOI 10.1086/588755 Zwart SFP, 1996, ASTRON ASTROPHYS, V309, P179 Zwart SFP, 2013, COMPUT PHYS COMMUN, V184, P456, DOI 10.1016/j.cpc.2012.09.024 NR 23 TC 5 Z9 5 U1 0 U2 2 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD AUG 6 PY 2014 VL 372 IS 2021 SI SI AR 20130385 DI 10.1098/rsta.2013.0385 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AL0VH UT WOS:000338844500007 PM 24982254 OA Bronze DA 2021-04-21 ER PT J AU Solis, C Chavez-Lomeli, E Ortiz, ME Huerta, A Andrade, E Barrios, E AF Solis, C. Chavez-Lomeli, E. Ortiz, M. E. Huerta, A. Andrade, E. Barrios, E. TI A new AMS facility in Mexico SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 11th European Conference on Accelerators in Applied Research and Technology CT 11th European Conference on Accelerators in Applied Research and Technology CY SEP 08-13, 2013 CY SEP 08-13, 2013 CL Namur, BELGIUM CL Namur, BELGIUM DE Accelerator Mass Spectrometry; Radiocarbon; Cosmogenic isotopes; Radionuclides AB A new Accelerator Mass Spectrometry system has been installed at the Institute of Physics of the National Autonomous University of Mexico (UNAM). A sample preparation chemistry laboratory equipped with computer controlled graphitization equipment (AGEIII) has also been established. Together both facilities constitute the LEMA (Laboratorio de Espectrometria de Masas con Aceleradores) first of its kind in Mexico. High sensitivity characterization of the concentration in a sample of C-14 as well as Be-10, Al-26, I-129 and Pu are now possible. Since the demand for C-14 dating is far more abundant, a data analysis program was developed in the cross-platform programming language Python in order to calculate radiocarbon age. Results from installation, acceptance tests and the first results of C-14 analyses of reference materials prepared in our own facility are presented. (C) 2014 Elsevier B.V. All rights reserved. C1 [Solis, C.; Chavez-Lomeli, E.; Ortiz, M. E.; Huerta, A.; Andrade, E.; Barrios, E.] Univ Nacl Autonoma Mexico, Inst Fis, LEMA, Mexico City, DF, Mexico. RP Solis, C (corresponding author), Univ Nacl Autonoma Mexico, Inst Fis, LEMA, Ap Po 20-364, Mexico City, DF, Mexico. EM corina@fisica.unam.mx RI Vargas, Jose Eduardo Barrios/I-8872-2016; Lomeli, Efrain R. Chavez/AAS-3720-2020 OI Vargas, Jose Eduardo Barrios/0000-0002-6880-8941; SOLIS, CORINA/0000-0003-0337-2398 FU CONACYT-UNAMConsejo Nacional de Ciencia y Tecnologia (CONACyT)Universidad Nacional Autonoma de Mexico [123128]; DGAPA [IG100313] FX This work was supported by CONACYT-UNAM under project number 123128 and by DGAPA project IG100313. Corina Solis acknowledges ETH Zurich (L. Wacker and A. Synal) for kindly providing the reference samples for acceptance tests; Dr. L. Wacker for the AMS training on the use of the AGEIII, sample preparation and data analysis; Dr. I. Hajdas (ETH) for the discussions about 14C analysis. We appreciate L. Wacker and J. Santos' (CAN, Seville) help and advice regarding the data analysis. Special mention goes to High Voltage Engineering Europe and their engineers Hans van Bergen and Santino Liau for their determination to produce a system that performs beyond contracted specifications. CR Christl M, 2013, NUCL INSTRUM METH B, V294, P29, DOI 10.1016/j.nimb.2012.03.004 Klein M, 2013, RADIOCARBON, V55, P224, DOI 10.1017/S0033822200057325 LOYD DH, 1991, RADIOCARBON, V33, P297, DOI 10.1017/S0033822200040327 Nemec M, 2010, RADIOCARBON, V52, P1380 Nishiizumi K, 2004, NUCL INSTRUM METH B, V223, P388, DOI 10.1016/j.nimb.2004.04.075 Nishiizumi K, 2007, NUCL INSTRUM METH B, V258, P403, DOI 10.1016/j.nimb.2007.01.297 STUIVER M, 1977, RADIOCARBON, V19, P355, DOI 10.1017/S0033822200003672 Suter M, 2000, NUCL INSTRUM METH B, V172, P144, DOI 10.1016/S0168-583X(00)00359-1 Wacker L, 2010, NUCL INSTRUM METH B, V268, P931, DOI 10.1016/j.nimb.2009.10.067 Wacker L, 2010, NUCL INSTRUM METH B, V268, P976, DOI 10.1016/j.nimb.2009.10.078 NR 10 TC 17 Z9 17 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUL 15 PY 2014 VL 331 BP 233 EP 237 DI 10.1016/j.nimb.2014.02.015 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA AL4ZZ UT WOS:000339144600047 DA 2021-04-21 ER PT J AU Field, SE Galley, CR Hesthaven, JS Kaye, J Tiglio, M AF Field, Scott E. Galley, Chad R. Hesthaven, Jan S. Kaye, Jason Tiglio, Manuel TI Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models SO PHYSICAL REVIEW X LA English DT Article ID REDUCED BASIS METHOD; GRAM-SCHMIDT ORTHOGONALIZATION; PARTIAL-DIFFERENTIAL-EQUATIONS; EMPIRICAL INTERPOLATION; GREEDY ALGORITHMS; COALESCENCE; RECOIL AB We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL + mc(fit)) online operations, where c(fit) denotes the fitting function operation count and, typically, m << L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 10(5) M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in generating new waveforms with a surrogate. As waveform generation is one of the dominant costs in parameter estimation algorithms and parameter space exploration, surrogate models offer a new and practical way to dramatically accelerate such studies without impacting accuracy. Surrogates built in this paper, as well as others, are available from GWSurrogate, a publicly available python package. C1 [Field, Scott E.] Univ Maryland, Maryland Ctr Fundamental Phys, Joint Space Sci Inst, Dept Phys, College Pk, MD 20742 USA. [Galley, Chad R.] CALTECH, Pasadena, CA 91125 USA. [Hesthaven, Jan S.] Ecole Polytech Fed Lausanne, EPFL SB MATHICSE, CH-1015 Lausanne, Switzerland. [Kaye, Jason] Brown Univ, Div Appl Math, Providence, RI 02912 USA. [Tiglio, Manuel] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Field, SE (corresponding author), Univ Maryland, Maryland Ctr Fundamental Phys, Joint Space Sci Inst, Dept Phys, College Pk, MD 20742 USA. RI Hesthaven, Jan S/A-7602-2009 OI Hesthaven, Jan S/0000-0001-8074-1586 FU NSFNational Science Foundation (NSF) [PHY-1208861, PHY-1316424, PHY-1005632, PHY-1068881]; CAREERNational Science Foundation (NSF) [PHY-0956189]; Direct For Mathematical & Physical ScienNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS) [1208861, 1068881, 0956189] Funding Source: National Science Foundation; Division Of PhysicsNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS) [0956189, 1208861, 1500818] Funding Source: National Science Foundation FX We thank Frank Herrmann and Evan Ochsner for help during this project, including some software tools, as well as Yi Pan, Alessandra Buonnano, and Collin Capano for helpful discussions about the EOB model and its generation using the LAL code. We thank Michael Purrer for comments on a previous version of the paper. This work was supported in part by NSF Grants No. PHY-1208861, No. PHY-1316424, and No. PHY-1005632 to the University of Maryland and by NSF Grant No. PHY-1068881 and CAREER Grant No. PHY-0956189 to the California Institute of Technology. CR Aasi J, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.022002 Abadie J, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.122005 Ajith P, 2007, CLASSICAL QUANT GRAV, V24, pS689, DOI 10.1088/0264-9381/24/19/S31 Ajith P, 2012, CLASSICAL QUANT GRAV, V29, DOI 10.1088/0264-9381/29/12/124001 Antil H, 2013, J SCI COMPUT, V57, P604, DOI 10.1007/s10915-013-9722-z Barrault M, 2004, CR MATH, V339, P667, DOI 10.1016/j.crma.2004.08.006 Binev P, 2011, SIAM J MATH ANAL, V43, P1457, DOI 10.1137/100795772 Brown DA, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.084017 Buchman LT, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.084033 Buonanno A, 1999, PHYS REV D, V59, DOI 10.1103/PhysRevD.59.084006 Buonanno A, 2009, PHYS REV D, V79, DOI 10.1103/PhysRevD.79.124028 Campanelli M, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.231102 Campanelli M, 2007, ASTROPHYS J, V659, pL5, DOI 10.1086/516712 Canizares P, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.124005 Cannon K, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.044008 Cannon K, 2012, PHYS REV D, V85, DOI 10.1103/PhysRevD.85.081504 Cannon K, 2012, ASTROPHYS J, V748, DOI 10.1088/0004-637X/748/2/136 Cannon K, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.084003 Cannon K, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.044025 Caudill S, 2012, CLASSICAL QUANT GRAV, V29, DOI 10.1088/0264-9381/29/9/095016 Chaturantabut S, 2010, SIAM J SCI COMPUT, V32, P2737, DOI 10.1137/090766498 Cohen A., ARXIV11114422 Damour T, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.084035 Damour T, 2011, FUND THEOR PHYS, V162, P211, DOI 10.1007/978-90-481-3015-3_7 DeVore R, 2013, CONSTR APPROX, V37, P455, DOI 10.1007/s00365-013-9186-2 Dietterich TG, 2000, LECT NOTES COMPUT SC, V1857, P1, DOI 10.1007/3-540-45014-9_1 Eftang JL, 2012, J SCI COMPUT, V51, P28, DOI 10.1007/s10915-011-9494-2 Eftang JL, 2012, INT J NUMER METH ENG, V90, P412, DOI 10.1002/nme.3327 Eftang JL, 2011, MATH COMP MODEL DYN, V17, P395, DOI 10.1080/13873954.2011.547670 EPPERSON JF, 1987, AM MATH MON, V94, P329, DOI 10.2307/2323093 Fares M, 2011, J COMPUT PHYS, V230, P5532, DOI 10.1016/j.jcp.2011.03.023 Field SE, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.084046 Field SE, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.221102 Galley CR, 2010, CLASSICAL QUANT GRAV, V27, DOI 10.1088/0264-9381/27/24/245007 Giraud L, 2005, NUMER MATH, V101, P87, DOI [10.1007/s00211-005-0615-4, 10.1007/s0211-005-0615-4] Gonzalez JA, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.231101 Gonzalez JA, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.091101 Hannam M., ARXIV13083271 Herrmann F, 2007, PHYS REV D, V76, DOI 10.1103/PhysRevD.76.084032 Herrmann F, 2007, CLASSICAL QUANT GRAV, V24, pS33, DOI 10.1088/0264-9381/24/12/S04 Herrmann F, 2007, ASTROPHYS J, V661, P430, DOI 10.1086/513603 Hesthaven JS, 2002, J COMPUT PHYS, V181, P186, DOI 10.1006/jcph.2002.7118 Hinder I, 2014, CLASSICAL QUANT GRAV, V31, DOI 10.1088/0264-9381/31/2/025012 Horner W, 1819, PHILOS T ROY SOC LON, V109, P308 Karniadakis GE, 2005, NUMERICAL MATH SCI C Kaye J., 2012, THESIS BROWN U Koppitz M, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.041102 Lodha SK, 1997, MATH COMPUT, V66, P1521, DOI 10.1090/S0025-5718-97-00862-4 Lousto CO, 2009, PHYS REV D, V79, DOI 10.1103/PhysRevD.79.064018 Maday Y, 2009, COMMUN PUR APPL ANAL, V8, P383, DOI 10.3934/cpaa.2009.8.383 Mroue AH, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.241104 Pan Y, 2014, PHYS REV D, V89, DOI 10.1103/PhysRevD.89.084006 Pan Y, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.124052 Pan Y, 2010, PHYS REV D, V81, DOI 10.1103/PhysRevD.81.084041 Pekowsky L, 2013, PHYS REV D, V88, DOI 10.1103/PhysRevD.88.024040 Pollney D, 2007, PHYS REV D, V76, DOI 10.1103/PhysRevD.76.124002 Purrer M., ARXIV14024146 Quarteroni A, 2011, J MATH IND, V1, DOI 10.1186/2190-5983-1-3 Rezzolla L, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.221101 RUHE A, 1983, LINEAR ALGEBRA APPL, V52-3, P591 Santamaria L, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.064016 Smith RJE, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.122002 Stairs Ingrid H, 2003, Living Rev Relativ, V6, P5, DOI 10.12942/lrr-2003-5 Sturani R, 2010, J PHYS CONF SER, V243, DOI 10.1088/1742-6596/243/1/012007 Szyld DB, 2006, NUMER ALGORITHMS, V42, P309, DOI 10.1007/s11075-006-9046-2 Taracchini A, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.024011 TAYLOR JM, 1978, P ROY SOC EDINB A, V80, P45, DOI 10.1017/S030821050001012X Will CM, 2006, LIVING REV RELATIV, V9, DOI 10.12942/lrr-2006-3 Xu JC, 2003, NUMER MATH, V94, P195, DOI 10.1007/s002110100308 NR 69 TC 77 Z9 77 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD JUL 14 PY 2014 VL 4 IS 3 AR 031006 DI 10.1103/PhysRevX.4.031006 PG 21 WC Physics, Multidisciplinary SC Physics GA AO3PX UT WOS:000341246700002 OA DOAJ Gold, Green Accepted DA 2021-04-21 ER PT J AU Miller, BT Singh, RP Schalk, V Pevzner, Y Sun, JJ Miller, CS Boresch, S Ichiye, T Brooks, BR Woodcock, HL AF Miller, Benjamin T. Singh, Rishi P. Schalk, Vinushka Pevzner, Yuri Sun, Jingjun Miller, Carrie S. Boresch, Stefan Ichiye, Toshiko Brooks, Bernard R. Woodcock, H. Lee, III TI Web-Based Computational Chemistry Education with CHARMMing I: Lessons and Tutorial SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID GENERAL FORCE-FIELD; MOLECULAR-DYNAMICS; ENZYMATIC-REACTIONS; PROTEIN; SIMULATIONS; QUANTUM; SYSTEMS; AUTOMATION; RESOLUTION; KINETICS AB This article describes the development, implementation, and use of web-based "lessons'' to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e. g., phones and tablets), allowing easy integration of these advanced simulation techniques into course-work. Finally, one of the primary objections to web-based systems like CHARMMing has been that "point and click'' simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance. C1 [Miller, Benjamin T.; Singh, Rishi P.; Sun, Jingjun; Brooks, Bernard R.] NHLBI, Lab Computat Biol, Bethesda, MD 20892 USA. [Schalk, Vinushka] New Coll Florida, Dept Nat Sci, Sarasota, FL USA. [Pevzner, Yuri; Woodcock, H. Lee, III] Univ S Florida, Dept Chem, Tampa, FL 33620 USA. [Miller, Carrie S.; Ichiye, Toshiko] Georgetown Univ, Dept Chem, Washington, DC 20057 USA. [Boresch, Stefan] Univ Vienna, Fac Chem, Dept Computat Biol Chem, Vienna, Austria. RP Miller, BT (corresponding author), NHLBI, Lab Computat Biol, Bldg 10, Bethesda, MD 20892 USA. EM btmiller@nhlbi.nih.gov; hlw@usf.edu RI Boresch, Stefan/F-3467-2014; Woodcock, Henry/M-6255-2019 OI Boresch, Stefan/0000-0002-2793-6656; Woodcock, Henry/0000-0003-3539-273X; Miller, Benjamin/0000-0003-1647-0122 FU National Heart, Lung, and Blood Institute, NIHUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Heart Lung & Blood Institute (NHLBI); NIHUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USA [1K22HL088341-01A1]; University of South Florida; National Science FoundationNational Science Foundation (NSF) [CHE-1158267]; McGowan Foundation; Division Of ChemistryNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS) [1158267] Funding Source: National Science Foundation; NATIONAL HEART, LUNG, AND BLOOD INSTITUTEUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Heart Lung & Blood Institute (NHLBI) [ZIHHL001052, ZIHHL001052, ZIHHL001052, ZIHHL001052, ZIHHL001052, ZIHHL001052, K22HL088341, ZIHHL001052, ZIHHL001052, K22HL088341, ZIHHL001052, ZIHHL001052, K22HL088341] Funding Source: NIH RePORTER FX This research was supported in part by the Intramural Research Program of the National Heart, Lung, and Blood Institute, NIH. HLW3 would like to acknowledge NIH (1K22HL088341-01A1) and the University of South Florida (start-up) for funding. TI gratefully acknowledges the support of the National Science Foundation (CHE-1158267) and the McGowan Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. CR Acevedo O, 2010, ACCOUNTS CHEM RES, V43, P142, DOI 10.1021/ar900171c Allen M. P., 1989, COMPUTER SIMULATION Baker NA, 2001, P NATL ACAD SCI USA, V98, P10037, DOI 10.1073/pnas.181342398 Berman HM, 2000, NUCLEIC ACIDS RES, V28, P235, DOI 10.1093/nar/28.1.235 Bogusz S, 1998, J CHEM PHYS, V108, P7070, DOI 10.1063/1.476320 Bond PJ, 2006, J AM CHEM SOC, V128, P2697, DOI 10.1021/ja0569104 Brooks BR, 2009, J COMPUT CHEM, V30, P1545, DOI 10.1002/jcc.21287 Burkholder PR, 2008, J CHEM EDUC, V85, P1071, DOI 10.1021/ed085p1071 DARDEN T, 1993, J CHEM PHYS, V98, P10089, DOI 10.1063/1.464397 Department of Homeland Security: USCERT, 2013, AL TA13 010A OR JAV DILL KA, 2002, MOL DRIVING FORCES S Dill KA, 2008, ANNU REV BIOPHYS, V37, P289, DOI 10.1146/annurev.biophys.37.092707.153558 FIELD MJ, 1990, J COMPUT CHEM, V11, P700, DOI 10.1002/jcc.540110605 Frenkel D., 2007, UNDERSTANDING MOL SI Garcia-Viloca M, 2004, SCIENCE, V303, P186, DOI 10.1126/science.1088172 Hanson RM, 2013, ISR J CHEM, V53, P207, DOI 10.1002/ijch.201300024 Humphrey W, 1996, J MOL GRAPH MODEL, V14, P33, DOI 10.1016/0263-7855(96)00018-5 Ichiye T, 2014, CHEM 573 COMPUTATION Im YJ, 2005, NATURE, V437, P154, DOI 10.1038/nature03923 Jo S, 2008, J COMPUT CHEM, V29, P1859, DOI 10.1002/jcc.20945 Kessel A., 2010, INTRO PROTEINS STRUC Klauda JB, 2010, J PHYS CHEM B, V114, P7830, DOI 10.1021/jp101759q Klimov DK, 2000, P NATL ACAD SCI USA, V97, P2544, DOI 10.1073/pnas.97.6.2544 Leach A.R., 2001, MOL MODELLING PRINCI Marrink SJ, 2004, J PHYS CHEM B, V108, P750, DOI 10.1021/jp036508g Martin NH, 1998, J CHEM EDUC, V75, P241, DOI 10.1021/ed075p241 Miller BT, 2008, J CHEM INF MODEL, V48, P1920, DOI 10.1021/ci800133b Nakane T, 2012, GLMOL MOL VIEWER WEB Nelson R, 2005, NATURE, V435, P773, DOI 10.1038/nature03680 Nussinov R, 2013, SIGN 2013 NOB PRIZ C Paniagua JC, 2008, J CHEM EDUC, V85, P1288, DOI 10.1021/ed085p1288 Perrin BS, 2010, PROTEINS, V78, P2798, DOI 10.1002/prot.22794 Piana S, 2013, J PHYS CHEM B, V117, P12935, DOI 10.1021/jp4020993 Piana S, 2013, P NATL ACAD SCI USA, V110, P5915, DOI 10.1073/pnas.1218321110 Piana S, 2012, P NATL ACAD SCI USA, V109, P17845, DOI 10.1073/pnas.1201811109 Schmidt J, 2014, WEBMO VERSION 14 0 Schrodinger, 2015, PYMOL MOL GRAPHICS S Senn HM, 2009, ANGEW CHEM INT EDIT, V48, P1198, DOI 10.1002/anie.200802019 Shao Y, 2006, PHYS CHEM CHEM PHYS, V8, P3172, DOI 10.1039/b517914a Sherwood P, 2008, CURR OPIN STRUC BIOL, V18, P630, DOI 10.1016/j.sbi.2008.07.003 Singh RP, 2009, PROTEINS, V75, P468, DOI 10.1002/prot.22263 SINGH UC, 1986, J COMPUT CHEM, V7, P718, DOI 10.1002/jcc.540070604 STEINBACH PJ, 1994, J COMPUT CHEM, V15, P667, DOI 10.1002/jcc.540150702 Suhre K, 2004, NUCLEIC ACIDS RES, V32, pW610, DOI 10.1093/nar/gkh368 TEETER MM, 1993, J MOL BIOL, V230, P292, DOI 10.1006/jmbi.1993.1143 Vanommeslaeghe K, 2012, J CHEM INF MODEL, V52, P3155, DOI 10.1021/ci3003649 Vanommeslaeghe K, 2012, J CHEM INF MODEL, V52, P3144, DOI 10.1021/ci300363c Vanommeslaeghe K, 2010, J COMPUT CHEM, V31, P671, DOI 10.1002/jcc.21367 VIJAYKUMAR S, 1987, J MOL BIOL, V194, P531, DOI 10.1016/0022-2836(87)90679-6 WARSHEL A, 1976, J MOL BIOL, V103, P227, DOI 10.1016/0022-2836(76)90311-9 Willighagen E., 2007, NAT P, DOI [10. 1038/npre. 2007. 50. 1, DOI 10.1038/NPRE.2007.50.1, 10.1038/npre.2007.50.1] Woodcock HL, 2007, J COMPUT CHEM, V28, P1485, DOI 10.1002/jcc.20587 Woods research group Complex Carboyhdrate Research Center University of Georgia, 2005, GLYC BIOM BUILD Wu XW, 2003, CHEM PHYS LETT, V381, P512, DOI 10.1016/j.cplett.2003.10.013 Zheng GH, 2009, NUCLEIC ACIDS RES, V37, pW240, DOI 10.1093/nar/gkp358 Zheng W, 2007, AD ENM WEB SERVER NR 56 TC 8 Z9 8 U1 0 U2 23 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUL PY 2014 VL 10 IS 7 AR e1003719 DI 10.1371/journal.pcbi.1003719 PG 7 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA AM5IO UT WOS:000339890900033 PM 25057988 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Li, XB Lei, YL Vangheluwe, H Wang, WP Li, Q AF Li, Xiaobo Lei, Yonglin Vangheluwe, Hans Wang, Weiping Li, Qun TI Domain-specific decision modelling and statistical analysis for combat system effectiveness simulation SO JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION LA English DT Article DE decision modelling; domain-specific modelling; effectiveness simulation; Bayesian networks; parameter estimation; Bayesian analysis ID UNCERTAINTY AB Combat system effectiveness simulation (CoSES) needs to model both the physical aspect (i.e. physics modelling) and intelligent aspect (i.e. decision modelling) of combat systems. Combat platform decision-making has several characteristics such as cognition, diversity, agility, uncertainty and higher abstraction level, which bring tough challenges for decision model design, implementation and optimization. In this paper, we propose a domain-specific modelling approach which develops friendly modelling environments for model design, we design code generation mechanisms to transform domain-specific decision models to Python code which is supported by a Python script framework to implement decision models and we present a Bayesian network-based statistical analysis method on simulation output data to optimize the decision model. The case study shows that the proposed modelling and optimization approach effectively supports CoSES with decision models of higher efficiency and increased effectiveness. C1 [Li, Xiaobo; Lei, Yonglin; Wang, Weiping; Li, Qun] Natl Univ Def Technol, Inst Simulat Engn, Changsha 410073, Hunan, Peoples R China. [Li, Xiaobo; Vangheluwe, Hans] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium. RP Li, XB (corresponding author), Natl Univ Def Technol, Inst Simulat Engn, Changsha 410073, Hunan, Peoples R China. EM lixiaobo.nudt@gmail.com RI Vangheluwe, Hans/H-9884-2016 OI Vangheluwe, Hans/0000-0003-2079-6643 FU National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61273198, 91024015, 61074107, 60974073, 60974074, 71031007] FX We thank the anonymous reviewers from both Journal of Statistical Computation and Simulation and AsiaSim 2012 conference for their valuable suggestions. We are grateful to the discussions with Dr. Lei Wang, Professor Qi Liu and Professor Jing Feng on Bayesian decision analysis. The work presented in this paper is partly supported by the National Natural Science Foundation of China (Nos. 61273198, 91024015, 61074107, 60974073, 60974074 and 71031007). CR Andradottir S, 2000, SIMULAT PRACT THEORY, V8, P253, DOI 10.1016/S0928-4869(00)00025-2 Chick SE, 2004, PROCEEDINGS OF THE 2004 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, P89 Chick SE, 1997, PROCEEDINGS OF THE 1997 WINTER SIMULATION CONFERENCE, P253, DOI 10.1145/268437.268488 Chick SE, 2006, PROCEEDINGS OF THE 2006 WINTER SIMULATION CONFERENCE, VOLS 1-5, P96, DOI 10.1109/WSC.2006.323042 Davis PK., 1998, EXPT MULTIRESOLUTION Ferayorni A. E., 2007, P 2007 SUMM COMP SIM, P297 France R., 2005, SOFTW SYST MODEL, V4, P1, DOI DOI 10.1007/S10270-005-0078-1 Hemingway G, 2011, SIMULATION, V88, P217 Hora SC, 1997, J STAT COMPUT SIM, V57, P175, DOI 10.1080/00949659708811807 Jiang XM, 2013, J STAT COMPUT SIM, V83, P1829, DOI 10.1080/00949655.2012.672572 Li Qun, 2010, SIMULATION MODEL POR Li XB, 2011, P SUMM COMP, P210 Merrick JRW, 2009, DECIS ANAL, V6, P222, DOI 10.1287/deca.1090.0151 Merrick JRW, 2005, RISK ANAL, V25, P731, DOI 10.1111/j.1539-6924.2005.00616.x Mittal S, 2011, SIMUL SERIES, V43, P256 Modarres M, 1999, RELIAB ENG SYST SAFE, V64, P181, DOI 10.1016/S0951-8320(98)00062-3 Pereira LN, 2010, J STAT COMPUT SIM, V80, P713, DOI 10.1080/00949650902766860 Poropudas J, 2007, PROCEEDINGS OF THE 2007 WINTER SIMULATION CONFERENCE, VOLS 1-5, P1349 Poropudas J, 2010, WINT SIMUL C PROC, P935, DOI 10.1109/WSC.2010.5679098 Seo KM, 2011, J DEF MODEL SIMUL-AP, V8, P157, DOI 10.1177/1548512910390245 Son MJ, 2012, EXPERT SYST APPL, V39, P12992, DOI 10.1016/j.eswa.2012.05.099 Son MJ, 2010, ADV ENG SOFTW, V41, P506, DOI 10.1016/j.advengsoft.2009.10.009 Sprinkle J. B., 2010, P 2007 INT DAGST C M, P57 US Army Space and Missile Defense Command, EADSIM EX SUMM Vanderbilt University, 2010, GME MAN US GUID GEN Verbraeck A, 2008, 2008 WINTER SIMULATION CONFERENCE, VOLS 1-5, P923, DOI 10.1109/WSC.2008.4736158 Wang Lei, 2008, Journal of System Simulation, V20, P6519 Washburn A, 2009, INT SER OPER RES MAN, V134, P1, DOI 10.1007/978-1-4419-0790-5_1 NR 28 TC 2 Z9 2 U1 0 U2 30 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0094-9655 EI 1563-5163 J9 J STAT COMPUT SIM JI J. Stat. Comput. Simul. PD JUN 3 PY 2014 VL 84 IS 6 SI SI BP 1261 EP 1279 DI 10.1080/00949655.2013.797421 PG 19 WC Computer Science, Interdisciplinary Applications; Statistics & Probability SC Computer Science; Mathematics GA 303WF UT WOS:000330705200008 DA 2021-04-21 ER PT J AU de Buyl, P AF de Buyl, Pierre TI The vmf90 program for the numerical resolution of the Vlasov equation for mean-field systems SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Vlasov equation; Hamiltonian Mean-Field model; Single wave model ID LONG-RANGE INTERACTIONS; RELAXATION; DYNAMICS; MODEL AB The numerical resolution of the Vlasov equation provides complementary information with respect to analytical studies and forms an important research tool in domains such as plasma physics. The study of mean-field models for systems with long-range interactions is another field in which the Vlasov equation plays an important role. We present the vmf90 program that performs numerical simulations of the Vlasov equation for this class of mean-field models with the semi-Lagrangian method. Program summary Program title: vmf90 Catalogue identifier: AESO_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AESO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 7794 No. of bytes in distributed program, including test data, etc.: 58 851 Distribution format: tar.gz Programming language: Fortran 95. Computer: Single CPU computer. Operating system: No specific operating system, the program is tested under Linux and OS X. RAM: About 5 M bytes Classification: 1.5, 19.8, 19.13, 23. External routines: HDF5 for the code (tested with HDF5 v1.8.8 and above). Python, NumPy, h5py and Matplotlib for analysis. Nature of problem: Numerical resolution of the Vlasov equation for mean-field models (Hamiltonian Mean-Field model and Single Wave model). Solution method: The equation is solved with the semi-Lagrangian method and cubic spline interpolation. Running time: The examples provided with the program take 1 m 30 for the Hamiltonian-Mean Field model and 10 m for the Single Wave model, on an Intel Core i7 CPU @ 3.33 GHz. Increasing the number of grid points or the number of time steps increases the running time. (C) 2014 Elsevier B.V. All rights reserved. C1 [de Buyl, Pierre] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium. RP de Buyl, P (corresponding author), Katholieke Univ Leuven, Dept Chem, Celestijnenlaan 200F, B-3001 Heverlee, Belgium. EM pdebuyl@ulb.ac.be OI de Buyl, Pierre/0000-0002-6640-6463 CR ANTONI M, 1995, PHYS REV E, V52, P2361, DOI 10.1103/PhysRevE.52.2361 Antoniazzi A, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.150602 Bachelard R, 2010, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2010/06/P06009 Bouchet F, 2010, PHYSICA A, V389, P4389, DOI 10.1016/j.physa.2010.02.024 Campa A, 2009, PHYS REP, V480, P57, DOI 10.1016/j.physrep.2009.07.001 Chavanis PH, 2006, EUR PHYS J B, V53, P487, DOI 10.1140/epjb/e2006-00405-5 Chavanis PH, 2006, PHYSICA A, V361, P81, DOI 10.1016/j.physa.2005.06.088 CHENG CZ, 1976, J COMPUT PHYS, V22, P330, DOI 10.1016/0021-9991(76)90053-X Collette A., 2008, HDF5 PYTHON de Buyl P., 2014, COMP PHYS COMMUN de Buyl P., PHYS REV ST ACCEL BE, V12 de Buyl P, 2014, COMPUT PHYS COMMUN, V185, P1546, DOI 10.1016/j.cpc.2014.01.018 de Buyl P, 2013, PHYS REV E, V87, DOI 10.1103/PhysRevE.87.042110 de Buyl P, 2012, CENT EUR J PHYS, V10, P652, DOI 10.2478/s11534-012-0010-6 de Buyl P, 2011, PHYS REV E, V84, DOI 10.1103/PhysRevE.84.061151 de Buyl P, 2011, PHYS REV E, V84, DOI 10.1103/PhysRevE.84.061139 de Buyl P, 2011, PHILOS T R SOC A, V369, P439, DOI 10.1098/rsta.2010.0251 de Buyl P, 2010, COMMUN NONLINEAR SCI, V15, P2133, DOI 10.1016/j.cnsns.2009.08.020 Decyk VK, 2008, COMPUT PHYS COMMUN, V178, P611, DOI 10.1016/j.cpc.2007.11.013 Decyk VK, 1998, COMPUT PHYS COMMUN, V115, P9, DOI 10.1016/S0010-4655(98)00101-5 Elskens Y., 2003, MICROSCOPIC DYNAMICS McCormack D., 2009, SCI SOFTWARE DEV FOR Ogawa S, 2012, PHYS REV E, V85, DOI 10.1103/PhysRevE.85.061115 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 ONEIL TM, 1971, PHYS FLUIDS, V14, P1204, DOI 10.1063/1.1693587 Sonnendrucker E, 1999, J COMPUT PHYS, V149, P201, DOI 10.1006/jcph.1998.6148 VANHEESCH D, 1997, DOXYGEN NR 27 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUN PY 2014 VL 185 IS 6 BP 1822 EP 1827 DI 10.1016/j.cpc.2014.03.004 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AJ8CD UT WOS:000337929400026 OA Green Accepted DA 2021-04-21 ER PT J AU Boyd, W Shaner, S Li, LL Forget, B Smith, K AF Boyd, William Shaner, Samuel Li, Lulu Forget, Benoit Smith, Kord TI The OpenMOC method of characteristics neutral particle transport code SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Method of characteristics; Neutron transport; Criticality; High performance computing; Nonlinear diffusion acceleration; Open source AB The method of characteristics (MOC) is a numerical integration technique for partial differential equations, and has seen widespread use for reactor physics lattice calculations. The exponential growth in computing power has finally brought the possibility for high-fidelity full core MOC calculations within reach. The OpenMOC code is being developed at the Massachusetts Institute of Technology to investigate algorithmic acceleration techniques and parallel algorithms for MOC. OpenMOC is a free, open source code written using modern software languages such as C/C++ and CUDA with an emphasis on extensible design principles for code developers and an easy to use Python interface for code users. The present work describes the OpenMOC code and illustrates its ability to model large problems accurately and efficiently. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Boyd, William; Shaner, Samuel; Li, Lulu; Forget, Benoit; Smith, Kord] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. RP Boyd, W (corresponding author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave,Bldg 24, Cambridge, MA 02139 USA. EM wboyd@mit.edu; shaner@mit.edu; lululi@mit.edu; bforget@mit.edu; kord@mit.edu FU Office of Advanced Scientific Computing Research, Office of Science, US Department of EnergyUnited States Department of Energy (DOE) [DE-AC02-06CH11357]; National Science FoundationNational Science Foundation (NSF) [1122374] FX The first author was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374 in addition to the DOE's Center for Exascale Simulation of Advanced Reactors (CESAR). The second author is a recipient of the DOE Office of Nuclear Energy's Nuclear Energy University Programs Fellowship, and the third author is a Studsvik Scandpower Graduate Fellow. This work was also partially supported by the Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy, under Contract DE-AC02-06CH11357. CR Askew J.R., 1972, 1108 AAEWM UK AT EN Aviles B.N., 1993, DEV VARIABLE TIME ST, P425 Beazley DM, 2003, FUTURE GENER COMP SY, V19, P599, DOI 10.1016/S0167-739X(02)00171-1 Boyd W., 2013, P INT C MATH COMP ME Boyd W., 2014, P PHYSOR KYOT UNPUB Boyd W., 2014, THESIS MIT Cho J.Y., 2002, J KOREAN NUCL SOC, V34, P250 Ferrer R., 2012, P PHYSOR KNOXV TN US Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Koranne S., 2011, HDB OPEN SOURCE TOOL, P191, DOI DOI 10.1007/978-1-4419-7719-9_10 Lax D., 2014, P PHYSOR KYOT UNPUB Lewis E. E., 2003, BENCHMARK SPECIFICAT Li L., 2013, THESIS MIT Moore G. E., 1965, ELECTRONICS, V38, P114, DOI DOI 10.1109/JPROC.1998.658762 NVIDIA, 2013, NVIDIA CUDA C PROGR OpenMP Architecture Review Board, 2013, OPENMP APPL PROGR IN Romano PK, 2013, ANN NUCL ENERGY, V51, P274, DOI 10.1016/j.anucene.2012.06.040 Sanner MF, 1999, J MOL GRAPH MODEL, V17, P57 Smith K.S., 1983, T AM NUCL SOC, V44 Smith KS, 2002, P PHYSOR SEOUL S KOR Yamamoto A, 2007, J NUCL SCI TECHNOL, V44, P129, DOI 10.3327/jnst.44.129 Zhong Z, 2008, NUCL SCI ENG, V158, P289, DOI 10.13182/NSE06-24TN NR 22 TC 60 Z9 63 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD JUN PY 2014 VL 68 BP 43 EP 52 DI 10.1016/j.anucene.2013.12.012 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA AE2GH UT WOS:000333790800006 OA Green Published DA 2021-04-21 ER PT J AU Deutsch, JM AF Deutsch, J. M. TI Biophysics software for interdisciplinary education and research SO AMERICAN JOURNAL OF PHYSICS LA English DT Article ID DNA; MOLECULES; PYTHON AB Biophysics encompasses many disciplines, and so transcends the knowledge and skills of the individual student; its instruction therefore provides formidable challenges. This paper describes educational materials that were developed by the author and have been used successfully in an interdisciplinary course on biophysics, taken by undergraduates from a variety of disciplines. Projects were devised on topics that ranged from x-ray diffraction to the Hodgkin-Huxley equations. They are team-based and strongly encourage collaboration. Extensive use is made of software, written in Python/SciPy, which was modified by students to explore a large range of phenomena. This software can also be used in lectures, in the teaching of more traditional biophysics courses, and in research. (C) 2014 American Association of Physics Teachers. C1 Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. RP Deutsch, JM (corresponding author), Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. EM josh@ucsc.edu FU National Science FoundationNational Science Foundation (NSF) [CCLI DUE-0942207]; Direct For Education and Human ResourcesNational Science Foundation (NSF)NSF- Directorate for Education & Human Resources (EHR) [0942207] Funding Source: National Science Foundation; Division Of Undergraduate EducationNational Science Foundation (NSF)NSF- Directorate for Education & Human Resources (EHR) [0942207] Funding Source: National Science Foundation FX The author would like to thank Dr. Barbara Goza and Hee-Sun Lee for useful discussions, and Onuttom Narayan for helpful suggestions. The author is also grateful to Michelle V. Mai for her critical insights in making the material more relevant to life-science majors, and Diana Deutsch for a very thorough and critical reading of the manuscript. This material is based on work supported by the National Science Foundation under Grant CCLI DUE-0942207. CR AXELROD D, 1976, BIOPHYS J, V16, P1055, DOI 10.1016/S0006-3495(76)85755-4 Deutsch J. M., 2011, MECH MICROSCOPIC MIX DEUTSCH JM, 1988, SCIENCE, V240, P922, DOI 10.1126/science.3363374 Dunn AR, 2007, NAT STRUCT MOL BIOL, V14, P246, DOI 10.1038/nsmb1206 Grier DG, 2003, NATURE, V424, P810, DOI 10.1038/nature01935 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500, DOI 10.1113/jphysiol.1952.sp004764 Holm C., 2008, SOFT MATTER CHARACTE, V2, P295 Khatib F, 2011, NAT STRUCT MOL BIOL, V18, P1175, DOI 10.1038/nsmb.2119 Kozlovsky Y, 1999, PHYS REV E, V59, P7025, DOI 10.1103/PhysRevE.59.7025 LAU KF, 1990, P NATL ACAD SCI USA, V87, P638, DOI 10.1073/pnas.87.2.638 MATSUYAMA T, 1993, CRIT REV MICROBIOL, V19, P117, DOI 10.3109/10408419309113526 Murray, 1993, MATH BIOL Myers CR, 2007, COMPUT SCI ENG, V9, P75, DOI 10.1109/MCSE.2007.56 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Reif F., 1965, FUNDAMENTALS STAT TH Serbus LR, 2005, DEVELOPMENT, V132, P3743, DOI 10.1242/dev.01956 Tinker RF, 2008, COMPUT SCI ENG, V10, P24, DOI 10.1109/MCSE.2008.108 Turing M. A., 1952, PHIL T R SOC B, V237, P37 Weiss T. F., 1992, J SCI EDUC TECHNOL, V1, P259 Wheeler DA, 2008, NATURE, V452, P872, DOI 10.1038/nature06884 Winters-Hilt S, 2003, BIOPHYS J, V84, P967, DOI 10.1016/S0006-3495(03)74913-3 WITTEN TA, 1981, PHYS REV LETT, V47, P1400, DOI 10.1103/PhysRevLett.47.1400 Woodside MT, 2008, CURR OPIN CHEM BIOL, V12, P640, DOI 10.1016/j.cbpa.2008.08.011 NR 23 TC 4 Z9 4 U1 1 U2 15 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 EI 1943-2909 J9 AM J PHYS JI Am. J. Phys. PD MAY PY 2014 VL 82 IS 5 DI 10.1119/1.4869198 PG 9 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA AG2BA UT WOS:000335218800011 DA 2021-04-21 ER PT J AU Mushtaq, A Olaussen, K AF Mushtaq, Asif Olaussen, Kare TI Automatic code generator for higher order integrators SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Splitting methods; Modified integrators; Higher order methods; Automatic code generation AB Some explicit algorithms for higher order symplectic integration of a large class of Hamilton's equations have recently been discussed by Mushtaq et al. Here we present a Python program for automatic numerical implementation of these algorithms for a given Hamiltonian, both for double precision and multi-precision computations. We provide examples of how to use this program, and illustrate behavior of both the code generator and the generated solver module(s). Program summary Program title: HOMsPy: Higher Order (Symplectic) Methods in Python Catalogue identifier: AESD_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AESD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19423 No. of bytes in distributed program, including test data, etc.: 1970283 Distribution format: tar.gz Programming language: Python 2.7. Computer: PCs or higher performance computers. Operating system: Linux, MacOS, MS Windows. RAM: Kilobytes to a several gigabytes (problem dependent). Classification: 4.3, 5. External routines: SymPy library [1] for generating the code. NumPy library [2], and optionally mpmath [3] library for running the generated code. The matplotlib [4] library for plotting results. Nature of problem: We have developed algorithms [5] for numerical solution of Hamilton's equations. (q) over dot(a) = partial derivative H (q, p)/partial derivative p(a)a, (p) over dot(a) = -partial derivative H (q, p)/partial derivative q(a), a = 1 ... N (1) for Hamiltonians of the form H (q, p) = T (p) + V (q) = (1 /2)p(T)Mp + V (q), (2) with M a symmetric positive definite matrix. The algorithms preserve the symplectic property of the time evolution exactly, and are of orders tau(N) (for 2 <= N <= 8) in the timestep r. Although explicit, the algorithms are time-consuming and error-prone to implement numerically by hand, in particular for larger N. Solution method: We use computer algebra to perform all analytic calculations required for a specific model, and to generate the Python code for numerical solution of this model, including example programs using that code. Restrictions: In our implementation the mass matrix is assumed to be equal to the unit matrix, and V (q) must be sufficiently differentiable. Running time: Subseconds to eons (problem dependent). See discussion in the main article. References: [1] SymPy Development Team, http://sympy.org/. [2] NumPy Developers, http://numpy.org/. [3] F. Johansson etal., Python library for arbitrary-precision floating-point arithmetic, http://code.google. code/p/mpmath/ (2010). [4] J.D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science and Engineering 9, 90-95 (2007). [5] A. Mushtaq, A. KvRrno, K. Olaussen, Higher order Geometric Integrators for a class of Hamiltonian systems, International Journal of Geometric Methods in Modern Physics, vol. 11, no. 1 (2014), 1450009-1-1450009-20. DOI: http://dx.doi.org/10.1142/S0219887814500091. arXiv.org:1301.7736. (C) 2014 Elsevier B.V. All rights reserved. C1 [Mushtaq, Asif] NTNU, Inst Matemat Fag, N-7491 Trondheim, Norway. [Olaussen, Kare] NTNU, Inst Fysikk, N-7491 Trondheim, Norway. RP Olaussen, K (corresponding author), NTNU, Inst Fysikk, N-7491 Trondheim, Norway. EM Asif.Mushtaq@math.ntnu.no; Kare.Olaussen@ntnu.no FU Statoil via Roger Sollie, through a professor II grant in Applied mathematical physics FX We thank professor Anne Kvaerno for useful discussions, helpful feedbacks, and careful proofreading. We also acknowledge support provided by Statoil via Roger Sollie, through a professor II grant in Applied mathematical physics. CR Abramowitz M., 1968, HDB MATHEMATICAL FUN Feynman R.P., 1992, PENGUIN SCI SERIES, P43 Goldstein H., 2001, CLASSICAL MECH, P589 McLachlan RI, 2002, ACT NUMERIC, V11, P341, DOI 10.1017/S0962492902000053 Mushtaq Asif, 2012, Proceedings of the World Congress on Engineering (WCE 2012), P247 Mushtaq A., 2012, NUMDIFF 13 MART LUTH Mushtaq A., 2014, ENSEMBLE OCCUP UNPUB Mushtaq A, 2014, INT J GEOM METHODS M, V11, DOI 10.1142/S0219887814500091 Newton I., 1687, PHILOS NATURALIS PRI Sanz-Serna J.M., 1994, NUMERICAL HAMILTONIA Stormer C., 1921, C R C INT STASSBOURG, V1920, P243 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 VERLET L, 1967, PHYS REV, V159, P98, DOI 10.1103/PhysRev.159.98 Wanner G., 2006, GEOMETRIC NUMERICAL YOSHIDA H, 1990, PHYS LETT A, V150, P262, DOI 10.1016/0375-9601(90)90092-3 NR 15 TC 4 Z9 5 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAY PY 2014 VL 185 IS 5 BP 1461 EP 1472 DI 10.1016/j.cpc.2014.01.012 PG 12 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AE6FI UT WOS:000334085600014 DA 2021-04-21 ER PT J AU Cottaar, S Heister, T Rose, I Unterborn, C AF Cottaar, Sanne Heister, Timo Rose, Ian Unterborn, Cayman TI BurnMan: A lower mantle mineral physics toolkit SO GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS LA English DT Article DE open-source; elasticity ID EARTHS LOWER MANTLE; SEISMIC VELOCITIES; PHASE-EQUILIBRIA; TRANSITION ZONE; CHEMICAL HETEROGENEITY; CLUSTER-ANALYSIS; SOUND-VELOCITY; SPIN-CROSSOVER; HIGH-PRESSURE; TRAVEL-TIME AB We present BurnMan, an open-source mineral physics toolbox to determine elastic properties for specified compositions in the lower mantle by solving an Equation of State (EoS). The toolbox, written in Python, can be used to evaluate seismic velocities of new mineral physics data or geodynamic models, and as the forward model in inversions for mantle composition. The user can define the composition from a list of minerals provided for the lower mantle or easily include their own. BurnMan provides choices in methodology, both for the EoS and for the multiphase averaging scheme. The results can be visually or quantitatively compared to observed seismic models. Example user scripts show how to go through these steps. This paper includes several examples realized with BurnMan: First, we benchmark the computations to check for correctness. Second, we exemplify two pitfalls in EoS modeling: using a different EoS than the one used to derive the mineral physical parameters or using an incorrect averaging scheme. Both pitfalls have led to incorrect conclusions on lower mantle composition and temperature in the literature. We further illustrate that fitting elastic velocities separately or jointly leads to different Mg/Si ratios for the lower mantle. However, we find that, within mineral physical uncertainties, a pyrolitic composition can match PREM very well. Finally, we find that uncertainties on specific input parameters result in a considerable amount of variation in both magnitude and gradient of the seismic velocities. C1 [Cottaar, Sanne; Rose, Ian] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Cottaar, Sanne] Univ Cambridge Pembroke Coll, Dept Earth Sci, Cambridge CB2 1RF, England. [Cottaar, Sanne] Univ Cambridge, Cambridge, England. [Heister, Timo] Clemson Univ, Clemson, SC USA. [Unterborn, Cayman] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. RP Rose, I (corresponding author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM ian.rose@berkeley.edu OI Unterborn, Cayman/0000-0001-8991-3110; Heister, Timo/0000-0002-8137-3903; Cottaar, Sanne/0000-0003-0493-6570 FU NSF FESD [1135452]; CIDER; NSF/CSEDINational Science Foundation (NSF)NSF - Directorate for Geosciences (GEO) [1067513]; Draper's Company Research Fellowship from Pembroke College, Cambridge; Computational Infrastructure in Geodynamics initiative (CIG), through the NSF [EAR-0949446]; University of California-DavisUniversity of California System; King Abdullah University of Science and Technology (KAUST)King Abdullah University of Science & Technology [KUS-C1-016-04]; NSFNational Science Foundation (NSF) [EAR-1246670]; NSF CAREER grantNational Science Foundation (NSF)NSF - Office of the Director (OD) [EAR-60023026]; Directorate For GeosciencesNational Science Foundation (NSF)NSF - Directorate for Geosciences (GEO) [1135452, 1067513] Funding Source: National Science Foundation; Division Of Earth SciencesNational Science Foundation (NSF)NSF - Directorate for Geosciences (GEO) [1135452] Funding Source: National Science Foundation FX The authors are ordered alphabetically to represent their roughly equal contributions to the code and this manuscript. SC, TH, IR, and CU are grateful for the possibility to participate in CIDER 2012, where this work was initiated. CIDER 2012 is funded through NSF FESD grant 1135452. CIDER also funded a follow-up meeting for this project. We thank all the fellow member of the Cider Mg/Si team for their input: Valentina Magni, Yu Huang, JiaChao Liu, Marc Hirschmann, and Barbara Romanowicz. We thank Lars Stixrude for providing benchmarking calculations and Motohiko Murakami for providing various parameters. We also welcomed helpful discussions with Zack Geballe, Bill McDonough, Quentin Williams, Wendy Panero, and Wolfgang Bangerth. SC is supported through NSF/CSEDI grant 1067513 and Draper's Company Research Fellowship from Pembroke College, Cambridge. TH is supported in part through the Computational Infrastructure in Geodynamics initiative (CIG), through the NSF EAR-0949446 and The University of California-Davis and by Award KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST). IR is supported through NSF grant EAR-1246670. CU is supported by NSF CAREER grant EAR-60023026 to Wendy R. Panero. CR ANDERSON OL, 1982, PHILOS T R SOC A, V306, P21, DOI 10.1098/rsta.1982.0063 Antonangeli D, 2011, SCIENCE, V331, P64, DOI 10.1126/science.1198429 BROWN JM, 1981, GEOPHYS J ROY ASTR S, V66, P579, DOI 10.1111/j.1365-246X.1981.tb04891.x Cammarano F, 2005, EARTH PLANET SC LETT, V232, P227, DOI 10.1016/j.epsl.2005.01.031 Cobden L, 2009, J GEOPHYS RES-SOL EA, V114, DOI 10.1029/2008JB006262 Connolly JAD, 2005, EARTH PLANET SC LETT, V236, P524, DOI 10.1016/j.epsl.2005.04.033 Davies DR, 2012, EARTH PLANET SC LETT, V353, P253, DOI 10.1016/j.epsl.2012.08.016 Deschamps F, 2003, PHYS EARTH PLANET IN, V140, P277, DOI 10.1016/j.pepi.2003.09.004 Deschamps F, 2012, EARTH PLANET SC LETT, V349, P198, DOI 10.1016/j.epsl.2012.07.012 DZIEWONSKI AM, 1981, PHYS EARTH PLANET IN, V25, P297, DOI 10.1016/0031-9201(81)90046-7 He YM, 2012, J GEOPHYS RES-SOL EA, V117, DOI 10.1029/2012JB009436 Hernandez ER, 2013, EARTH PLANET SC LETT, V364, P37, DOI 10.1016/j.epsl.2013.01.005 Holland TJ, 2013, J PETROL, V54, P1901, DOI 10.1093/petrology/egt035 Houser C, 2008, GEOPHYS J INT, V174, P195, DOI 10.1111/J.1365-246X.2008.03763.X Inoue T, 2010, PHYS EARTH PLANET IN, V183, P245, DOI 10.1016/j.pepi.2010.08.003 ITA J, 1992, J GEOPHYS RES-SOL EA, V97, P6849, DOI 10.1029/92JB00068 Jackson MG, 2010, NATURE, V466, P853, DOI 10.1038/nature09287 KARATO S, 1990, REV GEOPHYS, V28, P399, DOI 10.1029/RG028i004p00399 KENNETT BLN, 1995, GEOPHYS J INT, V122, P108, DOI 10.1111/j.1365-246X.1995.tb03540.x Kudo Y, 2012, EARTH PLANET SC LETT, V349, P1, DOI 10.1016/j.epsl.2012.06.040 Kustowski B, 2008, J GEOPHYS RES-SOL EA, V113, DOI 10.1029/2007JB005169 Lekic V, 2012, EARTH PLANET SC LETT, V357, P68, DOI 10.1016/j.epsl.2012.09.014 Li C, 2008, GEOCHEM GEOPHY GEOSY, V9, DOI 10.1029/2007GC001806 Lin JF, 2007, SCIENCE, V317, P1740, DOI 10.1126/science.1144997 Lin JF, 2013, REV GEOPHYS, V51, P244, DOI 10.1002/rog.20010 Mao Z, 2011, EARTH PLANET SC LETT, V309, P179, DOI 10.1016/j.epsl.2011.06.030 Matas J, 2007, GEOPHYS J INT, V170, P764, DOI 10.1111/j.1365-246X.2007.03454.x Matas J, 2007, EARTH PLANET SC LETT, V259, P51, DOI 10.1016/j.epsl.2007.04.028 Mattern E, 2005, GEOPHYS J INT, V160, P973, DOI 10.1111/j.1365-246X.2004.02549.x MCDONOUGH WF, 1995, CHEM GEOL, V120, P223, DOI 10.1016/0009-2541(94)00140-4 Megnin C, 2000, GEOPHYS J INT, V143, P709, DOI 10.1046/j.1365-246X.2000.00298.x MINSTER JB, 1981, PHILOS T R SOC A, V299, P319, DOI 10.1098/rsta.1981.0025 Mosca I, 2012, J GEOPHYS RES-SOL EA, V117, DOI 10.1029/2011JB008851 Murakami M., 2013, PHYS CHEM DEEP EARTH, P183 Murakami M, 2007, EARTH PLANET SC LETT, V256, P47, DOI 10.1016/j.epsl.2007.01.011 Murakami M, 2012, NATURE, V485, P90, DOI 10.1038/nature11004 Murakami M, 2009, EARTH PLANET SC LETT, V277, P123, DOI 10.1016/j.epsl.2008.10.010 Nakagawa T, 2012, GEOCHEM GEOPHY GEOSY, V13, DOI 10.1029/2012GC004325 Nakajima Y, 2012, J GEOPHYS RES-SOL EA, V117, DOI 10.1029/2012JB009151 Noguchi M, 2013, PHYS CHEM MINER, V40, P81, DOI 10.1007/s00269-012-0549-1 Nomura R, 2011, NATURE, V473, P199, DOI 10.1038/nature09940 Poirier J., 1991, INTRO PHYS EARTH Ritsema J, 2011, GEOPHYS J INT, V184, P1223, DOI 10.1111/j.1365-246X.2010.04884.x Schuberth BSA, 2012, GEOPHYS J INT, V188, P1393, DOI 10.1111/j.1365-246X.2011.05333.x Simmons NA, 2012, J GEOPHYS RES-SOL EA, V117, DOI 10.1029/2012JB009525 Simmons NA, 2010, J GEOPHYS RES-SOL EA, V115, DOI 10.1029/2010JB007631 Stixrude L, 2005, GEOPHYS J INT, V162, P610, DOI 10.1111/j.1365-246X.2005.02642.x Stixrude L, 2012, ANNU REV EARTH PL SC, V40, P569, DOI 10.1146/annurev.earth.36.031207.124244 Stixrude L, 2011, GEOPHYS J INT, V184, P1180, DOI 10.1111/j.1365-246X.2010.04890.x Styles E, 2011, GEOPHYS J INT, V184, P1371, DOI 10.1111/j.1365-246X.2010.04914.x Tackley PJ, 2000, SCIENCE, V288, P2002, DOI 10.1126/science.288.5473.2002 To A., 2005, EARTH PLANET SC LETT, V233, P1447 Trampert J, 2001, PHYS EARTH PLANET IN, V124, P255, DOI 10.1016/S0031-9201(01)00201-1 Trampert J, 2004, SCIENCE, V306, P853, DOI 10.1126/science.1101996 WATT JP, 1976, REV GEOPHYS, V14, P541, DOI 10.1029/RG014i004p00541 Wu ZQ, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.228501 Zhang ZG, 2013, EARTH PLANET SC LETT, V379, P1, DOI 10.1016/j.epsl.2013.07.034 NR 57 TC 47 Z9 48 U1 1 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1525-2027 J9 GEOCHEM GEOPHY GEOSY JI Geochem. Geophys. Geosyst. PD APR PY 2014 VL 15 IS 4 BP 1164 EP 1179 DI 10.1002/2013GC005122 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA AH9VR UT WOS:000336493400021 OA Bronze DA 2021-04-21 ER PT J AU Lyonnet, F Schienbein, I Stau, F Wingerter, A AF Lyonnet, F. Schienbein, I. Stau, F. Wingerter, A. TI PyR@TE Renormalization group equations for general gauge theories SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Renormalization group equations; Quantum field theory; Running coupling constants; Model building; Physics beyond the standard model ID QUANTUM-FIELD THEORY; MODEL; SUPERSYMMETRY; PROGRAM; SPHENO AB Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved-calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for "Python Renormalization group equations At Two-loop for Everyone". In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LATEX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Program summary Program title: PyR@TE Catalogue identifier: AERV_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer: Personal computer. Operating system: Tested on Fedora 15, MacOS 10 and 11, Ubuntu 12. Classification: 11.1. External routines: SymPy, PyYAML, NumPy, IPython, SciPy Nature of problem: Deriving the renormalization group equations for a general quantum field theory. Solution method: Group theory, tensor algebra Running time: Tens of seconds per model (one-loop), tens of minutes (two-loop) (C) 2014 Elsevier B.V. All rights reserved. C1 [Lyonnet, F.; Schienbein, I.; Wingerter, A.] UJF Grenoble 1, CNRS IN2P3, INPG, Lab Phys Subatom & Cosmol, F-38026 Grenoble, France. [Stau, F.] Univ Bonn, Bathe Ctr Theoret Phys, D-53115 Bonn, Germany. [Stau, F.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. RP Lyonnet, F (corresponding author), UJF Grenoble 1, CNRS IN2P3, INPG, Lab Phys Subatom & Cosmol, 53 Ave Martyrs, F-38026 Grenoble, France. EM florian.lyonnet@lpsc.in2p3.fr OI Staub, Florian/0000-0001-5911-5804 FU Ph.D. fellowship of the French Ministry for Education and Research; Theory-LHC- France initiative [CNRS/IN2P3]; DAAD project PROCOPE [54366701] FX We would like to thank Lorenzo Basso, Renato Fonseca, D.R.T. Jones, Werner Porod, and Stuart Raby for useful discussions. We are also indebted to Tomas Jazo and Josselin Proudom for carefully proof-reading the draft of this article. F.L. would like to thank Tomas Jezo for introducing him to Python and for always patiently answering his questions, and Matthew Rocklin for clarifying questions regarding the backward compatibility of SymPy. We are indebted to HepForge for hosting our project on their web pages. This work has been supported by a Ph.D. fellowship of the French Ministry for Education and Research and by the Theory-LHC- France initiative of the CNRS/IN2P3. The work of F.S. has been supported by the DAAD project PROCOPE Nr. 54366701. CR Aad G, 2012, PHYS LETT B, V716, P1, DOI 10.1016/j.physletb.2012.08.020 Allanach BC, 2010, COMPUT PHYS COMMUN, V181, P232, DOI 10.1016/j.cpc.2009.09.015 Allanach BC, 2002, COMPUT PHYS COMMUN, V143, P305, DOI 10.1016/S0010-4655(01)00460-X Arina C, 2012, NUCL PHYS B, V865, P430, DOI 10.1016/j.nuclphysb.2012.07.029 Basso L, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.055018 Branco GC, 2012, PHYS REP, V516, P1, DOI 10.1016/j.physrep.2012.02.002 Chatrchyan S, 2012, PHYS LETT B, V716, P30, DOI 10.1016/j.physletb.2012.08.021 Cheung C, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2012)105 Degrassi G., 2012, J HIGH ENERGY PHYS, V1208 Dubois P. F., 1996, COMPUTERS PHYS, V10 Ellwanger U, 2007, COMPUT PHYS COMMUN, V177, P399, DOI 10.1016/j.cpc.2007.05.001 Evans C., 2001, YAML AINT MARKUP LAN Fonseca R.M., RENORMALIZATION GROU Fonseca RM, 2012, COMPUT PHYS COMMUN, V183, P2298, DOI 10.1016/j.cpc.2012.05.017 Giudice GF, 2004, NUCL PHYS B, V699, P65, DOI 10.1016/j.nuclphysb.2004.08.001 HABER HE, 1985, PHYS REP, V117, P75, DOI 10.1016/0370-1573(85)90051-1 HOLDOM B, 1986, PHYS LETT B, V166, P196, DOI 10.1016/0370-2693(86)91377-8 Holthausen M., 2012, J HIGH ENERGY PHYS, V1202, P037 Ishiwata K, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.055025 JACK I, 1982, NUCL PHYS B, V207, P474, DOI 10.1016/0550-3213(82)90212-7 JACK I, 1983, J PHYS A-MATH GEN, V16, P1101, DOI 10.1088/0305-4470/16/5/026 JACK I, 1985, NUCL PHYS B, V249, P472, DOI 10.1016/0550-3213(85)90088-4 Jones E., SCIPY OPEN SOURCE SC Luo MX, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.011601 Lyonnet F., 2013, PYR TE WEB PAGE MACHACEK ME, 1984, NUCL PHYS B, V236, P221, DOI 10.1016/0550-3213(84)90533-9 MACHACEK ME, 1983, NUCL PHYS B, V222, P83, DOI 10.1016/0550-3213(83)90610-7 MACHACEK ME, 1985, NUCL PHYS B, V249, P70, DOI 10.1016/0550-3213(85)90040-9 Martin S.P., HEPPH9709356 NILLES HP, 1984, PHYS REP, V110, P1, DOI 10.1016/0370-1573(84)90008-5 Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Pirogov YF, 1999, EUR PHYS J C, V10, P629, DOI 10.1007/s100529900035 Porod W, 2003, COMPUT PHYS COMMUN, V153, P275, DOI 10.1016/S0010-4655(03)00222-4 Porod W, 2012, COMPUT PHYS COMMUN, V183, P2458, DOI 10.1016/j.cpc.2012.05.021 SHER M, 1989, PHYS REP, V179, P273, DOI 10.1016/0370-1573(89)90061-6 Sperling M, 2013, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2013)132 Staub F., 2013, ARXIV13097223HEPPH Staub F, 2013, COMPUT PHYS COMMUN, V184, P1792, DOI 10.1016/j.cpc.2013.02.019 Staub F, 2011, COMPUT PHYS COMMUN, V182, P808, DOI 10.1016/j.cpc.2010.11.030 Staub F, 2010, COMPUT PHYS COMMUN, V181, P1077, DOI 10.1016/j.cpc.2010.01.011 SymPy Development Team, SYMP PYTH LIB SYMB M Van Rossum G., 1991, CWI Q, V4, P283 Wingerter A, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.095012 NR 43 TC 47 Z9 47 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAR PY 2014 VL 185 IS 3 BP 1130 EP 1152 DI 10.1016/j.cpc.2013.12.002 PG 23 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA AB6SF UT WOS:000331919100044 DA 2021-04-21 ER PT J AU Leinonen, J AF Leinonen, Jussi TI High-level interface to T-matrix scattering calculations: architecture, capabilities and limitations SO OPTICS EXPRESS LA English DT Article ID LIGHT-SCATTERING; PARTICLES AB The PyTMatrix package was designed with the objective of providing a simple, extensible interface to T-Matrix electromagnetic scattering calculations performed using an extensively validated numerical core. The interface, implemented in the Python programming language, facilitates automation of the calculations and further analysis of the results through direct integration of both the inputs and the outputs of the calculations to numerical analysis software. This article describes the architecture and design of the package, illustrating how the concepts in the physics of electromagnetic scattering are mapped into data and code models in the computer software. The resulting capabilities and their consequences for the usability and performance of the package are explored. (C) 2014 Optical Society of America C1 Finnish Meteorol Inst, FI-00101 Helsinki, Finland. RP Leinonen, J (corresponding author), Finnish Meteorol Inst, POB 503, FI-00101 Helsinki, Finland. EM jussi.leinonen@fmi.fi OI Leinonen, Jussi/0000-0002-6560-6316 FU Academy of FinlandAcademy of FinlandEuropean Commission [255718]; Finnish Funding Agency for Technology and Innovation (Tekes)Finnish Funding Agency for Technology & Innovation (TEKES) [3155/31/2009] FX The research leading to this article was supported by the Academy of Finland (grant 255718) and the Finnish Funding Agency for Technology and Innovation (Tekes; grant 3155/31/2009). The author would like to thank Dr. M. I. Mishchenko for the permission to include his T-matrix code as a part of PyTMatrix under the MIT license. Thanks are also in order to the early users of PyTMatrix who submitted feedback and bug reports, in particular Dr. D. Moisseev, Dr. J. Richard, Dr. J. Hardin and K. Muhlbauer. The NumPy and SciPy communities are gratefully acknowledged for making these tools freely available. CR AYDIN K, 2000, LIGHT SCATTERING NON, pCH16 Bringi V. N., 2001, POLARIMETRIC DOPPLER Fernandes AD, 2006, EVOL BIOINFORM, V2, P251 Fung J, 2012, J QUANT SPECTROSC RA, V113, P212, DOI 10.1016/j.jqsrt.2012.06.007 GAUTSCHI W, 1994, ACM T MATH SOFTWARE, V20, P21, DOI 10.1145/174603.174605 Gogoi A, 2011, J QUANT SPECTROSC RA, V112, P2713, DOI 10.1016/j.jqsrt.2011.07.010 Hellmers J, 2012, J QUANT SPECTROSC RA, V113, P2243, DOI 10.1016/j.jqsrt.2012.07.006 Jones E., 2001, SCIPY OPEN SOURCE SC Leinonen J., PYTMATRIX KDP EXAMPL Leinonen J., PYTHON CODE T MATRIX Leinonen J, 2012, J APPL METEOROL CLIM, V51, P392, DOI 10.1175/JAMC-D-11-056.1 Mishchenko MI, 1998, J QUANT SPECTROSC RA, V60, P309, DOI 10.1016/S0022-4073(98)00008-9 Mishchenko MI, 1996, J QUANT SPECTROSC RA, V55, P535, DOI 10.1016/0022-4073(96)00002-7 MISHCHENKO MI, 2000, LIGHT SCATTERING NON, pCH6 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Testud J, 2001, J APPL METEOROL, V40, P1118, DOI 10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2 van de Hulst H. C., 1981, LIGHT SCATTERING SMA WATERMAN PC, 1965, PR INST ELECTR ELECT, V53, P805, DOI 10.1109/PROC.1965.4058 NR 18 TC 46 Z9 48 U1 0 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 27 PY 2014 VL 22 IS 2 BP 1655 EP 1660 DI 10.1364/OE.22.001655 PG 6 WC Optics SC Optics GA 302EQ UT WOS:000330585100046 PM 24515171 OA DOAJ Gold DA 2021-04-21 ER PT B AU Masciola, M Jonkman, J Robertson, A AF Masciola, Marco Jonkman, Jason Robertson, Amy GP ASME TI EXTENDING THE CAPABILITIES OF THE MOORING ANALYSIS PROGRAM: A SURVEY OF DYNAMIC MOORING LINE THEORIES FOR INTEGRATION INTO FAST SO 33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9A: OCEAN RENEWABLE ENERGY LA English DT Proceedings Paper CT 33rd ASME International Conference on Ocean, Offshore and Arctic Engineering CY JUN 08-13, 2014 CL San Francisco, CA SP ASME, Ocean, Offshore & Arct Engn Div ID STEADY-STATE ANALYSIS; FINITE-ELEMENT; NUMERICAL-SIMULATION; CABLE MODEL; SYSTEM; FORMULATION AB Techniques to model dynamic mooring lines take various forms. The most widely used models include a heuristic representation of the physics (such as a lumped-mass system), a finite-element analysis discretization of the lines (discretized in space), or a finite-difference model (which is discretized in both space and time). In this paper, the authors explore the features of the various models, weigh the advantages of each, and propose a plan for implementing one dynamic mooring line model into the open-source Mooring Analysis Program (MAP). MAP is currently used as a module for the FAST offshore wind turbine computer-aided engineering (CAE) tool to model mooring systems quasi-statically, although dynamic mooring capabilities are desired. Based on the exploration in this paper, the lumped-mass representation is selected for implementation in MAP based on its simplicity, low computational cost, and ability to provide physics similar to those captured by higher-order models. To begin, the underlying theories defining the three classes of dynamic mooring line models are identified and explored. This leads to insight into the capabilities of each representation. These capabilities are weighed against the current needs of the FAST wind turbine CAE tool, to which MAP will be coupled. Based on the assessment, a plan for integrating the dynamic mooring line theory into the current MAP structure is developed. Common problems arising from the determination of the model static equilibrium and known issues with numerical stability are addressed. Because MAP is a module that FAST can call, a plan consistent with the FAST modularization framework principles is described. Adding dynamic mooring line capabilities extends the features in MAP and also allows uncoupled analysis to be performed through MAP's native Python bindings. C1 [Masciola, Marco; Jonkman, Jason; Robertson, Amy] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Masciola, M (corresponding author), Natl Renewable Energy Lab, Golden, CO 80401 USA. CR ABLOW CM, 1983, OCEAN ENG, V10, P443, DOI 10.1016/0029-8018(83)90046-X Adrezin R, 1996, J AEROSPACE ENG, V9, P114, DOI 10.1061/(ASCE)0893-1321(1996)9:4(114) Asher U.M., 1998, COMPUTER METHODS ORD Buckham B, 2004, J APPL MECH-T ASME, V71, P476, DOI 10.1115/1.1755691 Buckham B, 2003, OCEAN ENG, V30, P453, DOI 10.1016/S0029-8018(02)00029-X Buckham B. J., 2003, THESIS U VICTORIA BR Chai YT, 2002, OCEAN ENG, V29, P627, DOI 10.1016/S0029-8018(01)00038-5 Chiou R., 1989, THESIS OREGON STATE CHUNG J, 1993, J APPL MECH-T ASME, V60, P371, DOI 10.1115/1.2900803 DALANE JI, 1997, MARINE STRUCTURES, V10, P611 DEZOYSA APK, 1978, OCEAN ENG, V5, P209, DOI 10.1016/0029-8018(78)90038-0 Driscoll FR, 2000, APPL OCEAN RES, V22, P169, DOI 10.1016/S0141-1187(00)00002-X Flannery B. P., 1992, NUMERICAL RECIPES C FRISWELL MI, 1995, J WATERW PORT C-ASCE, V121, P98, DOI 10.1061/(ASCE)0733-950X(1995)121:2(98) Garrett DL, 2005, OCEAN ENG, V32, P802, DOI 10.1016/j.oceaneng.2004.10.010 GARRETT DL, 1982, J ENERG RESOUR-ASME, V104, P302, DOI 10.1115/1.3230419 Gatti-Bono C., 2004, J INT SOC OFFSHORE P, V14 Gobat JI, 2006, OCEAN ENG, V33, P1373, DOI 10.1016/j.oceaneng.2005.07.012 GOBAT JI, 2000, THESIS MIT WOODS HOL Golub GH., 1996, MATRIX COMPUTATIONS Griffin O. M., 1989, J OFFSHORE MECH ARCT, V11, P298 Hall JF, 2006, EARTHQ ENG STRUCT D, V35, P525, DOI 10.1002/eqe.541 HUANG S, 1994, OCEAN ENG, V21, P587, DOI 10.1016/0029-8018(94)90008-6 Hughes T. J. R., 1977, Computer Methods in Applied Mechanics and Engineering, V10, P135, DOI 10.1016/0045-7825(77)90001-9 Inman D.J., 2007, ENG VIBRATIONS Irvine M., 1993, CABLE STRUCTURES Jonkman J., 2013, 51 AIAA AER M DALL T Jonkman J.M, 2005, FAST USERS GUIDE UPD Jonkman J. M., 2013, 51 AIAA AER SCI M DA Kaczmarczyk S, 2003, J SOUND VIB, V262, P219, DOI 10.1016/S0022-460X(02)01137-9 Kennedy Robert M., 1981, OCEANS 81, P966, DOI 10.1109/OCEANS.1981.1151553 Ketchman Jeffrey, 1975, OCEAN 75 Conference, P98, DOI 10.1109/OCEANS.1975.1154031 Lambert C, 2007, IEEE-ASME T MECH, V12, P32, DOI 10.1109/TMECH.2006.886251 LEONARD JW, 1981, ENG STRUCT, V3, P153, DOI 10.1016/0141-0296(81)90024-9 Liu Y, 2002, L2 STABILITY ANAL DI LO A, 1982, J ENG MECH DIV-ASCE, V108, P605 Masciola M, 2013, 23 INT OFFSH POL ENG Masciola M, 2013, J OFFSHORE MECH ARCT, V135, DOI 10.1115/1.4023795 Masciola MD, 2012, J WATERW PORT COAST, V138, P164, DOI 10.1061/(ASCE)WW.1943-5460.0000117 Mehrabi AB, 1998, J STRUCT ENG-ASCE, V124, P1313, DOI 10.1061/(ASCE)0733-9445(1998)124:11(1313) Mekha BB, 1996, J STRUCT ENG-ASCE, V122, P142, DOI 10.1061/(ASCE)0733-9445(1996)122:2(142) Merchant H. C., 1973, P MTS IEEE OCEANS, V1, P390 Nahon M, 1999, AIAA MODELING AND SIMULATION TECHNOLOGIES CONFERENCE, P214 Nicoll R. A., 2004, THESIS U VICTORIA BR NORDGREN RP, 1974, J APPL MECH-T ASME, V41, P777, DOI 10.1115/1.3423387 O'Neill B., 1966, ELEMENTARY DIFFERENT PEYROT AH, 1979, COMPUT STRUCT, V10, P805 POWELL G, 1981, INT J NUMER METH ENG, V17, P1455, DOI 10.1002/nme.1620171003 RAN ZH, 2000, THESIS TEXAS A M U C Rupe R. C., 1975, T ASME, V74-WA, P1046 Sachin G, 2007, PHYSICS0702224 ARXIV Song H., 2013, 23 INT OFFSH POL ENG Sprague M. A., 2014, AIAA SCI TECHN FOR S Starossek U., 1994, STRUCT ENG INT, V4, P171, DOI DOI 10.2749/101686694780601908 TURNER MJ, 1956, J AERONAUT SCI, V23, P805, DOI 10.2514/8.3664 Walton T.S., 1960, Mathematics of Computation, V14, P27, DOI 10.2307/2002982 Wang PH, 1998, J SOUND VIB, V209, P223, DOI 10.1006/jsvi.1997.1227 WEBSTER RL, 1980, COMPUT STRUCT, V11, P137, DOI 10.1016/0045-7949(80)90153-4 Williams P, 2007, J GUID CONTROL DYNAM, V30, P753, DOI 10.2514/1.20433 Wu S., 1995, MAR STRUCT, V8, P585 Zienkiewicz OC., 1977, FINITE ELEMENT METHO, V3 Zueck R., 1995, INT S CABL DYN LIEG NR 62 TC 4 Z9 4 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4553-0 PY 2014 AR UNSP V09AT09A032 PG 13 WC Energy & Fuels; Engineering, Ocean; Engineering, Mechanical SC Energy & Fuels; Engineering GA BD7SC UT WOS:000363499000032 DA 2021-04-21 ER PT B AU Alioli, M Morandini, M Masarati, P AF Alioli, Mattia Morandini, Marco Masarati, Pierangelo GP ASME TI COUPLED MULTIBODY-FLUID DYNAMICS SIMULATION OF FLAPPING WINGS SO PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 7B LA English DT Proceedings Paper CT ASME International Design Engineering Technical Conferences / Computers and Information in Engineering Conference (IDETC/CIE) CY AUG 04-07, 2013 CL Portland, OR SP ASME, Design Engn Div, ASME, Comp & Informat Engn Div ID PROPULSION; AIRFOIL AB This paper deals with the coupled structural and fluid-dynamics analysis of flexible flapping wings using multibody dynamics. A general-purpose multidisciplinary multibody solver is coupled with a computational fluid dynamics code by means of a general-purpose, meshless boundary interfacing approach based on Moving Least Squares with Radial Basis Functions. The general-purpose, free software multibody solver MBDyn is used. A nonlinear 4-node shell element has been used for the structural model. The fluid dynamics code is based on a stabilized finite element approximation of the unsteady Navier-Stokes equations. The method (often referred to in the literature as G2 method) has been implemented within the programming environment provided by the free software project FEniCS, a collection of libraries specifically designed for the automated and efficient solution of differential equations. FEniCS provides extensive scripting capabilities, with a domain-specific language for the specification of variational formulations of Partial Differential Equations that is embedded within the programming language Python. This approach makes it possible to easily and quickly build complex simulation codes that are, at the same time, extremely efficient and easily adapted to run in parallel. The coupling of the multibody and Navier-Stokes codes is strictly enforced at each time step. The fluid dynamics discretization is automatically refined to keep the error on the overall lift and drag coefficients below a user-defined tolerance. The method is first tested by computing the drag force of a non-oscillating NACA 0012 airfoil traveling in air Subsequently, the drag and lift forces on a rigid and flexible oscillating NACA 0012 wing are compared with experimental data. Encouraging results obtained from the modeling and analysis of the dynamics and aeroelasticity of flexible oscillating wing models confirm the ability of the structural and fluid dynamics models to capture the physics of the problem. C1 [Alioli, Mattia; Morandini, Marco; Masarati, Pierangelo] Politecn Milan, Dipartimento Sci & Tecnol Aerospaziali, I-20156 Milan, Italy. RP Masarati, P (corresponding author), Politecn Milan, Dipartimento Sci & Tecnol Aerospaziali, Via Masa 34, I-20156 Milan, Italy. EM mattia.alioli@mail.polimi.it; marco.morandini@polimi.it; pierangelo.masarati@.polimi.it RI Masarati, Pierangelo/I-3898-2012; Morandini, Marco/E-5117-2012 OI Masarati, Pierangelo/0000-0002-9347-7654; Morandini, Marco/0000-0002-1992-9077 CR Guermond JL, 1997, J COMPUT PHYS, V132, P12, DOI 10.1006/jcph.1996.5587 Heathcote S, 2008, J FLUID STRUCT, V24, P183, DOI 10.1016/j.jfluidstructs.2007.08.003 Heathcote S, 2004, AIAA J, V42, P2196, DOI 10.2514/1.5299 Hoffman J., 2007, APPL MATH BODY SOUL, DOI [10.1007/978-3-540-46533-1, DOI 10.1007/978-3-540-46533-1] John V, 2002, J COMPUT APPL MATH, V147, P287, DOI 10.1016/S0377-0427(02)00437-5 Jones KD, 1998, AIAA J, V36, P1240, DOI 10.2514/2.505 Malhan R., 2013, AM HEL SOC 5 INT SPE MALHAN R., 2012, 53 AIAA ASME ASCE AH Masarati P., 2011, MULTIBODY DYNAMICS Masarati P., 2011, 29 AIAA APPL AER C Quaranta G., 2005, COUPLED PROBLEMS 200 Rognes M. E., 2012, SIAM J SCI COMPUTING Young J, 2004, AIAA J, V42, P2042, DOI 10.2514/1.5070 NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5597-3 PY 2014 AR UNSP V07BT10A014-1 PG 11 WC Automation & Control Systems; Engineering, Mechanical; Operations Research & Management Science SC Automation & Control Systems; Engineering; Operations Research & Management Science GA BD6ZU UT WOS:000362796000014 DA 2021-04-21 ER PT B AU Kos, L AF Kos, Leon CA ITM-TF Contributors BE Biljanovic, P Butkovic, Z Skala, K Golubic, S CicinSain, M Sruk, V Ribaric, S Gros, S Vrdoljak, B Mauher, M Cetusic, G TI Visualization Support for Code Development in EUROfusion Integrated Modelling SO 2014 37TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO) LA English DT Proceedings Paper CT 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) CY MAY 26-30, 2014 CL Opatija, CROATIA SP MIPRO Croatian Soc, IEEE Reg 8, Ericsson Nikola Tesla Zagreb, T Croatian Telecom Zagreb, Koncar Elect Ind Zagreb, InfoDom Zagreb, HEP Croatian Elect Co Zagreb, VIPNet Zagreb, Storm Comp Zagreb, Transmitters & Commun Co Zagreb, King ICT Zagreb, IN2 Zagreb, Altpro Zagreb, Microsoft Croatia, Hewlett Packard Croatia, Micro Link Zagreb, Mjerne Tehnologije Zagreb, Selmet Zagreb, Ib ProCADD Ljubljana, Nomen Rijeka, Croatian Post & Elect Commun Agcy, Univ Zagreb, Univ Rijeka, IEEE Croatia Sect, Rudjer Boskov Inst Zagreb, Univ Rijeka Fac Engn & Maritime Studies, Univ Zagreb, Fac Elect Engn & Comp Zagreb, Univ Zagreb, Fac Org & Informat Varazdin, Minist Sci, Educ & Sports Republ Croatia, Minist Maritime Affairs, Transport & Infrastructure Republ Croatia, Minist Econ Republ Croatia, Croatian Chamber Econ ID UNIVERSAL ACCESS LAYER AB The need for diverse visualization tools within integrated modelling is based on the requirement of physics codes to be coupled under the tailored database model from which these visualization tools read data. We discuss these visualization requirements for fusion integrated modeling, and the existing visualization tools developed within the scope of the European Integrated Modelling (EU IM) framework. The datastructure model provides fundamental description for data exchange between codes that are developed in a variety of programming languages. From this description in XML schema definition one can generate required language interfaces and database access layer routines. The persistent storage database has to efficiently support codes running on HPC with memory caching mechanisms. Visualization tools can be treated as one of the codes running in-situ or as post-process. The complexity of the fusion datastructure and several visualization tools requires that scientists describe standard visualizations in XML schema directly in order to instruct visualization tools what are meaningful visualizations available in the very database. Besides standard visualizations there are specific visualizations that cannot be easily described (as mapping or axes linking) without algorithm. For the custom visualizations we provide Python snippets collected in user-shared library. Interfaces to scientific workflow engine Kepler for visualization with VisIt visualization tool and Matplotlib are presented. C1 [Kos, Leon; ITM-TF Contributors] Univ Ljubljana, LECAD, Ljubljana, Slovenia. RP Kos, L (corresponding author), Univ Ljubljana, LECAD, Ljubljana, Slovenia. EM leon.kos@lecad.fs.uni-lj.si RI Artaud, Jean-Francois J/J-2068-2012; Schneider, Mireille/B-7821-2010 OI Kos, Leon/0000-0002-1790-7093 CR Altintas I, 2004, 16TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, P423 Altintas I, 2006, LECT NOTES COMPUT SC, V4145, P118 Coster DP, 2010, IEEE T PLASMA SCI, V38, P2085, DOI 10.1109/TPS.2010.2056707 Cummings J, 2010, EUROMICRO WORKSHOP P, P428, DOI 10.1109/PDP.2010.97 Docan C., 2010, HPDC, P25, DOI DOI 10.1145/1851476.1851481 Docan C, 2010, CONCURR COMP-PRACT E, V22, P1181, DOI 10.1002/cpe.1567 Galonska A, 2013, COMPUT PHYS COMMUN, V184, P638, DOI 10.1016/j.cpc.2012.10.024 Haefele M, 2010, EUROMICRO WORKSHOP P, P498, DOI 10.1109/PDP.2010.76 Herman I., 2006, OVERVIEW XSLT XPATH Hoenen O., 2013, EPS 2013 EUR C 37D 4 Imbeaux F, 2010, COMPUT PHYS COMMUN, V181, P987, DOI 10.1016/j.cpc.2010.02.001 LLNL, VISIT DES OV OV DES Manduchi G, 2008, FUSION ENG DES, V83, P462, DOI 10.1016/j.fusengdes.2007.08.021 Pinches S., 2013, 55 ANN M APS DIV PLA, V58 Whitlock B., 2011, P 11 EUR C PAR GRAPH, P101, DOI DOI 10.2312/EGPGV/EGPGV11/101-109 NR 15 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-953-233-081-6 PY 2014 BP 392 EP 397 PG 6 WC Engineering, Electrical & Electronic SC Engineering GA BB8DQ UT WOS:000346438700077 DA 2021-04-21 ER PT J AU Sanchez-Martinez, M Crehuet, R AF Sanchez-Martinez, M. Crehuet, R. TI Application of the maximum entropy principle to determine ensembles of intrinsically disordered proteins from residual dipolar couplings SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID STRUCTURAL ENSEMBLES; STATE ENSEMBLES; NMR; RECOGNITION; SIMULATIONS; REFINEMENT; LANDSCAPE; FRAMEWORK; EFFICIENT; MODELS AB We present a method based on the maximum entropy principle that can re-weight an ensemble of protein structures based on data from residual dipolar couplings (RDCs). The RDCs of intrinsically disordered proteins (IDPs) provide information on the secondary structure elements present in an ensemble; however even two sets of RDCs are not enough to fully determine the distribution of conformations, and the force field used to generate the structures has a pervasive influence on the refined ensemble. Two physics-based coarse-grained force fields, Profasi and Campari, are able to predict the secondary structure elements present in an IDP, but even after including the RDC data, the re-weighted ensembles differ between both force fields. Thus the spread of IDP ensembles highlights the need for better force fields. We distribute our algorithm in an open-source Python code. C1 [Sanchez-Martinez, M.; Crehuet, R.] CSIC, Inst Adv Chem Catalunya IQAC, Madrid, Spain. RP Crehuet, R (corresponding author), CSIC, Inst Adv Chem Catalunya IQAC, Madrid, Spain. EM ramon.crehuet@iqac.csic.es RI Sanchez-Martinez, Melchor/A-3392-2014; Crehuet, Ramon/G-4140-2011 OI Sanchez-Martinez, Melchor/0000-0002-3674-8577; Crehuet, Ramon/0000-0002-6687-382X FU Ministerio de Economia y CompetitividadSpanish Government [CTQ2012-33324]; Generalitat de CatalunyaGeneralitat de Catalunya [2009SGR01472]; Ministerio de Economia y CompetitividadSpanish Government FX We would like to thank X. Salvatella and P. Bernado for critically reading the manuscript. We acknowledge financial support from the Ministerio de Economia y Competitividad (CTQ2012-33324) and the Generalitat de Catalunya (2009SGR01472). MS-M thanks the Ministerio de Economia y Competitividad for a predoctoral fellowship. We thank the CCUC and the RES (BCV-2013-3-0015) for computational resources. CR Angyan AF, 2013, MOLECULES, V18, P10548, DOI 10.3390/molecules180910548 Babu MM, 2011, CURR OPIN STRUC BIOL, V21, P432, DOI 10.1016/j.sbi.2011.03.011 Beauchamp KA, 2014, BIOPHYS J, V106, P1381, DOI 10.1016/j.bpj.2014.02.009 Berlin K, 2013, J AM CHEM SOC, V135, P16595, DOI 10.1021/ja4083717 Bernado P, 2005, P NATL ACAD SCI USA, V102, P17002, DOI 10.1073/pnas.0506202102 Boomsma W, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003406 Fenwick RB, 2011, EUR BIOPHYS J BIOPHY, V40, P1339, DOI 10.1007/s00249-011-0754-8 Burgi R, 2001, J BIOMOL NMR, V19, P305, DOI 10.1023/A:1011295422203 Cavalli A, 2013, J CHEM PHYS, V138, DOI 10.1063/1.4793625 Chen K, 2012, TOP CURR CHEM, V326, P47, DOI 10.1007/128_2011_215 Choy WY, 2001, J MOL BIOL, V308, P1011, DOI 10.1006/jmbi.2001.4750 Cong X, 2013, J CHEM THEORY COMPUT, V9, P5158, DOI 10.1021/ct400534k Daughdrill GW, 2012, MOL BIOSYST, V8, P308, DOI 10.1039/c1mb05243h Esteban-Martin S, 2010, J AM CHEM SOC, V132, P4626, DOI 10.1021/ja906995x Feldman HJ, 2000, PROTEINS, V39, P112, DOI 10.1002/(SICI)1097-0134(20000501)39:2<112::AID-PROT2>3.0.CO;2-B Fisher CK, 2012, BIOCOMPUT-PAC SYM, P82 Fisher CK, 2011, CURR OPIN STRUC BIOL, V21, P426, DOI 10.1016/j.sbi.2011.04.001 Fisher CK, 2010, J AM CHEM SOC, V132, P14919, DOI 10.1021/ja105832g Fuxreiter M, 2012, MOL BIOSYST, V8, P168, DOI 10.1039/c1mb05234a Hsu WL, 2013, PROTEIN SCI, V22, P258, DOI 10.1002/pro.2207 Iesmantavicius V, 2014, ANGEW CHEM INT EDIT, V53, P1548, DOI 10.1002/anie.201307712 Iglesias Jelisa, 2013, Intrinsically Disord Proteins, V1, pe25323, DOI 10.4161/idp.25323 Irback A, 2005, BIOPHYS J, V88, P1560, DOI 10.1529/biophysj.104.050427 Irback A, 2006, J COMPUT CHEM, V27, P1548, DOI 10.1002/jcc.20452 Irback Anders, 2009, PMC Biophys, V2, P2, DOI 10.1186/1757-5036-2-2 JAYNES ET, 1957, PHYS REV, V106, P620, DOI 10.1103/PhysRev.106.620 Jensen MR, 2008, J AM CHEM SOC, V130, P8055, DOI 10.1021/ja801332d Jensen MR, 2014, P NATL ACAD SCI USA, V111, pE1557, DOI 10.1073/pnas.1323876111 Jensen MR, 2009, STRUCTURE, V17, P1169, DOI 10.1016/j.str.2009.08.001 Jones E., 2001, SCIPY OPEN SOURCE SC Jonsson SA, 2012, PROTEINS, V80, P2169, DOI 10.1002/prot.24107 Mao AH, 2010, P NATL ACAD SCI USA, V107, P8183, DOI 10.1073/pnas.0911107107 Marsh J. A., 2007, J MOL BIOL, V367, P1494 Marsh JA, 2008, J AM CHEM SOC, V130, P7804, DOI 10.1021/ja802220c Marsh JA, 2012, PROTEINS, V80, P556, DOI 10.1002/prot.23220 Meier S, 2007, J AM CHEM SOC, V129, P9799, DOI 10.1021/ja0724339 Mohan A, 2006, J MOL BIOL, V362, P1043, DOI 10.1016/j.jmb.2006.07.087 Mohan Sabitha, 2013, 2013 Conference on Lasers & Electro-Optics. Europe & International Quantum Electronics Conference (CLEO EUROPE/IQEC), DOI 10.1109/CLEOE-IQEC.2013.6800917 Nodet G, 2009, J AM CHEM SOC, V131, P17908, DOI 10.1021/ja9069024 Obolensky OI, 2007, J BIOMOL NMR, V39, P1, DOI 10.1007/s10858-007-9169-3 Olsson S, 2014, J CHEM THEORY COMPUT, V10, P3484, DOI 10.1021/ct5001236 Olsson S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079439 Olsson S, 2011, J MAGN RESON, V213, P182, DOI 10.1016/j.jmr.2011.08.039 Ozenne V, 2012, BIOINFORMATICS, V28, P1463, DOI 10.1093/bioinformatics/bts172 Patil A, 2010, J STAT SOFTW, V35, P1 Pitera JW, 2012, J CHEM THEORY COMPUT, V8, P3445, DOI 10.1021/ct300112v Presse S, 2013, REV MOD PHYS, V85, P1115, DOI 10.1103/RevModPhys.85.1115 Richter B, 2007, J BIOMOL NMR, V37, P117, DOI 10.1007/s10858-006-9117-7 Rieping W, 2005, SCIENCE, V309, P303, DOI 10.1126/science.1110428 Roux B, 2013, J CHEM PHYS, V138, DOI 10.1063/1.4792208 Rozycki B, 2011, STRUCTURE, V19, P109, DOI 10.1016/j.str.2010.10.006 Salmon Loic, 2012, Methods Mol Biol, V895, P115, DOI 10.1007/978-1-61779-927-3_9 Schneider R, 2012, MOL BIOSYST, V8, P58, DOI 10.1039/c1mb05291h Uversky VN, 2008, ANNU REV BIOPHYS, V37, P215, DOI 10.1146/annurev.biophys.37.032807.125924 Varadi M, 2014, NUCLEIC ACIDS RES, V42, pD326, DOI 10.1093/nar/gkt960 Vitalis A, 2009, J COMPUT CHEM, V30, P673, DOI 10.1002/jcc.21005 Wang JH, 2011, INT J MOL SCI, V12, P3205, DOI 10.3390/ijms12053205 Weinstock DS, 2007, J AM CHEM SOC, V129, P4858, DOI 10.1021/ja0677517 White AD, 2014, J CHEM THEORY COMPUT, V10, P3023, DOI 10.1021/ct500320c Zweckstetter M, 2008, NAT PROTOC, V3, P679, DOI 10.1038/nprot.2008.36 NR 60 TC 12 Z9 12 U1 0 U2 14 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2014 VL 16 IS 47 BP 26030 EP 26039 DI 10.1039/c4cp03114h PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AT8UW UT WOS:000345208200041 PM 25358803 OA Other Gold, Green Published DA 2021-04-21 ER PT S AU Bhimji, W Bristow, T Washbrook, A AF Bhimji, W. Bristow, T. Washbrook, A. GP IOP TI HEPDOOP: High-Energy Physics Analysis using Hadoop SO 20TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2013), PARTS 1-6 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY OCT 14-18, 2013 CL Amsterdam, NETHERLANDS AB We perform a LHC data analysis workflow using tools and data formats that are commonly used in the "Big Data" community outside High Energy Physics (HEP). These include Apache Avro for serialisation to binary files, Pig and Hadoop for mass data processing and Python Scikit-Learn for multi-variate analysis. Comparison is made with the same analysis performed with current HEP tools in ROOT. C1 [Bhimji, W.; Bristow, T.; Washbrook, A.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. RP Bhimji, W (corresponding author), Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. EM wbhimji@staffmail.ed.ac.uk CR Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Dean J, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE '04), P137 Hoecker Andreas, 2007, ARXIVPHYSICS0703039 Melnik S, 2010, PROC VLDB ENDOW, V3, P330 Olston C, 2008, P 2008 ACM SIGMOD IN, P1099, DOI DOI 10.1145/1376616.1376726 Perez F, 2007, COMPUT SCI ENG, V9, P21, DOI 10.1109/MCSE.2007.53 Shvachko K., 2010, SYMPOSIUM, P1, DOI DOI 10.1109/MSST.2010.5496972 NR 7 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2014 VL 513 AR 022004 DI 10.1088/1742-6596/513/2/022004 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BB2TA UT WOS:000342287200046 OA Bronze DA 2021-04-21 ER PT S AU Alloul, A Christensen, ND Degrande, C Duhr, C Fuks, B AF Alloul, Adam Christensen, Neil D. Degrande, Celine Duhr, Claude Fuks, Benjamin GP IOP TI New developments in FEYNRULES. SO 15TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2013) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT) CY MAY 16-21, 2013 CL Chinese Acad Sci, Inst High Energy Phys, Beijing, PEOPLES R CHINA SP Chinese Acad Sci, Natl Nat Sci Fdn China, Brookhaven Natl Lab, Peking Univ, Chinese Acad Sci, Theoret Phys Ctr Sci Facilities, Sugon HO Chinese Acad Sci, Inst High Energy Phys ID GENERATION; AMPLITUDES; MASS AB The program FEYNRULES is a MATHEMATICA package developed to facilitate the implementation of new physics theories into high-energy physics tools. Starting from a minimal set of information such as the model gauge symmetries, its particle content, parameters and Lagrangian, FEYNRULES provides all necessary routines to extract automatically from the Lagrangian (that can also be computed semi-automatically for supersymmetric theories) the associated Feynman rules. These can be further exported to several Monte Carlo event generators through dedicated interfaces, as well as translated into a PYTHON library, under the so-called UFO model format, agnostic of the model complexity, especially in terms of Lorentz and/or color structures appearing in the vertices or of number of external legs. In this work, we briefly report on the most recent new features that have been added to FEYNRULES, including full support for spin-3/2 fermions, a new module allowing for the automated diagonalization of the particle spectrum and a new set of routines dedicated to decay width calculations. C1 [Alloul, Adam; Fuks, Benjamin] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Dept Rech Subatom, CNRS IN2P3, 23 Rue Loess, F-67037 Strasbourg, France. [Alloul, Adam] Univ Haute Alsace, Grp Rech Phys Hautes Energies GRPHE, IUT Colmar, 34 rue Grillenbreit BP 50568, F-68008 Colmar 68008, France. [Christensen, Neil D.] Univ Pittsburgh, PITTsburgh Particle Phys Astrophys & Cosmol Ctr, Pittsburgh, PA 15260 USA. [Degrande, Celine] Univ Illinois, Dept Phys, 1110 W green St, Urbana, IL 61801 USA. [Duhr, Claude] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Duhr, Claude] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. [Fuks, Benjamin] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland. RP Alloul, A (corresponding author), Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Dept Rech Subatom, CNRS IN2P3, 23 Rue Loess, F-67037 Strasbourg, France. EM adam.alloul@iphc.cnrs.fr; neilc@pitt.edu; cdegrand@illinois.edu; duhrc@itp.phys.ethz.ch; benjamin.fuks@iphc.cnrs.fr OI Fuks, Benjamin/0000-0002-0041-0566; Duhr, Claude/0000-0001-5820-3570 FU Theory-LHC France [CNRS/IN2P3]; French [ANR 12 JS05 002 01]; French Ministry for Education and Research; U. S. Department of EnergyUnited States Department of Energy (DOE) [DE-FG02-13ER42001]; NSFNational Science Foundation (NSF) [PHY0757889]; LHC-TI under U. S. National Science FoundationNational Science Foundation (NSF) [NSF-PHY-0705682]; ERCEuropean Research Council (ERC)European Commission ["IterQCD"]; [DE-FG02-95ER40896] FX We are grateful to the organizers of the ACAT2013 conference for arranging such a nice event. This work has been partially supported by the Theory-LHC France initiative of the CNRS/IN2P3 and the French ANR 12 JS05 002 01 BATS@ LHC. A. A. has been supported by a Ph. D. fellowship of the French Ministry for Education and Research. Ce. D. was supported in part by the U. S. Department of Energy under Contract No. DE-FG02-13ER42001 and by the NSF grant PHY0757889; N. D. C. was supported in part by the LHC-TI under U. S. National Science Foundation, grant NSF-PHY-0705682, by PITT PACC, and by the U. S. Department of Energy under grant No. DE-FG02-95ER40896 and C. D. was supported by the ERC grant "IterQCD". CR Aad G, 2012, PHYS LETT B, V716, P1, DOI 10.1016/j.physletb.2012.08.020 Alloul A, 2013, EUR PHYS J C, V73, DOI 10.1140/epjc/s10052-013-2325-x Alwall J, 2008, AIP CONF PROC, V1078, P84, DOI 10.1063/1.3052056 ALWALL J, UNPUB Alwall J, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/09/028 Alwall J, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2011)128 Belyaev A, 2012, 12076082 Chatrchyan S, 2012, PHYS LETT B, V716, P30, DOI 10.1016/j.physletb.2012.08.021 Christensen N D, 2013, 13081668 Christensen N, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1541-5 Christensen ND, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1990-5 Christensen ND, 2009, COMPUT PHYS COMMUN, V180, P1614, DOI 10.1016/j.cpc.2009.02.018 de Aquino P, 2012, COMPUT PHYS COMMUN, V183, P2254, DOI 10.1016/j.cpc.2012.05.004 Degrande C, 2012, COMPUT PHYS COMMUN, V183, P1201, DOI 10.1016/j.cpc.2012.01.022 Duhr C, 2011, COMPUT PHYS COMMUN, V182, P2404, DOI 10.1016/j.cpc.2011.06.009 Fuks B, 2012, INT J MOD PHYS A, V27, DOI 10.1142/S0217751X12300074 Gleisberg T, 2004, J HIGH ENERGY PHYS Gleisberg T, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/02/007 Hahn T, 2001, COMPUT PHYS COMMUN, V140, P418, DOI 10.1016/S0010-4655(01)00290-9 Kilian W, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1742-y Maltoni F, 2003, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2003/02/027 Moretti M., 2001, HEPPH0102195 PUKHOV A, 2004, HEPPH0412191 STELZER T, 1994, COMPUT PHYS COMMUN, V81, P357, DOI 10.1016/0010-4655(94)90084-1 NR 24 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2014 VL 523 AR 012044 DI 10.1088/1742-6596/523/1/012044 PG 6 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic; Physics, Applied SC Computer Science; Engineering; Physics GA BA9NZ UT WOS:000339627300044 OA Bronze DA 2021-04-21 ER PT S AU Conte, E Fuks, B AF Conte, Eric Fuks, Benjamin GP IOP TI MADANALYSIS 5: status and new developments SO 15TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2013) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT) CY MAY 16-21, 2013 CL Chinese Acad Sci, Inst High Energy Phys, Beijing, PEOPLES R CHINA SP Chinese Acad Sci, Natl Nat Sci Fdn China, Brookhaven Natl Lab, Peking Univ, Chinese Acad Sci, Theoret Phys Ctr Sci Facilities, Sugon HO Chinese Acad Sci, Inst High Energy Phys AB MADANALYSIS 5 is a new PYTHON/C++ package facilitating phenomenological analyses that can be performed in the framework of Monte Carlo simulations of collisions to be produced in high-energy physics experiments. It allows one, by means of a user-friendly interpreter, to perform professional physics analyses in a very simple way. Starting from event samples as generated by any Monte Carlo event generator, large classes of selections can be implemented through intuitive commands, many standard kinematical distributions can be automatically represented by histograms and all results are eventually gathered into detailed HTML and LATEX reports. In this work, we briefly report on the latest developments of the code, focusing on the interface to the FASTJET program dedicated to jet reconstruction. C1 [Conte, Eric] Univ Haute Alsace, GRPHE, IUT Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France. [Fuks, Benjamin] CERN, Dept Phys, Div Theory, CH-1211 Geneva, Switzerland. [Fuks, Benjamin] Univ Strasbourg, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Dept Rech Subatomiques, F-67037 Strasbourg, France. RP Conte, E (corresponding author), Univ Haute Alsace, GRPHE, IUT Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France. EM eric.conte@iphc.cnrs.fr; benjamin.fuks@iphc.cnrs.fr OI Fuks, Benjamin/0000-0002-0041-0566 FU French ANRFrench National Research Agency (ANR) [12 JS05 002 01]; CNRS/IN2P3Centre National de la Recherche Scientifique (CNRS) FX The authors are grateful to the ACAT organizers for the very nice conference. They also thank A.Alloul for his numerous checks of the code and for his help during the development and the validation of the later releases. This work has been supported by the French ANR 12 JS05 002 01 BATS@ LHC and by the Theory-LHC France initiative of the CNRS/IN2P3. CR ABE F, 1992, PHYS REV D, V45, P1448, DOI 10.1103/PhysRevD.45.1448 Alwall J, 2007, COMPUT PHYS COMMUN, V176, P300, DOI 10.1016/j.cpc.2006.11.010 ALWALL J, IN PRESS Alwall J, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2011)128 Blazey G C, 2000, HEPEX0005012, P47 Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Cacciari M, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/04/063 Cacciari M, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1896-2 CATANI S, 1993, NUCL PHYS B, V406, P187, DOI 10.1016/0550-3213(93)90166-M Conte E, 2013, COMPUT PHYS COMMUN, V184, P222, DOI 10.1016/j.cpc.2012.09.009 de Favereau J, 2013, 13076346 Degrande C, 2012, COMPUT PHYS COMMUN, V183, P1201, DOI 10.1016/j.cpc.2012.01.022 Dobbs M, 2001, COMPUT PHYS COMMUN, V134, P41, DOI 10.1016/S0010-4655(00)00189-2 Dokshitzer YL, 1997, JHEP, V08, DOI DOI 10.1088/1126-6708/1997/08/001 ELLIS SD, 1993, PHYS REV D, V48, P3160, DOI 10.1103/PhysRevD.48.3160 Salam GP, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/05/086 Wobisch M, 1998, HEPPH9907280 NR 17 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2014 VL 523 AR 012032 DI 10.1088/1742-6596/523/1/012032 PG 8 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic; Physics, Applied SC Computer Science; Engineering; Physics GA BA9NZ UT WOS:000339627300032 OA Bronze DA 2021-04-21 ER PT S AU Xing, AT Arumugam, S Holloway, L Goozee, G AF Xing, Aitang Arumugam, Sankar Holloway, Lois Goozee, Gary GP IOP TI PyCMSXiO: an external interface to script treatment plans for the Elekta (R) CMS XiO treatment planning system SO XVII INTERNATIONAL CONFERENCE ON THE USE OF COMPUTERS IN RADIATION THERAPY (ICCR 2013) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 17th International Conference on the Use of Computers in Radiation Therapy (ICCR) CY MAY 06-09, 2013 CL Australasian Coll Phys Scientists & Engineers Med, Melbourne, AUSTRALIA SP Australian Inst Radiography, Royal Australian & New Zealand Coll Radiologists, Varian Med Syst, Brainlab, Elekta, Australian Govt Initiat, Australian Clin Dosimetry Serv HO Australasian Coll Phys Scientists & Engineers Med AB Scripting in radiotherapy treatment planning systems not only simplifies routine planning tasks but can also be used for clinical research. Treatment planning scripting can only be utilized in a system that has a built-in scripting interface. Among the commercially available treatment planning systems, Pinnacle (Philips) and Raystation (Raysearch Lab.) have inherent scripting functionality. CMS XiO (Elekta) is a widely used treatment planning system in radiotherapy centres around the world, but it does not have an interface that allows the user to script radiotherapy plans. In this study an external scripting interface, PyCMSXiO, was developed for XiO using the Python programming language. The interface was implemented as a python package/library using a modern object-oriented programming methodology. The package was organized as a hierarchy of different classes (objects). Each class (object) corresponds to a plan object such as the beam of a clinical radiotherapy plan. The interface of classes was implemented as object functions. Scripting in XiO using PyCMSXiO is comparable with Pinnacle scripting. This scripting package has been used in several research projects including commissioning of a beam model, independent three-dimensional dose verification for IMRT plans and a setup-uncertainty study. Ease of use and high-level functions provided in the package achieve a useful research tool. It was released as an open-source tool that may benefit the medical physics community. C1 [Xing, Aitang; Arumugam, Sankar; Holloway, Lois; Goozee, Gary] Liverpool Hosp, Liverpool Ctr, Sydney, NSW, Australia. [Xing, Aitang; Arumugam, Sankar; Holloway, Lois; Goozee, Gary] Liverpool Hosp, Macarthur Canc Therapy Ctr, Sydney, NSW, Australia. [Xing, Aitang; Arumugam, Sankar; Holloway, Lois; Goozee, Gary] Liverpool Hosp, Ingham Inst, Sydney, NSW, Australia. [Holloway, Lois] Univ Sydney, Inst Med Phys, Sch Phys, Sydney, NSW, Australia. [Holloway, Lois] Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW, Australia. [Goozee, Gary] Univ New S Wales, South Western Sydney Clin Sch, Sydney, NSW, Australia. RP Xing, AT (corresponding author), Liverpool Hosp, Liverpool Ctr, Sydney, NSW, Australia. EM aitang.xing@sswahs.nsw.gov.au RI Arumugam, S./AAT-7570-2020 OI Goozee, Gary/0000-0002-7989-1787; Holloway, Lois/0000-0003-4337-2165 CR Arumugam S, 2013, MED DOSIM, V13 Geoghegan S, 2007, SCRIPTING PINNALCE 3 Janssen T, 2013, INT J RADIAT ONCOL, V85, P873, DOI 10.1016/j.ijrobp.2012.05.045 Mason D., 2013, PYDICOM USER GUIDE Panchal A, 2010, MED PHYS, V37, DOI 10.1118/1.3468652 Taylor R., 2013, QATRACK TOOL MANAGIN Xing A, 2011, 14 WORLD C LUNG CANC Xing A, J PHYS C SER, V444 Yang DS, 2012, MED PHYS, V39, P1542, DOI 10.1118/1.3683646 NR 9 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2014 VL 489 AR 012063 DI 10.1088/1742-6596/489/1/012063 PG 5 WC Physics, Applied; Radiology, Nuclear Medicine & Medical Imaging SC Physics; Radiology, Nuclear Medicine & Medical Imaging GA BA4LN UT WOS:000335976400063 OA Bronze DA 2021-04-21 ER PT S AU Erdmann, M Fischer, R Glaser, C Klingebiel, D Komm, M Muller, G Rieger, M Steggemann, J Urban, M Winchen, T AF Erdmann, M. Fischer, R. Glaser, C. Klingebiel, D. Komm, M. Mueller, G. Rieger, M. Steggemann, J. Urban, M. Winchen, T. GP IOP TI A Web-Based Development Environment for Collaborative Data Analysis SO 15TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2013) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT) CY MAY 16-21, 2013 CL Chinese Acad Sci, Inst High Energy Phys, Beijing, PEOPLES R CHINA SP Chinese Acad Sci, Natl Nat Sci Fdn China, Brookhaven Natl Lab, Peking Univ, Chinese Acad Sci, Theoret Phys Ctr Sci Facilities, Sugon HO Chinese Acad Sci, Inst High Energy Phys AB Visual Physics Analysis (VISPA) is a web-based development environment addressing high energy and astroparticle physics. It covers the entire analysis spectrum from the design and validation phase to the execution of analyses and the visualization of results. VISPA provides a graphical steering of the analysis flow, which consists of self-written, re-usable Python and C++ modules for more demanding tasks. All common operating systems are supported since a standard internet browser is the only software requirement for users. Even access via mobile and touch-compatible devices is possible. In this contribution, we present the most recent developments of our web application concerning technical, state-of-the-art approaches as well as practical experiences. One of the key features is the use of workspaces, i.e. user-configurable connections to remote machines supplying resources and local file access. Thereby, workspaces enable the management of data, computing resources (e.g. remote clusters or computing grids), and additional software either centralized or individually. We further report on the results of an application with more than 100 third-year students using VISPA for their regular particle physics exercises during the winter term 2012/13. Besides the ambition to support and simplify the development cycle of physics analyses, new use cases such as fast, location-independent status queries, the validation of results, and the ability to share analyses within worldwide collaborations with a single click become conceivable. C1 [Erdmann, M.; Fischer, R.; Glaser, C.; Klingebiel, D.; Mueller, G.; Rieger, M.; Urban, M.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Komm, M.] Catholic Univ Louvain, Particle Phys & Phenomen, Ctr Cosmol, Louvain, Belgium. [Steggemann, J.] CERN, European Org Nucl Res, Geneva, Switzerland. RP Rieger, M (corresponding author), Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. EM vispa@lists.rwth-aachen.de; rieger@physik.rwth-aachen.de RI Steggemann, Jan/AAL-5700-2020 OI Steggemann, Jan/0000-0003-4420-5510; Erdmann, Martin/0000-0002-1653-1303 FU Ministerium fur Wissenschaft und Forschung; Nordrhein- Westfalen; Bundesministerium fur Bildung und Forschung BMBFFederal Ministry of Education & Research (BMBF); Helmholz Alliance Physics; Deutsche Forschungsgemeinschaft DFGGerman Research Foundation (DFG) FX We wish to thank the organizers of the ACAT2013 conference for their kind support. This work is supported by the Ministerium fur Wissenschaft und Forschung, Nordrhein- Westfalen, the Bundesministerium fur Bildung und Forschung ( BMBF), and the Helmholz Alliance Physics at the Terascale. M Rieger and C Glaser gratefully thank for support by the Deutsche Forschungsgemeinschaft ( DFG) and T Winchen gratefully acknowledges funding by the Friedrich- Ebert- Stiftung. CR Bretz HP, 2012, J INSTRUM, V7, DOI 10.1088/1748-0221/7/08/T08005 Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Erdmann M, 2012, PHYS EXTENSION LIB P Holdener III AT, 2008, AJAX DEFINITIVE GUID NR 4 TC 3 Z9 3 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2014 VL 523 AR 012021 DI 10.1088/1742-6596/523/1/012021 PG 5 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic; Physics, Applied SC Computer Science; Engineering; Physics GA BA9NZ UT WOS:000339627300021 OA Bronze DA 2021-04-21 ER PT B AU Wyszynski, O AF Wyszynski, Oskar CA NA61 Collaboration GP IEEE TI Trigger System of the NA61/SHINE Experiment at the CERN SPS SO 2014 19TH IEEE-NPSS REAL TIME CONFERENCE (RT) LA English DT Proceedings Paper CT 19th IEEE-NPSS Real Time Conference (RT) CY MAY 26-30, 2014 CL Nara, JAPAN SP Osaka Univ, Res Nucl Phys, IEEE Nucl & Plasma Sci Soc AB This paper describes technical aspects and details of the trigger system of NA61/SHINE experiment. The SPS Heavy Ion and Neutrino Experiment (SHINE) is a large acceptance hadron spectrometer designed for comprehensive studies of hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. The NA61/SHINE physics programme requires measurements of a large number of reactions recorded using different trigger conditions. This motivated a flexible solution for the NA61/SHINE trigger system. The trigger uses signals from scintillation, Cherenkov and calorimeter detectors. In total up to 16 signals have to be processed for a trigger decision. The core of the system is based on a single field-programmable gate array (FPGA), running with a 120 MHz clock which offers a resolution of 8.3 ns. Moreover, it is capable of parallel selecting events which satisfy up to four trigger definitions. Events corresponding to these trigger definitions are recorded with relative frequencies which can be selected using 12 bit prescalers. The working parameters of the trigger, such as coincidences and delays, are set up remotely via a Java application, designed to be handled by users. The performance parameters are monitored by Python based monitoring software, which is capable of displaying values of beam counters and beam time structure. Furthermore, the monitoring software calculates summary information, such as trigger probabilities, which are crucial from a user's point of view. It also detects pre-failure states of the trigger system, such as false scaler counts, and gives the opportunity to prepare the necessary repair procedure before reaching an irrecoverable state. C1 [Wyszynski, Oskar] Jagiellonian Univ, Krakow, Poland. RP Wyszynski, O (corresponding author), Jagiellonian Univ, Krakow, Poland. EM oskar.wyszynski@cern.ch CR [Anonymous], 1972, 4100E CAMAC EUR COMM CAEN C111C, ETH CAMAC CRAT CONTR CMCAMAC, CMC206 UN LOG MOD NA61/SHINE Collaboration, NIM A IN PRESS Xilinx, SPART 3 XC3S1500 NR 5 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4799-3659-5 PY 2014 PG 4 WC Computer Science, Hardware & Architecture; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BF3WU UT WOS:000380588000015 DA 2021-04-21 ER PT S AU Erdmann, M Fischer, R Glaser, C Klingebiel, D Komm, M Muller, G Rieger, M Steggemann, J Urban, M Winchen, T AF Erdmann, M. Fischer, R. Glaser, C. Klingebiel, D. Komm, M. Mueller, G. Rieger, M. Steggemann, J. Urban, M. Winchen, T. GP IOP TI A Browser-Based Multi-User Working Environment for Physicists SO 20TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2013), PARTS 1-6 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 20th International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY OCT 14-18, 2013 CL Amsterdam, NETHERLANDS AB Many programs in experimental particle physics do not yet have a graphical interface, or demand strong platform and software requirements. With the most recent development of the VISTA project, we provide graphical interfaces to existing software programs and access to multiple computing clusters through standard web browsers. The scalable client-server system allows analyses to be performed in sizable teams, and disburdens the individual physicist from installing and maintaining a software environment. The VISPA graphical interfaces are implemented in HTML, Java Script and extensions to the Python webserver. The webserver uses SSH and RPC to access user data, code and processes on remote sites. As example applications we present graphical interfaces for steering the reconstruction framework OFFLINE of the Pierre-Auger experiment, and the analysis development toolkit PXL. The browser based VISTA system was field-tested in biweekly homework of a third year physics course by more than 100 students. We discuss the system deployment and the evaluation by the students. C1 [Erdmann, M.; Fischer, R.; Glaser, C.; Klingebiel, D.; Komm, M.; Mueller, G.; Rieger, M.; Steggemann, J.; Urban, M.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst 3A, Aachen, Germany. RP Erdmann, M (corresponding author), Rhein Westfal TH Aachen, Phys Inst 3A, Aachen, Germany. EM gero.mueller@physik.rwth-aachen.de RI Steggemann, Jan/AAL-5700-2020 OI Steggemann, Jan/0000-0003-4420-5510; Erdmann, Martin/0000-0002-1653-1303 CR Argiro S, 2007, NUCL INSTRUM METH A, V580, P1485, DOI 10.1016/j.nima.2007.07.010 Bretz HP, 2012, J INSTRUM, V7, DOI 10.1088/1748-0221/7/08/T08005 Marco C, 2010, J PHYS CONF SER, V219, DOI 10.1088/1742-6596/219/6/062039 Thain D, 2005, CONCURR COMP-PRACT E, V17, P323, DOI 10.1002/cpe.938 NR 4 TC 1 Z9 1 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2014 VL 513 AR 062034 DI 10.1088/1742-6596/513/6/062034 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BB2TA UT WOS:000342287200313 OA Bronze DA 2021-04-21 ER PT S AU Cieszewski, R Pozniak, K Romaniuk, R AF Cieszewski, Radoslaw Pozniak, Krzysztof Romaniuk, Ryszard BE Romaniuk, RS TI Python based High-Level Synthesis compiler SO PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2014 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments CY MAY 26-JUN 01, 2014 CL Wilga, POLAND SP Warsaw Univ Technol, Fac Elect & Informat Technologies, Inst Elect Syst, Photonics Soc Poland, SPIE, Polish Acad Sci, Comm Elect & Telecommunicat, Enhanced European Coordinat Accelerator R & D, IEEE Poland Sect, SEP, Polish Comm Optoelectron, EuroFus Collaborat, EuroFus Poland DE FPGA; Algorithmic Synthesis; High-Level Synthesis; Behavioral Synthesis; Hot Plasma Physics Experiment; Python; Compiler AB This paper presents a python based High-Level synthesis (HLS) compiler. The compiler interprets an algorithmic description of a desired behavior written in Python and map it to VHDL. FPGA combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be reconfigured over the lifetime of the system. FPGAs therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Creating parallel programs implemented in FPGAs is not trivial. This article describes design, implementation and first results of created Python based compiler. C1 [Cieszewski, Radoslaw; Pozniak, Krzysztof; Romaniuk, Ryszard] Warsaw Univ Technol, Inst Elect Syst, Nowowiejska 15-19, PL-00665 Warsaw, Poland. RP Cieszewski, R (corresponding author), Warsaw Univ Technol, Inst Elect Syst, Nowowiejska 15-19, PL-00665 Warsaw, Poland. EM R.Cieszewski@stud.elka.pw.edu.pl RI Pozniak, Krzysztof/AAO-7377-2020; Romaniuk, Ryszard S/B-9140-2011 OI Pozniak, Krzysztof/0000-0001-5426-1423; Romaniuk, Ryszard S/0000-0002-5710-4041 CR Asanovic K, 2009, COMMUN ACM, V52, P56, DOI 10.1145/1562764.1562783 Babb J., 1999, Seventh Annual IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No.PR00375), P70, DOI 10.1109/FPGA.1999.803669 Berdychowski PP, 2010, PHOTONICS APPL ASTRO Bowyer B., 2005, EETIMES Bujnowski K., 2007, PHOTONICS APPL ASTRO Bujnowski K., 2007, PHOTONICS APPL ASTRO Cieszewski R, 2013, PROC SPIE, V8903, DOI 10.1117/12.2035385 Cong J, 2011, IEEE T COMPUT AID D, V30, P473, DOI 10.1109/TCAD.2011.2110592 Coussy P., 2008, HIGH LEVEL SYNTHESIS GAJSKI DD, 1994, IEEE DES TEST COMPUT, V11, P44, DOI 10.1109/54.329454 Gajski DD, 1992, HIGH LEVEL SYNTHESIS, V34 Gokhale M, 1997, 5TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, P165, DOI 10.1109/FPGA.1997.624616 Kolasinski P., 2007, PHOTONICS APPL ASTRO Liang Y, 2012, J ELECTR COMPUT ENG, V2012, DOI 10.1155/2012/649057 Meredith M., 2004, EETIMES, P04 Philippe C., 2008, EURASIP J EMBEDDED S, V2008 Pozniak K., 2013, PHOTONICS APPL ASTRO, V8903 Zabolotny W. M., 2011, PHOTONICS APPL ASTRO Zabolotny WM, 2003, P SOC PHOTO-OPT INS, V5125, P223, DOI 10.1117/12.531581 Zabolotny WM, 2010, PHOTONICS APPL ASTRO Zabolotny WM, 2011, PROC SPIE, V8008, DOI 10.1117/12.905281 Zabolotny WM, 2006, PROC SPIE, V6347, DOI 10.1117/12.714532 NR 22 TC 2 Z9 2 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X EI 1996-756X BN 978-1-62841-369-4 J9 PROC SPIE PY 2014 VL 9290 AR 92903A DI 10.1117/12.2075988 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BC6NK UT WOS:000354182200118 DA 2021-04-21 ER PT J AU Mulani, SB Duggirala, V Kapania, RK AF Mulani, Sameer B. Duggirala, Vedavyas Kapania, Rakesh K. TI Curvilinearly T-Stiffened Panel-Optimization Framework Under Multiple Load Cases Using Parallel Processing SO JOURNAL OF AIRCRAFT LA English DT Article; Proceedings Paper CT 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (SDM) CY APR 23-27, 2012 CL Honolulu, HI SP AIAA, ASME, ASCE, AHS, ASC ID PRELIMINARY DESIGN; ALGORITHM AB Future aerospace vehicles like hybrid wing/body, truss-braced wing, and "double bubble" would have pressurized noncircular fuselage structures and complex wing geometry. Traditional aircraft designs have led to the confidence and experience of designing such structures using the knowledge base built over the years and the resulting rules of thumb. However, there is a lack of experience of load calculations and design of complex, multifunctional, aircraft structural concepts for future aerospace vehicles. Designing such structures will require a physics-based optimization framework. Therefore, a new optimization framework, EBF3PanelOpt, is being developed. Commercial software MD-PATRAN (geometry modeling and mesh generation) and MD-NASTRAN (finite-element analysis) are integrated in EBF3PanelOpt framework using the Python programming environment to design stiffened panels with curvilinear stiffeners. Currently, EBF3PanelOpt optimizes the stiffened panel with curvilinear blade stiffeners, where the loads are applied only through the plate. During the optimization, the mass is minimized with the constraints on buckling, von Mises stress, and crippling or local failure of the stiffeners. EBF3PanelOpt is enhanced to have curvilinear T stiffeners with or without axial loads in addition to loads through plate. The panel/stiffener geometry is defined in a parametric fashion based on design variables that include variables for orientation and shape of the stiffeners, the thicknesses and heights of the webs and flanges of the stiffeners, and the plate-pocket thicknesses. This framework is supported with coarse-grained parallelism using Python to analyze multiple designs on the cluster. Using this framework, a vertical stabilizer skin panel of transport aircraft panel having two extreme load cases is optimized using with or without stiffener loads. When the equivalent uniform loads are applied only through the plate, the plate buckling becomes critical, but combined buckling of plate and stiffeners becomes critical when the loads are applied through both the plate and the stiffeners. When the uniform in-plane compressive loads are applied through both the plate and the stiffeners, the panel with straight T stiffeners is more optimal than the panel with curvilinear T stiffeners. C1 [Mulani, Sameer B.; Kapania, Rakesh K.] Virginia Polytech Inst & State Univ, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA. [Duggirala, Vedavyas] Virginia Polytech Inst & State Univ, Dept Comp Sci & Engn, Blacksburg, VA 24061 USA. RP Mulani, SB (corresponding author), Virginia Polytech Inst & State Univ, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA. CR Amdahl G. M., 1967, P APR 18 20 1967 SPR, P483, DOI [10.1145/1465482, DOI 10.1145/1465482.1465560] ANDERSON MS, 1979, AIAA J, V17, P892, DOI 10.2514/3.61242 [Anonymous], 2013, INT TER RES CHIP [Anonymous], 2009, VISUALDOC 6 2 DES CO ATIQULLAH MM, 1995, AIAA J, V33, P2386, DOI 10.2514/3.12996 Bedair OK, 1997, INT J MECH SCI, V39, P33, DOI 10.1016/0020-7403(96)00017-3 BUSHNELL D, 1987, COMPUT STRUCT, V27, P541, DOI 10.1016/0045-7949(87)90280-X Buswell RA, 2007, AUTOMAT CONSTR, V16, P224, DOI 10.1016/j.autcon.2006.05.002 BUTLER R, 1994, COMPUT STRUCT, V52, P1107, DOI 10.1016/0045-7949(94)90177-5 Collier C., 2002, 43 AIAA ASME ASCE AH Colson B, 2010, OPTIM ENG, V11, P583, DOI 10.1007/s11081-008-9077-8 Cooper K., 2004, 42 AIAA AER SCI M EX Dalcin L., 2011, MPI PYTHON Dean J, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE '04), P137 Deb K, 2002, IEEE T EVOLUT COMPUT, V6, P182, DOI 10.1109/4235.996017 Eldred M. S., 2000, 8 AIAA USAF NASA ISS Grail B., 1992, CR190608 NASA GURDAL Z, 1993, COMPOS ENG, V3, P1131, DOI 10.1016/0961-9526(93)90070-Z Gurdal Z., 1992, 33 AIAA ASME ASCE AH Kapania R.K., 2005, AIAA 5 AV TECHN INT Kreisselmeier G., 1980, P IFAC S SERIES, P113, DOI [DOI 10.1016/S1474-6670(17)65584-8, 10.1016/B978-0-08-024488-4.50022-X] Lamberti L, 2003, INT J NUMER METH ENG, V57, P1351, DOI 10.1002/nme.781 Mulani S. B., 2000, P AEROMAT 2010 C EXP Mulani S. B., 2010, P 13 AIAA ISSMO MULT Mulani SB, 2013, THIN WALL STRUCT, V63, P13, DOI 10.1016/j.tws.2012.09.008 Mulani SB, 2010, J AIRCRAFT, V47, P1898, DOI 10.2514/1.47411 Nicholas E. D., 1998, P 6 INT C AL ALL TOY Niu M. C. Y., 2005, AIRFRAME STRESS ANAL, P444 Plassmann P. E., 2004, J AEROSPACE COMPUTIN, V1, P116 Renton J, 2004, J AIRCRAFT, V41, P986, DOI 10.2514/1.4039 STROUD WJ, 1984, TP2215 NASA Taminger K, 2002, P 13 SOL FREEF FABR, P482 Taminger K., 2003, P 3 ANN AUT COMP C S Taminger K. M. B., 2002, 2002 INT C MET POWD, P51 van Bloemen Waanders B. G., 2001, 42 AIAA ASMBASCE AHS Venter G., 2006, J AEROSPACE COMPUTIN, V3, P123, DOI DOI 10.2514/1.17873 Venter G, 2009, J AEROS COMP INF COM, V6, P635, DOI 10.2514/1.43224 Wang XC, 1997, INT J NUMER METH ENG, V40, P75 York CB, 1998, COMPUT STRUCT, V68, P665, DOI 10.1016/S0045-7949(98)00050-9 NR 39 TC 6 Z9 7 U1 1 U2 17 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0021-8669 EI 1533-3868 J9 J AIRCRAFT JI J. Aircr. PD SEP-OCT PY 2013 VL 50 IS 5 BP 1540 EP 1554 DI 10.2514/1.C032064 PG 15 WC Engineering, Aerospace SC Engineering GA AA8VK UT WOS:000331372900019 DA 2021-04-21 ER PT J AU Fiers, M Lambert, E Pathak, S Maes, B Bienstman, P Bogaerts, W Dumon, P AF Fiers, Martin Lambert, Emmanuel Pathak, Shibnath Maes, Bjorn Bienstman, Peter Bogaerts, Wim Dumon, Pieter TI Improving the design cycle for nanophotonic components SO JOURNAL OF COMPUTATIONAL SCIENCE LA English DT Article DE Nanophotonics; Designing and modeling optical components; Optical circuit design; Parametrized cell; Python ID FABRICATION AB We present IPKISS, a software framework that greatly simplifies the design of nanophotonic components. In this approach, all steps in the workflow are based on a single high-level definition of the component, in a Python script. Because there is only one description, the design flow becomes less error prone due to incorrect definitions, and the overall reproducibility is greatly improved. Furthermore it enables easy closed-loop modeling of components and circuits. Also, previous work can easily be built upon because lower level blocks can seamlessly be replaced by new blocks. While we illustrate the application in photonics, this software and the used design patterns can be extended to other domains such as RF design and to multidomain physics such as opto-electronics. (C) 2013 Elsevier B.V. All rights reserved. C1 [Fiers, Martin; Lambert, Emmanuel; Pathak, Shibnath; Maes, Bjorn; Bienstman, Peter; Bogaerts, Wim; Dumon, Pieter] Univ Ghent, IMEC, Photon Res Grp INTEC, B-9000 Ghent, Belgium. RP Fiers, M (corresponding author), Univ Ghent, IMEC, Photon Res Grp INTEC, Sint Pietersnieuwstr 41, B-9000 Ghent, Belgium. EM martin.fiers@intec.ugent.be; emmanuel.lambert@intec.ugent.be; shibnath.pathak@intec.ugent.be; bjorn.maes@umons.ac.be; peter.bienstman@intec.ugent.be; wim.bogaerts@intec.ugent.be; pieter.dumon@intec.ugent.be RI Pathak, Shibnath/F-7579-2014; Bogaerts, Wim/E-7285-2013 OI Bogaerts, Wim/0000-0003-1112-8950; Pathak, Shibnath/0000-0001-6667-2609; Maes, Bjorn/0000-0003-3935-7990 FU Interuniversity Attraction Pole (IAP) Photonics@be of the Belgian Science Policy Office; ERC NaResCo Starting grant; Special Research Fund of Ghent UniversityGhent University FX This work is supported by the Interuniversity Attraction Pole (IAP) Photonics@be of the Belgian Science Policy Office and the ERC NaResCo Starting grant. M. Fiers acknowledges the Special Research Fund of Ghent University. We acknowledge Y. De Koninck for his useful comments. CR Bienstman P, 2001, OPT QUANT ELECTRON, V33, P327, DOI 10.1023/A:1010882531238 Bogaerts W, 2008, OPT QUANT ELECTRON, V40, P801, DOI 10.1007/s11082-008-9265-y Dumon P, 2009, ELECTRON LETT, V45, P581, DOI 10.1049/el.2009.1353 Esterbrook C., 2001, LINUX J Fiers M., 2012, J OPTICAL SOC AM B Lambert E, 2011, COMPUT SCI ENG, V13, P53, DOI 10.1109/MCSE.2010.98 Oskooi AF, 2010, COMPUT PHYS COMMUN, V181, P687, DOI 10.1016/j.cpc.2009.11.008 Pathak S., 2011, 2011 IEEE 8th International Conference on Group IV Photonics (GFP), P45, DOI 10.1109/GROUP4.2011.6053710 Selvaraja SK, 2009, J LIGHTWAVE TECHNOL, V27, P4076, DOI 10.1109/JLT.2009.2022282 NR 9 TC 14 Z9 14 U1 0 U2 5 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1877-7503 J9 J COMPUT SCI-NETH JI J. Comput. Sci. PD SEP PY 2013 VL 4 IS 5 SI SI BP 313 EP 324 DI 10.1016/j.jocs.2013.05.008 PG 12 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 270CS UT WOS:000328297100002 OA Green Published DA 2021-04-21 ER PT J AU Bianchi, RM Bruneliere, R AF Bianchi, Riccardo Maria Bruneliere, Renaud TI WATCHMAN project-A Python CASE framework for High Energy Physics data analysis in the LHC era SO JOURNAL OF COMPUTATIONAL SCIENCE LA English DT Article; Proceedings Paper CT 3rd European Meeting on Python in Science (EuroSciPy) CY JUL 08-11, 2010 CL Paris, FRANCE DE Large Hadron Collider; LHC; High Energy Physics; Data analysis; Computer aided software engineering; Python; Physics framework AB The world's largest particle collider LHC is taking data at CERN, in Geneva, providing a huge amount of data to be looked at, of the order of several Petabytes per year. Nowadays, Data Analysis in High Energy Physics (HEP) means handling billions of experimental data in custom software frameworks. Physicists have to access and select data interacting with the experiment using dedicated tools; they also have to apply filter functions and analysis algorithms to test hypotheses about the physics underlain. Modern HEP experiments rely on complex software frameworks, hence writing the analysis code is not always an easy task, and the learning curve is usually quite steep. Moreover each hypothesis requires a dedicated analysis, in order to have a better control on it and to be able to validate the results among different groups of researchers. And the writing of so many analyses can be error prone and time consuming. In order to ease the writing of such data analysis code, we built a software-generator: the idea is that the user inserts the settings of the physics analyses, and the final analysis code is automatically and dynamically generated, ready to be run on data. Python helped us to build such a package. Its high-level and dynamic nature, together with its flexibility and prototyping speed are the key features which made our choice. So we conceived and developed WATCHMAN, a Python CASE (Computer-Aided Software Engineering) framework to automatically generate reliable, easy to maintain and easy to validate HEP data analysis code. (C) 2012 Elsevier B.V. All rights reserved. C1 [Bianchi, Riccardo Maria] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bruneliere, Renaud] Univ Freiburg, Inst Phys, D-79106 Freiburg, Germany. RP Bianchi, RM (corresponding author), CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. EM rbianchi@cern.ch OI Bianchi, Riccardo Maria/0000-0001-7345-7798 CR ATLAS-collaboration, 2009, ATLPHYSPUB2009084 CE ATLAS-collaboration, 2010, ATLAS PLOTS ECM DEP Bianchi R.M., WATCHMAN HIGHLY AUTO Lavrijsen W., PYROOT PYTHON ROOT B NR 4 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-7503 J9 J COMPUT SCI-NETH JI J. Comput. Sci. PD SEP PY 2013 VL 4 IS 5 SI SI BP 325 EP 333 DI 10.1016/j.jocs.2012.04.005 PG 9 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 270CS UT WOS:000328297100003 DA 2021-04-21 ER PT J AU Audren, B Blas, D Lesgourgues, J Sibiryakov, S AF Audren, B. Blas, D. Lesgourgues, J. Sibiryakov, S. TI Cosmological constraints on Lorentz violating dark energy SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark energy theory; modified gravity; dark energy experiments; cosmological parameters from CMBR ID VECTOR-FIELDS; UNIVERSE AB The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called Theta CDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from Lambda CDM. The differences appear at the level of perturbations. We show that in Theta CDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of extra clustering degrees of freedom. To explore these modifications accurately, we modify the Boltzmann code class. We then use the parameter inference code MONTE PYTHON to confront Theta CDM with data from WMAP-7, SPT and WiggleZ. We obtain strong bounds on the parameters accounting for deviations from Lambda CDM. In particular, we find that the discrepancy between the gravitational constants appearing in the Poisson and Friedmann equations is constrained at the level of 1.8%. C1 [Audren, B.; Lesgourgues, J.] Ecole Polytech Fed Lausanne, LPPC, ITP, FSB, CH-1015 Lausanne, Switzerland. [Blas, D.; Lesgourgues, J.] CERN, Dept Phys, Theory Grp, CH-1211 Geneva 23, Switzerland. [Lesgourgues, J.] Univ Savoie, CNRS, LAPTh, F-74941 Annecy Le Vieux, France. [Sibiryakov, S.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Sibiryakov, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. RP Audren, B (corresponding author), Ecole Polytech Fed Lausanne, LPPC, ITP, FSB, CH-1015 Lausanne, Switzerland. EM Benjamin.Audren@epfl.ch; Diego.Blas@cern.ch; Julien.Lesgourgues@cern.ch; Sergey.Sibiryakov@cern.ch RI Blas, Diego/AAL-8192-2021 OI Blas, Diego/0000-0003-2646-0112; Sibiryakov, Sergey/0000-0001-9972-8875 FU Russian FederationRussian Federation [NS-5590.2012.2]; Russian Ministry of Science and EducationMinistry of Education and Science, Russian Federation [8412]; RFBRRussian Foundation for Basic Research (RFBR) [11-02-01528, 12-02-01203]; Dynasty Foundation; Swiss National Science FoundationSwiss National Science Foundation (SNSF)European Commission FX We are grateful to Mikhail Ivanov, Gregory Gabadadze, Roman Scoccimarro and Takahiro Tanaka for useful discussions. D.B. and S.S. thank the organizers and participants of the Kavli IPMU Focus Week on Gravity and Lorentz Violations for the encouraging interest and valuable comments. S.S. thanks the Center for Cosmology and Particle Physics of NYU for hospitality during the completion of this work. This work was supported in part by the Grant of the President of Russian Federation NS-5590.2012.2 (S.S.), the Russian Ministry of Science and Education under the contract 8412 (S.S.), the RFBR grants 11-02-01528 (S.S.), 12-02-01203 (S.S.) and by the Dynasty Foundation (S.S.). J.L. and B. A. acknowledge support from the Swiss National Science Foundation. CR Ade PAR, 2014, ASTRON ASTROPHYS, V571, DOI 10.1051/0004-6361/201321569 Amendola L., ARXIV12061225 EUCL T Amendola L., 2010, THEORY OBSERVATIONS, P506 Armendariz-Picon C., 2010, JCAP, V07, P010 Audren B., 2013, JCAP, V02 Barausse E, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.124043 Bean R, 2010, PHYS REV D, V81, DOI 10.1103/PhysRevD.81.083534 Bednik G., ARXIV13050011 Bernardeau F, 2002, PHYS REP, V367, P1, DOI 10.1016/S0370-1573(02)00135-7 Blas D, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP04(2011)018 Blas D, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.181302 Blas D., 2011, JCAP, V07, P026 Blas D., 2012, JCAP, V10, P057 Blas D, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.064004 Carroll SM, 2004, PHYS REV D, V70, DOI 10.1103/PhysRevD.70.123525 Copeland EJ, 2006, INT J MOD PHYS D, V15, P1753, DOI 10.1142/S021827180600942X D'Amico G, 2013, PHYS REV D, V87, DOI 10.1103/PhysRevD.87.064037 Donnelly W, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.064032 Dutta S, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.083501 Foster BZ, 2006, PHYS REV D, V73, DOI 10.1103/PhysRevD.73.104012 Foster BZ, 2005, PHYS REV D, V72, DOI 10.1103/PhysRevD.72.044017 Groot Nibbelink S., 2005, PHYS REV LETT, V94 Horava P, 2009, PHYS REV D, V79, DOI 10.1103/PhysRevD.79.084008 Jacobson T, 2001, PHYS REV D, V64, DOI 10.1103/PhysRevD.64.024028 Jacobson T., POS QG PH Jacobson T, 2010, PHYS REV D, V81, DOI 10.1103/PhysRevD.81.101502 Keisler R, 2011, ASTROPHYS J, V743, DOI 10.1088/0004-637X/743/1/28 Kobayashi T., 2010, JCAP, V04, P025 Komatsu E, 2011, ASTROPHYS J SUPPL S, V192, DOI 10.1088/0067-0049/192/2/18 Kostelecky VA, 2011, REV MOD PHYS, V83, DOI 10.1103/RevModPhys.83.11 Lesgourgues J., 2013, NEUTRINO COSMOLOGY Li BJ, 2008, PHYS REV D, V77, DOI 10.1103/PhysRevD.77.024032 Lim EA, 2005, PHYS REV D, V71, DOI 10.1103/PhysRevD.71.063504 Lue A, 2004, PHYS REV D, V69, DOI 10.1103/PhysRevD.69.044005 MA CP, 1995, ASTROPHYS J, V455, P7, DOI 10.1086/176550 Mattingly D, 2005, LIVING REV RELATIV, V8, DOI 10.12942/lrr-2005-5 Nakashima M, 2011, PHYS REV D, V84, DOI 10.1103/PhysRevD.84.084051 Parkinson D, 2012, PHYS REV D, V86, DOI 10.1103/PhysRevD.86.103518 Pujolas O., 2012, JHEP, V01, P062 Robbers G, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.111101 Zlosnik TG, 2008, PHYS REV D, V77, DOI 10.1103/PhysRevD.77.084010 Zuntz JA, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.261102 NR 42 TC 30 Z9 30 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD AUG PY 2013 IS 8 AR 039 DI 10.1088/1475-7516/2013/08/039 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 213CZ UT WOS:000324032800042 DA 2021-04-21 ER PT J AU Patzak, B Rypl, D Kruis, J AF Patzak, B. Rypl, D. Kruis, J. TI MuPIF - A distributed multi-physics integration tool SO ADVANCES IN ENGINEERING SOFTWARE LA English DT Article DE Multi-physics simulations; Software integration; System integration; Distributed computing; Interactive computing; Object-oriented design ID SOFTWARE; FRAMEWORK AB This paper presents the design of a multi-physics integration tool with an object-oriented architecture that facilitates the implementation of multi-physics and multi-level simulations assembled from independently developed applications (components). The tool provides high-level support for mutual data exchange between codes, including support for different discretization techniques and specific field transfer operators, being aware of the underlying physical phenomena. Parallel and distributed applications and aspects of the applications are also addressed. Each application is required to implement application and data interfaces, which allow abstract access to solution domains and fields, and provide services for steering individual applications. The Python scripting language is extended by modules representing interfaces to existing codes. The high-level language serves as a glue to tie the modules or components together and to create a specialized application. The capabilities of the tool are demonstrated on two examples that illustrate staggered thermo-mechanical analysis and distributed field mapping. (C) 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved. C1 [Patzak, B.; Rypl, D.; Kruis, J.] Czech Tech Univ, Fac Civil Engn, Prague 16629, Czech Republic. RP Patzak, B (corresponding author), Czech Tech Univ, Fac Civil Engn, Thakurova 7, Prague 16629, Czech Republic. EM borek.patzak@fsv.cvut.cz RI Patzak, Borek/E-2472-2013; Kruis, Jaroslav/D-1423-2016 OI Patzak, Borek/0000-0002-3373-9333; Kruis, Jaroslav/0000-0001-9932-829X FU Grant Agency of the Czech RepublicGrant Agency of the Czech Republic [P105/10/1402] FX This work has been supported by the Grant Agency of the Czech Republic, under Project No. P105/10/1402. CR Boost, C WRAPP GEN Brown D. L., 1997, Scientific Computing in Object-Oriented Parallel Environments. First International Conference, ISCOPE 97. Proceedings, P177 Buis S, 2006, CONCURR COMP-PRACT E, V18, P231, DOI 10.1002/cpe.914 Coveney PV, 2007, COMPUT PHYS COMMUN, V176, P406, DOI 10.1016/j.cpc.2006.11.011 de Sturler E., 2001, ARCHITECTURE SCI SOF Fowler M, 2003, UML DISTILLED BRIEF Geist GA, 1997, INT J SUPERCOMPUT AP, V11, P224, DOI 10.1177/109434209701100305 Gunney BTN, 2006, J PARALLEL DISTR COM, V66, P1419, DOI 10.1016/j.jpdc.2006.03.011 Karmesin S., POOMA PARALLEL OBJEC Karypis G, 1998, SIAM J SCI COMPUT, V20, P359, DOI 10.1137/S1064827595287997 LUTZ M, 2007, LEARNING PYTHON Montarnal P., 2005, INT C COMP METH COUP MuPIF, 2011, MULT INT FRAM Oldham JD, 2002, POOMA A C TOOLKIT HI Parker SG, 1997, IEEE COMPUT SCI ENG, V4, P50, DOI 10.1109/99.641609 RealityGrid, 2011, DISTR COMP ENV Redler R, 2010, GEOSCI MODEL DEV, V3, P87, DOI 10.5194/gmd-3-87-2010 Robinson A., 2008, P 46 AIAA AER SCI M Rossum G, 2006, INTRO PYTHON Sanner MF, 1999, J MOL GRAPH MODEL, V17, P57 Schroeder W, 2006, VISUALIZATION TOOLKI SCIRun, 2011, SCIRUN SCI COMP PROB Stewart JR, 2004, FINITE ELEM ANAL DES, V40, P1599, DOI 10.1016/j.finel.2003.10.006 *SWIG, SIMPL WRAPP INT GEN van der Velde P, 2007, ADV ENG SOFTW, V38, P182, DOI 10.1016/j.advengsoft.2006.05.007 van Liere R., 1997, COMPUTATIONAL STEERI NR 26 TC 15 Z9 16 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0965-9978 EI 1873-5339 J9 ADV ENG SOFTW JI Adv. Eng. Softw. PD JUN-JUL PY 2013 VL 60-61 BP 89 EP 97 DI 10.1016/j.advengsoft.2012.09.005 PG 9 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering; Engineering, Multidisciplinary SC Computer Science; Engineering GA 168YN UT WOS:000320744000011 DA 2021-04-21 ER PT J AU Stewart, B Hylton, DJ Ravi, N AF Stewart, Brianna Hylton, Derrick J. Ravi, Natarajan TI A Systematic Approach for Understanding Slater-Gaussian Functions in Computational Chemistry SO JOURNAL OF CHEMICAL EDUCATION LA English DT Article DE Upper-Division Undergraduate; Graduate Education/Research; Physical Chemistry; Computer-Based Learning; Computational Chemistry; Mathematics/Symbolic Mathematics; Quantum Chemistry ID MOLECULAR-ORBITAL METHODS AB A systematic way to understand the intricacies of quantum mechanical computations done by a software package known as "Gaussian" is undertaken via an undergraduate research project. These computations involve the evaluation of key parameters in a fitting procedure to express a Slater-type orbital (STO) function in terms of the linear combination of Gaussian-type orbital (GTO) functions. A procedure for the optimization process based on the Newton-Raphson method is developed and is applied to STO-2G and STO-3G basis sets. Satisfactory results obtained by this procedure are used to illustrate the importance of ab initio computations for inclusion in the chemistry or physics undergraduate curriculum. Programming languages such as Python and Maple Were employed to obtain the results. C1 [Stewart, Brianna; Hylton, Derrick J.; Ravi, Natarajan] Spelman Coll, Dept Phys, Atlanta, GA 30314 USA. RP Ravi, N (corresponding author), Spelman Coll, Dept Phys, Atlanta, GA 30314 USA. EM nravi@spelman.edu FU National Science FoundationNational Science Foundation (NSF) [PREM DMR-0934142]; Department of EnergyUnited States Department of Energy (DOE) [DE-FG52-09NA29318] FX N.R. acknowledges the support by the National Science Foundation Grant PREM DMR-0934142 and the Department of Energy Grant DE-FG52-09NA29318. The authors would like to thank Beatriz Cardelino for useful discussions and helpful suggestions. CR BECKE AD, 1988, PHYS REV A, V38, P3098, DOI 10.1103/PhysRevA.38.3098 Boyd D. B., 2007, REV COMPUTATIONAL CH, V3 BOYS SF, 1950, PROC R SOC LON SER-A, V200, P542, DOI 10.1098/rspa.1950.0036 CHAN TF, 1985, SIAM J NUMER ANAL, V22, P904, DOI 10.1137/0722054 DITCHFIELD R, 1971, J CHEM PHYS, V54, P724, DOI 10.1063/1.1674902 Hargrove J, 2012, NANOSCALE, V4, P4443, DOI 10.1039/c2nr30823a HEHRE WJ, 1969, J CHEM PHYS, V51, P2657, DOI 10.1063/1.1672392 HEHRE WJ, 1972, J CHEM PHYS, V56, P2257, DOI 10.1063/1.1677527 HEHRE WJ, 1970, J CHEM PHYS, V52, P2769, DOI 10.1063/1.1673374 Kudin K.N., 2013, GAUSSIAN 09 REVISION LEE CT, 1988, PHYS REV B, V37, P785, DOI 10.1103/PhysRevB.37.785 Lewars E., 2003, COMPUTATIONAL CHEM I, P188 Pye CC, 2012, J CHEM EDUC, V89, P1405, DOI 10.1021/ed300032f Ravi N., 2011, 57FE MOSSBAUER SPECT, P1 Romeijn H. E., 2002, HDB GLOBAL OPTIMIZAT, V2 Schleyer P. v. R., 1986, AB INITIO MOL ORBITA, P68 STEWART RF, 1969, J CHEM PHYS, V50, P2485, DOI 10.1063/1.1671406 NR 17 TC 3 Z9 3 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9584 EI 1938-1328 J9 J CHEM EDUC JI J. Chem. Educ. PD MAY PY 2013 VL 90 IS 5 BP 609 EP 612 DI 10.1021/ed300807y PG 4 WC Chemistry, Multidisciplinary; Education, Scientific Disciplines SC Chemistry; Education & Educational Research GA 154XI UT WOS:000319709600015 DA 2021-04-21 ER PT J AU Braun, M AF Braun, Moritz TI Different approaches to the numerical solution of the 3D Poisson equation implemented in Python SO COMPUTING LA English DT Article DE Poisson Equation; Finite element method; Python; Factorization approach AB The numerical solution of the three-dimensional Poisson equation with Dirichlet boundary conditions, which is of importance for a wide field of applications in Computational Physics and Theoretical Chemistry is considered using the method of finite elements for a model problem. The direct, the iterative and the factorized direct methods for solving the corresponding linear system of equations are discussed and implemented in the scripting language Python http://www.python.org making use of the numpy http://www.numpy.org and pysparse http://pysparse.sourceforge. net extensions. The relative performance of the different approaches is compared and it is shown, that the factorized direct method is vastly superior for larger problem sizes. A formalism for implementing the Dirichlet boundary conditions in the factorization approach is derived and presented in some detail, since it is to the best of our knowledge new. C1 Univ S Africa, Dept Phys, ZA-0003 Pretoria, South Africa. RP Braun, M (corresponding author), Univ S Africa, Dept Phys, POB 392, ZA-0003 Pretoria, South Africa. EM moritz.braun@gmail.com RI Braun, Moritz/R-1744-2016 OI Braun, Moritz/0000-0001-8710-7561 FU University of South Africa (UNISA) FX Financial support by the University of South Africa (UNISA) is acknowledged. CR Berger RJF, 2005, ADV QUANTUM CHEM, V50, P235, DOI 10.1016/S0065-3276(05)50011-X Fogolari F, 2002, J MOL RECOGNIT, V15, P377, DOI 10.1002/jmr.577 Froese-Fischer C., 1977, HARTREE FOCK METHOD Parr R.G., 1989, DENSITY FUNCTIONAL T Schellingerhout N.W., 1995, THESIS U GRONINGEN N Solin P, 2006, PUR APPL MATH, P1 NR 6 TC 1 Z9 1 U1 0 U2 4 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0010-485X EI 1436-5057 J9 COMPUTING JI Computing PD MAY PY 2013 VL 95 IS 1 SU S SI SI BP S49 EP S60 DI 10.1007/s00607-013-0300-x PG 12 WC Computer Science, Theory & Methods SC Computer Science GA AK7TH UT WOS:000338630100005 DA 2021-04-21 ER PT J AU Neufeld, E Szczerba, D Chavannes, N Kuster, N AF Neufeld, Esra Szczerba, Dominik Chavannes, Nicolas Kuster, Niels TI A novel medical image data-based multi-physics simulation platform for computational life sciences SO INTERFACE FOCUS LA English DT Article DE computational life sciences; multi-physics; modelling; anatomical models; image based; high-performance computing ID HYPERTHERMIA; APPLICATOR; PATIENT; HEAD AB Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e. g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a PYTHON scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models. C1 [Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels] Fdn Res Informat Technol Soc ITIS, CH-8004 Zurich, Switzerland. [Kuster, Niels] Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland. RP Neufeld, E (corresponding author), Fdn Res Informat Technol Soc ITIS, Zeughausstr 43, CH-8004 Zurich, Switzerland. EM neufeld@itis.ethz.ch OI Kuster, Niels/0000-0002-5827-3728 FU CTI; SNSF CO-ME; SciEx; ISJRP FX Various components of this work have been supported by different organizations: CTI, SNSF CO-ME, SciEx, ISJRP. Various partners have contributed to the development: ETHZ, Erasmus MC, FDA, MIT, EPFL, UniBas, University Hospital Zurich, CABMM, CSCS, UZH, SPEAG, ZMT. CR Balay S., 2010, PETSC PORTABLE EXTEN Balay S, 2011, XDMF EXTENSIBLE DATA Christ A, 2010, PHYS MED BIOL, V55, pN23, DOI 10.1088/0031-9155/55/2/N01 Hines ML, 1997, NEURAL COMPUT, V9, P1179, DOI 10.1162/neco.1997.9.6.1179 Hirsch S, 2011, INT J MULTISCALE COM, V9, P231, DOI 10.1615/IntJMultCompEng.v9.i2.70 Kyriakou A, 2012, PHYSIOL MEAS, V33, P117, DOI 10.1088/0967-3334/33/2/117 Lloyd BA, 2008, PHILOS T R SOC A, V366, P3301, DOI 10.1098/rsta.2008.0092 Neufeld E, 2009, P EUR SOC HYP ONC ES, P14 Neufeld E, 2008, HIGH RESOLUTION HYPE Paulides MM, 2007, INT J HYPERTHER, V23, P567, DOI 10.1080/02656730701670478 Paulides MM, 2007, INT J HYPERTHER, V23, P59, DOI 10.1080/02656730601150522 SAPARETO SA, 1984, INT J RADIAT ONCOL, V10, P787, DOI 10.1016/0360-3016(84)90379-1 Schroeder W., 2003, VISUALIZATION TOOLKI van der Zee J, 2002, ANN ONCOL, V13, P1173, DOI 10.1093/annonc/mdf280 van Rossum G, 2003, PYTHON LANGUAGE REFE NR 15 TC 10 Z9 10 U1 0 U2 20 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 2042-8898 EI 2042-8901 J9 INTERFACE FOCUS JI Interface Focus PD APR 6 PY 2013 VL 3 IS 2 SI SI AR 20120058 DI 10.1098/rsfs.2012.0058 PG 6 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 094SS UT WOS:000315284700003 PM 24427518 OA Bronze, Green Published DA 2021-04-21 ER PT J AU Hafermann, H Werner, P Gull, E AF Hafermann, Hartmut Werner, Philipp Gull, Emanuel TI Efficient implementation of the continuous-time hybridization expansion quantum impurity solver SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE CT-QMC; CT-HYB; DMFT; Dynamical mean-field theory ID ELECTRONIC-STRUCTURE CALCULATIONS; OPEN-SOURCE SOFTWARE; MONTE-CARLO; FIELD; FERMIONS; SYSTEMS; LATTICE AB Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Program summary Program title: ct-hyb Catalogue identifier: AEOL_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function. Solution method: The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity-bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8]. Running time: 1-8 h. References: [1] B. Bauer, L D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwock, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001(2011). [2] F. Alet, P. Dayal, A. Grzesik, A. Honecker, M..Korner, A. Lauchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwock, F. Stockli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30. [3] A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L Gamper, E. Gull, S. Gurtler, A. Honecker, R. Igarashi, M. Korner, A. Kozhevnikov, A. Lauchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwock, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism. [4] C. L. Lawson, R J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979). [5] L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002). [6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra; J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999). [7] The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000-2010). [8] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011). (C) 2012 Elsevier B.V. All rights reserved. C1 [Hafermann, Hartmut] Ecole Polytech, CNRS, F-91128 Palaiseau, France. [Werner, Philipp] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Gull, Emanuel] Univ Michigan, Ann Arbor, MI 48109 USA. [Gull, Emanuel] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. RP Gull, E (corresponding author), Univ Michigan, Ann Arbor, MI 48109 USA. EM hartmut.hafermann@cpht.polytechnique.fr; philipp.werner@unifr.ch; gull@phys.columbia.edu RI Werner, Philipp/C-7247-2009; Gull, Emanuel C/A-2362-2010 OI Gull, Emanuel C/0000-0002-6082-1260 FU DFGGerman Research Foundation (DFG)European Commission [FOR 1346]; SNF Grant [200021_140648]; wider ALPS community [20-22] FX P. W. acknowledges support by DFG FOR 1346 and SNF Grant 200021_140648. We gratefully acknowledge support by the wider ALPS [20-22] community. CR Albuquerque AF, 2007, J MAGN MAGN MATER, V310, P1187, DOI 10.1016/j.jmmm.2006.10.304 Alet F, 2005, J PHYS SOC JPN, V74, P30, DOI 10.1143/JPSJS.74S.30 ANDERSON PW, 1961, PHYS REV, V124, P41, DOI 10.1103/PhysRev.124.41 [Anonymous], 2000, HDF GROUP HIER DAT F Bauer B, 2011, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2011/05/P05001 Boehnke L, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.075145 BRAKO R, 1981, J PHYS C SOLID STATE, V14, P3065, DOI 10.1088/0022-3719/14/21/023 Bulla R, 1998, J PHYS-CONDENS MAT, V10, P8365, DOI 10.1088/0953-8984/10/37/021 Chitra R, 2001, PHYS REV B, V63, DOI 10.1103/PhysRevB.63.115110 Dai X., 2012, ARXIV E PRINTS Georges A, 2004, AIP CONF PROC, V715, P3 GEORGES A, 1992, PHYS REV LETT, V69, P1240, DOI 10.1103/PhysRevLett.69.1240 Georges A, 1996, REV MOD PHYS, V68, P13, DOI 10.1103/RevModPhys.68.13 Gull E, 2008, EPL-EUROPHYS LETT, V82, DOI 10.1209/0295-5075/82/57003 Gull E, 2011, REV MOD PHYS, V83, P349, DOI 10.1103/RevModPhys.83.349 Gull E, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.075122 Hafermann H, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.206401 Hafermann H, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.205106 Hanson R, 2007, REV MOD PHYS, V79, P1217, DOI 10.1103/RevModPhys.79.1217 Haule K, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.155113 Held K, 2007, ADV PHYS, V56, P829, DOI 10.1080/00018730701619647 Held K, 2006, PHYS STATUS SOLIDI B, V243, P2599, DOI 10.1002/pssb.200642053 HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P325, DOI 10.1016/0003-4916(59)90002-8 Kotliar G, 2006, REV MOD PHYS, V78, P865, DOI 10.1103/RevModPhys.78.865 Lauchli AM, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.235117 Maier T, 2005, REV MOD PHYS, V77, P1027, DOI 10.1103/RevModPhys.77.1027 METZNER W, 1989, PHYS REV LETT, V62, P324, DOI 10.1103/PhysRevLett.62.324 Parragh N, 2012, PHYS REV B, V86, DOI 10.1103/PhysRevB.86.155158 Rubtsov AN, 2012, ANN PHYS-NEW YORK, V327, P1320, DOI 10.1016/j.aop.2012.01.002 Rubtsov AN, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.033101 Rubtsov AN, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.035122 Rubtsov AN, 2004, JETP LETT+, V80, P61, DOI 10.1134/1.1800216 Smith JL, 2000, PHYS REV B, V61, P5184, DOI 10.1103/PhysRevB.61.5184 Toschi A, 2007, PHYS REV B, V75, DOI 10.1103/PhysRevB.75.045118 Werner P, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.155107 Werner P, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.076405 Werner P, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.146401 Werner P, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.146404 NR 38 TC 47 Z9 47 U1 2 U2 54 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD APR PY 2013 VL 184 IS 4 BP 1280 EP 1286 DI 10.1016/j.cpc.2012.12.013 PG 7 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 104EI UT WOS:000315974100021 DA 2021-04-21 ER PT J AU Horvath, A AF Horvath, Arpad TI The Cxnet Complex Network Analyser Software SO ACTA POLYTECHNICA HUNGARICA LA English DT Article DE complex network; graph theory; education; software AB The study of complex networks has become important in several fields of science such as biology, sociology and physics. The collection of network data and the storage, analysis and visualisation of these data have become important contributors to the knowledge of programmers working in these fields. Our cxnet software connects several software packages of the Python language to make these tasks easier. One of the main goals of this development is to provide a comfortable application programming interface for students to develop their own programs. The cxnet software package is able to create the software package network of the Ubuntu Linux distribution. This network is a directed network with several types of vertices and connections. It changes quite fast and can be created easily. These properties make it an ideal object of investigation. The present paper describes some useful measures of the properties of the complex networks, the usage of the cxnet package with some examples, and our experiences in the education. C1 Obuda Univ, Alba Regia Univ Ctr, Szekesfehervar, Hungary. RP Horvath, A (corresponding author), Obuda Univ, Alba Regia Univ Ctr, Szekesfehervar, Hungary. EM horvath.arpad@arek.uni-obuda.hu CR Albert R, 2002, REV MOD PHYS, V74, P47, DOI 10.1103/RevModPhys.74.47 BATAGELJ V, 2002, PAJEK ANAL VISUALIZA Borner K, 2010, SCIENTOMETRICS, V83, P863, DOI 10.1007/s11192-009-0149-0 Colizza V, 2007, BMC MED, V5, DOI 10.1186/1741-7015-5-34 Csardi G, 2006, INTERJOURNAL COMPLEX Dorogovtsev SN, 2008, REV MOD PHYS, V80, P1275, DOI 10.1103/RevModPhys.80.1275 Hagberg A, 2008, 7 PYTH SCI C SCIPY20, V7, P11, DOI DOI 10.1016/J.JELECTROCARD.2010.09.003 Hertzog R., 2012, DEBIAN ADM HDB Horvath A., 2010, ACTA PHYS DEBRECINA, VXLIV, P37 Kitsak M, 2007, PHYS REV E, V75, DOI 10.1103/PhysRevE.75.056115 Liu YY, 2011, NATURE, V473, P167, DOI 10.1038/nature10011 Maillart T, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.218701 Myers CR, 2003, PHYS REV E, V68, DOI 10.1103/PhysRevE.68.046116 Newman MEJ, 2004, PHYS REV E, V69, DOI [10.1103/PhysRevE.69.026113, 10.1103/PhysRevE.69.066133] Newman MEJ, 2003, SIAM REV, V45, P167, DOI 10.1137/S003614450342480 Ravasz E, 2003, PHYS REV E, V67, DOI 10.1103/PhysRevE.67.026112 Siek Jeremy G., 2001, BOOST GRAPH LIB USER Sousa O.F., 2009, J COMPUTATIONAL INTE, V1, P127, DOI 10.6062/jcis.2009.01.02.0015 Summerfield M, 2010, PROGRAMMING PYTHON Tosi S., 2009, MATPLOTLIB PYTHON DE Vazquez A, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.066130 Zlatic V, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.016115 NR 22 TC 4 Z9 4 U1 0 U2 4 PU BUDAPEST TECH PI BUDAPEST PA BECSI UT 96-B, BUDAPEST, H-1034, HUNGARY SN 1785-8860 J9 ACTA POLYTECH HUNG JI Acta Polytech. Hung. PY 2013 VL 10 IS 6 BP 43 EP 58 PG 16 WC Engineering, Multidisciplinary SC Engineering GA 252HD UT WOS:000326994800003 DA 2021-04-21 ER PT S AU del Rio, MS AF del Rio, M. Sanchez BE Susini, J Dumas, P TI New challenges in ray tracing simulations of X-ray optics SO 11TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION (SRI 2012) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 11th International Conference on Synchrotron Radiation Instrumentation (SRI) CY JUL 09-13, 2012 CL Lyon, FRANCE SP ESRF, SOLEIL AB The construction of new synchrotron sources and the refurbishment and upgrade of existing ones has boosted in the last years the interest in X-ray optics simulations for beamline design and optimization. In the last years we conducted a full renewal of the well established SHADOW ray tracing code, ending with a modular version SHADOW3 interfaced to multiple programming languages (C, C++, IDL, Python). Some of the new features of SHADOW3 are presented. From the physics point of view, SHADOW3 has been upgraded for dealing with lens systems. X-ray partial coherence applications demand an extension of traditional ray tracing methods into a hybrid ray-tracing wave-optics approach. The software development is essential for fulfilling the requests of the ESRF Upgrade Programme, and some examples of calculations are also presented. C1 European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP del Rio, MS (corresponding author), European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France. EM srio@esrf.eu CR Bergback Knudsen E, J PHYS C SERIES Canestrari N, J PHYS C SERIES Canestrari N, 2011, PROC SPIE, V8141, DOI 10.1117/12.893433 Chubar O., 1998, P 6 EUR PART ACC C E, P1177 del Rio MS, 2012, J SYNCHROTRON RADIAT, V19, P366, DOI 10.1107/S0909049512003020 del Rio MS, 2011, PROC SPIE, V8141 del Rio MS, 2011, J SYNCHROTRON RADIAT, V18, P708, DOI 10.1107/S0909049511026306 Evans-Lutterodt K, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.134801 Leitenberger W, 2003, PHYSICA B, V336, P63, DOI 10.1016/S0921-4526(03)00270-9 Osterhoff M, 2011, NEW J PHYS, V13, DOI 10.1088/1367-2630/13/10/103026 Sanchez del Rio M, J PHYS C SERIES Sanchez del Rio M, 2012, SPIE P, V8141 Schroer CG, 2005, APPL PHYS LETT, V87, DOI 10.1063/1.2053350 Zhang L, J PHYS C SERIES NR 14 TC 2 Z9 2 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2013 VL 425 AR 162003 DI 10.1088/1742-6596/425/16/162003 PG 6 WC Instruments & Instrumentation; Physics, Applied; Physics, Multidisciplinary SC Instruments & Instrumentation; Physics GA BFL51 UT WOS:000320403700225 OA Bronze DA 2021-04-21 ER PT S AU Khwaldeh, A Tahat, A Marti, J Tahat, M AF Khwaldeh, Ali Tahat, Amani Marti, Jordi Tahat, Mofleh BE Giannakopoulos, G Sakas, DP Vlachos, DS KyriakiManessi, D TI Atomic data mining numerical methods, source code SQlite with Python SO PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INTEGRATED INFORMATION (IC-ININFO 2012) SE Procedia Social and Behavioral Sciences LA English DT Proceedings Paper CT 2nd International Conference on Integrated Information (IC-ININFO) CY AUG 30-SEP 03, 2012 CL Budapest, HUNGARY DE Python; atomic data; database; data mining algorithms; data model; collaborative intelligence; machine learning AB This paper introduces a recently published Python data mining book (chapters, topics, samples of Python source code written by its authors) to be used in data mining via world wide web and any specific database in several disciplines (economic, physics, education, marketing. etc). The book started with an introduction to data mining by explaining some of the data mining tasks involved classification, dependence modelling, clustering and discovery of association rules. The book addressed that using Python in data mining has been gaining some interest from data miner community due to its open source, general purpose programming and web scripting language; furthermore, it is a cross platform and it can be run on a wide variety of operating systens such as Linux, Windows, FreeBSD, Macintosh, Solaris, OS/2, Amiga, AROS, AS/400, BeOS, OS/390, z/OS, Palm OS, QNX, VMS, Psion, Acorn RISC OS, VxWorks, PlayStation, Sharp Zaurus, Windows CE and even PocketPC. Finally this book can be considered as a teaching textbook for data mining in which several methods such as machine learning and statistics are used to extract high-level knowledge from real-world datasets. (C) 2013 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of The 2nd International Conference on Integrated C1 [Khwaldeh, Ali] Philadelphia Univ, Fac Engn, Dept Comp Engn, Amman 19392, Jordan. EM amani.tahat@upc.edu RI Marti, Jordi/H-5414-2015 OI Marti, Jordi/0000-0002-3721-9634 CR Downey A., 2012, THINK PYTHON Han J., 2006, DATA MINING CONCEPTS Khwaldeh Ali, 2011, ATOMIC DATA MINING N Ling M., 2011, PYTHON PAPER, V6, P04 McKinney W., 2012, PYTHON DATA ANAL Russell Matthew A., 2011, MINING SOCIAL WEB Tahat A, 2011, INT J DATA DATABASE, V3, P1 NR 7 TC 1 Z9 1 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-0428 J9 PROCD SOC BEHV PY 2013 VL 73 BP 232 EP 239 DI 10.1016/j.sbspro.2013.02.046 PG 8 WC Information Science & Library Science SC Information Science & Library Science GA BFR79 UT WOS:000321102300033 OA Bronze DA 2021-04-21 ER PT S AU Brun, F Accardo, A Kourousias, G Dreossi, D Pugliese, R AF Brun, Francesco Accardo, Agostino Kourousias, George Dreossi, Diego Pugliese, Roberto GP IEEE TI Effective implementation of ring artifacts removal filters for synchrotron radiation microtomographic images SO 2013 8TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA) SE International Symposium on Image and Signal Processing and Analysis LA English DT Proceedings Paper CT 8th International Symposium on Image and Signal Processing and Analysis (ISPA) CY SEP 04-06, 2013 CL Trieste, ITALY SP Univ Trieste, Dept Engn & Arch, Univ Zagreb, Fac Elect Engn &d Comp, EURASIP, IEEE Signal Proc Soc, Italy Chapter, DAVe, FONDAZIONE CRTRIESTE, CHIRON, FIMI, ESTECO AB The presence of ring artifacts in X-ray computed microtomography affects the qualitative and quantitative analyses of the reconstructed images. Although digital image processing approaches to ring artifacts removal via direct filtering of the reconstructed images exist, in synchrotron radiation microtomography this issue is usually faced during the actual reconstruction process by de-striping the sinogram image. In this work different de-striping algorithms are discussed and preliminary compared using a suitably created test image as well as actual imaged data. Because of the increasing need for fast reconstruction workflows, details of the implementation and the related computational aspects are also considered. Moreover, the hardware and software solution developed and deployed for the SYRMEP (SYnchrotron Radiation for MEdical Physics) microtomographic beamline of the Italian synchrotron radiation facility (Elettra - Sincrotrone Trieste S.C.p.A) is presented. This solution is based on a high-performance computing (HPC) cluster with the Oracle Grid Engine distributed resource management (DRM) system and Python code that takes advantage of the NumPy and SciPy libraries. C1 [Brun, Francesco; Accardo, Agostino] Univ Trieste, Dept Engn & Architecture, Via A Valerio 10, I-34137 Trieste, Italy. [Kourousias, George; Dreossi, Diego; Pugliese, Roberto] Eletra Sincrotrone Trieste S CpA, I-34149 Trieste, Italy. RP Brun, F (corresponding author), Univ Trieste, Dept Engn & Architecture, Via A Valerio 10, I-34137 Trieste, Italy. EM fbrun@units.it RI Brun, Francesco/ABD-3891-2020 OI Brun, Francesco/0000-0003-0155-5326 CR Abu Anas EM, 2011, BIOMED ENG ONLINE, V10, DOI 10.1186/1475-925X-10-72 Anas E M A, 2010, 2010 6th International Conference on Electrical & Computer Engineering (ICECE 2010), P638, DOI 10.1109/ICELCE.2010.5700774 Axelsson M, 2006, LECT NOTES COMPUT SC, V4174, P61 Barrett JF, 2004, RADIOGRAPHICS, V24, P1679, DOI 10.1148/rg.246045065 Boin M, 2006, OPT EXPRESS, V14, P12071, DOI 10.1364/OE.14.012071 Brun F, 2011, IEEE IMAGE PROC, P405, DOI 10.1109/ICIP.2011.6116535 Brun F, 2009, 11th International Congress of the IUPESM. World Congress on Medical Physics and Biomedical Engineering. Image Processing, Biosignal Processing, Modelling and Simulation, Biomechanics, P926 Brun F, 2010, NUCL INSTRUM METH A, V615, P326, DOI 10.1016/j.nima.2010.02.063 Eskicioglu AM, 1995, IEEE T COMMUN, V43, P2959, DOI 10.1109/26.477498 Munch B, 2009, OPT EXPRESS, V17, P8567, DOI 10.1364/OE.17.008567 Raven C, 1998, REV SCI INSTRUM, V69, P2978, DOI 10.1063/1.1149043 Rivers M, 1998, TUTORIAL INTRO XRAY Sadi F, 2010, COMPUT BIOL MED, V40, P109, DOI 10.1016/j.compbiomed.2009.11.007 Sijbers J, 2004, PHYS MED BIOL, V49, pN247, DOI 10.1088/0031-9155/49/14/N06 NR 14 TC 17 Z9 17 U1 0 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1845-5921 BN 978-953-184-194-8; 978-953-184-187-0 J9 INT SYMP IMAGE SIG PY 2013 BP 672 EP + PG 2 WC Engineering, Electrical & Electronic; Imaging Science & Photographic Technology SC Engineering; Imaging Science & Photographic Technology GA BC0XH UT WOS:000349789200119 DA 2021-04-21 ER PT J AU Conte, E Fuks, B Serret, G AF Conte, Eric Fuks, Benjamin Serret, Guillaume TI MADANALYSIS 5, a user-friendly framework for collider phenomenology SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Particle physics phenomenology; Monte Carlo event generators; Hadron colliders ID AUTOMATIC-GENERATION; FEYNRULES AB We present MADANALYSIS 5, a new framework for phenomenological investigations at particle colliders. Based on a C++ kernel, this program allows us to efficiently perform, in a straightforward and user-friendly fashion, sophisticated physics analyses of event files such as those generated by a large class of Monte Carlo event generators. MADANALYSIS 5 comes with two modes of running. The first one, easier to handle, uses the strengths of a powerful PYTHON interface in order to implement physics analyses by means of a set of intuitive commands. The second one requires one to implement the analyses in the C++ programming language, directly within the core of the analysis framework. This opens unlimited possibilities concerning the level of complexity which can be reached, being only limited by the programming skills and the originality of the user. Program summary Program title: MadAnalysis 5 Catalogue identifier: AENO_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Permission to use, copy, modify and distribute this program is granted under the terms of the GNU General Public License. No. of lines in distributed program, including test data, etc.: 31087 No. of bytes in distributed program, including test data, etc.: 399105 Distribution format: tar.gz Programming language: PYTHON, C++. Computer: All platforms on which Python version 2.7, Root version 5.27 and the g++ compiler are available. Compatibility with newer versions of these programs is also ensured. However, the Python version must be below version 3.0. Operating system: Unix, Linux and Mac OS operating systems on which the above-mentioned versions of Python and Root, as well as g++, are available. Classification: 11.1. External routines: ROOT (http://root.cern.ch/drupal/) Nature of problem: Implementing sophisticated phenomenological analyses in high-energy physics through a flexible, efficient and straightforward fashion, starting from event files such as those produced by Monte Carlo event generators. The event files can have been matched or not to parton-showering and can have been processed or not by a (fast) simulation of a detector. According to the sophistication level of the event files (parton-level, hadron-level, reconstructed-level), one must note that several input formats are possible. Solution method: We implement an interface allowing the production of predefined as well as user-defined histograms for a large class of kinematical distributions after applying a set of event selection cuts specified by the user. This therefore allows us to devise robust and novel search strategies for collider experiments, such as those currently running at the Large Hadron Collider at CERN, in a very efficient way. Restrictions: Unsupported event file format. Unusual features: The code is fully based on object representations for events, particles, reconstructed objects and cuts, which facilitates the implementation of an analysis. Running time: It depends on the purposes of the user and on the number of events to process. It varies from a few seconds to the order of the minute for several millions of events. (C) 2012 Elsevier B.V. All rights reserved. C1 [Fuks, Benjamin; Serret, Guillaume] Univ Strasbourg, CNRS, IN2P3, Inst Pluridisciplinaire Hubert Curien,Dept Rech S, F-67037 Strasbourg, France. [Conte, Eric] Univ Haute Alsace, GRPHE, IUT Colmar, F-68008 Colmar, France. RP Fuks, B (corresponding author), Univ Strasbourg, CNRS, IN2P3, Inst Pluridisciplinaire Hubert Curien,Dept Rech S, 23 Rue Loess, F-67037 Strasbourg, France. EM eric.conte@iphc.cnrs.fr; benjamin.fuks@ires.in2p3.fr; guillaume.serret@iphc.cnrs.fr OI Fuks, Benjamin/0000-0002-0041-0566 FU Theory-LHC France-initiative of the CNRS/IN2P3; French Ministry for Education and Research FX The authors are extremely grateful to J. Andrea for being the first user and beta-tester of this program. We also thank the MADGRAPH 5 development team (J. Alwall, F. Maltoni, O. Mattelaer and T. Stelzer) and R. Frederix for commenting and supporting the development of MADANALYSIS 5 as well as our colleagues from Strasbourg for their help in testing and debugging the code, J.L. Agram, A. Alloul, A. Aubin, E. Chabert, C. Collard, A. Gallo, P. Lansonneur and S. Marrazzo. Finally, we acknowledge V. Boucher, J. de Favereau and P. Demin for their help in administrating our web and SVN server. This work has been supported by the Theory-LHC France-initiative of the CNRS/IN2P3 and a Ph.D. fellowship of the French Ministry for Education and Research. CR Alwall J, 2007, COMPUT PHYS COMMUN, V176, P300, DOI 10.1016/j.cpc.2006.11.010 Alwall J, 2008, AIP CONF PROC, V1078, P84, DOI 10.1063/1.3052056 Alwall J, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/09/028 Alwall J, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2011)128 Bahr M, 2008, EUR PHYS J C, V58, P639, DOI 10.1140/epjc/s10052-008-0798-9 Berger CF, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.092001 Berger CF, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.074002 Berger CF, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.222001 Boos E, 2004, NUCL INSTRUM METH A, V534, P250, DOI 10.1016/j.nima.2004.07.096 Boos E., ARXIVHEPPH0109068 Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Cacciari M, 2006, PHYS LETT B, V641, P57, DOI 10.1016/j.physletb.2006.08.037 Cafarella A, 2009, COMPUT PHYS COMMUN, V180, P1941, DOI 10.1016/j.cpc.2009.04.023 Cascioli F, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.111601 Catani S, 2001, J HIGH ENERGY PHYS Christensen N, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1541-5 Christensen ND, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1990-5 Christensen ND, 2009, COMPUT PHYS COMMUN, V180, P1614, DOI 10.1016/j.cpc.2009.02.018 Corcella G, 2001, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2001/01/010 Cullen G, 2012, EUR PHYS J C, V72, DOI 10.1140/epjc/s10052-012-1889-1 Czakon M, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/08/085 de Aquino P., ARXIV11082041 Degrande C, 2012, COMPUT PHYS COMMUN, V183, P1201, DOI 10.1016/j.cpc.2012.01.022 Demin P., 2005, EXROOTANALY IN PRESS Dobbs M, 2001, COMPUT PHYS COMMUN, V134, P41, DOI 10.1016/S0010-4655(00)00189-2 Duhr C, 2011, COMPUT PHYS COMMUN, V182, P2404, DOI 10.1016/j.cpc.2011.06.009 Ellis R.K., 2009, J HIGH ENERGY PHYS, V04, P077 Frederix R, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/09/122 Frederix R, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/10/003 Fuks B, 2012, INT J MOD PHYS A, V27, DOI 10.1142/S0217751X12300074 Giammanco A, 2006, SPRINGER PROC PHYS, V108, P311 GIELE W, ARXIVHEPPH0204316 Gleisberg T, 2008, EUR PHYS J C, V53, P501, DOI [10.1140/epjc/s10052-007-0495-0, 10.1140/epjc/sl0052-007-0495-0] Gleisberg T, 2004, J HIGH ENERGY PHYS Gleisberg T, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/02/007 GLEISBERG T, 2008, J HIGH ENERGY PHYS Hasegawa K, 2008, NUCL PHYS B-PROC SUP, V183, P268, DOI 10.1016/j.nuclphysbps.2008.09.115 Hirschi V, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2011)044 Kilian W, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1742-y Krauss F, 2002, J HIGH ENERGY PHYS Maltoni F, 2003, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2003/02/027 Mangano ML, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/01/013 Mangano ML, 2003, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2003/07/001 Moretti M., ARXIVHEPPH0102195 Mrenna S, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/05/040 Nakamura K, 2010, J PHYS G NUCL PARTIC, V37, P1, DOI 10.1088/0954-3899/37/7A/075021 Ossola G, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/03/042 Ovyn S., ARXIV09032225 PLOTHOWBESCH H, 1993, COMPUT PHYS COMMUN, V75, P396, DOI 10.1016/0010-4655(93)90051-D Pukhov A., ARXIVHEPPH9908288 Pukhov A., ARXIVHEPPH0412191 Pumplin J, 2002, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2002/07/012 Semenov A, 1998, COMPUT PHYS COMMUN, V115, P124, DOI 10.1016/S0010-4655(98)00143-X SEMENOV A, ARXIV08050555, P34903 SEYMOUR MH, ARXIV08032231 Sjostrand T, 2008, COMPUT PHYS COMMUN, V178, P852, DOI 10.1016/j.cpc.2008.01.036 Sjostrand T, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/05/026 STELZER T, 1994, COMPUT PHYS COMMUN, V81, P357, DOI 10.1016/0010-4655(94)90084-1 van Hameren A, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/09/106 Zanderighi G., ARXIV08103524 NR 60 TC 289 Z9 292 U1 0 U2 5 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JAN PY 2013 VL 184 IS 1 BP 222 EP 256 DI 10.1016/j.cpc.2012.09.009 PG 35 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 037VK UT WOS:000311134400027 OA Green Accepted DA 2021-04-21 ER PT J AU Gramfort, A Luessi, M Larson, E Engemann, DA Strohmeier, D Brodbeck, C Goj, R Jas, M Brooks, T Parkkonen, L Hamalainen, M AF Gramfort, Alexandre Luessi, Martin Larson, Eric Engemann, Denis A. Strohmeier, Daniel Brodbeck, Christian Goj, Roman Jas, Mainak Brooks, Teon Parkkonen, Lauri Haemaelaeinen, Matti TI MEG and EEG data analysis with MNE-Python SO FRONTIERS IN NEUROSCIENCE LA English DT Article DE electroencephalography (EEG); magnetoencephalography (MEG); neuroimaging; software; python; open-source ID SURFACE-BASED ANALYSIS; BRAIN; FMRI; DIPOLE AB Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne. C1 [Gramfort, Alexandre] Telecom ParisTech, CNRS LTCI, Inst Mines Telecom, F-75014 Paris, France. [Gramfort, Alexandre; Luessi, Martin; Haemaelaeinen, Matti] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA. [Gramfort, Alexandre; Luessi, Martin; Haemaelaeinen, Matti] Harvard Univ, Sch Med, Charlestown, MA USA. [Gramfort, Alexandre] CEA Saclay, NeuroSpin, F-91191 Gif Sur Yvette, France. [Larson, Eric] Univ Washington, Inst Learning & Brain Sci, Seattle, WA 98195 USA. [Engemann, Denis A.] Forschungszentrum Juelich, Inst Neurosci & Med Cognit Neurosci INM 3, Julich, Germany. [Engemann, Denis A.] Univ Hosp, Dept Psychiat, Brain Imaging Lab, Cologne, Germany. [Strohmeier, Daniel] Ilmenau Univ Technol, Inst Biomed Engn & Informat, Ilmenau, Germany. [Brodbeck, Christian; Brooks, Teon] NYU, Dept Psychol, New York, NY 10003 USA. [Goj, Roman] Univ Stirling, Sch Nat Sci, Psychol Imaging Lab, Stirling FK9 4LA, Scotland. [Jas, Mainak; Parkkonen, Lauri] Aalto Univ, Sch Sci, Dept Biomed Engn & Computat Sci, Espoo, Finland. [Jas, Mainak; Parkkonen, Lauri; Haemaelaeinen, Matti] Aalto Univ, Sch Sci, Brain Res Unit, OV Lounasmaa Lab, Espoo, Finland. RP Gramfort, A (corresponding author), Telecom ParisTech, CNRS LTCI, Inst Mines Telecom, 37-39 Rue Dareau, F-75014 Paris, France. EM alexandre.gramfort@telecom-paristech.fr RI Parkkonen, Lauri/G-6755-2012; Brodbeck, Christian/R-2207-2019; Jas, Mainak/AAW-4508-2020; Hamalainen, Matti S/C-8507-2013; Engemann, Denis-Alexander/AAC-2846-2021 OI Parkkonen, Lauri/0000-0002-0130-0801; Brodbeck, Christian/0000-0001-8380-639X; Jas, Mainak/0000-0002-3199-9027; Engemann, Denis-Alexander/0000-0002-7223-1014; Brooks, Teon L/0000-0001-7344-3230; Gramfort, Alexandre/0000-0001-9791-4404 FU National Institute of Biomedical Imaging and BioengineeringUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Biomedical Imaging & Bioengineering (NIBIB) [5R01EB009048, P41RR014075]; National Institute on Deafness and Other Communication Disorders fellowship [F32DC012456]; NSFNational Science Foundation (NSF) [0958669, 1042134]; Swiss National Science Foundation Early Postdoc; Mobility fellowship [148485]; NYUAD Institute [G1001]; National Science Foundation Graduate Research FellowshipNational Science Foundation (NSF) [DGE-1342536]; "aivoAALTO" program; German Research FoundationGerman Research Foundation (DFG) [Ha 2899/8-2]; [ERC-YStG-263584]; NATIONAL CENTER FOR RESEARCH RESOURCESUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Center for Research Resources (NCRR) [S10RR031599] Funding Source: NIH RePORTER; NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERINGUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Biomedical Imaging & Bioengineering (NIBIB) [R01EB009048, R01EB009048, R01EB009048, R01EB009048, R01EB009048, R01EB009048, R01EB009048, R01EB009048] Funding Source: NIH RePORTER; Direct For Social, Behav & Economic ScieNational Science Foundation (NSF)NSF - Directorate for Social, Behavioral & Economic Sciences (SBE) [0958669] Funding Source: National Science Foundation; Division Of Behavioral and Cognitive SciNational Science Foundation (NSF)NSF - Directorate for Social, Behavioral & Economic Sciences (SBE) [0958669] Funding Source: National Science Foundation FX This work was supported by National Institute of Biomedical Imaging and Bioengineering grants 5R01EB009048 and P41RR014075, National Institute on Deafness and Other Communication Disorders fellowship F32DC012456, and NSF awards 0958669 and 1042134. The work of Alexandre Gramfort was partially supported by ERC-YStG-263584. Martin Luessi was partially supported by the Swiss National Science Foundation Early Postdoc. Mobility fellowship 148485. Christian Brodbeck was supported by grant G1001 from the NYUAD Institute. Teon Brooks was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1342536. Lauri Parkkonen was supported by the "aivoAALTO" program. Daniel Strohmeier was supported by grant Ha 2899/8-2 from the German Research Foundation. CR Aine CJ, 2012, NEUROINFORMATICS, V10, P141, DOI 10.1007/s12021-011-9132-z Becker R, 1996, TECHNICAL REPORT BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x Buitinck L., 2013, EUR C MACH LEARN PRI Carp J, 2012, FRONT NEUROSCI-SWITZ, V6, DOI 10.3389/fnins.2012.00149 Carp J, 2012, NEUROIMAGE, V63, P289, DOI 10.1016/j.neuroimage.2012.07.004 Dalal SS, 2011, COMPUT INTEL NEUROSC, V2011, DOI 10.1155/2011/758973 Dale AM, 2000, NEURON, V26, P55, DOI 10.1016/S0896-6273(00)81138-1 Dale AM, 1999, NEUROIMAGE, V9, P179, DOI 10.1006/nimg.1998.0395 Delorme A, 2004, J NEUROSCI METH, V134, P9, DOI 10.1016/j.jneumeth.2003.10.009 Delorme A, 2011, COMPUT INTEL NEUROSC, V2011, DOI 10.1155/2011/130714 Desikan RS, 2006, NEUROIMAGE, V31, P968, DOI 10.1016/j.neuroimage.2006.01.021 Destrieux C, 2010, NEUROIMAGE, V53, P1, DOI 10.1016/j.neuroimage.2010.06.010 Dubois PF, 2005, COMPUT SCI ENG, V7, P80, DOI 10.1109/MCSE.2005.54 Fischl B, 2004, CEREB CORTEX, V14, P11, DOI 10.1093/cercor/bhg087 Fischl B, 1999, NEUROIMAGE, V9, P195, DOI 10.1006/nimg.1998.0396 Fries P, 2009, ANNU REV NEUROSCI, V32, P209, DOI 10.1146/annurev.neuro.051508.135603 Gorgolewski Krzysztof, 2011, Front Neuroinform, V5, P13, DOI 10.3389/fninf.2011.00013 Gramfort A, 2013, NEUROIMAGE, V70, P410, DOI 10.1016/j.neuroimage.2012.12.051 Gramfort A., 2013, NEUROIMAGE, DOI [10.1016/j.neuroimage.2013.10.027, DOI 10.1016/J.NEUR0IMAGE.2013.10.027.(IN] Gramfort A, 2012, PHYS MED BIOL, V57, P1937, DOI 10.1088/0031-9155/57/7/1937 Gramfort A, 2011, LECT NOTES COMPUT SC, V6801, P600, DOI 10.1007/978-3-642-22092-0_49 Gramfort A, 2010, BIOMED ENG ONLINE, V9, DOI 10.1186/1475-925X-9-45 Gramfort A, 2010, IEEE T BIO-MED ENG, V57, P1051, DOI 10.1109/TBME.2009.2037139 Granger CWJ, 1964, SPECTRAL ANAL EC TIM Gross J, 2001, P NATL ACAD SCI USA, V98, P694, DOI 10.1073/pnas.98.2.694 Gross J, 2013, NEUROIMAGE, V65, P349, DOI 10.1016/j.neuroimage.2012.10.001 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 HAMALAINEN MS, 1994, MED BIOL ENG COMPUT, V32, P35, DOI 10.1007/BF02512476 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Hyvarinen A, 2000, NEURAL NETWORKS, V13, P411, DOI 10.1016/S0893-6080(00)00026-5 Klockner A, 2012, PARALLEL COMPUT, V38, P157, DOI 10.1016/j.parco.2011.09.001 Lachaux JP, 1999, HUM BRAIN MAPP, V8, P194, DOI 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C Larson E, 2013, NEUROIMAGE, V64, P365, DOI 10.1016/j.neuroimage.2012.09.006 Litvak V, 2011, COMPUT INTEL NEUROSC, V2011, DOI 10.1155/2011/852961 Maris E, 2007, J NEUROSCI METH, V164, P177, DOI 10.1016/j.jneumeth.2007.03.024 Nichols TE, 2002, HUM BRAIN MAPP, V15, P1, DOI 10.1002/hbm.1058 Nolte G, 2004, CLIN NEUROPHYSIOL, V115, P2292, DOI 10.1016/j.clinph.2004.04.029 Oostenveld R, 2011, COMPUT INTEL NEUROSC, V2011, DOI 10.1155/2011/156869 Pantazis D, 2005, NEUROIMAGE, V25, P383, DOI 10.1016/j.neuroimage.2004.09.040 Pascual-Marqui RD, 2002, METHOD FIND EXP CLIN, V24, P5 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Ramachandran P, 2011, COMPUT SCI ENG, V13, P40, DOI 10.1109/MCSE.2011.35 Ridgway GR, 2012, NEUROIMAGE, V59, P2131, DOI 10.1016/j.neuroimage.2011.10.027 Schelter B., 2006, HDB TIME SERIES ANAL SCHERG M, 1985, ELECTROEN CLIN NEURO, V62, P32, DOI 10.1016/0168-5597(85)90033-4 Schoffelen JM, 2009, HUM BRAIN MAPP, V30, P1857, DOI 10.1002/hbm.20745 Tadel F, 2011, COMPUT INTEL NEUROSC, V2011, DOI 10.1155/2011/879716 TallonBaudry C, 1997, NEUROREPORT, V8, P1103, DOI 10.1097/00001756-199703240-00008 Uusitalo MA, 1997, MED BIOL ENG COMPUT, V35, P135, DOI 10.1007/BF02534144 van der Walt S, 2011, COMPUT SCI ENG, V13, P22, DOI 10.1109/MCSE.2011.37 Van Essen DC, 2012, NEUROIMAGE, V62, P2222, DOI 10.1016/j.neuroimage.2012.02.018 VanVeen BD, 1997, IEEE T BIO-MED ENG, V44, P867, DOI 10.1109/10.623056 WANG JZ, 1992, IEEE T BIO-MED ENG, V39, P665, DOI 10.1109/10.142641 Wipf D, 2009, NEUROIMAGE, V44, P947, DOI 10.1016/j.neuroimage.2008.02.059 Wolters CH, 2007, SIAM J SCI COMPUT, V30, P24, DOI 10.1137/060659053 NR 56 TC 402 Z9 403 U1 4 U2 26 PU FRONTIERS MEDIA SA PI LAUSANNE PA AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND EI 1662-453X J9 FRONT NEUROSCI-SWITZ JI Front. Neurosci. PY 2013 VL 7 AR 267 DI 10.3389/fnins.2013.00267 PG 13 WC Neurosciences SC Neurosciences & Neurology GA AW9HF UT WOS:000346567300262 PM 24431986 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Quackenbush, S Gavin, R Li, Y Petriello, F AF Quackenbush, Seth Gavin, Ryan Li, Ye Petriello, Frank TI W physics at the LHC with FEWZ 2.1 SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE W; NNLO AB We present an updated version of the FEWZ (Fully Exclusive Wand Z production) code for the calculation of W-+/- and y* /Z production at next-to-next-to-leading order in the strong coupling. Several new features and observables are introduced, and an order-of-magnitude speed improvement over the performance of FEWZ 2.0 is demonstrated. New phenomenological results for W-+/- production and comparisons with LHC data are presented, and used to illustrate the range of physics studies possible with the features of FEWZ 2.1. We demonstrate with an example the importance of directly comparing fiducial-region measurements with theoretical predictions, rather than first extrapolating them to the full phase space. Program summary Program title: FEWZ 2.1 Catalogue identifier: AEJP_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEJP_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12003230 No. of bytes in distributed program, including test data, etc.: 769 Distribution format: tar.gz Programming language: Fortran 77, C++, Python 2.4. Computer: x86/x86-64. Operating system: Unix/Linux, Mac OSX. RAM: 200 Mbytes Classification: 11.1. External routines: CUBA (included), LHAPDF (optional) Catalogue identifier of previous version: AEJP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 2388 Does the new version supersede the previous version?: Yes Nature of problem: Calculation of hadroproduction of W bosons, with differential distributions, at next-to-next-to-leading order in the strong coupling. Solution method: Integral reduction, sector decomposition, numerical integration Reasons for new version: Reintroduction of W boson to FEWZ 2 Summary of revisions: Addition of W boson production, now can run in W or Z/gamma mode. LHAPDF interface added. Large speed improvements achieved through caching repeat function calls. New observables and histograms. Improved histogram binning. Additional comments: Running with all histograms on requires approx. 1 GB of disk space to store intermediate files. !!!!! The distribution file for this program is over 290 Mbytes and therefore is not delivered directly when download or e-mail is requested. Instead an html file giving details of how the program can be obtained is sent !!!!! Running time: 2 hours to achieve NNLO precision in cross section on multicore machines, up to a few days for quality kinematic distributions. Cluster running is considerably faster. (C) 2012 Elsevier B.V. All rights reserved. C1 [Quackenbush, Seth; Petriello, Frank] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Gavin, Ryan] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Li, Ye; Petriello, Frank] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Quackenbush, S (corresponding author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM squackenbush@hep.anl.gov FU US DOEUnited States Department of Energy (DOE) [DE-AC02-06CH11357]; Swiss National Science FoundationSwiss National Science Foundation (SNSF)European Commission; [DE-FG02-91ER40684] FX We thank U. Klein for considerable input and testing during the initial stages of integrating the W code, and K. Mueller, W. Sakumoto, S. Stoynev, and H. Yoo for substantial helpful feedback. This research is supported by the US DOE under contract DE-AC02-06CH11357 and the grant DE-FG02-91ER40684, and by the Swiss National Science Foundation. CR Aad G., ARXIV11095141HEPEX A Alekhin S., ARXIV09083128HEPPH Anastasiou C, 2004, PHYS REV D, V69, DOI 10.1103/PhysRevD.69.094008 Anastasiou C, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.182002 Anastasiou C, 2004, PHYS REV D, V69, DOI 10.1103/PhysRevD.69.076010 Anastasiou C, 2005, NUCL PHYS B, V724, P197, DOI 10.1016/j.nuclphysb.2005.06.036 Anastasiou C., 2011, JHEP, V1103, P038 Ball RD, 2012, NUCL PHYS B, V855, P153, DOI 10.1016/j.nuclphysb.2011.09.024 Balossini G, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2010)013 Baur U, 1999, PHYS REV D, V59, DOI 10.1103/PhysRevD.59.013002 Berger C.F., 2011, JHEP, V1104, P092 Bernaciak C, ARXIV12014804HEPPH Boughezal R., ARXIV11117041HEPPH Calame CMC, 2006, J HIGH ENERGY PHYS Cao QH, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.042001 Catani S., 2010, JHEP, V1005, P006 Catani S, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.082001 Chatrchyan S., 2011, JHEP, V1110, P132 Cooper-Sarkar A.M., ARXIV11122107HEPPH Z Dittmaier S, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.073007 Gavin R, 2011, COMPUT PHYS COMMUN, V182, P2388, DOI 10.1016/j.cpc.2011.06.008 Hamberg R, 2002, NUCL PHYS B, V644, P403, DOI 10.1016/S0550-3213(02)00814-3 HAMBERG R, 1991, NUCL PHYS B, V359, P343, DOI 10.1016/0550-3213(91)90064-5 Jimenez-Delgado P, 2009, PHYS REV D, V80, DOI 10.1103/PhysRevD.80.114011 Kilgore W.B., ARXIV11074798HEPPH Li Y, 2009, PHYS REV D, V80, DOI 10.1103/PhysRevD.80.014024 Martin AD, 2009, EUR PHYS J C, V63, P189, DOI 10.1140/epjc/s10052-009-1072-5 Melnikov K, 2006, PHYS REV D, V74, DOI 10.1103/PhysRevD.74.114017 Melnikov K, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.231803 Petriello F, 2008, PHYS REV D, V77, DOI 10.1103/PhysRevD.77.115004 Stewart IW, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.032001 Stewart IW, 2010, PHYS REV D, V81, DOI 10.1103/PhysRevD.81.094035 Watt G, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2011)069 WHALLEY MR, ARXIVHEPPH0508110, P14013 NR 34 TC 157 Z9 157 U1 0 U2 3 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JAN PY 2013 VL 184 IS 1 BP 209 EP 214 DI 10.1016/j.cpc.2012.09.005 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 037VK UT WOS:000311134400025 DA 2021-04-21 ER PT J AU de Sa, WP AF de Sa, W. P. TI Tokamak TCABR: Acquisition system, data analysis, and remote participation using MDSplus SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 8th IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research CY JUN 20-24, 2011 CL San Francisco, CA DE MDSplus; Remote participation; Data acquisition; Control; Tokamak; TCABR AB Each plasma physics laboratory has a proprietary scheme to control and data acquisition system. Usually, it is different from one laboratory to another. It means that each laboratory has its own way to control the experiment and retrieving data from the database. Fusion research relies to a great extent on international collaboration and this private system makes it difficult to follow the work remotely. The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The choice of MDSplus (Model Driven System plus) is proved by the fact that it is widely utilized, and the scientists from different institutions may use the same system in different experiments in different tokamaks without the need to know how each system treats its acquisition system and data analysis. Another important point is the fact that the MDSplus has a library system that allows communication between different types of language (JAVA, Fortran, C, C++, Python) and programs such as MATLAB, IDL, OCTAVE. In the case of tokamak TCABR interfaces (object of this paper) between the system already in use and MDSplus were developed, instead of using the MDSplus at all stages, from the control, and data acquisition to the data analysis. This was done in the way to preserve a complex system already in operation and otherwise it would take a long time to migrate. This implementation also allows add new components using the MDSplus fully at all stages. (c) 2012 Elsevier B.V. All rights reserved. C1 Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil. RP de Sa, WP (corresponding author), Univ Sao Paulo, Inst Fis, Rua Matao Travessa R 187,Cidade Univ, BR-05508090 Sao Paulo, Brazil. EM pires@if.usp.br RI de Sa, Wanderley/D-8611-2012 OI de Sa, Wanderley/0000-0002-8821-8412 CR de Sa WP, 2010, FUSION ENG DES, V85, P618, DOI 10.1016/j.fusengdes.2010.04.067 Fagundes AN, 2002, BRAZ J PHYS, V32, P50 Fagundes AN, 2000, FUSION ENG DES, V48, P213, DOI 10.1016/S0920-3796(00)00129-0 Fredian TW, 2002, FUSION ENG DES, V60, P229, DOI 10.1016/S0920-3796(02)00013-3 Galvao RMO, 2001, PLASMA PHYS CONTR F, V43, P1181, DOI 10.1088/0741-3335/43/9/302 Neto A, 2007, FUSION ENG DES, V82, P1315, DOI 10.1016/j.fusengdes.2007.05.069 NR 6 TC 3 Z9 3 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2012 VL 87 IS 12 SI SI BP 2199 EP 2202 DI 10.1016/j.fusengdes.2012.04.022 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 078ZF UT WOS:000314138900065 DA 2021-04-21 ER PT J AU Varilly, P Angioletti-Uberti, S Mognetti, BM Frenkel, D AF Varilly, Patrick Angioletti-Uberti, Stefano Mognetti, Bortolo M. Frenkel, Daan TI A general theory of DNA-mediated and other valence-limited colloidal interactions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID THERMODYNAMICS AB We present a general theory for predicting the interaction potentials between DNA-coated colloids, and more broadly, any particles that interact via valence-limited ligand-receptor binding. Our theory correctly incorporates the configurational and combinatorial entropic factors that play a key role in valence-limited interactions. By rigorously enforcing self-consistency, it achieves near-quantitative accuracy with respect to detailed Monte Carlo calculations. With suitable approximations and in particular geometries, our theory reduces to previous successful treatments, which are now united in a common and extensible framework. We expect our tools to be useful to other researchers investigating ligand-mediated interactions. A complete and well-documented Python implementation is freely available at http://github.com/patvarilly/DNACC. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748100] C1 [Varilly, Patrick; Angioletti-Uberti, Stefano; Mognetti, Bortolo M.; Frenkel, Daan] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. RP Varilly, P (corresponding author), Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England. RI Mognetti, Bortolo Matteo/C-6255-2008; Angioletti-Uberti, Stefano/U-9083-2019; Frenkel, Daan/G-2580-2014; Varilly, Patrick/C-8118-2013 OI Mognetti, Bortolo Matteo/0000-0002-7960-8224; Angioletti-Uberti, Stefano/0000-0003-2917-2415; Frenkel, Daan/0000-0002-6362-2021; Varilly, Patrick/0000-0003-4619-8174 FU Engineering and Physical Sciences Research CouncilUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/I000844/1, EP/I001352/1] Funding Source: researchfish CR Alivisatos AP, 1996, NATURE, V382, P609, DOI 10.1038/382609a0 Angioletti-Uberti S, 2012, NAT MATER, V11, P518, DOI [10.1038/nmat3314, 10.1038/NMAT3314] Badjic JD, 2005, ACCOUNTS CHEM RES, V38, P723, DOI 10.1021/ar040223k BELL GI, 1984, BIOPHYS J, V45, P1051, DOI 10.1016/S0006-3495(84)84252-6 Biancaniello PL, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.058302 Chen Q, 2011, NATURE, V469, P381, DOI 10.1038/nature09713 Dreyfus R, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.041404 Dreyfus R, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.048301 Estro L. A., 2006, FRAGMENT BASED APPRO, P11, DOI DOI 10.1002/3527608761.CH2 Frenkel D., 2001, UNDERSTANDING MOL SI Geerts N, 2010, SOFT MATTER, V6, P4647, DOI 10.1039/c001603a Hunter RJ, 2000, FDN COLLOID SCI Kern N, 2003, J CHEM PHYS, V118, P9882, DOI 10.1063/1.1569473 Leunissen ME, 2011, J CHEM PHYS, V134, DOI 10.1063/1.3557794 Leunissen ME, 2010, J AM CHEM SOC, V132, P1903, DOI 10.1021/ja907919j Licata NA, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.041408 LIU JS, 2002, MONTE CARLO STRATEGI Macfarlane RJ, 2011, SCIENCE, V334, P204, DOI 10.1126/science.1210493 Mammen M, 1998, ANGEW CHEM INT EDIT, V37, P2755 Markham NR, 2005, NUCLEIC ACIDS RES, V33, pW577, DOI 10.1093/nar/gki591 Martinez-Veracoechea FJ, 2011, P NATL ACAD SCI USA, V108, P10963, DOI 10.1073/pnas.1105351108 Maye MM, 2010, NAT NANOTECHNOL, V5, P116, DOI [10.1038/nnano.2009.378, 10.1038/NNANO.2009.378] Mirkin CA, 1996, NATURE, V382, P607, DOI 10.1038/382607a0 Mognetti BM, 2012, SOFT MATTER, V8, P2213, DOI 10.1039/c2sm06635a Mognetti BM, 2012, P NATL ACAD SCI USA, V109, pE378, DOI 10.1073/pnas.1119991109 Nykypanchuk D, 2008, NATURE, V451, P549, DOI 10.1038/nature06560 Nykypanchuk D, 2007, LANGMUIR, V23, P6305, DOI 10.1021/la0637566 Ouldridge TE, 2011, J CHEM PHYS, V134, DOI 10.1063/1.3552946 Park SY, 2008, NATURE, V451, P553, DOI 10.1038/nature06508 Rogers WB, 2012, P NATL ACAD SCI USA, V109, pE380, DOI 10.1073/pnas.1121102109 Rogers WB, 2011, P NATL ACAD SCI USA, V108, P15687, DOI 10.1073/pnas.1109853108 Rosi NL, 2005, CHEM REV, V105, P1547, DOI 10.1021/cr030067f Rothemund PWK, 2006, NATURE, V440, P297, DOI 10.1038/nature04586 SantaLucia J, 2004, ANNU REV BIOPH BIOM, V33, P415, DOI 10.1146/annurev.biophys.32.110601.141800 Tan ZQ, 2012, J CHEM PHYS, V136, DOI 10.1063/1.3701175 Taussky O., 1949, AM MATH MON, V56, P672, DOI DOI 10.1080/00029890.1949.11990209 Torquato S, 2009, SOFT MATTER, V5, P1157, DOI 10.1039/b814211b TRELOAR LRG, 1946, T FARADAY SOC, V42, P77, DOI 10.1039/tf9464200077 Valignat MP, 2005, P NATL ACAD SCI USA, V102, P4225, DOI 10.1073/pnas.0500507102 Yamakawa H., 1971, MODERN THEORY POLYM Zaccarelli E, 2006, J CHEM PHYS, V124, DOI 10.1063/1.2177241 Zhu FQ, 2012, J COMPUT CHEM, V33, P453, DOI 10.1002/jcc.21989 NR 42 TC 73 Z9 74 U1 3 U2 59 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD SEP 7 PY 2012 VL 137 IS 9 AR 094108 DI 10.1063/1.4748100 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 010JZ UT WOS:000309092000016 PM 22957556 DA 2021-04-21 ER PT J AU Hanwell, MD Curtis, DE Lonie, DC Vandermeersch, T Zurek, E Hutchison, GR AF Hanwell, Marcus D. Curtis, Donald E. Lonie, David C. Vandermeersch, Tim Zurek, Eva Hutchison, Geoffrey R. TI Avogadro: an advanced semantic chemical editor, visualization, and analysis platform SO JOURNAL OF CHEMINFORMATICS LA English DT Article ID BLUE-OBELISK; CHEMISTRY; PROGRAM; SIMULATIONS; EFFICIENT; LANGUAGE; CRYSTAL AB Background: The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. Results: The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. Conclusions: Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net. C1 [Hanwell, Marcus D.; Hutchison, Geoffrey R.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. [Hanwell, Marcus D.] Kitware Inc, Dept Comp Sci, Clifton Pk, NY 12065 USA. [Curtis, Donald E.] Coe Coll, Dept Comp Sci, Cedar Rapids, IA 52402 USA. [Lonie, David C.; Zurek, Eva] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. RP Hanwell, MD (corresponding author), Univ Pittsburgh, Dept Chem, 219 Parkman Ave, Pittsburgh, PA 15260 USA. EM marcus.hanwell@kitware.com RI Hutchison, Geoffrey/B-3109-2009; Zurek, Eva/J-4387-2012 OI Hutchison, Geoffrey/0000-0002-1757-1980; Zurek, Eva/0000-0003-0738-867X; Hanwell, Marcus/0000-0002-5851-5272 FU University of PittsburghUniversity of Pittsburgh; Engineering Research Development Center [W912HZ-11-P-0019]; NSFNational Science Foundation (NSF) [DMR-1005413] FX We wish to thank the many contributors to the Avogadro project, including developers, testers, translators, and users. We thank SourceForge for providing resources for issue tracking and managing releases, Launchpad for hosting language translations, and Kitware for additional dashboard resources. MDH and GRH thank the University of Pittsburgh for support. DEC would like to thank Jan Halborg Jensen for designing the GAMESS-US interface and supporting Avogadro in its infancy; believing Avogadro could be better than what was available. MDH acknowledges the Engineering Research Development Center (W912HZ-11-P-0019) for financial support. EZ and DL acknowledge the NSF (DMR-1005413) for financial support. CR Adams S, 2011, J CHEMINFORMATICS, V3, DOI 10.1186/1758-2946-3-38 [Anonymous], 2012, CHEMBIO3D [Anonymous], 2012, QT FRAMEWORK [Anonymous], 2012, HYPERCHEM [Anonymous], 2012, AVOGADRO DOWNLOADS [Anonymous], 2012, PYTHON SCRIPTING AVO [Anonymous], 2012, GNU GEN PUBL LIC V2 [Anonymous], 2012, OPENQUBE SOURCE [Anonymous], 2012, COMPILING AVOGADRO L [Anonymous], 2012, PYQT SCRIPTING EXAMP [Anonymous], 2012, AVOGADRO TRANSLATION [Anonymous], 2012, AVOGADRO CITATIONS G [Anonymous], 2012, GAUSSVIEW 5, V5 [Anonymous], 2012, SCIGRESS [Anonymous], 2012, SPARTAN [Anonymous], 2012, PYTHON EXTENSIONS AV [Anonymous], 2012, COMPILING AVOGADRO W Bernstein N, 2010, J PHYS CHEM A, V114, P11948, DOI 10.1021/jp103447w Bingol B, 2013, J PHYS CHEM B, V117, P4177, DOI 10.1021/jp3010053 Bode BM, 1998, J MOL GRAPH MODEL, V16, P133, DOI 10.1016/S1093-3263(99)00002-9 Burkhardt SE, 2011, J MATER CHEM, V21, P9553, DOI 10.1039/c1jm10664c Burkhardt SE, 2010, J PHYS CHEM C, V114, P16776, DOI 10.1021/jp106082f Closser KD, 2010, J PHYS CHEM A, V114, P8023, DOI 10.1021/jp103532q DeLano W. L., 2002, PYMOL MOL GRAPHICS S Fleisher AJ, 2011, CHEMPHYSCHEM, V12, P1808, DOI 10.1002/cphc.201100038 Forster S, 2012, J PHYS ORG CHEM Gilbert ATB, 2008, QUI THE Q CHEM USER Guennebaud G., 2010, EIGEN V2 Guha R, 2006, J CHEM INF MODEL, V46, P991, DOI 10.1021/ci050400b Hanson RM, 2012, JMOL OPEN SOURCE JAV Hanwell MD, 2012, OPENQUBE Hassinen T, 2012, GHEMICAL Hlawacek G, 2011, NANO LETT, V11, P333, DOI 10.1021/nl103739n Hu WH, 2011, J PHYS CHEM LETT, V2, P1925, DOI 10.1021/jz200729a Humphrey W, 1996, J MOL GRAPH MODEL, V14, P33, DOI 10.1016/0263-7855(96)00018-5 Ide T, 2011, J ORG CHEM, V76, P9504, DOI 10.1021/jo201650t James CA, 2012, OPENSMILES Kapla J, 2012, J PHYS CHEM B, V116, P244, DOI 10.1021/jp209268p Kokalj A, 2003, COMP MATER SCI, V28, P155, DOI 10.1016/S0927-0256(03)00104-6 Kokalj A, 1999, J MOL GRAPH MODEL, V17, P176, DOI 10.1016/S1093-3263(99)00028-5 Kudin K.N., 2013, GAUSSIAN 09 REVISION Lonie D, 2011, XTALOPT Lonie DC, 2011, COMPUT PHYS COMMUN, V182, P372, DOI 10.1016/j.cpc.2010.07.048 Madison TA, 2011, J PHYS CHEM C, V115, P17558, DOI 10.1021/jp2047085 Mandal D, 2012, J PHYS CHEM A, V116, P2536, DOI 10.1021/jp2100057 Martinez JM, 2003, J COMPUT CHEM, V24, P819, DOI 10.1002/jcc.10216 Martinez L, 2009, J COMPUT CHEM, V30, P2157, DOI 10.1002/jcc.21224 Mayorkas N, 2011, PHYS CHEM CHEM PHYS, V13, P6808, DOI 10.1039/c0cp02334e Mehlhorn K, 2012, BALLVIEW Menegazzo N, 2012, NEW J CHEM, V36, P963, DOI 10.1039/c2nj20930f Mera-Adasme R, 2011, J PHYS CHEM A, V115, P4397, DOI 10.1021/jp107498h Momma K, 2011, J APPL CRYSTALLOGR, V44, P1272, DOI 10.1107/S0021889811038970 Murray-Rust P, 2011, J CHEMINFORMATICS, V3, DOI 10.1186/1758-2946-3-43 Murray-Rust P, 2011, J CHEMINFORMATICS, V3, DOI 10.1186/1758-2946-3-44 O'Boyle NM, 2011, J CHEMINFORMATICS, V3, DOI 10.1186/1758-2946-3-37 O'Boyle NM, 2011, J CHEMINFORMATICS, V3, DOI 10.1186/1758-2946-3-33 Patel DG, 2011, J POLYM SCI POL PHYS, V49, P557, DOI 10.1002/polb.22224 Popov AV, 2011, PHYS CHEM CHEM PHYS, V13, P14914, DOI 10.1039/c1cp20952c SAYLE RA, 1995, TRENDS BIOCHEM SCI, V20, P374, DOI 10.1016/S0968-0004(00)89080-5 Schaftenaar G, 2000, J COMPUT AID MOL DES, V14, P123, DOI 10.1023/A:1008193805436 SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347, DOI 10.1002/jcc.540141112 Schutz M., 2010, MOLPRO VERSION 2010 Shao Y, 2006, PHYS CHEM CHEM PHYS, V8, P3172, DOI 10.1039/b517914a Sitzmann M, 2008, SAR QSAR ENVIRON RES, V19, P1, DOI 10.1080/10629360701843540 Stewart J. J. P, 2008, MOPAC2009 Tarini M, 2006, IEEE T VIS COMPUT GR, V12, P1237, DOI 10.1109/TVCG.2006.115 Thomas J, 2009, CCP1 GUI PROJECT Tian HN, 2011, J MATER CHEM, V21, P12462, DOI 10.1039/c1jm12071a Valiev M, 2010, COMPUT PHYS COMMUN, V181, P1477, DOI 10.1016/j.cpc.2010.04.018 Vandermeersch T, 2012, AVOGADRO PYTHON TERM Vandermeersch T, 2009, PYTHON EXAMPLE WEININGER D, 1988, J CHEM INF COMP SCI, V28, P31, DOI 10.1021/ci00057a005 Werner HJ, 2012, WIRES COMPUT MOL SCI, V2, P242, DOI 10.1002/wcms.82 Yao CJ, 2010, INORG CHEM, V49, P8347, DOI 10.1021/ic100857y 2001, MAT STUDIO NR 75 TC 2893 Z9 2916 U1 17 U2 371 PU BMC PI LONDON PA CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-2946 J9 J CHEMINFORMATICS JI J. Cheminformatics PD AUG 13 PY 2012 VL 4 AR 17 DI 10.1186/1758-2946-4-17 PG 17 WC Chemistry, Multidisciplinary; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications SC Chemistry; Computer Science GA 077JO UT WOS:000314024000001 PM 22889332 OA DOAJ Gold, Green Published DA 2021-04-21 ER PT J AU Wimmer, M AF Wimmer, M. TI Algorithm 923: Efficient Numerical Computation of the Pfaffian for Dense and Banded Skew-Symmetric Matrices SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Algorithms; Performance; Pfaffian; skew-symmetric matrix; canonical form; unitary congruence; topological charge AB Computing the Pfaffian of a skew-symmetric matrix is a problem that arises in various fields of physics. Both computing the Pfaffian and a related problem, computing the canonical form of a skew-symmetric matrix under unitary congruence, can be solved easily once the skew-symmetric matrix has been reduced to skew-symmetric tridiagonal form. We develop efficient numerical methods for computing this tridiagonal form based on Gaussian elimination, using a skew-symmetric, blocked form of the Parlett-Reid algorithm, or based on unitary transformations, using block Householder transformations and Givens rotations, that are applicable to dense and banded matrices, respectively. We also give a complete and fully optimized implementation of these algorithms in Fortran (including a C interface), and also provide Python, Matlab and Mathematica implementations for convenience. Finally, we apply these methods to compute the topological charge of a class D nanowire, and show numerically the equivalence of definitions based on the Hamiltonian and the scattering matrix. C1 Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands. RP Wimmer, M (corresponding author), Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands. EM wimmer@lorentz.leidenuniv.nl RI Wimmer, Michael/B-1052-2011 OI Wimmer, Michael/0000-0001-6654-2310 FU German academic exchange service DAADDeutscher Akademischer Austausch Dienst (DAAD) FX The author acknowledges support from the German academic exchange service DAAD. CR Aasen J. O., 1971, BIT (Nordisk Tidskrift for Informationsbehandling), V11, P233, DOI 10.1007/BF01931804 Akhmerov AR, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.057001 Anderson E., 1999, LAPACK USERS GUIDE Bajdich M, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.115112 Bajdich M, 2009, ACTA PHYS SLOVACA, V59, P81, DOI 10.2478/v10155-010-0095-7 Bardarson JH, 2008, J PHYS A-MATH THEOR, V41, DOI 10.1088/1751-8113/41/40/405203 Beri B, 2009, PHYS REV B, V79, DOI 10.1103/PhysRevB.79.245315 BUNCH JR, 1977, MATH COMPUT, V31, P163, DOI 10.2307/2005787 BUNCH JR, 1982, MATH COMPUT, V38, P475, DOI 10.2307/2007283 Evers F, 2008, REV MOD PHYS, V80, P1355, DOI 10.1103/RevModPhys.80.1355 Fu L, 2007, PHYS REV B, V76, DOI 10.1103/PhysRevB.76.045302 Fulga IC, 2011, PHYS REV B, V83, DOI 10.1103/PhysRevB.83.155429 GALBIATI G, 1994, DISCRETE APPL MATH, V51, P269, DOI 10.1016/0166-218X(92)00034-J GIBBS NE, 1976, SIAM J NUMER ANAL, V13, P236, DOI 10.1137/0713023 Golub GH., 1996, MATRIX COMPUTATIONS Gonzalez-Ballestero C, 2011, COMPUT PHYS COMMUN, V182, P2213, DOI 10.1016/j.cpc.2011.04.025 HAAKE F, 2004, QUANTUM SIGNATURES C Hastings MB, 2011, ANN PHYS-NEW YORK, V326, P1699, DOI 10.1016/j.aop.2010.12.013 Higham N. J., 2002, ACCURACY STABILITY N Hua LK, 1944, AM J MATH, V66, P470, DOI 10.2307/2371910 Irony D, 2006, SIAM J MATRIX ANAL A, V28, P398, DOI 10.1137/040610106 KAUFMAN L, 1984, ACM T MATH SOFTWARE, V10, P73, DOI 10.1145/356068.356074 Kaufman L, 2000, ACM T MATH SOFTWARE, V26, P551, DOI 10.1145/365723.365733 Kaufman L, 2007, NUMER LINEAR ALGEBR, V14, P237, DOI 10.1002/nla.529 KITAEV A. Y., 2001, PHYS USPEKHI, V44, P131 Krauth W, 2006, STAT MECH ALGORITHMS LEHOUCQ R., 1995, 72 LAPACK U TENN Lutchyn RM, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.077001 Montvay I, 1996, NUCL PHYS B, V466, P259, DOI 10.1016/0550-3213(96)00086-7 MOORE G, 1991, NUCL PHYS B, V360, P362, DOI 10.1016/0550-3213(91)90407-O Oreg Y, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.177002 Parlett BN, 1970, BIT, V10, P386, DOI DOI 10.1007/BF01934207 Potter AC, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.227003 Rote G, 2001, LECT NOTES COMPUT SC, V2122, P119 Rozloznik M, 2011, ACM T MATH SOFTWARE, V37, DOI 10.1145/1916461.1916462 Rubow J, 2011, COMPUT PHYS COMMUN, V182, P2530, DOI 10.1016/j.cpc.2011.07.010 SCHWARZ HR, 1968, NUMER MATH, V12, P231, DOI 10.1007/BF02162505 Stander J W, 1960, CAN J MATH, V12, P438, DOI 10.4153/cjm-1960-038-2 Thomas CK, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.046708 Ward R. C., 1978, ACM Transactions on Mathematical Software, V4, P278, DOI 10.1145/355791.355798 Ward R. C., 1978, ACM Transactions on Mathematical Software, V4, P286, DOI 10.1145/355791.355799 Wimmer M, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.046803 Wimmer M, 2009, J COMPUT PHYS, V228, P8548, DOI 10.1016/j.jcp.2009.08.001 NR 43 TC 68 Z9 68 U1 1 U2 5 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 EI 1557-7295 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD AUG PY 2012 VL 38 IS 4 AR 30 DI 10.1145/2331130.2331138 PG 17 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 999RE UT WOS:000308331100008 DA 2021-04-21 ER PT J AU Johansson, JR Nation, PD Nori, F AF Johansson, J. R. Nation, P. D. Nori, Franco TI QuTiP: An open-source Python framework for the dynamics of open quantum systems SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Open quantum systems; Lindblad master equation; Quantum Monte Carlo; Python ID SUPERCONDUCTING CIRCUITS; GROUND-STATE; OPTICS; PHYSICS; AMPLIFICATION; PHOTON; CAVITY; JUMPS; IONS AB We present an object-oriented open-source framework for solving the dynamics of open quantum systems written in Python. Arbitrary Hamiltonians, including time-dependent systems, may be built up from operators and states defined by a quantum object class, and then passed on to a choice of master equation or Monte Carlo solvers. We give an overview of the basic structure for the framework before detailing the numerical simulation of open system dynamics. Several examples are given to illustrate the build up to a complete calculation. Finally, we measure the performance of our library against that of current implementations. The framework described here is particularly well suited to the fields of quantum optics, superconducting circuit devices, nanomechanics, and trapped ions, while also being ideal for use in classroom instruction. Program summary Program title: QuTiP: The Quantum Toolbox in Python Catalogue identifier: AEMB_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 16482 No. of bytes in distributed program, including test data, etc.: 213 438 Distribution format: tar.gz Programming language: Python Computer: i386, x86-64 Operating system: Linux, Mac OSX, Windows RAM: 2+ Gigabytes Classification: 7 External routines: NumPy (http://numpy.scipy.org/), SciPy (http://www.scipy.org/), Matplotlib (http://matplotlib.sourceforge.net/) Nature of problem: Dynamics of open quantum systems. Solution method: Numerical solutions to Lindblad master equation or Monte Carlo wave function method. Restrictions: Problems must meet the criteria for using the master equation in Lindblad form. Running time: A few seconds up to several tens of minutes, depending on size of underlying Hilbert space. (C) 2012 Elsevier B.V. All rights reserved. C1 [Johansson, J. R.; Nation, P. D.; Nori, Franco] RIKEN, Adv Sci Inst, Wako, Saitama 3510198, Japan. [Nation, P. D.; Nori, Franco] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Johansson, JR (corresponding author), RIKEN, Adv Sci Inst, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM robert@riken.jp; pnation@riken.jp RI Johansson, Robert/C-6224-2008; Nation, Paul/E-9119-2010; Nori, Franco/B-1222-2009 OI Johansson, Robert/0000-0002-4500-5775; Nation, Paul/0000-0002-0045-6118; Nori, Franco/0000-0003-3682-7432 FU Japanese Society for the Promotion of Science (JSPS)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science [P11501, P11202]; National Science Foundation (NSF)National Science Foundation (NSF) [0726909]; MEXTMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS-FIRST; [2301202]; Grants-in-Aid for Scientific ResearchMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [21102002, 22224007, 11F01501] Funding Source: KAKEN FX J.R.J. and P.D.N. were supported by Japanese Society for the Promotion of Science (JSPS) Foreign Postdoctoral Fellowship No. P11501 and P11202, respectively. P.D.N. also acknowledges support from Kakenhi grant No. 2301202, and F.N. acknowledges partial support from the LPS, NSA, ARO, DARPA, AFOSR, National Science Foundation (NSF) grant No. 0726909, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS-FIRST program. CR Armour AD, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/9/095004 Ashhab S, 2010, PHYS REV A, V81, DOI 10.1103/PhysRevA.81.042311 Behnel S, 2011, COMPUT SCI ENG, V13, P31, DOI 10.1109/MCSE.2010.118 Blatt R, 2008, NATURE, V453, P1008, DOI 10.1038/nature07125 Blencowe MP, 2008, NEW J PHYS, V10, DOI 10.1088/1367-2630/10/9/095005 Breuer HP., 2002, THEORY OPEN QUANTUM Buluta I, 2011, REP PROG PHYS, V74, DOI 10.1088/0034-4885/74/10/104401 Buluta I, 2009, SCIENCE, V326, P108, DOI 10.1126/science.1177838 Cao X, 2011, NEW J PHYS, V13, DOI 10.1088/1367-2630/13/7/073002 Casanova J, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.263603 DALIBARD J, 1992, PHYS REV LETT, V68, P580, DOI 10.1103/PhysRevLett.68.580 DUM R, 1992, PHYS REV A, V45, P4879, DOI 10.1103/PhysRevA.45.4879 FEYNMAN RP, 1982, INT J THEOR PHYS, V21, P467, DOI 10.1007/BF02650179 Forn-Diaz P, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.237001 Gardiner C. W., 2004, QUANTUM NOISE Gleyzes S, 2007, NATURE, V446, P297, DOI 10.1038/nature05589 Guerlin C, 2007, NATURE, V448, P889, DOI 10.1038/nature06057 Haroche S., 2006, EXPLORING QUANTUM AT Horvath GZK, 1997, CONTEMP PHYS, V38, P25 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Jones E, 2011, SCIPY OPEN SOURCE SC Klockner Andreas, 2011, PYOPENCL LINDBLAD G, 1976, COMMUN MATH PHYS, V48, P119, DOI 10.1007/BF01608499 Matlab, 2011, MATL MOLLOW BR, 1967, PHYS REV, V160, P1076, DOI 10.1103/PhysRev.160.1076 MOLMER K, 1993, J OPT SOC AM B, V10, P524, DOI 10.1364/JOSAB.10.000524 Nataf P, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.023601 Nation P.D., 2011, QUTIP QUANTUM TOOLBO Nation PD, 2010, NEW J PHYS, V12, DOI 10.1088/1367-2630/12/9/095013 Nielsen M. A., 2000, QUANTUM COMPUTATION O'Brien JL, 2009, NAT PHOTONICS, V3, P687, DOI 10.1038/nphoton.2009.229 O'Connell AD, 2010, NATURE, V464, P697, DOI 10.1038/nature08967 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Plenio MB, 1998, REV MOD PHYS, V70, P101, DOI 10.1103/RevModPhys.70.101 Schack R, 1997, COMPUT PHYS COMMUN, V102, P210, DOI 10.1016/S0010-4655(97)00019-2 Schoelkopf RJ, 2008, NATURE, V451, P664, DOI 10.1038/451664a Schuch N, 2003, PHYS REV A, V67, DOI 10.1103/PhysRevA.67.032301 Shevchenko SN, 2010, PHYS REP, V492, P1, DOI 10.1016/j.physrep.2010.03.002 Steffen M, 2006, SCIENCE, V313, P1423, DOI 10.1126/science.1130886 Tan SM, 1999, J OPT B-QUANTUM S O, V1, P424, DOI 10.1088/1464-4266/1/4/312 TAVIS M, 1968, PHYS REV, V170, P379, DOI 10.1103/PhysRev.170.379 Teufel JD, 2011, NATURE, V475, P359, DOI 10.1038/nature10261 Vamivakas AN, 2010, NATURE, V467, P297, DOI 10.1038/nature09359 van Rossum G, 2011, PYTHON PROGRAMMING L Vukics A, 2007, EUR PHYS J D, V44, P585, DOI 10.1140/epjd/e2007-00210-x Walls D.F., 2008, QUANTUM OPTICS WALLS DF, 1970, PHYS REV A, V1, P446, DOI 10.1103/PhysRevA.1.446 You JQ, 2011, NATURE, V474, P589, DOI 10.1038/nature10122 You JQ, 2005, PHYS TODAY, V58, P42, DOI 10.1063/1.2155757 NR 49 TC 437 Z9 443 U1 5 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD AUG PY 2012 VL 183 IS 8 BP 1760 EP 1772 DI 10.1016/j.cpc.2012.02.021 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 946VB UT WOS:000304384500024 DA 2021-04-21 ER PT J AU Nunio, F Manil, P AF Nunio, F. Manil, P. TI SALOME as a Platform for Magneto-Mechanical Simulation SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article; Proceedings Paper CT 22nd International Conference on Magnet Technology (MT) CY SEP 12-16, 2011 CL ITER Org, Marseille, FRANCE SP PACA Reg, CEA, IEEE CSC, Iberdrola Ingenieria & Construcc, SAU, Oxford Superconducting Technol, R KIND, Super Power Inc, Western Superconducting Technol Co Ltd HO ITER Org DE Computer simulation; open source software; superconducting magnets AB The design of superconducting magnets for accelerator and detector components dedicated to the future of high energy physics requires detailed analysis of their mechanical behavior, in particular under magnetic and/or thermal solicitations. Numerical simulation is more and more used to optimize these components and to improve their performances in constrained environments. In this context, the numerical modeling process may require to operate several computing codes, which involves the implementation of spatial discretization (meshes) that are not always compatible together. This situation raises the problem of data transfer and of possible dispersion of simulation parameters. Moreover, the numerical modeling process is not always formalized, and it can be difficult to iterate in the case of parametric studies. This paper describes the implementation of magneto-mechanical numerical processes into the SALOME open source platform. SALOME is a numerical framework which offers interoperability between Computer-Aided Design (CAD) modeling and Computer-Aided Engineering (CAE) simulation software. It makes the implementation of coupling between computing codes (computation schemes) accessible. This simulation platform also provides a generic and efficient user interface, and is as well fully scriptable in Python language. On the basis of the design of the SMC dipole magnet, the authors will describe the various modules of the platform (geometry, mesh, supervision and visualization), and present the status of the developments in progress. It will be pointed out what can be gained for magnet designers in terms of process formalization and transfer of know-how, and what is the level of complexity for the development of a dedicated software tool. C1 [Nunio, F.; Manil, P.] CEA, Irfu, Ctr Saclay, F-91191 Gif Sur Yvette, France. RP Nunio, F (corresponding author), CEA, Irfu, Ctr Saclay, F-91191 Gif Sur Yvette, France. EM francois.nunio@cea.fr OI Nunio, Francois/0000-0002-2485-2422 CR Bergeaud V., 2010, SNA MC 2010 C HIT ME, P21 Lyly Mikko, ELMER FINITE ELEMENT, P156 Manil P, 2010, IEEE T APPL SUPERCON, V20, P184, DOI 10.1109/TASC.2009.2039343 Verpaux P., 1988, CALCUL STRUCTURES IN, P261 NR 4 TC 2 Z9 3 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD JUN PY 2012 VL 22 IS 3 AR 4904904 DI 10.1109/TASC.2011.2180297 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 986SK UT WOS:000307364700332 DA 2021-04-21 ER PT J AU Deslippe, J Samsonidze, G Strubbe, DA Jain, M Cohen, ML Louie, SG AF Deslippe, Jack Samsonidze, Georgy Strubbe, David A. Jain, Manish Cohen, Marvin L. Louie, Steven G. TI BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Many-body physics; GW; Bethe-Salpeter equation; Quasiparticle; Optics; Exciton ID ELECTRON-HOLE INTERACTION; AB-INITIO CALCULATION; PSEUDOPOTENTIAL METHOD; SEMICONDUCTORS; SPECTRA; TOOL; EXCITATIONS; INSULATORS; ABSORPTION; ENERGIES AB BerkeleyGW is a massively parallel computational package for electron excited-state properties that is based on the many-body perturbation theory employing the ab initio GW and GW plus Bethe-Salpeter equation methodology. It can be used in conjunction with many density-functional theory codes for ground-state properties, including PARATEC, PARSEC, Quantum ESPRESSO, SIESTA, and Octopus. The package can be used to compute the electronic and optical properties of a wide variety of material systems from bulk semiconductors and metals to nanostructured materials and molecules. The package scales to 10000s of CPUs and can be used to study systems containing up to 100s of atoms. Program summary Program title: BerkeleyGW Catalogue identifier: AELG_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open source BSD License. See code for licensing details. No. of lines in distributed program. including test data, etc.: 576540 No. of bytes in distributed program, including test data, etc.: 110608 809 Distribution format: tar.gz Programming language: Fortran 90, C. C++, Python, Peri, BASH Computer: Linux/UNIX workstations or clusters Operating system: Tested on a variety of Linux distributions in parallel and serial as well as AIX and Mac OSX RAM: (50-2000) MB per CPU (Highly dependent on system size) Classification: 7.2, 7.3, 16.2, 18 External routines: BLAS, LAPACK, FFTW, ScaLAPACK (optional), MPI (optional). All available under open-source licenses. Nature of problem: The excited state properties of materials involve the addition or subtraction of electrons as well as the optical excitations of electron-hole pairs. The excited particles interact strongly with other electrons in a material system. This interaction affects the electronic energies, wavefunctions and lifetimes. It is well known that ground-state theories, such as standard methods based on density-functional theory, fail to correctly capture this physics. Solution method: We construct and solve the Dyson's equation for the quasiparticle energies and wavefunctions within the GW approximation for the electron self-energy. We additionally construct and solve the Bethe-Salpeter equation for the correlated electron-hole (exciton) wavefunctions and excitation energies. Restrictions: The material size is limited in practice by the computational resources available. Materials with up to 500 atoms per periodic cell can be studied on large HPCs. Additional comments: The distribution file for this program is approximately 110 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: 1-1000 minutes (depending greatly on system size and processor number). (C) 2011 Published by Elsevier B.V. C1 [Deslippe, Jack; Samsonidze, Georgy; Strubbe, David A.; Jain, Manish; Cohen, Marvin L.; Louie, Steven G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Deslippe, Jack; Samsonidze, Georgy; Strubbe, David A.; Jain, Manish; Cohen, Marvin L.; Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Deslippe, J (corresponding author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd,Mail Stop 943-256, Berkeley, CA 94720 USA. EM jdeslip@gmail.com RI Jain, Manish/A-8303-2010; Samsonidze, Georgy/G-3613-2016 OI Jain, Manish/0000-0001-9329-6434; Samsonidze, Georgy/0000-0002-3759-1794 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC02-05C1111231]; National Science Foundation (NSF)National Science Foundation (NSF) [DMR10-1006184] FX J.D. and M.J. acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05C1111231. G.S. acknowledges support under National Science Foundation Grant No. DMR10-1006184. D.A.S. acknowledges support from the NSF Graduate Fellowship Program. Computational resources have been provided by NSF through TeraGrid resources at NICS and by DOE at Lawrence Berkeley National Laboratory's NERSC facility. CR Albrecht S, 1998, PHYS REV LETT, V80, P4510, DOI 10.1103/PhysRevLett.80.4510 Alemany MMG, 2004, PHYS REV B, V69, DOI 10.1103/PhysRevB.69.075101 Anderson E., 1999, LAPACK USERS GUIDE Aryasetiawan F, 1998, REP PROG PHYS, V61, P237, DOI 10.1088/0034-4885/61/3/002 BALDERESCHI A, 1978, PHYS REV B, V17, P4710, DOI 10.1103/PhysRevB.17.4710 Benedict LX, 1998, PHYS REV LETT, V80, P4514, DOI 10.1103/PhysRevLett.80.4514 Benedict LX, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.085116 Benedict LX, 1999, PHYS REV B, V59, P5441, DOI 10.1103/PhysRevB.59.5441 Blackford LS., 1997, SCALAPACK USERES GUI Bruneval F, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.045102 Castro A, 2006, PHYS STATUS SOLIDI B, V243, P2465, DOI 10.1002/pssb.200642067 CHELIKOWSKY JR, 1994, PHYS REV LETT, V72, P1240, DOI 10.1103/PhysRevLett.72.1240 COHEN ML, 1975, PHYS REV B, V12, P5575, DOI 10.1103/PhysRevB.12.5575 Deslippe J, 2007, NANO LETT, V7, P1626, DOI 10.1021/nl070577f Fetter A.L., 1971, QUANTUM THEORY MANY FLESZAR A, 1985, THESIS U TRIESTE Frigo M, 2005, P IEEE, V93, P216, DOI 10.1109/JPROC.2004.840301 Giannozzi P, 2009, J PHYS-CONDENS MAT, V21, DOI 10.1088/0953-8984/21/39/395502 HANKE W, 1978, ADV PHYS, V27, P287, DOI 10.1080/00018737800101384 HAYDOCK R, 1980, COMPUT PHYS COMMUN, V20, P11, DOI 10.1016/0010-4655(80)90101-0 HEDIN L, 1965, PHYS REV, V139, pA796, DOI 10.1103/PhysRev.139.A796 Hedin L., 1970, SOLID STATE PHYS, V23, P1 Holm B, 1998, PHYS REV B, V57, P2108, DOI 10.1103/PhysRevB.57.2108 HYBERTSEN MS, 1987, PHYS REV B, V35, P5585, DOI 10.1103/PhysRevB.35.5585 HYBERTSEN MS, 1986, PHYS REV B, V34, P5390, DOI 10.1103/PhysRevB.34.5390 Ismail-Beigi S, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.087402 Ismail-Beigi S, 2006, PHYS REV B, V73, DOI 10.1103/PhysRevB.73.233103 Jain M., GOWO DIAGONALI UNPUB JELLISON GE, 1993, APPL PHYS LETT, V62, P3348, DOI 10.1063/1.109067 KOHN W, 1965, PHYS REV, V140, P1133, DOI 10.1103/PhysRev.140.A1133 Kokalj A, 2003, COMP MATER SCI, V28, P155, DOI 10.1016/S0927-0256(03)00104-6 Louie SG, 2006, CONT CONCEPT CONDENS, P1 Marques MAL, 2003, COMPUT PHYS COMMUN, V151, P60, DOI 10.1016/S0010-4655(02)00686-0 Martin RM., 2004, ELECT STRUCTURE BASI Marzari N, 1997, PHYS REV B, V56, P12847, DOI 10.1103/PhysRevB.56.12847 Mirali Z., 2010, NATURE, V467, P775 Mostofi AA, 2008, COMPUT PHYS COMMUN, V178, P685, DOI 10.1016/j.cpc.2007.11.016 Neaton JB, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.216405 Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865 Quek S. Y., FIRST PRINCIPL UNPUB Rinke P, 2005, NEW J PHYS, V7, DOI 10.1088/1367-2630/7/1/126 Rohlfing M, 2000, PHYS REV B, V62, P4927, DOI 10.1103/PhysRevB.62.4927 Shih BC, 2010, PHYS REV LETT, V105, DOI 10.1103/PhysRevLett.105.146401 Soler JM, 2002, J PHYS-CONDENS MAT, V14, P2745, DOI 10.1088/0953-8984/14/11/302 Souza I, 2002, PHYS REV B, V65, DOI 10.1103/PhysRevB.65.035109 Spataru C.-D., 2004, THESIS U CALIFORNIA Spataru CD, 2004, PHYS REV LETT, V92, DOI 10.1103/PhysRevLett.92.077402 Spataru CD, 2004, APPL PHYS A-MATER, V78, P1129, DOI 10.1007/s00339-003-2464-2 STRINATI G, 1988, RIV NUOVO CIMENTO, V11, P1, DOI 10.1007/BF02725962 Tao C, 2009, NANO LETT, V9, P3963, DOI 10.1021/nl901860n van Schilfgaarde M, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.226402 Yang L, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.186802 Zhang GP, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.023837 ZHANG SB, 1989, PHYS REV B, V40, P3162, DOI 10.1103/PhysRevB.40.3162 NR 54 TC 426 Z9 428 U1 8 U2 118 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUN PY 2012 VL 183 IS 6 BP 1269 EP 1289 DI 10.1016/j.cpc.2011.12.006 PG 21 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 914ZI UT WOS:000301992100013 DA 2021-04-21 ER PT J AU Ozturk, MK AF Ozturk, M. Kaan TI Trajectories of charged particles trapped in Earth's magnetic field SO AMERICAN JOURNAL OF PHYSICS LA English DT Article ID MOTION; MAGNETOTAIL; COMPUTER AB This article presents the theory of relativistic charged-particle motion in Earth's magnetosphere, at a level suitable for undergraduate courses. I discuss particle and guiding center motion and derive the three adiabatic invariants associated with the three periodic motions in a dipolar field. I provide 12 computational exercises that can be used as classroom assignments or for self-study. Two of the exercises, drift-shell bifurcation and Speiser orbits, are adapted from active magnetospheric research. The PYTHON code provided in the supplement can be used to replicate the trajectories and can be easily extended for different field geometries. (C) 2012 American Association of Physics Teachers. [DOI:10.1119/1.3684537] C1 Yeditepe Univ Informat Syst & Technol, TR-34755 Istanbul, Turkey. RP Ozturk, MK (corresponding author), Yeditepe Univ Informat Syst & Technol, TR-34755 Istanbul, Turkey. EM kaan.ozturk@yeditepe.edu.tr CR BUCHNER J, 1989, J GEOPHYS RES, V94, P11821, DOI 10.1029/JA094iA09p11821 CHEN J, 1992, J GEOPHYS RES-SPACE, V97, P15011, DOI 10.1029/92JA00955 Garcia A.L., 2000, NUMERICAL METHODS PH Griffiths DJ, 1999, INTRO ELECTRODYNAMIC, V3rd Gurnett D. A., 2005, INTRO PLASMA PHYS SP Hand L. N., 1998, ANAL MECH, P230 HUGGINS ER, 1979, AM J PHYS, V47, P992, DOI 10.1119/1.11604 Hughes W. J., 1995, INTRO SPACE PHYS, P227 Kivelson M. G., 1995, INTRO SPACE PHYS, P27 Lopez RE, 2008, ADV SPACE RES, V42, P1859, DOI 10.1016/j.asr.2007.11.010 McGuire GC, 2003, AM J PHYS, V71, P809, DOI 10.1119/1.1579496 Moldwin M., 2008, INTRO SPACE WEATHER, P79 Northrop T. G., 1963, ADIABATIC MOTION CHA Ozturk MK, 2007, J GEOPHYS RES-SPACE, V112, DOI 10.1029/2006JA012102 Press W. H., 2007, NUMERICAL RECIPED AR Roederer J. G., 1970, DYNAMICS GEOMAGNETIC Schulz M., 1974, PARTICLE DIFFUSION R Sharma A. S., 2006, INT C SUBSTORMS, V8, P279 Sturrock PA, 1994, PLASMA PHYS INTRO TH Townsend L W, 2001, J Radiol Prot, V21, P5, DOI 10.1088/0952-4746/21/1/003 Walt M., 1994, INTRO GEOMAGNETICALL Wolf R. A., 1995, INTRO SPACE PHYS, P288 NR 22 TC 13 Z9 14 U1 0 U2 10 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 J9 AM J PHYS JI Am. J. Phys. PD MAY PY 2012 VL 80 IS 5 BP 420 EP 428 DI 10.1119/1.3684537 PG 9 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 927YY UT WOS:000302947800011 DA 2021-04-21 ER PT J AU Sainio, J AF Sainio, J. TI PyCOOL - A Cosmological Object-Oriented Lattice code written in Python SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE physics of the early universe; cosmological phase transitions; inflation ID Q-BALLS; SIMULATIONS; BREAKING; UNIVERSE; CURVATON; PROGRAM; GPU AB There are a number of different phenomena in the early universe that have to be studied numerically with lattice simulations. This paper presents a graphics processing unit (GPU) accelerated Python program called PyCOOL that solves the evolution of scalar fields in a lattice with very precise symplectic integrators. The program has been written with the intention to hit a sweet spot of speed, accuracy and user friendliness. This has been achieved by using the Python language with the PyCUDA interface to make a program that is easy to adapt to different scalar field models. In this paper we derive the symplectic dynamics that govern the evolution of the system and then present the implementation of the program in Python and PyCUDA. The functionality of the program is tested in a chaotic inflation preheating model, a single field oscillon case and in a supersymmetric curvaton model which leads to Q-ball production. We have also compared the performance of a consumer graphics card to a professional Tesla compute card in these simulations. We find that the program is not only accurate but also very fast. To further increase the usefulness of the program we have equipped it with numerous post-processing functions that provide useful information about the cosmological model. These include various spectra and statistics of the fields. The program can be additionally used to calculate the generated curvature perturbation. The program is publicly available under GNU General Public License at https://github.com/jtksai/PyCOOL. Some additional information can be found from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/. C1 [Sainio, J.] Univ Turku, Turku Sch Econ, FI-20500 Turku, Finland. [Sainio, J.] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland. RP Sainio, J (corresponding author), Univ Turku, Turku Sch Econ, Rehtorinpellonkatu 3, FI-20500 Turku, Finland. EM jani.sainio@utu.fi FU OP Bank Group Research Foundation FX This paper has been funded by OP Bank Group Research Foundation and the author would like to personally thank Prof. Luis Alvarez for allowing the author to pursue this research at Turku School of Economics. CR AFFLECK I, 1985, NUCL PHYS B, V249, P361, DOI 10.1016/0550-3213(85)90021-5 Amin MA, 2010, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2010/12/001 [Anonymous], 2011, CUDA PROGR GUID VERS [Anonymous], 2011, OPENCL OVERVIEW Anselmi V., 2008, POS LATTICE 2008, P024 Banerjee S., ARXIV09103954 Belleman RG, 2008, NEW ASTRON, V13, P103, DOI 10.1016/j.newast.2007.07.004 Bertschinger E, 1998, ANNU REV ASTRON ASTR, V36, P599, DOI 10.1146/annurev.astro.36.1.599 Bond JR, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.071301 Brunner R.J., ARXIV07113414 Capuzzo-Dolcetta R., ARXIV09090879 Chambers A, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.041302 Chambers A, 2008, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2008/08/002 Chambers A, 2010, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2010/01/012 Chambers A, 2008, PHYS REV LETT, V101, DOI 10.1103/PhysRevLett.101.149903 Chung SK, 2010, CLASSICAL QUANT GRAV, V27, DOI 10.1088/0264-9381/27/13/135009 COPELAND EJ, 1995, PHYS REV D, V52, P1920, DOI 10.1103/PhysRevD.52.1920 Demchik V., ARXIV09033053 Easther R, 2010, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2010/10/025 Enqvist K, 2005, PHYS REV LETT, V94, DOI 10.1103/PhysRevLett.94.161301 Enqvist K, 2003, PHYS REV D, V68, DOI 10.1103/PhysRevD.68.103507 Enqvist K, 2003, PHYS REP, V380, P99, DOI 10.1016/S0370-1573(03)00119-4 Felder G.N., LATTICEEASY DOCUMENT Felder G, 2008, COMPUT PHYS COMMUN, V178, P929, DOI 10.1016/j.cpc.2008.02.009 Ford EB, 2009, NEW ASTRON, V14, P406, DOI 10.1016/j.newast.2008.12.001 Frolov A. M., COMMUNICATION Frolov AV, 2008, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2008/11/009 Gaburov E., ARXIV09024463 GLEISER M, 1994, PHYS REV D, V49, P2978, DOI 10.1103/PhysRevD.49.2978 Gleiser M, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.096010 Groen D., ARXIV09074036 Hagiwara K, 2010, EUR PHYS J C, V70, P513, DOI 10.1140/epjc/s10052-010-1465-5 Hamaguchi K, 2004, PHYS REV D, V69, DOI 10.1103/PhysRevD.69.063504 Hiramatsu T, 2010, J COSMOL ASTROPART P, DOI 10.1088/1475-7516/2010/06/008 Huang ZQ, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.123509 Ishikawa K.-I., 2008, POS LATTICE 2008, P013 Januszewski M, 2010, COMPUT PHYS COMMUN, V181, P183, DOI 10.1016/j.cpc.2009.09.009 Jonsson P, 2010, NEW ASTRON, V15, P509, DOI 10.1016/j.newast.2009.12.008 Kasuya S, 2000, PHYS REV LETT, V85, P2677, DOI 10.1103/PhysRevLett.85.2677 Kasuya S, 2004, PHYS LETT B, V578, P259, DOI 10.1016/j.physletb.2003.10.079 Kasuya S, 2000, PHYS REV D, V62, DOI 10.1103/PhysRevD.62.023512 Khanna G., ARXIV09094039 Klockner A., ARXIV09113456 Kusenko A, 1998, PHYS LETT B, V418, P46, DOI 10.1016/S0370-2693(97)01375-0 Mazumdara A, 2011, PHYS REP, V497, P85, DOI 10.1016/j.physrep.2010.08.001 McLachlan RI, 2002, ACT NUMERIC, V11, P341, DOI 10.1017/S0962492902000053 MCLACHLAN RI, 1995, SIAM J SCI COMPUT, V16, P151, DOI 10.1137/0916010 Micikevicius P, 2009, P 2 WORKSH GEN PURP Multamaki T, 2002, PHYS LETT B, V535, P170, DOI 10.1016/S0370-2693(02)01730-6 Nakasato N., ARXIV09090541 Ord S., ARXIV09020915 Patra M, 2006, NUMER METH PART D E, V22, P936, DOI 10.1002/num.20129 Podolsky D, 2006, PHYS REV D, V73, DOI 10.1103/PhysRevD.73.023501 Portegies Zwart S, 2009, NEW ASTRON, V14, P369, DOI 10.1016/j.newast.2008.10.006 Sainio J, 2010, COMPUT PHYS COMMUN, V181, P906, DOI 10.1016/j.cpc.2010.01.002 Schive HY, 2010, ASTROPHYS J SUPPL S, V186, P457, DOI 10.1088/0067-0049/186/2/457 Szalay T., ARXIV08112055 Von Hoerner S., 1960, Zeitschrift fur Astrophysik, V50, P184 Von Hoerner S., 1963, Zeitschrift fur Astrophysik, V57, P47 Wang P, 2010, NEW ASTRON, V15, P581, DOI 10.1016/j.newast.2009.10.002 YOSHIDA H, 1990, PHYS LETT A, V150, P262, DOI 10.1016/0375-9601(90)90092-3 NR 61 TC 12 Z9 12 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD APR PY 2012 IS 4 AR 038 DI 10.1088/1475-7516/2012/04/038 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 937NK UT WOS:000303665000038 DA 2021-04-21 ER PT J AU Rothkegel, A Lehnertz, K AF Rothkegel, Alexander Lehnertz, Klaus TI Conedy: A scientific tool to investigate complex network dynamics SO CHAOS LA English DT Article ID SPIKING NEURONS; SYNCHRONIZATION; SIMULATION; IMPLEMENTATION; CONNECTIVITY AB We present Conedy, a performant scientific tool to numerically investigate dynamics on complex networks. Conedy allows to create networks and provides automatic code generation and compilation to ensure performant treatment of arbitrary node dynamics. Conedy can be interfaced via an internal script interpreter or via a Python module. (C) 2012 American Institute of Physics. [doi:10.1063/1.3685527] C1 [Rothkegel, Alexander; Lehnertz, Klaus] Univ Bonn, Dept Epileptol, D-53105 Bonn, Germany. [Rothkegel, Alexander; Lehnertz, Klaus] Univ Bonn, Helmholtz Inst Radiat & Nucl Phys, D-53115 Bonn, Germany. [Rothkegel, Alexander; Lehnertz, Klaus] Univ Bonn, Interdisciplinary Ctr Complex Syst, D-53175 Bonn, Germany. RP Rothkegel, A (corresponding author), Univ Bonn, Dept Epileptol, Sigmund Freud Str 25, D-53105 Bonn, Germany. EM alexander@rothkegel.de; klaus.lehnertz@ukb.uni-bonn.de OI Lehnertz, Klaus/0000-0002-5529-8559 FU Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [LE 660/4-2] FX We are grateful to Gerrit Ansmann, Stephan Bialonski, Henning Dickten, Justus Schwabedal, Ferdinand Stolz, and Tobias Wagner for their contributions to the source code and documentation of Conedy and for valuable comments on earlier versions of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (LE 660/4-2). CR ABARBANEL HDI, 1993, REV MOD PHYS, V65, P1331, DOI 10.1103/RevModPhys.65.1331 Albert R, 2002, REV MOD PHYS, V74, P47, DOI 10.1103/RevModPhys.74.47 Alligood K.T., 1996, CHAOS INTRO DYNAMICA Almendral JA, 2011, CHAOS, V21, DOI 10.1063/1.3570920 Arenas A, 2008, PHYS REP, V469, P93, DOI 10.1016/j.physrep.2008.09.002 Barabasi AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509 BARKLEY D, 1991, PHYSICA D, V49, P61, DOI 10.1016/0167-2789(91)90194-E Barrat Alain, 2008, DYNAMICAL PROCESSES, V1st Boccaletti S, 2006, PHYS REP, V424, P175, DOI 10.1016/j.physrep.2005.10.009 Bower J. M., 1998, BOOK GENESIS EXPLORI Brette R, 2007, J COMPUT NEUROSCI, V23, P349, DOI 10.1007/s10827-007-0038-6 BROWN R, 1988, COMMUN ACM, V31, P1220, DOI 10.1145/63039.63045 Bullmore ET, 2009, NAT REV NEUROSCI, V10, P186, DOI 10.1038/nrn2575 Caldarelli G, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.258702 Carnevale NT, 2006, NEURON BOOK Catanzaro M, 2005, PHYS REV E, V71, DOI 10.1103/PhysRevE.71.027103 Clewley R. H., PYDSTOOL SOFTWARE EN Costa LD, 2007, ADV PHYS, V56, P167, DOI 10.1080/00018730601170527 Csardi G., 2006, INTERJOURNAL, V1695, DOI DOI 10.3724/SP.J.1087.2009.02191 Dhooge A, 2003, ACM T MATH SOFTWARE, V29, P141, DOI 10.1145/779359.779362 Donner RV, 2010, NEW J PHYS, V12, DOI 10.1088/1367-2630/12/3/033025 DRISCOLL JR, 1988, COMMUN ACM, V31, P1343, DOI 10.1145/50087.50096 Dyhrfjeld-Johnsen J, 2007, J NEUROPHYSIOL, V97, P1566, DOI 10.1152/jn.00950.2006 Ermentrout G, 2002, SIMULATING ANAL ANIM Feldt S, 2007, PHYS REV E, V76, DOI 10.1103/PhysRevE.76.021920 Galassi M., 2009, GNU SCI LIB REFERENC Gewaltig MO, 2007, SCHOLARPEDIA, V2, P1430, DOI DOI 10.4249/SCH0LARPEDIA.1430 Goodman Dan, 2008, Front Neuroinform, V2, P5, DOI 10.3389/neuro.11.005.2008 Hagberg A, 2008, 7 PYTH SCI C SCIPY20, V7, P11, DOI DOI 10.1016/J.JELECTROCARD.2010.09.003 Hegger R, 1999, CHAOS, V9, P413, DOI 10.1063/1.166424 Hines Michael L, 2009, Front Neuroinform, V3, P1, DOI 10.3389/neuro.11.001.2009 Hlavackova-Schindler K, 2007, PHYS REP, V441, P1, DOI 10.1016/j.physrep.2006.12.004 Izhikevich EM., 2007, DYNAMICAL SYSTEMS NE Jahnke S, 2009, FRONT COMPUT NEUROSC, V3, DOI 10.3389/neuro.10.013.2009 Kantz H., 2003, NONLINEAR TIME SERIE, V2nd Kloeden P.E., 1999, NUMERICAL SOLUTION S Kuramoto Y., 1984, SPRINGER SERIES SYNE, V19 Kwon O, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.066121 Lehnertz K, 2009, J NEUROSCI METH, V183, P42, DOI 10.1016/j.jneumeth.2009.05.015 MIROLLO RE, 1990, SIAM J APPL MATH, V50, P1645, DOI 10.1137/0150098 Morgan RJ, 2008, P NATL ACAD SCI USA, V105, P6179, DOI 10.1073/pnas.0801372105 Nawrath J, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.038701 Netoff TI, 2004, J NEUROSCI, V24, P8075, DOI 10.1523/JNEUROSCI.1509-04.2004 Newman MEJ, 2003, SIAM REV, V45, P167, DOI 10.1137/S003614450342480 Newman MEJ, 2001, PHYS REV E, V64, DOI [10.1103/PhysRevE.64.025102, 10.1103/PhysRevE.64.026118, 10.1103/PhysRevE.64.016132] Nishikawa T, 2011, CHAOS, V21, DOI 10.1063/1.3605467 Oliphant TE, 2007, COMPUT SCI ENG, V9, P10, DOI 10.1109/MCSE.2007.58 Olmi S, 2010, PHYS REV E, V81, DOI 10.1103/PhysRevE.81.046119 Osipov GV, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.024101 Pastor-Satorras R, 2001, PHYS REV LETT, V86, P3200, DOI 10.1103/PhysRevLett.86.3200 Pecevski Dejan, 2009, Front Neuroinform, V3, P11 Perc M, 2005, NEW J PHYS, V7, DOI 10.1088/1367-2630/7/1/252 Percha B, 2005, PHYS REV E, V72, DOI 10.1103/PhysRevE.72.031909 Pereda E, 2005, PROG NEUROBIOL, V77, P1, DOI 10.1016/j.pneurobio.2005.10.003 Pikovsky A., 2001, SYNCHRONIZATION UNIV, DOI 10.1017/CBO9780511755743 Press W. H., 2007, NUMERICAL RECIPES AR Ren J, 2010, PHYS REV LETT, V104, DOI 10.1103/PhysRevLett.104.058701 Rothkegel A, 2011, EPL-EUROPHYS LETT, V95, DOI 10.1209/0295-5075/95/38001 Rothkegel A, 2009, CHAOS, V19, DOI 10.1063/1.3087432 Stone TE, 2011, EPL-EUROPHYS LETT, V95, DOI 10.1209/0295-5075/95/38003 Stratton P, 2010, NEUROIMAGE, V52, P1070, DOI 10.1016/j.neuroimage.2010.01.027 Suykens JAK, 2008, CHAOS, V18, DOI 10.1063/1.2985139 Wang MS, 2006, CHINESE PHYS, V15, P2553, DOI 10.1088/1009-1963/15/11/016 Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918 Wu C. W., 2007, SYNCHRONIZATION COMP Yorke, 1998, DYNAMICS NUMERICAL E Zhou T, 2006, PROG NAT SCI-MATER, V16, P452 Zumdieck A, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.244103 NR 68 TC 16 Z9 16 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1054-1500 EI 1089-7682 J9 CHAOS JI Chaos PD MAR PY 2012 VL 22 IS 1 AR 013125 DI 10.1063/1.3685527 PG 8 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 922VP UT WOS:000302576900025 PM 22463001 DA 2021-04-21 ER PT J AU Curtis, JE Raghunandan, S Nanda, H Krueger, S AF Curtis, Joseph E. Raghunandan, Sindhu Nanda, Hirsh Krueger, Susan TI SASSIE: A program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Small-angle scattering; X-ray scattering; Neutron scattering; Intrinsically disordered proteins; Protein structure; Computer modeling ID SMALL-ANGLE NEUTRON; X-RAY-SCATTERING; RELATE 2 SETS; PROTEIN; CONFORMATION; DYNAMICS; ROTATION; CHARMM AB A program to construct ensembles of biomolecular structures that are consistent with experimental scattering data are described. Specifically, we generate an ensemble of biomolecular structures by varying sets of backbone dihedral angles that are then filtered using experimentally determined restraints to rapidly determine structures that have scattering profiles that are consistent with scattering data. We discuss an application of these tools to predict a set of structures for the HIV-1 Gag protein, an intrinsically disordered protein, that are consistent with small-angle neutron scattering experimental data. We have assembled these algorithms into a program called SASSIE for structure generation, visualization, and analysis of intrinsically disordered proteins and other macromolecular ensembles using neutron and X-ray scattering restraints. Program summary Program title: SASSIE Catalogue identifier: AEKL_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEKL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3 No. of lines in distributed program, including test data, etc.: 3 991 624 No. of bytes in distributed program, including test data, etc.: 826 Distribution format: tar.gz Programming language: Python, C/C++, Fortran Computer: PC/Mac Operating system: 32- and 64-bit Linux (Ubuntu 10.04, Centos 5.6) and Mac OS X (10.6.6) RAM: 1 GB Classification: 3 External routines: Python 2.6.5, numpy 1.4.0, swig 1.3.40, scipy 0.8.0, Gnuplot-py-1.8, Tcl 8.5, Tk 8.5, Mac installation requires aquaterm 1.0 (or X window system) and Xcode 3 development tools. Nature of problem: Open source software to generate structures of disordered biological molecules that subsequently allow for the comparison of computational and experimental results is limiting the use of scattering resources. Solution method: Starting with an all atom model of a protein, for example, users can input regions to vary dihedral angles, ensembles of structures can be generated. Additionally, simple two-body rigid-body rotations are supported with and without disordered regions. Generated structures can then be used to calculate small-angle scattering profiles which can then be filtered against experimentally determined data. Filtered structures can be visualized individually or as an ensemble using density plots. In the modular and expandable program framework the user can easily access our subroutines and structural coordinates can be easily obtained for study using other computational physics methods. Additional comments: The distribution file for this program is over 159 Mbytes and therefore is not delivered directly when download or Email is requested. Instead an html file giving details of how the program can be obtained is sent. Running time: Varies depending on application. Typically 10 minutes to 24 hours depending on the number of generated structures. C1 [Curtis, Joseph E.; Raghunandan, Sindhu; Nanda, Hirsh; Krueger, Susan] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Curtis, JE (corresponding author), NIST, NIST Ctr Neutron Res, 100 Bur Dr,Mail Stop 6102, Gaithersburg, MD 20899 USA. EM joseph.curtis@nist.gov FU National Institute of Standards and Technology, US Department of CommerceNational Institute of Standards & Technology (NIST) - USA FX We acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, for providing the neutron facilities used in this work. Brand names are stated for clarity only and their use does not imply an endorsement by NIST. We also thank Alan Rein and Siddhartha A.K. Datta of the National Cancer Institute-Frederick for valuable discussions and for help in obtaining the experimental data reported in this paper. CR Bernado P, 2007, J AM CHEM SOC, V129, P5656, DOI 10.1021/ja069124n Branden C-I, 1991, INTRO PROTEIN STRUCT BROOKS BR, 1983, J COMPUT CHEM, V4, P187, DOI 10.1002/jcc.540040211 Coffin J.M., 1997, RETROVIRUSES Datta S.A.K., 2010, J MOL BIOL Datta SAK, 2007, J MOL BIOL, V365, P812, DOI 10.1016/j.jmb.2006.10.073 Datta SAK, 2007, J MOL BIOL, V365, P799, DOI 10.1016/j.jmb.2006.10.072 Drake FL, 2001, PYTHON REFERENCE MAN Dunker AK, 2001, J MOL GRAPH MODEL, V19, P26, DOI 10.1016/S1093-3263(00)00138-8 Frenkel D., 1996, UNDERSTANDING MOL SI Golub GH., 1996, MATRIX COMPUTATIONS Grishaev A, 2005, J AM CHEM SOC, V127, P16621, DOI 10.1021/ja054342m Hardy D. J., 2007, NAMD LITE HEIDORN DB, 1988, BIOCHEMISTRY-US, V27, P909, DOI 10.1021/bi00403a011 KABSCH W, 1976, ACTA CRYSTALLOGR A, V32, P922, DOI 10.1107/S0567739476001873 KABSCH W, 1978, ACTA CRYSTALLOGR A, V34, P827, DOI 10.1107/S0567739478001680 Kent MS, 2010, BIOPHYS J, V99, P1940, DOI 10.1016/j.bpj.2010.07.016 Kernighan Brian W., 1988, C PROGRAMMING LANGUA Krueger S, 1998, J BIOL CHEM, V273, P20001, DOI 10.1074/jbc.273.32.20001 MacKerell AD, 1998, J PHYS CHEM B, V102, P3586, DOI 10.1021/jp973084f McQuarrie D. A., 1976, STAT MECH Nanda H, 2010, BIOPHYS J, V99, P2516, DOI 10.1016/j.bpj.2010.07.062 Neylon C, 2008, EUR BIOPHYS J BIOPHY, V37, P531, DOI 10.1007/s00249-008-0259-2 Ousterhout J.K., 1994, TCL TK TOOLKIT Pelikan M, 2009, GEN PHYSIOL BIOPHYS, V28, P174, DOI 10.4149/gpb_2009_02_174 Perkins SJ, 2008, METHOD CELL BIOL, V84, P375, DOI 10.1016/S0091-679X(07)84013-1 ROTERMAN IK, 1989, J BIOMOL STRUCT DYN, V7, P421, DOI 10.1080/07391102.1989.10508503 SCHLICK T, 2000, MOL MODELING SIMULAT Svergun D, 1995, J APPL CRYSTALLOGR, V28, P768, DOI 10.1107/S0021889895007047 Svergun DI, 1998, P NATL ACAD SCI USA, V95, P2267, DOI 10.1073/pnas.95.5.2267 Uversky VN, 2002, PROTEIN SCI, V11, P739, DOI 10.1110/ps.4210102 van Rossum G, 1995, PYTHON TUTORIAL TECH Wright PE, 1999, J MOL BIOL, V293, P321, DOI 10.1006/jmbi.1999.3110 NR 33 TC 77 Z9 77 U1 0 U2 20 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB PY 2012 VL 183 IS 2 BP 382 EP 389 DI 10.1016/j.cpc.2011.09.010 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 868OA UT WOS:000298531400019 DA 2021-04-21 ER PT S AU Price, RL Ramirez, J Rovito, TV Mendoza-Schrock, O AF Price, Rebecca L. Ramirez, Juan, Jr. Rovito, Todd V. Mendoza-Schrock, Olga GP IEEE TI Electro-Optical Synthetic Civilian Vehicle Data Domes SO PROCEEDINGS OF THE 2012 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON) SE IEEE National Aerospace and Electronics Conference LA English DT Proceedings Paper CT IEEE National Aerospace and Electronics Conference (NAECON) CY JUL 25-27, 2012 CL Dayton, OH SP IEEE, IEEE Aerosp & Elect Syst Soc (AESS), IEEE Dayton Sect DE synthetic data; civilian vehicle models; data domesBlender; LuxRender; Python; pattern recogntion; open-source AB This paper will look at using open source tools (Blender, LuxRender, and Python) to generate a large data set to be used to train an object recognition system. The model produces camera position, camera attitude, and synthetic camera data that can be used for exploitation purposes. We focus on electro-optical (EO) visible sensors to simplify the rendering but this work could be extended to use other rendering tools that support different modalities. The key idea of this paper is to provide an architecture to produce synthetic training data which is modular in design and constructed on open-source off-the-shelf software yielding a physics accurate virtual model of the object we want to recognize. For this paper the objects we are focused on are civilian vehicles. This architecture shows how leveraging existing open-source software allows for practical training of Electro-Optical object recognition algorithms C1 [Price, Rebecca L.; Ramirez, Juan, Jr.; Rovito, Todd V.; Mendoza-Schrock, Olga] Air Force Res Lab, Wright Patterson AFB, OH 45433 USA. RP Price, RL (corresponding author), Air Force Res Lab, Wright Patterson AFB, OH 45433 USA. CR Amazon ECU (Elastic Compute Unit, 2010, AM ECU EL COMP UN Dungan K., 2010, P SPIE, V7699 Ramirez Jr J, NAECON 2012 NR 3 TC 3 Z9 3 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0547-3578 BN 978-1-4673-2792-3 J9 PROC NAECON IEEE NAT PY 2012 BP 140 EP 143 PG 4 WC Engineering, Aerospace; Engineering, Electrical & Electronic SC Engineering GA BGY50 UT WOS:000324589100031 DA 2021-04-21 ER PT B AU Kolos, S Boutsioukis, G Hauser, R AF Kolos, S. Boutsioukis, G. Hauser, R. GP IEEE TI High-Performance Scalable Information Service for the ATLAS Experiment SO 2012 18TH IEEE-NPSS REAL TIME CONFERENCE (RT) LA English DT Proceedings Paper CT 18th IEEE-NPSS Real Time Conference (RT) CY JUN 09-15, 2012 CL Univ Calif, U S Dept Energy, Lawrence Berkeley Natl Lab (Berkelly Lab), Berkeley, CA SP IEEE, Nucl & Plasma Sci Soc, Univ Calif HO Univ Calif, U S Dept Energy, Lawrence Berkeley Natl Lab (Berkelly Lab) AB The ATLAS experiment is being operated by highly distributed computing system which is constantly producing a lot of status information which is used to monitor the experiment operational conditions as well as to assess the quality of the physics data being taken. For example the ATLAS High Level Trigger(HLT) algorithms are executed on the online computing farm consisting from about 1500 nodes. Each HLT algorithm is producing few thousands histograms, which have to be integrated over the whole farm and carefully analyzed in order to properly tune the event rejection. In order to handle such non-physics data the Information Service (IS) facility has been developed in the scope of the ATLAS Trigger and Data Acquisition (TDAQ) project. The IS provides high-performance scalable solution for information exchange in distributed environment. In the course of an ATLAS data taking session the IS handles about hundred gigabytes of information which is being constantly updated with the update interval varying from a second to few tens of seconds. IS provides access to any information item on request as well as distributing notification to all the information subscribers. In latter case IS subscribers receive information within few milliseconds after it was updated. IS can handle arbitrary types of information including histograms produced by the HLT applications and provides C++, Java and Python API. The Information Service is a primarily and in most cases a unique source of information for the majority of the online monitoring analysis and GUI applications, used to control and monitor the ATLAS experiment. Information Service provides streaming functionality allowing efficient replication of all or part of the managed information. This functionality is used to duplicate the subset of the ATLAS monitoring data to the CERN public network with the latency of few milliseconds, allowing efficient real-time monitoring of the data taking from outside the protected ATLAS network. Each information item in IS has an associated URL which can be used to access that item online via HTTP protocol. This functionality is being used by many online monitoring applications which can run in a WEB browser, providing real-time monitoring information about ATLAS experiment over the globe. This paper will describe design and implementation of the IS and present performance results which have been taken in the ATLAS operational environment. C1 [Kolos, S.] Univ Calif Irvine, Irvine, CA 92717 USA. [Boutsioukis, G.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Hauser, R.] Michigan State Univ, E Lansing, MI USA. RP Kolos, S (corresponding author), Univ Calif Irvine, Irvine, CA 92717 USA. EM ser-guei.kolos@cern.ch; georgios.boutsioukis@cern.ch; reiner.hauser@cern.ch CR Kolos S, 2007, 15 IEEE REAL TIM C I Scholtes I, 2008, IEEE T NUCL SCI, V55, P1610, DOI 10.1109/TNS.2008.924057 NR 2 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-1082-6; 978-1-4673-1083-3 PY 2012 PG 5 WC Computer Science, Hardware & Architecture; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BEH30 UT WOS:000316572100002 DA 2021-04-21 ER PT S AU Benkevitch, LV Oberoi, D Benjamin, MD Sokolov, IV AF Benkevitch, L. V. Oberoi, D. Benjamin, M. D. Sokolov, I. V. BE Ballester, P Egret, D Lorente, NPF TI HART: An Efficient Modeling Framework for Simulated Solar Imaging SO ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXI SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT 21st Annual Conference on Astronomical Data Analysis Software and Systems CY NOV 06-10, 2011 CL Observ Paris, Paris, FRANCE SP European So Observ HO Observ Paris ID SUN AB The Haystack & AOSS Ray Tracer (HART) is a software tool for modeling propagation of electromagnetic radiation through a realistic description of the magnetized solar corona, along with the associated radiative transfer effects. Its primary outputs are solar brightness temperature (or flux density) images corresponding to a user-specified coronal description and radio frequency. HART is based on native high-efficiency algorithms coded in the C language, and provides convenient command-line (Python) and graphical user interfaces. HART is a necessary tool for enabling the extraction of solar physics from the images that will be produced by the new generation of low radio frequency arrays like the Murchison Widefield Array (MWA), Low Frequency Array (LOFAR) and Long Wavelength Array (LWA). C1 [Benkevitch, L. V.; Oberoi, D.] MIT, Haystack Observ, Off Route 40, Westford, MA 01886 USA. [Benjamin, M. D.] Princeton Univ, REU student, Haystack, Princeton, NJ 08544 USA. [Sokolov, I. V.] Univ Michigan, AOSS, 2455 Hayward St, Ann Arbor, MI 48109 USA. RP Benkevitch, LV (corresponding author), MIT, Haystack Observ, Off Route 40, Westford, MA 01886 USA. RI Sokolov, Igor V/H-9860-2013 OI Sokolov, Igor V/0000-0002-6118-0469 FU National Science FoundationNational Science Foundation (NSF); Division of Astronomical Sciences and Atmospheric and Geospace Sciences to the MIT Haystack Observatory; ADASS XXI organizers FX This work was supported partly under grants from the National Science Foundation, Division of Astronomical Sciences and Atmospheric and Geospace Sciences to the MIT Haystack Observatory. LVB acknowledges the financial aid from ADASS XXI organizers and the travel grant from AAS which enabled him to attend this conference. CR Benkevitch L., 2010, 10065635 ARXIV Benkevitch L., 2011, 11102516 ARXIV de Vos M., 2009, IEEE P, V97, P1431, DOI DOI 10.1109/JPROC.2009.2020509 Ellingson SW, 2009, P IEEE, V97, P1421, DOI 10.1109/JPROC.2009.2015683 Lonsdale CJ, 2009, P IEEE, V97, P1497, DOI 10.1109/JPROC.2009.2017564 Oberoi D, 2011, ASTROPHYS J LETT, V728, DOI 10.1088/2041-8205/728/2/L27 Saito K., 1970, Annals of the Tokyo Astronomical Observatory, V12, P53 Thejappa G, 2008, ASTROPHYS J, V676, P1338, DOI 10.1086/528835 NR 8 TC 3 Z9 3 U1 0 U2 1 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA SN 1050-3390 BN 978-1-58381-804-6 J9 ASTR SOC P PY 2012 VL 461 BP 475 EP + PG 2 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA BDT65 UT WOS:000314795700103 DA 2021-04-21 ER PT S AU Kolos, S Boutsioukis, G Hauser, R AF Kolos, S. Boutsioukis, G. Hauser, R. GP IOP TI High-Performance Scalable Information Service for the ATLAS Experiment SO INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS 2012 (CHEP2012), PTS 1-6 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY MAY 21-25, 2012 CL New York Univ, New York, NY SP Brookhaven Natl Lab, ACEOLE, Data Direct Networks, Dell, European Middleware Initiat, Nexsan HO New York Univ AB The ATLAS[1] experiment is operated by a highly distributed computing system which is constantly producing a lot of status information which is used to monitor the experiment operational conditions as well as to assess the quality of the physics data being taken. For example the ATLAS High Level Trigger(HLT) algorithms are executed on the online computing farm consisting from about 1500 nodes. Each HLT algorithm is producing few thousands histograms, which have to be integrated over the whole farm and carefully analyzed in order to properly tune the event rejection. In order to handle such non-physics data the Information Service (IS) facility has been developed in the scope of the ATLAS Trigger and Data Acquisition (TDAQ)[2] project. The IS provides a high-performance scalable solution for information exchange in distributed environment. In the course of an ATLAS data taking session the IS handles about a hundred gigabytes of information which is being constantly updated with the update interval varying from a second to a few tens of seconds. IS provides access to any information item on request as well as distributing notification to all the information subscribers. In the latter case IS subscribers receive information within a few milliseconds after it was updated. IS can handle arbitrary types of information, including histograms produced by the HLT applications, and provides C++, Java and Python API. The Information Service is a unique source of information for the majority of the online monitoring analysis and GUI applications used to control and monitor the ATLAS experiment. Information Service provides streaming functionality allowing efficient replication of all or part of the managed information. This functionality is used to duplicate the subset of the ATLAS monitoring data to the CERN public network with a latency of a few milliseconds, allowing efficient real-time monitoring of the data taking from outside the protected ATLAS network. Each information item in IS has an associated URL which can be used to access that item online via HTTP protocol. This functionality is being used by many online monitoring applications which can run in a WEB browser, providing real-time monitoring information about the ATLAS experiment over the globe. This paper describes the design and implementation of the IS and presents performance results which have been taken in the ATLAS operational environment. C1 [Kolos, S.] Univ Calif Irvine, Irvine, CA 92717 USA. [Boutsioukis, G.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Hauser, R.] Michigan State Univ, E Lansing, MI 48824 USA. RP Kolos, S (corresponding author), Univ Calif Irvine, Irvine, CA 92717 USA. EM Serguei.Kolos@cern.ch CR Aad G, 2008, J INSTRUM, V3, DOI 10.1088/1748-0221/3/08/S08003 [Anonymous], 2003, ATLASTDR016 CERN Dotti A, 2010, J PHYS CONF SER, V219, DOI 10.1088/1742-6596/219/3/032037 Ilchenko Y, 2010, J PHYS CONF SER, V219, DOI 10.1088/1742-6596/219/2/022035 Kolos S, 2007, IEEE T NUCL SCI, V55, P1 Scholtes I, 2008, IEEE T NUCL SCI, V55, P1610, DOI 10.1109/TNS.2008.924057 NR 6 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 396 AR 012026 DI 10.1088/1742-6596/396/1/012026 PG 11 WC Physics, Multidisciplinary; Physics, Nuclear; Physics, Particles & Fields SC Physics GA BDT23 UT WOS:000314749800026 DA 2021-04-21 ER PT S AU Rybkin, G AF Rybkin, Grigory CA ATLAS Collaboration GP IOP TI ATLAS software packaging SO INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS 2012 (CHEP2012), PTS 1-6 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY MAY 21-25, 2012 CL New York Univ, New York, NY SP Brookhaven Natl Lab, ACEOLE, Data Direct Networks, Dell, European Middleware Initiat, Nexsan HO New York Univ AB Software packaging is indispensable part of build and prerequisite for deployment processes. Full ATLAS software stack consists of TDAQ, HLT, and Offline software. These software groups depend on some 80 external software packages. We present tools, package PackDist, developed and used to package all this software except for TDAQ project. PackDist is based on and driven by CMT, ATLAS software configuration and build tool, and consists of shell and Python scripts. The packaging unit used is CMT project. Each CMT project is packaged as several packages-platform dependent (one per platform available), source code excluding header files, other platform independent files, documentation, and debug information packages (the last two being built optionally). Packaging can be done recursively to package all the dependencies. The whole set of packages for one software release, distribution kit, also includes configuration packages and contains some 120 packages for one platform. Also packaged are physics analysis projects (currently 6) used by particular physics groups on top of the full release. The tools provide an installation test for the full distribution kit. Packaging is done in two formats for use with the Pacman and RPM package managers. The tools are functional on the platforms supported by ATLAS-GNU/Linux and Mac OS X. The packaged software is used for software deployment on all ATLAS computing resources from the detector and trigger computing farms, collaboration laboratories computing centres, grid sites, to physicist laptops, and CERN VMFS and covers the use cases of running all applications as well as of software development. C1 [Rybkin, Grigory; ATLAS Collaboration] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. RP Rybkin, G (corresponding author), Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. EM Grigori.Rybkine@cern.ch CR Albrand S, 2010, J PHYS CONF SER, V219, DOI 10.1088/1742-6596/219/4/042012 Arnault C, 2004, P INT C COMP HIGH EN Arnault C, 2001, P INT C COMP HIGH EN De Salvo A, 2012, J PHYS CONF SER, V396, DOI 10.1088/1742-6596/396/3/032030 Obreshkov E, 2008, NUCL INSTRUM METH A, V584, P244, DOI 10.1016/j.nima.2007.10.002 NR 5 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2012 VL 396 AR 052063 DI 10.1088/1742-6596/396/5/052063 PG 4 WC Physics, Multidisciplinary; Physics, Nuclear; Physics, Particles & Fields SC Physics GA BDT23 UT WOS:000314749803054 DA 2021-04-21 ER PT S AU Watts, G AF Watts, G. GP IOP TI ROOT.NET: Using ROOT from .NET languages like C# and F# SO INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS 2012 (CHEP2012), PTS 1-6 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY MAY 21-25, 2012 CL New York Univ, New York, NY SP Brookhaven Natl Lab (BNL), ACEOLE, Data Direct Networks, Dell, European Middleware Initiat, Nexsan HO New York Univ AB ROOT. NET provides an interface between Microsoft's Common Language Runtime (CLR) and .NET technology and the ubiquitous particle physics analysis tool, ROOT. ROOT.NET automatically generates a series of efficient wrappers around the ROOT API. Unlike pyROOT, these wrappers are statically typed and so are highly efficient as compared to the Python wrappers. The connection to .NET means that one gains access to the full series of languages developed for the CLR including functional languages like F# (based on OCaml). Many features that make ROOT objects work well in the .NET world are added (properties, IEnumerable interface, LINQ compatibility, etc.). Dynamic languages based on the CLR can be used as well, of course (Python, for example). Additionally it is now possible to access ROOT objects that are unknown to the translation tool. This poster will describe the techniques used to effect this translation, along with performance comparisons, and examples. All described source code is posted on the open source site CodePlex. C1 Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Watts, G (corresponding author), Univ Washington, Dept Phys, Box 351560, Seattle, WA 98195 USA. EM gwatts@uw.edu CR Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Syme D., 2010, EXPERT F 2 0 Watts G, 2012, J PHYS C SE IN PRESS NR 3 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 396 AR 052074 DI 10.1088/1742-6596/396/5/052074 PG 8 WC Physics, Multidisciplinary; Physics, Nuclear; Physics, Particles & Fields SC Physics GA BDT23 UT WOS:000314749803065 DA 2021-04-21 ER PT S AU Stagni, F Charpentier, P AF Stagni, F. Charpentier, P. CA LHCb Collaboration BE Teodorescu, L TI The LHCb DIRAC-based production and data management operations systems SO 14TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT 2011) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT) CY SEP 05-09, 2011 CL Brunel Univ, Uxbridge, ENGLAND SP Sci & Technol, Facilities Council (STFC), Durham Univ, Inst Particle Phys Phenomenol (IPPP), Brookhaven Natl Lab, Dell HO Brunel Univ AB The LHCb computing model was designed in order to support the LHCb physics program, taking into account LHCb specificities (event sizes, processing times etc ... ). Within this model several key activities are defined, the most important of which are real data processing (reconstruction, stripping and streaming, group and user analysis), Monte-Carlo simulation and data replication. In this contribution we detail how these activities are managed by the LHCbDIRAC Data Transformation System. The LHCbDIRAC Data Transformation System leverages the workload and data management capabilities provided by DIRAC, a generic community grid solution, to support data-driven workflows (or DAGs). The ability to combine workload and data tasks within a single DAG allows to create highly sophisticated workflows with the individual steps linked by the availability of data. This approach also provides the advantage of a single point at which all activities can be monitored and controlled. While several interfaces are currently supported (including python API and CLI), we will present the ability to create LHCb workflows through a secure web interface, control their state in addition to creating and submitting jobs. To highlight the versatility of the system we present in more detail experience with real data of the 2010 and 2011 LHC run. C1 [Stagni, F.; Charpentier, P.] CERN, PH Dept, CH-1211 Geneva 23, Switzerland. RP Stagni, F (corresponding author), CERN, PH Dept, CH-1211 Geneva 23, Switzerland. EM federico.stagni@cern.ch; philippe.charpentier@cern.ch CR Bonifazi Federico, 2008, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/119/4/042005 Diaz RG, 2011, J GRID COMPUT, V9, P65, DOI 10.1007/s10723-010-9175-7 Tsaregorodtsev A, 2008, Journal of Physics: Conference Series, DOI 10.1088/1742-6596/119/6/062048 NR 3 TC 9 Z9 9 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 368 AR 012010 DI 10.1088/1742-6596/368/1/012010 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Applied; Physics, Mathematical SC Computer Science; Physics GA BBN48 UT WOS:000307497200010 DA 2021-04-21 ER PT S AU Bretz, HP Erdmann, M Fischer, R Hinzmann, A Klingebiel, D Komm, M Lingemann, J Rieger, M Muller, G Steggemann, J Winchen, T AF Bretz, H-P Erdmann, M. Fischer, R. Hinzmann, A. Klingebiel, D. Komm, M. Lingemann, J. Rieger, M. Mueller, G. Steggemann, J. Winchen, T. BE Teodorescu, L TI Visual physics analysis - from desktop to physics analysis at your fingertips SO 14TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT 2011) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT) CY SEP 05-09, 2011 CL Brunel Univ, Uxbridge, ENGLAND SP Sci & Technol, Facilities Council (STFC), Durham Univ, Inst Particle Phys Phenomenol (IPPP), Brookhaven Natl Lab, Dell HO Brunel Univ AB Visual Physics Analysis (VISPA) is an analysis environment with applications in high energy and astroparticle physics. Based on a data-flow-driven paradigm, it allows users to combine graphical steering with self-written C++ and Python modules. This contribution presents new concepts integrated in VISPA: layers, convenient analysis execution, and web-based physics analysis. While the convenient execution offers full flexibility to vary settings for the execution phase of an analysis, layers allow to create different views of the analysis already during its design phase. Thus, one application of layers is to define different stages of an analysis (e.g. event selection and statistical analysis). However, there are other use cases such as to independently optimize settings for different types of input data in order to guide all data through the same analysis flow. The new execution feature makes job submission to local clusters as well as the LHC Computing Grid possible directly from VISPA. Web-based physics analysis is realized in the VISPA@Web project, which represents a whole new way to design and execute analyses via a standard web browser. C1 [Bretz, H-P; Erdmann, M.; Fischer, R.; Hinzmann, A.; Klingebiel, D.; Komm, M.; Lingemann, J.; Rieger, M.; Mueller, G.; Steggemann, J.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst A 3, D-52062 Aachen, Germany. RP Bretz, HP (corresponding author), Rhein Westfal TH Aachen, Phys Inst A 3, D-52062 Aachen, Germany. EM rfischer@physik.rwth-aachen.de RI Steggemann, Jan/AAL-5700-2020 OI Steggemann, Jan/0000-0003-4420-5510; Erdmann, Martin/0000-0002-1653-1303 CR Bos B, TEXT CSS MEDIA TYPE Brodski M, 2010, P ACAT2010 JAIP IND, V064 Crockford D., APPL JSON MEDIA TYPE Donno F, 2008, CERNITNOTE2008002 Erdmann M, 2010, ASTROPART PHYS, V33, P201, DOI 10.1016/j.astropartphys.2010.01.011 Garrett J.J., 2005, AJAX NEW APPROACH WE Hickson I., 2011, HTML5 VOCABULARY ASS Sencha Inc, 2011, JAVASCRIPT FRAM RICH Thain D, 2005, CONCURR COMP-PRACT E, V17, P323, DOI 10.1002/cpe.938 2008, QT CROSS PLATFORM AP NR 10 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 368 AR 012039 DI 10.1088/1742-6596/368/1/012039 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Applied; Physics, Mathematical SC Computer Science; Physics GA BBN48 UT WOS:000307497200039 DA 2021-04-21 ER PT J AU Gavin, R Li, Y Petriello, F Quackenbush, S AF Gavin, Ryan Li, Ye Petriello, Frank Quackenbush, Seth TI FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Z; Drell-Yan; NNLO ID PARTON DISTRIBUTIONS AB We introduce an improved version of the simulation code FEWZ (Fully Exclusive W and Z Production) for hadron collider production of lepton pairs through the Drell-Yan process at next-to-next-to-leading order (NNLO) in the strong coupling constant. The program is fully differential in the phase space of leptons and additional hadronic radiation. The new version offers users significantly more options for customization. FEWZ now bins multiple, user-selectable histograms during a single run, and produces parton distribution function (PDF) errors automatically. It also features a significantly improved integration routine, and can take advantage of multiple processor cores locally or on the Condor distributed computing system. We illustrate the new features of FEWZ by presenting numerous phenomenological results for LHC physics. We compare NNLO QCD with initial ATLAS and CMS results, and discuss in detail the effects of detector acceptance on the measurement of angular quantities associated with Z-boson production. We address the issue of technical precision in the presence of severe phase-space cuts. Program summary Program title: FEWZ Catalogue identifier: AEJP_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEJP_v1_0.html Program obtainable from: CPC Program Library. Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6 280 771 No. of bytes in distributed program, including test data, etc.: 1 73 027 645 Distribution format: tar.gz Programming language: Fortran 77, C++, Python Computer: Mac, PC Operating system: Mac OSX. Unix/Linux Has the code been vectorized or parallelized?: Yes. User-selectable. 1 to 219 RAM: 200 Mbytes for common parton distribution functions Classification: 11.1 External routines: CUBA numerical integration library, numerous parton distribution sets (see text): these are provided with the code. Nature of problem: Determination of the Drell-Yan Z/photon production cross section and decay into leptons, with kinematic distributions of leptons and jets including full spin correlations, at next-to-next-to-leading order in the strong coupling constant. Solution method: Virtual loop integrals are decomposed into master integrals using automated techniques. Singularities are extracted from real radiation terms via sector decomposition, which separates singularities and maps onto suitable phase space variables. Result is convoluted with parton distribution functions. Each piece is numerically integrated over phase space, which allows arbitrary cuts on the observed particles. Each sample point may be binned during numerical integration, providing histograms, and reweighted by parton distribution function error eigenvectors, which provides PDF errors. Restrictions: Output does not correspond to unweighted events, and cannot be interfaced with a shower Monte Carlo. Additional comments: !!!!! The distribution file for this program is over 170 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: One day for total cross sections with 0.1% integration errors assuming typical cuts. up to 1 week for smooth kinematic distributions with sub-percent integration errors for each bin. (C) 2011 Elsevier B.V. All rights reserved. C1 [Petriello, Frank; Quackenbush, Seth] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Gavin, Ryan; Li, Ye] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Petriello, Frank] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Quackenbush, S (corresponding author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM squackenbush@hep.anl.gov FU US Department of Energy, Division of High Energy PhysicsUnited States Department of Energy (DOE) [DE-AC02-06CH11357] FX We are grateful to F. Stoeckli for inspiring and advising us on the inclusion of the histogramming feature in FEWZ, and on the restructuring of the numerical integration. We thank S. Yost and J. Qian for valuable feedback on the original version of FEWZ, and M. Schmitt for useful discussions on experimental capabilities and desires. We also thank W. Sakumoto for alerting us to parity-violating moments for inclusion in our code, T. Hahn for feedback regarding CUBA, K. Melnikov for helpful comments, and N. Chiapolini for script suggestions. This work was supported in part by the US Department of Energy, Division of High Energy Physics, under Contract DE-AC02-06CH11357. CR Aad G, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP12(2010)060 Adam NE, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/09/133 ADAM NE, 2008, J HIGH ENERGY PHYS Alekhin S, 2010, PHYS REV D, V81, DOI 10.1103/PhysRevD.81.014032 ALEKHIN S, ARXIV10073657HEPPH ALTARELLI G, 1979, NUCL PHYS B, V157, P461, DOI 10.1016/0550-3213(79)90116-0 Anastasiou C, 2004, PHYS REV LETT, V93, DOI [10.1103/PhysRevLett.93.032002, 10.1103/PhysRevLett.93.262002] Anastasiou C, 2004, PHYS REV D, V69, DOI 10.1103/PhysRevD.69.094008 Anastasiou C, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.182002 Anastasiou C, 2004, J HIGH ENERGY PHYS Anastasiou C, 2004, PHYS REV D, V69, DOI 10.1103/PhysRevD.69.076010 Anastasiou C, 2005, NUCL PHYS B, V724, P197, DOI 10.1016/j.nuclphysb.2005.06.036 Anastasiou C., 2007, JHEP, V0709, P018 Ball RD, 2010, NUCL PHYS B, V838, P136, DOI 10.1016/j.nuclphysb.2010.05.008 Binoth T, 2000, NUCL PHYS B, V585, P741, DOI 10.1016/S0550-3213(00)00429-6 Campbell JM, 1999, PHYS REV D, V60, DOI 10.1103/PhysRevD.60.113006 Catani S, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2010)006 Catani S, 2009, PHYS REV LETT, V103, DOI 10.1103/PhysRevLett.103.082001 COLLINS JC, 1977, PHYS REV D, V16, P2219, DOI 10.1103/PhysRevD.16.2219 Dissertori G., 2006, HP2 WORKSH ZUR SWITZ Dittmaier S, 2002, PHYS REV D, V65, DOI 10.1103/PhysRevD.65.073007 Dittmar M, 1997, PHYS REV D, V56, P7284, DOI 10.1103/PhysRevD.56.7284 GIELE WT, ARXIVHEPPH0104053, P75006 Gluk M, 2008, PHYS LETT B, V664, P133, DOI 10.1016/j.physletb.2008.04.063 Hahn T, 2005, COMPUT PHYS COMMUN, V168, P78, DOI 10.1016/j.cpc.2005.01.010 Hamberg R, 2002, NUCL PHYS B, V644, P403, DOI 10.1016/S0550-3213(02)00814-3 HAMBERG R, 1991, NUCL PHYS B, V359, P343, DOI 10.1016/0550-3213(91)90064-5 HAYWOOD S, ARXIVHEPPH0003275 Jimenez-Delgado P, 2009, PHYS REV D, V80, DOI 10.1103/PhysRevD.80.114011 Khachatryan V, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2011)080 Khoze VA, 2001, EUR PHYS J C, V19, P313, DOI 10.1007/s100520100616 Lai H. L., ARXIV10072241HEPPH Martin AD, 2007, PHYS LETT B, V652, P292, DOI 10.1016/j.physletb.2007.07.040 Martin AD, 2009, EUR PHYS J C, V63, P189, DOI 10.1140/epjc/s10052-009-1072-5 Melnikov K, 2006, PHYS REV D, V74, DOI 10.1103/PhysRevD.74.114017 Melnikov K, 2006, PHYS REV LETT, V96, DOI 10.1103/PhysRevLett.96.231803 MIRKES E, 1995, PHYS REV D, V51, P4891, DOI 10.1103/PhysRevD.51.4891 MIRKES E, 1992, NUCL PHYS B, V387, P3, DOI 10.1016/0550-3213(92)90046-E Nadolsky PM, 2008, PHYS REV D, V78, DOI 10.1103/PhysRevD.78.013004 Pumplin J, 2002, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2002/07/012 Thain D, 2005, CONCURR COMP-PRACT E, V17, P323, DOI 10.1002/cpe.938 Thorne R. S., ARXIV10062753HEPPH Tung WK, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/02/053 NR 43 TC 356 Z9 355 U1 1 U2 21 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV PY 2011 VL 182 IS 11 BP 2388 EP 2403 DI 10.1016/j.cpc.2011.06.008 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 815KZ UT WOS:000294525800008 DA 2021-04-21 ER PT J AU Gonzalez-Ballestero, C Robledo, LM Bertsch, GF AF Gonzalez-Ballestero, C. Robledo, L. M. Bertsch, G. F. TI Numeric and symbolic evaluation of the pfaffian of general skew-symmetric matrices SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Skew symmetric matrices; Pfaffian ID OPERATORS; STATES AB Evaluation of pfaffians arises in a number of physics applications, and for some of them a direct method is preferable to using the deteminantal formula. We discuss two methods for the numerical evaluation of pfaffians. The first is tridiagonalization based on Householder transformations. The main advantage of this method is its numerical stability that makes unnecessary the implementation of a pivoting strategy. The second method considered is based on Aitken's block diagonalization formula. It yields to a kind of LU (similar to Cholesky's factorization) decomposition (under congruence) of arbitrary skew-symmetric matrices that is well suited both for the numeric and symbolic evaluations of the pfaffian. Fortran subroutines (FORTRAN 77 and 90) implementing both methods are given. We also provide simple implementations in Python and Mathematica for purpose of testing, or for exploratory studies of methods that make use of pfaffians. Program summary Program title: PFAFFIAN Catalogue identifier: AEJD_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEJD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2281 No. of bytes in distributed program, including test data, etc.: 13 226 Distribution format: tar.gz Programming language: Fortran 77 and 90 Computer: Any supporting a FORTRAN compiler Operating system: Any supporting a FORTRAN compiler RAM: a few MB Classification: 4.8 Nature of problem: Evaluation of the pfaffian of a skew symmetric matrix. Evaluation of pfaffians arises in a number of physics applications involving fermionic mean field wave functions and their overlaps. Solution method: Householder tridiagonalization. Aitken's block diagonalization formula. Additional comments: Python and Mathematica implementations are provided in the main body of the paper. Running time: Depends on the size of the matrices. For matrices with 100 rows and columns a few milliseconds are required. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gonzalez-Ballestero, C.; Robledo, L. M.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Bertsch, G. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Bertsch, G. F.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. RP Robledo, LM (corresponding author), Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. EM luis.robledo@uam.es RI Gonzalez-Ballestero, Carlos/H-6608-2018; Robledo, Luis Miguel/L-2557-2013 OI Gonzalez-Ballestero, Carlos/0000-0002-7639-0856; Robledo, Luis Miguel/0000-0002-6061-1319 FU MICINN (Spain)Spanish Government [FPA2009-08958, FIS2009-07277]; Consolider-IngenioSpanish Government [CPAN CSD2007-00042, MULTIDARK CSD2009-00064] FX We acknowledge K. Roche for a careful reading of the manuscript and several suggestions. This work was supported by MICINN (Spain) under research grants FPA2009-08958, and FIS2009-07277, as well as by Consolider-Ingenio 2010 Programs CPAN CSD2007-00042 and MULTIDARK CSD2009-00064. CR Aasen J. O., 1971, BIT (Nordisk Tidskrift for Informationsbehandling), V11, P233, DOI 10.1007/BF01931804 Bajdich M, 2008, PHYS REV B, V77, DOI 10.1103/PhysRevB.77.115112 BAUER FL, 1959, J SOC IND APPL MATH, V7, P107, DOI 10.1137/0107008 Berezin F A, 1966, METHOD 2 QUANTIZATIO BUNCH JR, 1982, MATH COMPUT, V38, P475, DOI 10.2307/2007283 CAIANIELLO ER, 1973, COMBINATORICS RENORM Campos I, 1999, EUR PHYS J C, V11, P507, DOI 10.1007/s100520050651 DONGARRA JJ, 1988, ACM T MATH SOFTWARE, V14, P1, DOI 10.1145/42288.42291 Golub GH., 1996, MATRIX COMPUTATIONS HOUSEHOLDER AS, 1958, J ACM, V5, P339, DOI 10.1145/320941.320947 Klauder J.R., 1985, COHERENT STATES APPL LANG GH, 1993, PHYS REV C, V48, P1518, DOI 10.1103/PhysRevC.48.1518 NEERGARD K, 1983, NUCL PHYS A, V402, P311, DOI 10.1016/0375-9474(83)90501-8 OHNUKI Y, 1978, PROG THEOR PHYS, V60, P548, DOI 10.1143/PTP.60.548 Robledo LM, 2009, PHYS REV C, V79, DOI 10.1103/PhysRevC.79.021302 RUBOW J, ARXIV11023576 Stephan JM, 2009, PHYS REV B, V80, DOI 10.1103/PhysRevB.80.184421 Thomas CK, 2009, PHYS REV E, V80, DOI 10.1103/PhysRevE.80.046708 Zhang F., 2005, SCHUR COMPLEMENT ITS NR 19 TC 18 Z9 18 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD OCT PY 2011 VL 182 IS 10 BP 2213 EP 2218 DI 10.1016/j.cpc.2011.04.025 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 802CD UT WOS:000293486000015 DA 2021-04-21 ER PT J AU Alwall, J Herquet, M Maltoni, F Mattelaer, O Stelzer, T AF Alwall, Johan Herquet, Michel Maltoni, Fabio Mattelaer, Olivier Stelzer, Tim TI MadGraph 5: going beyond SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE QCD Phenomenology ID AMPLITUDES; TREE; HELAS AB MADGRAPH 5 is the new version of the MADGRAPH matrix element generator, written in the Python programming language. It implements a number of new, efficient algorithms that provide improved performance and functionality in all aspects of the program. It features a new user interface, several new output formats including C++ process libraries for PYTHIA 8, and full compatibility with FEYNRULES for new physics models implementation, allowing for event generation for any model that can be written in the form of a Lagrangian. MADGRAPH 5 builds on the same philosophy as the previous versions, and its design allows it to be used as a collaborative platform where theoretical, phenomenological and simulation projects can be developed and then distributed to the high-energy community. We describe the ideas and the most important developments of the code and illustrate its capabilities through a few simple phenomenological examples. C1 [Alwall, Johan] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Herquet, Michel] Nikhef Theory Grp, NL-1098 SJ Amsterdam, Netherlands. [Maltoni, Fabio; Mattelaer, Olivier] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain, Belgium. [Stelzer, Tim] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Alwall, J (corresponding author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. OI Maltoni, Fabio/0000-0003-4890-0676 FU Belgian Federal Office for Scientific, Technical and Cultural Affairs [P6/11-P]; IISN "MadGraph" conventionFonds de la Recherche Scientifique - FNRS [4.4511.10] FX It is a great pleasure for us to thank all the people who, directly or indirectly, help and support our efforts and services to the high-energy community and all our users for their continuous and patient feedback. In particular, for the help in the extensive testing of the new version, we thank Alexis Kalogeropoulos; for the validation of new physics models (and much more) we thank the FEYNRULES core authors (Neil Christensen, Claude Duhr, Benjamin Fuks) and associates (Priscila de Aquino, Celine Degrande); for our cluster management we are grateful to Vincent Boucher, Jerome de Favereau, Pavel Demin, and Larry Nelson; for the great physics work and the fun, we in particular thank our colleagues and collaborators: Pierre Artoisenet, Simon de Visscher, Rikkert Frederix, Stefano Frixione, Nicolas Greiner, Kaoru Hagiwara, Junichi Kanzaki, Valentin Hirschi, Qiang Li, Kentarou Mawatari, Roberto Pittau, Tilman Plehn, Marco Zaro. This work is partially supported by the Belgian Federal Office for Scientific, Technical and Cultural Affairs through the 'Interuniversity Attraction Pole Program - Belgium Science Policy' P6/11-P and by the IISN "MadGraph" convention 4.4511.10. CR Aguilar-Saavedra JA, 2011, NUCL PHYS B, V843, P638, DOI 10.1016/j.nuclphysb.2010.10.015 Alioli S, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP06(2010)043 Alwall J, 2008, EUR PHYS J C, V53, P473, DOI 10.1140/epjc/s10052-007-0490-5 Alwall J, 2007, COMPUT PHYS COMMUN, V176, P300, DOI 10.1016/j.cpc.2006.11.010 Alwall J., ALOHA AUTOMATIC HELA ALWALL J, ARXIV07123311 Alwall J, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/09/028 Alwall J, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/02/017 BERENDS FA, 1988, NUCL PHYS B, V306, P759, DOI 10.1016/0550-3213(88)90442-7 Berger CF, 2011, PHYS REV LETT, V106, DOI 10.1103/PhysRevLett.106.092001 Berger CF, 2010, PHYS REV D, V82, DOI 10.1103/PhysRevD.82.074002 Berger CF, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.222001 Boos E, 2004, NUCL INSTRUM METH A, V534, P250, DOI 10.1016/j.nima.2004.07.096 Britto R, 2005, NUCL PHYS B, V715, P499, DOI 10.1016/j.nuclphysb.2005.02.030 CARAVAGLIOS F, 1995, PHYS LETT B, V358, P332, DOI 10.1016/0370-2693(95)00971-M Catani S, 2001, J HIGH ENERGY PHYS Cho GC, 2006, PHYS REV D, V73, DOI 10.1103/PhysRevD.73.054002 Christensen N. D., AUTORNATED VALIDATIO Christensen N, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-011-1541-5 Christensen ND, 2009, COMPUT PHYS COMMUN, V180, P1614, DOI 10.1016/j.cpc.2009.02.018 Conway J., PRETTY GOOD SIMULATO Corcella G, 2001, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2001/01/010 Czakon M, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/08/085 Degrande C., UFO UNIVERSAL FEYNRU DEGRANDE C, ARXIV11041798 Degrande C, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2011)125 Del Duca V, 2000, NUCL PHYS B, V571, P51, DOI 10.1016/S0550-3213(99)00809-3 DENNER A, 1992, NUCL PHYS B, V387, P467, DOI 10.1016/0550-3213(92)90169-C Draggiotis P, 1998, PHYS LETT B, V439, P157, DOI 10.1016/S0370-2693(98)01015-6 Draggiotis P, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/04/072 Duhr C., ARXIV11024191 Duhr C, 2006, J HIGH ENERGY PHYS Ellis RK, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/04/077 Englert C, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.095009 Frederix R, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/09/122 Frederix R, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/10/003 Frixione S, 2003, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2003/08/007 Frixione S, 2002, J HIGH ENERGY PHYS Frixione S., ARXIV11060155 Gleisberg T, 2008, EUR PHYS J C, V53, P501, DOI [10.1140/epjc/s10052-007-0495-0, 10.1140/epjc/sl0052-007-0495-0] Gleisberg T, 2004, J HIGH ENERGY PHYS Gleisberg T, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/02/007 Gleisberg T, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/12/039 Hagiwara K, 2008, EUR PHYS J C, V56, P435, DOI 10.1140/epjc/s10052-008-0663-x Hagiwara K, 2011, EUR PHYS J C, V71, DOI 10.1140/epjc/s10052-010-1529-6 Han T, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2010)123 Hasegawa K, 2008, NUCL PHYS B-PROC SUP, V183, P268, DOI 10.1016/j.nuclphysbps.2008.09.115 Hirschi V, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2011)044 Hoeche S., HEPPH0602031 Hoche S, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/05/053 KILIAN W, LCTOOL2001039 KILIAN W, ARXIV07084233 Krauss F, 2004, PHYS REV D, V70, DOI 10.1103/PhysRevD.70.114009 Krauss F, 2002, J HIGH ENERGY PHYS Lavesson N, 2005, J HIGH ENERGY PHYS Lonnblad L, 2002, J HIGH ENERGY PHYS Maltoni F, 2003, PHYS REV D, V67, DOI 10.1103/PhysRevD.67.014026 Maltoni F, 2003, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2003/02/027 Mangano ML, 2007, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2007/01/013 Mangano ML, 2003, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2003/07/001 MANGANO ML, 1991, PHYS REP, V200, P301, DOI 10.1016/0370-1573(91)90091-Y Moretti M., HEPPH0102195 Mrenna S, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/05/040 Murayama H., KEK9111 Nason P, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/11/040 Ossola G, 2008, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2008/03/042 Ovyn S., ARXIV09032225 PAPADOPOULOS CG, HEPPH0606320 Pukhov A., HEPPH9908288 Pukhov A., HEPPH0412191 Randall L, 1999, PHYS REV LETT, V83, P3370, DOI 10.1103/PhysRevLett.83.3370 SEYMOUR MH, ARXIV08032231 Sjostrand T, 2008, COMPUT PHYS COMMUN, V178, P852, DOI 10.1016/j.cpc.2008.01.036 Sjostrand T, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/05/026 STELZER T, 1994, COMPUT PHYS COMMUN, V81, P357, DOI 10.1016/0010-4655(94)90084-1 van Hameren A, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/09/106 Zanderighi G., ARXIV08103524 Zhang C, 2011, PHYS REV D, V83, DOI 10.1103/PhysRevD.83.034006 NR 78 TC 1876 Z9 1878 U1 3 U2 46 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUN PY 2011 IS 6 AR 128 DI 10.1007/JHEP06(2011)128 PG 40 WC Physics, Particles & Fields SC Physics GA 797OG UT WOS:000293136600055 OA Other Gold DA 2021-04-21 ER PT J AU Bauer, B Carr, LD Evertz, HG Feiguin, A Freire, J Fuchs, S Gamper, L Gukelberger, J Gull, E Guertler, S Hehn, A Igarashi, R Isakov, SV Koop, D Ma, PN Mates, P Matsuo, H Parcollet, O Pawlowski, G Picon, JD Pollet, L Santos, E Scarola, VW Schollwock, U Silva, C Surer, B Todo, S Trebst, S Troyer, M Wall, ML Werner, P Wessel, S AF Bauer, B. Carr, L. D. Evertz, H. G. Feiguin, A. Freire, J. Fuchs, S. Gamper, L. Gukelberger, J. Gull, E. Guertler, S. Hehn, A. Igarashi, R. Isakov, S. V. Koop, D. Ma, P. N. Mates, P. Matsuo, H. Parcollet, O. Pawlowski, G. Picon, J. D. Pollet, L. Santos, E. Scarola, V. W. Schollwoeck, U. Silva, C. Surer, B. Todo, S. Trebst, S. Troyer, M. Wall, M. L. Werner, P. Wessel, S. TI The ALPS project release 2.0: open source software for strongly correlated systems SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE density matrix renormalization group calculations; classical Monte Carlo simulations; quantum Monte Carlo simulations; quantum phase transitions (theory) ID MONTE-CARLO METHOD; VISUALIZATIONS; PROVENANCE; ALGORITHM AB We present release 2.0 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. The code development is centered on common XML and HDF5 data formats, libraries to simplify and speed up code development, common evaluation and plotting tools, and simulation programs. The programs enable non-experts to start carrying out serial or parallel numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), the density matrix renormalization group (DMRG) both in a static version and a dynamic time-evolving block decimation (TEBD) code, and quantum Monte Carlo solvers for dynamical mean field theory (DMFT). The ALPS libraries provide a powerful framework for programmers to develop their own applications, which, for instance, greatly simplify the steps of porting a serial code onto a parallel, distributed memory machine. Major changes in release 2.0 include the use of HDF5 for binary data, evaluation tools in Python, support for the Windows operating system, the use of CMake as build system and binary installation packages for Mac OS X and Windows, and integration with the VisTrails workflow provenance tool. The software is available from our web server at http://alps.comp-phys.org/. C1 [Bauer, B.; Gamper, L.; Gukelberger, J.; Hehn, A.; Isakov, S. V.; Ma, P. N.; Mates, P.; Pollet, L.; Surer, B.; Troyer, M.; Werner, P.] ETH, CH-8093 Zurich, Switzerland. [Carr, L. D.; Wall, M. L.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Evertz, H. G.] Graz Univ Technol, Inst Theoret Phys, A-8010 Graz, Austria. [Feiguin, A.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Freire, J.; Koop, D.; Mates, P.; Santos, E.; Silva, C.] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. [Fuchs, S.] Univ Gottingen, Inst Theoret Phys, D-3400 Gottingen, Germany. [Gull, E.] Columbia Univ, New York, NY 10027 USA. [Guertler, S.] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Igarashi, R.] Japan Atom Energy Agcy, Ctr Computat Sci & E Syst, Tokyo 1100015, Japan. [Todo, S.] Japan Sci & Technol Agcy, Core Res Evolut Sci & Technol, Kawaguchi, Saitama 3320012, Japan. [Matsuo, H.; Todo, S.] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. [Parcollet, O.] CEA Saclay, Inst Phys Theor, CEA DSM IPhT CNRS URA 2306, F-91191 Gif Sur Yvette, France. [Pawlowski, G.] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland. [Picon, J. D.] Ecole Polytech Fed Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland. [Pollet, L.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Scarola, V. W.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Schollwoeck, U.] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany. [Schollwoeck, U.] Univ Munich, Ctr NanoSci, D-80333 Munich, Germany. [Trebst, S.] Univ Calif Santa Barbara, Stn Q, Microsoft Res, Santa Barbara, CA 93106 USA. [Wessel, S.] Rhein Westfal TH Aachen, Inst Solid State Theory, D-52056 Aachen, Germany. [Wessel, S.] Univ Stuttgart, Inst Theoret Phys 3, D-70550 Stuttgart, Germany. RP Troyer, M (corresponding author), ETH, CH-8093 Zurich, Switzerland. EM troyer@comp-phys.org RI Bauer, Bela/C-1984-2009; Scarola, Vito/AAG-7503-2019; Troyer, Matthias/B-7826-2008; Parcollet, Olivier/C-2340-2008; Gull, Emanuel C/A-2362-2010; Freire, Juliana/AAQ-4484-2020; Parcollet, Olivier/AAE-2863-2021; Pollet, Lode C/F-6845-2010; Scarola, Vito/G-5412-2012; Werner, Philipp/C-7247-2009; Igarashi, Ryo/B-5024-2010; Schollwock, Ulrich JM/L-1220-2016; Santos, Emanuele M/J-1980-2017; Trebst, Simon/C-5390-2008; Todo, Synge/G-5023-2014; Carr, Lincoln/E-3819-2016; Evertz, Hans G/O-5975-2015; Pawlowski, Grzegorz/B-4880-2019 OI Bauer, Bela/0000-0001-9796-2115; Scarola, Vito/0000-0002-8653-2723; Troyer, Matthias/0000-0002-1469-9444; Parcollet, Olivier/0000-0002-0389-2660; Gull, Emanuel C/0000-0002-6082-1260; Freire, Juliana/0000-0003-3915-7075; Pollet, Lode C/0000-0002-7274-2842; Scarola, Vito/0000-0002-8653-2723; Igarashi, Ryo/0000-0002-2894-7226; Santos, Emanuele M/0000-0002-2806-4589; Trebst, Simon/0000-0002-1479-9736; Todo, Synge/0000-0001-9338-0548; Carr, Lincoln/0000-0002-4848-7941; Evertz, Hans G/0000-0002-2037-0725; Wall, Michael/0000-0002-6223-0800; Pawlowski, Grzegorz/0000-0001-5019-1317 FU Pauli Center at ETH Zurich; NSFNational Science Foundation (NSF) [PHY-0551164, DMR-0705847]; Aspen Center for Physics; Swiss National Science FoundationSwiss National Science Foundation (SNSF)European Commission; Jeffress Memorial Trust [J-992]; National Science FoundationNational Science Foundation (NSF) [PHY-0903457, DMR-0955707]; Golden Energy Computing Organization at the Colorado School of Mines; National Science FoundationNational Science Foundation (NSF); National Renewable Energy Laboratories; Deutsche ForschungsgemeinschaftGerman Research Foundation (DFG) [SFB 602]; Japan Society for the Promotion of ScienceMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science [20540364]; MEXT JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); Army Research Office; DARPAUnited States Department of DefenseDefense Advanced Research Projects Agency (DARPA); US Department of EnergyUnited States Department of Energy (DOE); US National Science FoundationNational Science Foundation (NSF); IBM; Grants-in-Aid for Scientific ResearchMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [23540438, 20540364, 18540369] Funding Source: KAKEN; Division Of PhysicsNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS) [0903457] Funding Source: National Science Foundation FX The development of ALPS has profited from support of the Pauli Center at ETH Zurich, the Swiss HP2C initiative, the Kavli Institute for Theoretical Physics in Santa Barbara through NSF grants PHY-0551164 and DMR-0705847, the Aspen Center for Physics, the Swiss National Science Foundation, the Jeffress Memorial Trust, Grant No. J-992, the National Science Foundation under grants PHY-0903457 and DMR-0955707, the Golden Energy Computing Organization at the Colorado School of Mines for the use of resources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratories, the Deutsche Forschungsgemeinschaft through the collaborative research center SFB 602, Japan Society for the Promotion of Science through KAKENHI No. 20540364, Next-Generation Supercomputer Project from MEXT Japan, and a grant from the Army Research Office with funding from the DARPA OLE program.; Work on VisTrails is primarily supported by grants and contracts from the US National Science Foundation, the US Department of Energy, and IBM. CR Albuquerque AF, 2007, J MAGN MAGN MATER, V310, P1187, DOI 10.1016/j.jmmm.2006.10.304 Alet F, 2005, J PHYS SOC JPN, V74, P30, DOI 10.1143/JPSJS.74S.30 Alet F, 2005, PHYS REV E, V71, DOI 10.1103/PhysRevE.71.036706 Ambegaokar V, 2010, AM J PHYS, V78, P150, DOI 10.1119/1.3247985 Bavoil L, 2005, IEEE VISUALIZATION 2005, PROCEEDINGS, P135, DOI 10.1109/visual.2005.1532788 CALLAHAN S, 2006, 2006 SCIFLOW IEEE WO CLIFFORD B, 2007, CONCURR COMP-PRACT E, V20, P565 Czarnecki K., 2000, GENERATIVE PROGRAMMI Daley AJ, 2004, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2004/04/P04005 Evertz HG, 2003, ADV PHYS, V52, P1, DOI 10.1080/0001873021000049195 EVERTZ HG, 1993, PHYS REV LETT, V70, P875, DOI 10.1103/PhysRevLett.70.875 Freire J, 2008, COMPUT SCI ENG, V10, P11, DOI 10.1109/MCSE.2008.79 Freire J, 2006, LECT NOTES COMPUT SC, V4145, P10 Georges A, 1996, REV MOD PHYS, V68, P13, DOI 10.1103/RevModPhys.68.13 Gull E, 2008, EPL-EUROPHYS LETT, V82, DOI 10.1209/0295-5075/82/57003 Gull E, 2011, COMPUT PHYS COMMUN, V182, P1078, DOI 10.1016/j.cpc.2010.12.050 HIRSCH JE, 1986, PHYS REV LETT, V56, P2521, DOI 10.1103/PhysRevLett.56.2521 Katzgraber HG, 2006, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2006/03/P03018 Koop D, 2010, LECT NOTES COMPUT SC, V6187, P397, DOI 10.1007/978-3-642-13818-8_28 Kotliar G, 2006, REV MOD PHYS, V78, P865, DOI 10.1103/RevModPhys.78.865 LANCZOS C, 1950, J RES NAT BUR STAND, V45, P255, DOI 10.6028/jres.045.026 LEE EA, 1995, P IEEE, V83, P773, DOI 10.1109/5.381846 Lutz M., 2009, LEARNING PYTHON Lutz M, 2006, PROGRAMMING PYTHON Maier T, 2005, REV MOD PHYS, V77, P1027, DOI 10.1103/RevModPhys.77.1027 Murg V, 2007, PHYS REV A, V75, DOI 10.1103/PhysRevA.75.033605 Prokof'ev NV, 1998, J EXP THEOR PHYS+, V87, P310, DOI 10.1134/1.558661 Rubtsov AN, 2005, PHYS REV B, V72, DOI 10.1103/PhysRevB.72.035122 Rubtsov AN, 2004, JETP LETT+, V80, P61, DOI 10.1134/1.1800216 Sandvik AW, 1999, PHYS REV B, V59, P14157, DOI 10.1103/PhysRevB.59.R14157 SANDVIK AW, 1991, PHYS REV B, V43, P5950, DOI 10.1103/PhysRevB.43.5950 Santos E, 2009, IEEE T VIS COMPUT GR, V15, P1539, DOI 10.1109/TVCG.2009.195 Scheidegger CE, 2007, IEEE T VIS COMPUT GR, V13, P1560, DOI 10.1109/TVCG.2007.70584 Schollwock U, 2005, REV MOD PHYS, V77, P259, DOI 10.1103/RevModPhys.77.259 Siek Jeremy G., 2001, BOOST GRAPH LIB USER Silva CT, 2007, COMPUT SCI ENG, V9, P82, DOI 10.1109/MCSE.2007.106 SWENDSEN RH, 1987, PHYS REV LETT, V58, P86, DOI 10.1103/PhysRevLett.58.86 Syljuasen OF, 2002, PHYS REV E, V66, DOI 10.1103/PhysRevE.66.046701 Todo S, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.047203 Trebst S, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.046701 Troyer M, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.120201 Troyer M, 1998, LECT NOTES COMPUT SC, V1505, P191 Verstraete F., 2004, ARXIVCONDMAT0407066 Vidal G, 2007, PHYS REV LETT, V99, DOI 10.1103/PhysRevLett.99.220405 Vidal G, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.040502 Vidal G, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.147902 Wang FG, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.056101 Wang FG, 2001, PHYS REV LETT, V86, P2050, DOI 10.1103/PhysRevLett.86.2050 Werner P, 2006, PHYS REV B, V74, DOI 10.1103/PhysRevB.74.155107 Werner P, 2006, PHYS REV LETT, V97, DOI 10.1103/PhysRevLett.97.076405 Wessel S, 2004, PHYS REV A, V70, DOI 10.1103/PhysRevA.70.053615 Wessel S, 2007, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2007/12/P12005 WHITE SR, 1992, PHYS REV LETT, V69, P2863, DOI 10.1103/PhysRevLett.69.2863 White SR, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.076401 WOLFF U, 1989, PHYS REV LETT, V62, P361, DOI 10.1103/PhysRevLett.62.361 NR 55 TC 502 Z9 505 U1 8 U2 90 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD MAY PY 2011 AR P05001 DI 10.1088/1742-5468/2011/05/P05001 PG 34 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 784WW UT WOS:000292190200002 DA 2021-04-21 ER PT S AU Binet, S AF Binet, Sebastien GP IOP TI ng: What next-generation languages can teach us about HENP frameworks in the manycore era SO INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY OCT 18-22, 2010 CL Taipei, TAIWAN AB Current High Energy and Nuclear Physics (HENP) frameworks were written before multicore systems became widely deployed. A 'single-thread' execution model naturally emerged from that environment, however, this no longer fits into the processing model on the dawn of the manycore era. Although previous work focused on minimizing the changes to be applied to the LHC frameworks (because of the data taking phase) while still trying to reap the benefits of the parallel-enhanced CPU architectures, this paper explores what new languages could bring to the design of the next-generation frameworks. Parallel programming is still in an intensive phase of R&D and no silver bullet exists despite the 30+ years of literature on the subject. Yet, several parallel programming styles have emerged: actors, message passing, communicating sequential processes, task-based programming, data flow programming, ... to name a few. We present the work of the prototyping of a next-generation framework in new and expressive languages (python and Go) to investigate how code clarity and robustness are affected and what are the downsides of using languages younger than FoRTRAN/C/C++. C1 Univ Paris 11, Lab Accelerateur Lineaire, F-91898 Orsay, France. RP Binet, S (corresponding author), Univ Paris 11, Lab Accelerateur Lineaire, F-91898 Orsay, France. EM binet@cern.ch OI Binet, Sebastien/0000-0003-4913-6104 CR Amdahl G. M, 1967, AFIPS C P, P483, DOI DOI 10.1145/1465482.1465560 [Anonymous], C PROGRAMMING LANGUA [Anonymous], ROOT FRAM Binet S, 2009, CHEP *HASK, HASK PROGR LANG Mato P, 1998, LHCB98064 Moore E, 1965, ELECT MAGAZINE ng-go-gaudi mercurial repository, NG GO GAUDI MERCURIA *PYTH, PYTH PROGR LANG Singh S, 2007, ICFP Vala, VALA NR 11 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2011 VL 331 AR 042002 DI 10.1088/1742-6596/331/4/042002 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BZF21 UT WOS:000301337200002 DA 2021-04-21 ER PT S AU Fernandez, PF Clemencic, M Cousin, N AF Fernandez, Paloma Fuente Clemencic, Marco Cousin, Nicolas CA LHCb Collaboration GP IOP TI LHCb Tag Collector SO INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY OCT 18-22, 2010 CL Taipei, TAIWAN AB The LHCb physics software consists of hundreds of packages, each of which is developed by one or more physicists. When the developers have some code changes that they would like released, they commit them to the version control system, and enter the revision number into a database. These changes have to be integrated into a new release of each of the physics analysis applications. Tests are then performed by a nightly build system, which rebuilds various configurations of the whole software stack and executes a suite of run-time functionality tests. A Tag Collector system has been developed using solid standard technologies to cover both the use cases of developers and integration managers. A simple Web interface, based on an AJAX-like technology, is available. Integration with SVN and Nightly Build System, is possible via a Python API. Data are stored in a relational database with the help of an ORM (Object-Relational Mapping) library. C1 [Fernandez, Paloma Fuente; Clemencic, Marco; Cousin, Nicolas; LHCb Collaboration] CERN, CH-1211 Geneva, Switzerland. RP Fernandez, PF (corresponding author), CERN, Route Meyrin, CH-1211 Geneva, Switzerland. EM pfuentef@cern.ch; marco.clemencic@cern.ch; nicolas.cousin@cern.ch CR [Anonymous], LHCB TAG COLLECTOR [Anonymous], LHCB NIGHTLY BUILDS Arnault C, 2000, INT C COMP HIGH EN P Clemencic M, 2010, INT C COMP HIGH EN P Kruzelecki K, 2010, J PHYS CONF SER, V219, DOI 10.1088/1742-6596/219/4/042042 Ormancey E, 2008, J PHYS C SER, V119 *PYTH, PYTH PROGR LANG NR 7 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2011 VL 331 AR 042009 DI 10.1088/1742-6596/331/4/042009 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA BZF21 UT WOS:000301337200009 OA Bronze DA 2021-04-21 ER PT S AU de Cosa, A AF de Cosa, A. GP IOP TI CMS Configuration Editor: GUI based application for user analysis job SO INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY OCT 18-22, 2010 CL Taipei, TAIWAN AB We present the user interface and the software architecture of the Configuration Editor for the CMS experiment. The analysis workflow is organized in a modular way integrated within the CMS framework that organizes in a flexible way user analysis code. The Python scripting language is adopted to define the job configuration that drives the analysis workflow. It could be a challenging task for users, especially for newcomers, to develop analysis jobs managing the configuration of many required modules. For this reason a graphical tool has been conceived in order to edit and inspect configuration files. A set of common analysis tools defined in the CMS Physics Analysis Toolkit (PAT) can be steered and configured using the Config Editor. A user-defined analysis workflow can be produced starting from a standard configuration file, applying and configuring PAT tools according to the specific user requirements. CMS users can adopt this tool, the Config Editor, to create their analysis visualizing in real time which are the effects of their actions. They can visualize the structure of their configuration, look at the modules included in the workflow, inspect the dependences existing among the modules and check the data flow. They can visualize at which values parameters are set and change them according to what is required by their analysis task. The integration of common tools in the GUI needed to adopt an object-oriented structure in the Python definition of the PAT tools and the definition of a layer of abstraction from which all PAT tools inherit. C1 Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. RP de Cosa, A (corresponding author), Ist Nazl Fis Nucl, Sez Napoli, Complesso Monte St Angelo,Ed 6,Via Cintia, I-80126 Naples, Italy. EM annapaola.de.cosa@cern.ch CR Adam W, 2010, J PHYS CONF SER, V219, DOI 10.1088/1742-6596/219/3/032017 Fabozzi F, 2008, IEEE T NUCL SCI, V55, P3539, DOI 10.1109/TNS.2008.2006979 Hinzmann A., P CHEP 2010 C TAIP T JONES CD, 2006, P CHEP 2006 MUMB IND Lassila-Perini K., P CHEP 2010 C TAIP T NR 5 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2011 VL 331 AR 072046 DI 10.1088/1742-6596/331/7/072046 PG 6 WC Physics, Applied; Physics, Multidisciplinary; Physics, Nuclear SC Physics GA BZF07 UT WOS:000301299200046 DA 2021-04-21 ER PT S AU Echeverria, G Lassabe, N Degroote, A Lemaignan, S AF Echeverria, Gilberto Lassabe, Nicolas Degroote, Arnaud Lemaignan, Severin GP IEEE TI Modular Open Robots Simulation Engine: MORSE SO 2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) SE IEEE International Conference on Robotics and Automation ICRA LA English DT Proceedings Paper CT IEEE International Conference on Robotics and Automation (ICRA) CY MAY 09-13, 2011 CL Shanghai, PEOPLES R CHINA SP IEEE, Robot & Automat Soc, Minist Educ China, Minist Sci & Technol China, Natl Nat Sci Fdn China, Sci & Technol Commiss Shanghai Municipal, Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Harbin Inst Technol, State Key Lab Robot & Syst, Zhejiang Univ, Inst Cyber-Syst & Control, Chinese Acad Sci, Shenyang Inst Automat, Beihang Univ, Robotics Inst, Beijing Res Inst Automat Machinery Ind, Tianjin Univ, Sch Mech Engn, ABB, YASKAWA Elect, KUKA, Willow Garage, Googol Tech., Adept Mobile Robots, Harbin Boshi Automat, Natl Instruments, Beijing Universal Pioneering Technol, Real-Time Control & Instrumentat Lab, GE Global Res, ALDEBARAN Robot, Int Federat Robot (IFR), Shanghai Jiao Tong Univ AB This paper presents MORSE, a new open-source robotics simulator. MORSE provides several features of interest to robotics projects: it relies on a component-based architecture to simulate sensors, actuators and robots; it is flexible, able to specify simulations at variable levels of abstraction according to the systems being tested; it is capable of representing a large variety of heterogeneous robots and full 3D environments (aerial, ground, maritime); and it is designed to allow simulations of multiple robots systems. MORSE uses a "Software-in-the-Loop" philosophy, i.e. it gives the possibility to evaluate the algorithms embedded in the software architecture of the robot within which they are to be integrated. Still, MORSE is independent of any robot architecture or communication framework (middleware). MORSE is built on top of Blender, using its powerful features and extending its functionality through Python scripts. Simulations are executed on Blender's Game Engine mode, which provides a realistic graphical display of the simulated environments and allows exploiting the reputed Bullet physics engine. This paper presents the conception principles of the simulator and some use-case illustrations. C1 [Echeverria, Gilberto] RTRA STAE, 23 Ave Edouard Belin, F-31400 Toulouse, France. [Lassabe, Nicolas] ONERA Ctr Toulouse DCSD, F-31055 Toulouse, France. [Degroote, Arnaud; Lemaignan, Severin] CNRS, LAAS, F-31077 Toulouse, France. [Degroote, Arnaud; Lemaignan, Severin] Univ Toulouse, UPS, INSA, INP,ISAE,LAAS, F-31077 Toulouse, France. RP Echeverria, G (corresponding author), RTRA STAE, 23 Ave Edouard Belin, F-31400 Toulouse, France. EM gechever@laas.fr; nicolas.lassabe@onera.fr; adegroot@laas.fr; slemaign@laas.fr OI Lemaignan, Severin/0000-0002-3391-8876 CR [Anonymous], BLEND 3D [Anonymous], COGM ROB SIM [Anonymous], BLEND ROB INT GROUP [Anonymous], 2008, INT C SIM MOD PROGR [Anonymous], 2008, WORKSH ROB SIM AV SO Gerkey BP, 2003, PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS 2003, VOL 1-3, P317 Goktogan A., 2007, 4 INT S MECH ITS APP Joyeux S., 2005, WORKSH PRINC PRACT S Kanehiro F, 2004, INT J ROBOT RES, V23, P155, DOI 10.1177/0278364904041324 Kanehiro F, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, P24, DOI 10.1109/ROBOT.2002.1013334 Koenig N., 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), P2149 Kramer J, 2007, AUTON ROBOT, V22, P101, DOI 10.1007/s10514-006-9013-8 Lewis M, 2007, J COGN ENG DECIS MAK, V1, P98, DOI 10.1177/155534340700100105 Mallet A., 2010, P IEEE ICRA Metta G., 2006, International Journal of Advanced Robotic Systems, V3, P43 Michel O., 2004, International Journal of Advanced Robotic Systems, V1, P39 Microsoft Robotics Developer Studio, MICR ROB DEV STUD Mohamed N., 2008, INT C ROB AUT MECH R, P736 Petters S, 2008, LECT NOTES ARTIF INT, V5325, P183 Shakhimardanov A., 2007, IEEE RSJ INT C INT R Simeon T, 2001, PROCEEDINGS OF THE 2001 IEEE INTERNATIONAL SYMPOSIUM ON ASSEMBLY AND TASK PLANNING (ISATP2001), P25, DOI 10.1109/ISATP.2001.928961 Smits Ruben, 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2008), P426, DOI 10.1109/MFI.2008.4648032 Watanabe Y., 2010, AM HEL SOC 66 ANN FO Zykov V., 2008, INT C INT ROB SYST I NR 24 TC 17 Z9 17 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1050-4729 EI 2577-087X BN 978-1-61284-385-8 J9 IEEE INT CONF ROBOT PY 2011 PG 6 WC Automation & Control Systems; Engineering, Electrical & Electronic; Robotics SC Automation & Control Systems; Engineering; Robotics GA BWZ18 UT WOS:000295396600008 DA 2021-04-21 ER PT S AU Brodski, M Erdmann, M Fischer, R Hinzmann, A Klimkovich, T Klingebiel, D Komm, M Muller, G Steggemann, J Winchen, T AF Brodski, M. Erdmann, M. Fischer, R. Hinzmann, A. Klimkovich, T. Klingebiel, D. Komm, M. Mueller, G. Steggemann, J. Winchen, T. GP IOP TI Visual Physics Data Analysis in the Web Browser SO INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY OCT 18-22, 2010 CL Taipei, TAIWAN AB The project VISPA@WEB provides a novel graphical development environment for physics analyses which only requires a standard web browser on the client machine. It resembles the existing analysis environment available from the project Visual Physics Analysis VISPA, including the connection and configuration of modules for different tasks. High level logic can be programmed using the Python language, while performance-critical tasks can be implemented in C++ modules. The use cases range from simple teaching examples to highly complex scientific analyses. C1 [Brodski, M.; Erdmann, M.; Fischer, R.; Hinzmann, A.; Klimkovich, T.; Klingebiel, D.; Komm, M.; Mueller, G.; Steggemann, J.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst 3A, D-52062 Aachen, Germany. RP Brodski, M (corresponding author), Rhein Westfal TH Aachen, Phys Inst 3A, D-52062 Aachen, Germany. EM erdmann@physik.rwth-aachen.de RI Steggemann, Jan/AAL-5700-2020 OI Steggemann, Jan/0000-0003-4420-5510; Erdmann, Martin/0000-0002-1653-1303 CR Actis O., P 34 INT C HIGH EN P Brodsky M., 2010, P 13 INT WORKSH ADV Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X Crockford D., 4627 RFC ECMAScript language, ECMA262 Garrett J.J., 2005, AJAX NEW APPROACH WE Kappler S, 2006, IEEE T NUCL SCI, V53, P506, DOI 10.1109/TNS.2006.870179 Komm M., 2010, THESIS RWTH AACHEN U NR 8 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2011 VL 331 AR 072056 DI 10.1088/1742-6596/331/7/072056 PG 5 WC Physics, Applied; Physics, Multidisciplinary; Physics, Nuclear SC Physics GA BZF07 UT WOS:000301299200056 DA 2021-04-21 ER PT S AU Belyaev, I Savrina, D AF Belyaev, Ivan Savrina, Daria GP IOP TI Kali: The framework for fine calibration of the LHCb Electromagnetic Calorimeter SO INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010): EVENT PROCESSING SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY OCT 18-22, 2010 CL Taipei, TAIWAN AB The precise calibration (at a level of below 1%) of the electromagnetic calorimeter (ECAL) of the LHCb experiment is an essential task for the fulfilment of the LHCb physics program. The final step of this task is performed with two calibration methods using the real data from the experimental setup. It is a very CPU-consuming procedure as both methods require processing of O(10(8)) events which must be selected, reconstructed and analyzed. In this document we present the Kali framework developed within the LHCb software framework, which implements these two final calibration methods. It is integrated with Grid middleware and makes use of parallelism tools, such as python parallel processing modules, to provide an efficient way, both time and disk wise, for the final ECAL calibration. The results of the fine calibration with the very first data collected by the LHCb experiment will also be presented. With the use of the Kali framework it took only two days of processing and allowed to achieve a calibration accuracy of 2-2.5% for the different ECAL areas. C1 [Belyaev, Ivan; Savrina, Daria] Inst Theoret & Expt Phys, Moscow, Russia. RP Belyaev, I (corresponding author), Inst Theoret & Expt Phys, Moscow, Russia. EM Daria.Savrina@cern.ch RI Diaz, Ricardo Graciani/I-5152-2016; Diaz, Ricardo Graciani/AAH-1683-2020; Puig, Albert/L-5196-2017 OI Diaz, Ricardo Graciani/0000-0001-7166-5198; Diaz, Ricardo Graciani/0000-0001-7166-5198; Puig, Albert/0000-0001-8868-2947; Belyaev, Ivan/0000-0002-7458-7030 CR Alves AA, 2008, J INSTRUM, V3, DOI 10.1088/1748-0221/3/08/S08005 Brun Rene, ROOT USERS GUIDE 5 2 Korolko I., LHCB2000051 LHCb Coll, CERNLHCC2000036 LHCB *LHCB COLL, CERNLHCC2003030 LHCB *LHCB COLL, CERNLHCC984 LHCB COL Voronchev K., CERNLHCB2006051 NR 7 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2011 VL 331 AR 032050 DI 10.1088/1742-6596/331/3/032050 PG 6 WC Instruments & Instrumentation; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Physics GA BZE75 UT WOS:000301279900050 DA 2021-04-21 ER PT S AU Clemencic, M Corti, G Easo, S Jones, CR Miglioranzi, S Pappagallo, M Robbe, P AF Clemencic, M. Corti, G. Easo, S. Jones, C. R. Miglioranzi, S. Pappagallo, M. Robbe, P. CA LHCb Collaboration GP IOP TI The LHCb Simulation Application, Gauss: Design, Evolution and Experience SO INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010): EVENT PROCESSING SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY OCT 18-22, 2010 CL Taipei, TAIWAN AB The LHCb simulation application, Gauss, is based on the Gaudi framework and on experiment basic components such as the Event Model and Detector Description. Gauss also depends on external libraries for the generation of the primary events (PYTHIA 6, EvtGen, etc.) and on GEANT4 for particle transport in the experimental setup. The application supports the production of different types of events from minimum bias to B physics signals and particle guns. It is used for purely generator-level studies as well as full simulations. Gauss is used both directly by users and in massive central productions on the grid. The design and implementation of the application and its evolution due to evolving requirements will be described as in the case of the recently adopted Python-based configuration or the possibility of taking into account detectors conditions via a Simulation Conditions database. The challenge of supporting at the same time the flexibililty needed for the different tasks for which it is used, from evaluation of physics reach to background modeling, together with the stability and reliabilty of the code will also be described. C1 [Clemencic, M.; Corti, G.; Miglioranzi, S.; Robbe, P.] European Org Nucl Res CERN, Geneva, Switzerland. [Easo, S.] STFC Rutherford Appleton Lab, Didcot, Oxon, England. [Jones, C. R.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Pappagallo, M.] Sez INFN Bari, Bari, Italy. [Pappagallo, M.] Univ Bari, Bari, Italy. [Robbe, P.] Univ Paris Sud, LAL, IN2P3, CNRS, Orsay, France. RP Clemencic, M (corresponding author), European Org Nucl Res CERN, Geneva, Switzerland. EM Silvia.Miglioranzi@cern.ch RI Pappagallo, Marco/R-3305-2016 OI Pappagallo, Marco/0000-0001-7601-5602; Jones, Roderic/0000-0002-6761-3966 CR Agostinelli S, 2003, NUCL INSTRUM METH A, V506, P250, DOI 10.1016/S0168-9002(03)01368-8 Allison J, 2006, IEEE T NUCL SCI, V53, P270, DOI 10.1109/TNS.2006.869826 Alves AA, 2008, LHC JINST, V3 Antunes Nobrega R, 2005, CERNLHCC2005019 LHCB Bahr M, 2008, EUR PHYS J C, V58, P639, DOI 10.1140/epjc/s10052-008-0798-9 Barrand G, 2001, COMPUT PHYS COMMUN, V140, P45, DOI 10.1016/S0010-4655(01)00254-5 Belyaev I, 2001, P 2001 C COMPU HIGH Brun R, 1996, NUCL INSTRUM METH A, V398, P81 Clemencic M, 2010, J PHYS CONF SER, V219, DOI 10.1088/1742-6596/219/4/042006 Dobbs M, 2001, COMPUT PHYS COMMUN, V134, P41, DOI 10.1016/S0010-4655(00)00189-2 Duellmann D, 2003, ARXIVPHYSICS0306084 G Graziani, HISTOGRAM DB ONLINE Gleisberg T, 2009, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2009/02/007 Kruzelecki K, 2010, J PHYS CONF SER, V219, DOI 10.1088/1742-6596/219/4/042042 Lange DJ, 2001, NUCL INSTRUM METH A, V462, P152, DOI 10.1016/S0168-9002(01)00089-4 Sjostrand T, 2008, COMPUT PHYS COMMUN, V178, P852, DOI 10.1016/j.cpc.2008.01.036 Sjostrand T, 2006, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2006/05/026 NR 17 TC 409 Z9 411 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 EI 1742-6596 J9 J PHYS CONF SER PY 2011 VL 331 AR 032023 DI 10.1088/1742-6596/331/3/032023 PG 6 WC Instruments & Instrumentation; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Physics GA BZE75 UT WOS:000301279900023 DA 2021-04-21 ER PT S AU Gyurjyan, V Abbott, D Carbonneau, J Gilfoyle, G Heddle, D Heyes, G Paul, S Timmer, C Weygand, D Wolin, E AF Gyurjyan, V. Abbott, D. Carbonneau, J. Gilfoyle, G. Heddle, D. Heyes, G. Paul, S. Timmer, C. Weygand, D. Wolin, E. GP IOP TI CLARA: A Contemporary Approach to Physics Data Processing SO INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2010): EVENT PROCESSING SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Computing in High Energy and Nuclear Physics (CHEP) CY OCT 18-22, 2010 CL Taipei, TAIWAN AB CLARA (CLAS12 Reconstruction and Analysis framework) is CLAS12 physics data processing (PDP) application development framework based on a service oriented architecture (SOA). This framework allows users to design and deploy data processing services as well as dynamically compose PDP applications using available services. Services can be written in Java, C++, and Python languages. The PDP service bus provides a layer on top of a distributed pub-sub middleware implementation. This allows complex service composition and integration without writing a code. We believe that by deviating from the traditional self contained, monolithic PDP application models we can improve maintenance, scalability and quality of physics data analysis. The SOA approach also helps us to separate a specific service programmer from a PDP application designer. Examples of service creation and deployment, along with the CLAS12 track reconstruction application design are presented. EM gurjyan@jlab.org OI Heyes, William Graham/0000-0001-9902-8190; Paul, Sebouh/0000-0003-0977-3491 CR Erl T., 2007, PRINCIPLES SERVICE D Timmer C, 2007, P INT C COMP HIGH EN Wolin E, P IEE NSS HAW US 200 NR 3 TC 3 Z9 3 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2011 VL 331 AR 032013 DI 10.1088/1742-6596/331/3/032013 PG 7 WC Instruments & Instrumentation; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Physics GA BZE75 UT WOS:000301279900013 DA 2021-04-21 ER PT B AU Stark, AA AF Stark, Antony A. BE Berkman, PA Lang, MA Walton, DWH Young, OR TI Cosmology from Antarctica SO SCIENCE DIPLOMACY: ANTARCTICA, SCIENCE, AND THE GOVERNANCE OF INTERNATIONAL SPACES LA English DT Proceedings Paper CT Antarctic Treaty Summit: Science-Policy Interactions in International Governance CY NOV 30-DEC 03, 2009 CL Smithsonian Inst, Washington, DC SP Amer Geophys Union, Fdn Good Governance Int Spaces, Greenpeace, Japan Polar Res Assoc, KBR, Korean Polar Res Inst, Korea Supporters Assoc Polar Res, Lindblad Expedit, Pew Charitable Trusts, Stanford Univ, Dept Earth Sci, United Nations Environm Programme, Univ Sains Malaysia, Ctr Global Sustainabil Studies, World Wildlife Fund Australia HO Smithsonian Inst ID 1ST SEASON OBSERVATIONS; SMALL-SCALE ANISOTROPY; CMB POLARIZATION; MICROWAVE SKY; SUBMILLIMETER-TELESCOPE; ATMOSPHERIC OPACITY; WATER-VAPOR; 90 GHZ; DESIGN; RECEIVER AB We are in a golden age of observational cosmology, where measurements of the universe have progressed from crude estimates to precise knowledge. Many of these observations are made from the Antarctic, where conditions are particularly favorable. When we use telescopes to look out at the distant universe, we are also looking back in time because the speed of light is finite. Looking out 13.7 billion years, the cosmic microwave background (CMB) comes from a time shortly after the big bang. The first attempt at CMB observations from the Antarctic plateau was an expedition to the South Pole in December 1986 by the Radio Physics Research group at Bell Laboratories. The measured sky noise and opacity were highly encouraging. In the austral summer of 1988-1989, three CMB groups participated in the "Cucumber" campaign, where a temporary summer-only site dedicated to CMB anisotropy measurements was set up 2 km from South Pole Station. Winter observations became possible with the establishment in 1990 of the Center for Astrophysical Research in Antarctica (CARA), a U.S. National Science Foundation Science and Technology Center, which developed year-round observing facilities in the "Dark Sector," a section of Amundsen-Scott South Pole Station dedicated to astronomical observations. Scientists at CARA fielded several astronomical instruments: Antarctic Sub-millimeter Telescope and Remote Observatory (AST/RO), South Pole Infrared Explorer (SPIREX), White Dish, Python, Viper, Arcminute Cosmology Bolometer Array Receiver (ACBAR), and Degree-Angular Scale Interferometer (DASI). By 2001, data from CARA, together with Balloon Observations of Millimetric Extragalactic Radiation and Geophysics (BOOMERANG), a CMB experiment on a long-duration balloon launched from Mc-Murdo Station on the coast of Antarctica, showed clear evidence that the overall geometry of the universe is flat, as opposed to being open or closed. This indicates that the total energy content of the universe is near zero, so that the energy needed to originate the material of the universe is balanced by negative gravitational energy. In 2002, the DASI group reported the detection of polarization in the CMB. These observations strongly support a "concordance model" of cosmology, where the dynamics of a flat universe are dominated by forces exerted by the mysterious dark energy and dark matter. The CMB observations continue on the Antarctic plateau. The South Pole Telescope (SPT) is a 10-m-diameter offset telescope that is beginning to measure anisotropies on scales much smaller than 1 degrees, as well as discovering new protogalaxies and clusters of galaxies. Plans are in progress to measure CMB polarization in detail, observations that will yield insights to phenomena in the first second of time. C1 [Stark, Antony A.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. EM aas@cfa.harvard.edu OI Stark, Antony/0000-0002-2718-9996 CR ALVAREZ DL, 1995, THESIS PRINCETON U P Bussmann RS, 2005, ASTROPHYS J, V622, P1343, DOI 10.1086/427935 Carlstrom J. E., PUBLICATION IN PRESS Chamberlin R. A., 2001, ASP C P, P172 Chamberlin RA, 1997, ASTROPHYS J, V476, P428, DOI 10.1086/303621 CHAMBERLIN RA, 1995, INT J INFRARED MILLI, V16, P907, DOI 10.1007/BF02066665 Church S, 2003, NEW ASTRON REV, V47, P1083, DOI 10.1016/j.newar.2003.09.033 Coble K, 1999, ASTROPHYS J, V519, pL5, DOI 10.1086/312093 de Bernardis P, 2000, NATURE, V404, P955, DOI 10.1038/35010035 DRAGOVAN M, 1989, AIP CONF PROC, V198, P97 DRAGOVAN M, 1994, ASTROPHYS J, V427, pL67, DOI 10.1086/187366 DRAGOVAN M, 1990, APPL OPTICS, V29, P463, DOI 10.1364/AO.29.000463 ENGARGIOLA G, 1994, REV SCI INSTRUM, V65, P1833, DOI 10.1063/1.1144831 Fixsen DJ, 1996, ASTROPHYS J, V473, P576, DOI 10.1086/178173 GAIER T, 1989, AIP CONF PROC, V198, P84 Ganga K, 1997, ASTROPHYS J, V484, P7, DOI 10.1086/304296 Gerecht E, 1999, IEEE T MICROW THEORY, V47, P2519, DOI 10.1109/22.809001 Goff J.A., 1946, T AM SOC HEAT VENT E, V52, P95 Groppi C, 2000, ASTR SOC P, V217, P48 Halverson NW, 2002, ASTROPHYS J, V568, P38, DOI 10.1086/338879 HARRISON ER, 1970, PHYS REV D, V1, P2726, DOI 10.1103/PhysRevD.1.2726 Holdaway M. A., 1995, 139 NAT RAD ASTR OB, V139 Honingh CE, 1997, IEEE T APPL SUPERCON, V7, P2582, DOI 10.1109/77.621767 Hu W, 1997, NEW ASTRON, V2, P323, DOI 10.1016/S1384-1076(97)00022-5 Indermuehle BT, 2005, PUBL ASTRON SOC AUST, V22, P73, DOI 10.1071/AS04037 Keating BG, 2003, PROC SPIE, V4843, P284, DOI 10.1117/12.459274 KOOI JW, 1992, IEEE T MICROW THEORY, V40, P812, DOI 10.1109/22.137383 KOOI JW, 1995, INT J INFRARED MILLI, V16, P2049, DOI 10.1007/BF02073409 Kovac JM, 2002, NATURE, V420, P772, DOI 10.1038/nature01269 Landau L. D., 1962, CLASSICAL THEORY FIE Lane AP, 1997, ASTR SOC P, V141, P289 Lasenby AN, 1999, PHILOS T R SOC A, V357, P35, DOI 10.1098/rsta.1999.0313 Lay OP, 2000, ASTROPHYS J, V543, P787, DOI 10.1086/317115 Leitch EM, 2002, AIP CONF PROC, V616, P65 Leitch EM, 2002, NATURE, V420, P763, DOI 10.1038/nature01271 Leitch EM, 2002, ASTROPHYS J, V568, P28, DOI 10.1086/338878 Lueker M, 2010, ASTROPHYS J, V719, P1045, DOI 10.1088/0004-637X/719/2/1045 Lynch J. T., 1998, Astronomical Society of the Pacific Conference Series, V141, P54 Martin CL, 2004, ASTROPHYS J SUPPL S, V150, P239, DOI 10.1086/379661 Masi S, 2007, NEW ASTRON REV, V51, P236, DOI 10.1016/j.newar.2006.11.063 Masi S, 2006, ASTRON ASTROPHYS, V458, P687, DOI 10.1051/0004-6361:20053891 MEINHOLD PR, 1989, AIP CONF PROC, V198, P88 Nguyen H. T., 2008, P SOC PHOTO-OPT INS, V7020, P36 Nguyen HT, 1996, PUBL ASTRON SOC PAC, V108, P718, DOI 10.1086/133791 Novak G, 2000, ASTROPHYS J, V529, P241, DOI 10.1086/308231 Novak G., 1998, ASP C SERIES OSTRIKER JP, 1995, NATURE, V377, P600, DOI 10.1038/377600a0 PAJOT F, 1986, ASTRON ASTROPHYS, V154, P55 PAJOT F, 1989, ASTRON ASTROPHYS, V223, P107 PEEBLES PJE, 1970, ASTROPHYS J, V162, P815, DOI 10.1086/150713 PENZIAS AA, 1965, ASTROPHYS J, V142, P419, DOI 10.1086/148307 PETERSON JB, 1989, AIP CONF PROC, V198, P116 Peterson JB, 2000, ASTROPHYS J, V532, pL83, DOI 10.1086/312576 Piacentini F, 2007, NEW ASTRON REV, V51, P244, DOI 10.1016/j.newar.2006.11.058 Platt SR, 1997, ASTROPHYS J, V475, pL1, DOI 10.1086/310453 Pryke C, 2002, ASTROPHYS J, V568, P46, DOI 10.1086/338880 Radford SJE, 1996, PUBL ASTRON SOC PAC, V108, P441, DOI 10.1086/133745 Reichardt CL, 2009, ASTROPHYS J, V694, P1200, DOI 10.1088/0004-637X/694/2/1200 RUHL JE, 1995, ASTROPHYS J, V453, pL1, DOI 10.1086/309739 Ruhl JE, 2004, PROC SPIE, V5498, P11, DOI 10.1117/12.552473 Runyan MC, 2003, NEW ASTRON REV, V47, P915, DOI 10.1016/j.newar.2003.09.001 Schieder R., 1989, Experimental Astronomy, V1, P101, DOI 10.1007/BF00457985 Schwerdtfeger W., 1984, WEATHER CLIMATE ANTA SMYTHE WD, 1977, APPL OPTICS, V16, P2041, DOI 10.1364/AO.16.002041 Spergel DN, 2003, ASTROPHYS J SUPPL S, V148, P175, DOI 10.1086/377226 Staniszewski Z, 2009, ASTROPHYS J, V701, P32, DOI 10.1088/0004-637X/701/1/32 Stark AA, 1997, REV SCI INSTRUM, V68, P2200, DOI 10.1063/1.1148071 Stark AA, 2004, ASTROPHYS J, V614, pL41, DOI 10.1086/425304 Stark AA, 2001, PUBL ASTRON SOC PAC, V113, P567, DOI 10.1086/320281 Stark AA, 2000, PROC SPIE, V4015, P434, DOI 10.1117/12.390436 Swain MR, 1998, P SOC PHOTO-OPT INS, V3354, P480, DOI 10.1117/12.317274 Tauber J. A., 2005, IAU S, V201, P86 TUCKER GS, 1993, ASTROPHYS J, V419, pL45, DOI 10.1086/187133 UCHIDA Y, 1985, NATURE, V317, P699, DOI 10.1038/317699a0 Vieira JD, 2010, ASTROPHYS J, V719, P763, DOI 10.1088/0004-637X/719/1/763 Walker C., 2001, 12 INT S SPAC THZ TE WALKER CK, 1992, INT J INFRARED MILLI, V13, P785, DOI 10.1007/BF01011595 Warren S. G., 1996, ENCY CLIMATE WEATHER, P32 Yngvesson K. S., 2001, 12 INT S SPAC THZ TE Yoon KW, 2006, PROC SPIE, V6275, DOI 10.1117/12.672652 ZMUIDZINAS J, 1992, IEEE T MICROW THEORY, V40, P1797, DOI 10.1109/22.156607 NR 81 TC 1 Z9 1 U1 0 U2 0 PU SMITHSONIAN INST SCHOLARLY PRESS PI WASHINGTON PA PO BOX 37012, MRC 957, WASHINGTON, DC 20013-7012 USA BN 978-1-935623-06-9 PY 2011 BP 197 EP 208 PG 12 WC Environmental Studies; International Relations SC Environmental Sciences & Ecology; International Relations GA BZC55 UT WOS:000301091500021 DA 2021-04-21 ER PT S AU Rees, N AF Rees, N. CA Diamond Controls Grp Diamond Data Acquisition Grp BE Garrett, R Gentle, I Nugent, K Wilkins, S TI The Diamond Beamline Controls and Data Acquisition Software Architecture SO SRI 2009: THE 10TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION SE AIP Conference Proceedings LA English DT Proceedings Paper CT 10th International Conference on Synchrotron Radiation Instrumentation CY SEP 27-OCT 02, 2009 CL Australian Synchrotron, Melbourne, AUSTRALIA SP Australian Synchrotron, State Govt Victoria, Australian Govt, Dept Innovat, Ind Sci & Res, Elsevier, Int Atom Energy Agcy, Australian Res Council, Mol & Mat Struct Network, JJ X ray A s, Lightsources HO Australian Synchrotron DE Control systems; Data acquisition software AB The software for the Diamond Light Source beamlines[1] is based on two complementary software frameworks: low level control is provided by the Experimental Physics and Industrial Control System (EPICS) framework[2][3] and the high level user interface is provided by the Java based Generic Data Acquisition or GDA[4][5]. EPICS provides a widely used, robust, generic interface across a wide range of hardware where the user interfaces are focused on serving the needs of engineers and beamline scientists to obtain detailed low level views of all aspects of the beamline control systems. The GDA system provides a high-level system that combines an understanding of scientific concepts, such as reciprocal lattice coordinates, a flexible python syntax scripting interface for the scientific user to control their data acquisition, and graphical user interfaces where necessary. This paper describes the beamline software architecture in more detail, highlighting how these complementary frameworks provide a flexible system that can accommodate a wide range of requirements. C1 [Rees, N.; Diamond Controls Grp; Diamond Data Acquisition Grp] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. RP Rees, N (corresponding author), Diamond Light Source Ltd, Diamond House,Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England. CR DALESIO L, 1993, ICALEPCS 1993 BERL G, P23029 ENDERBY MJ, 2004, NOBUGS 2004 VILL SWI, P23029 GIBBONS P, 2008, NOBUGS 2008 SYDN AUS, P23029 MOONEY T, EPICS MOTOR RECORD D, P23029 REES NP, 2005, ICALEPCS 2005 GEN SW, P23029 RIVERS M, TRAJECTORY SCANNING, P23029 HUDSON EXTENSIBLE CO, P23029 EXPT PHYS IND CONTRO NR 8 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0782-4 J9 AIP CONF PROC PY 2010 VL 1234 BP 736 EP 739 DI 10.1063/1.3463315 PG 4 WC Physics, Applied SC Physics GA BRU32 UT WOS:000283705500167 DA 2021-04-21 ER PT J AU Rojas, JF Morales, MA Rangel, A Torres, I AF Rojas, J. F. Morales, M. A. Rangel, A. Torres, I. TI Computational physics: an educational proposal SO REVISTA MEXICANA DE FISICA E LA Spanish DT Article DE Computational physics; python; education; undergraduate computational workshop AB Nowadays there exist programming languages whose characteristics make them a very good didactic tool for learning many topics of physics. There are, also, typical learning physical problems that can not be completely explained and even understood using the blackboard, because they present a kind of complex behaviors such as non linearties or many degrees of freedom. That is why they do not have any analytical solution. In any case Computational Physics method is an alternative teaching tool what in practice contains all of the topics of basic programming and numerical methods. In this paper we aboard some issues, enable us, to conform what we will call "algorithmic education". We present some traditional physics education problems, based on numerical and visual algorithms, for a better conceptual understanding and models build up by the students it self. Just by using some elementary programming modules, we propose a strategy to build up models starting from a pre-differential conceptual interpretation, which can be particularly useful in the first period of university. The contribution consists in by using a few mathematical elements and resources, students can make more and more complex simulation models. Specifically, for the implementation of the "algorithmic education" we have used python, a programming language what pen-nits the develop of themes covering from the free particle movement, and damped harmonic oscillators, as well as the ideal or hard spheres gases and even Brownian motion walks. In all of these cases the same elementary programming modules have been used. C1 [Rojas, J. F.; Morales, M. A.; Torres, I.] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla 72570, Mexico. [Rangel, A.] Benemerita Univ Autonoma Puebla, Fac Ciencias Computac, Puebla 72570, Mexico. RP Rojas, JF (corresponding author), Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Edif 190 18 & Av San Claudio,CU Col San Manuel, Puebla 72570, Mexico. EM frojas@fcfm.buap.mx CR BAKER A, 2007, COMPUTATIONAL PHYS E, P30 Boccara N, 2004, MODELING COMPLEX SYS Burden R.L, 1998, ANALISIS NUMERICO Cook DM, 2008, AM J PHYS, V76, P321, DOI 10.1119/1.2834739 EINSTEIN A, 1956, INVESTIGATIONNS THEO Flake GW, 2001, COMPUTATIONAL BEAUTY FRISH S, 1977, CURSO FISICA GEN, V1 Landau RH, 2008, AM J PHYS, V76, P296, DOI 10.1119/1.2837814 LANGTANGEN HP, 2004, PYTHON SCRIPTING COM Lemons D. S., 2002, INTRO STOCHASTIC PRO MARION JB, INTRO CLASSICAL MECH NEWMAN MEJ, 2004, ARXIVCONDMAT0412004 PEITGEN HO, 1992, NEW FRONTIERS SCI Strogatz SH., 1994, NONLINEAR DYNAMICS C Timberlake T, 2008, AM J PHYS, V76, P334, DOI 10.1119/1.2870575 NR 15 TC 4 Z9 6 U1 0 U2 3 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 1870-3542 J9 REV MEX FIS E JI Rev. Mex. Fis. E. PD JUN PY 2009 VL 55 IS 1 BP 97 EP 111 PG 15 WC History & Philosophy Of Science; Physics, Multidisciplinary SC History & Philosophy of Science; Physics GA 464HA UT WOS:000267494800013 DA 2021-04-21 ER PT B AU Landau, RH Bordeianu, CC Paez, MJ AF Landau, Rubin H. Bordeianu, Cristian C. Paez, Manuel J. BE Vlada, M Albeanu, G Popovici, DM TI Computational Physics with Python SO ICVL 2009 - PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON VIRTUAL LEARNING LA English DT Proceedings Paper CT 4th International Conference on Virtual Learning CY OCT 30-NOV 01, 2009 CL Jassy, ROMANIA SP European Year of Creativ & Innovat 2009, Intuit Consortium Network Excellence Europe AB A coherent set of material for upper-division university education in computational physics/science has been developed at Oregon State University, USA. It contains an introductory course in scientific computing, a course in Computational Physics, and a coordinated collection of multimedia interactive animations which enhance the book and the courses. Computational Physics programs using Python programming language are presented and displayed. It is proposed that presentation using Python is a more effective and efficient way to teach physics than the traditional one. C1 [Landau, Rubin H.] Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA. Univ Bucharest, Fac Phys, Bucharest 077125, Romania. Univ Antioquia, Medellin, Colombia. RP Landau, RH (corresponding author), Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA. EM cristian.bordeianu@brahms.fizica.unibuc.ro CR AIP, 1995, SKILLS US FREQ PHYS [Anonymous], EPIC ENGAGING PEOPLE Bordeianu CC, 2009, EUR J PHYS, V30, P1049, DOI 10.1088/0143-0807/30/5/013 DOWNEY A., 2008, THINK LIKE COMPUTER Landau R., 2008, SURVEY COMPUTATIONAL LANDAU R. H., 2004, COMPUTING SCI ENG, P6 LANDAU RH, 2005, 1 COURSE SCI COMPUTI Landau RH, 2007, COMPUTATIONAL PHYS P Landau RH, 2008, AM J PHYS, V76, P296, DOI 10.1119/1.2837814 VIDEO, 2008, VIDEO LECT INTRO COM NR 10 TC 0 Z9 0 U1 0 U2 4 PU BUCHAREST UNIVERSITY PRESS PI BUCHAREST PA SOS PANDURI NR 90-92, BUCHAREST, 050663, ROMANIA PY 2009 BP 112 EP + PG 2 WC Computer Science, Information Systems; Education & Educational Research SC Computer Science; Education & Educational Research GA BZQ29 UT WOS:000302384000011 DA 2021-04-21 ER PT B AU Chevillon, N Tang, MC Pregaldiny, F Lallement, C Madec, M AF Chevillon, Nicolas Tang, Mingchun Pregaldiny, Fabien Lallement, Christophe Madec, Morgan BE Napieralski, A TI FinFET Compact Modeling and Parameter Extraction SO MIXDES 2009: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS LA English DT Proceedings Paper CT 16th International Conference Mixed Design of Integrated Circuits and Systems CY JUN 25-27, 2009 CL Lodz, POLAND SP Tech Univ Lodz, Dept Microelect & Comp Sci, Warsaw Univ Technol, Inst Microelect & Optoelect, Poland Sect IEEE, CAS & ED Chapters, PAS, Sect Microelect, Comm Electr & Telecommun, PAS, Sect Signals, Elect Circuits & Syst, Comm Electr & Telecommun DE FinFET; compact model; parameter extraction; optimization; 3-D simulations; Verilog-A; python script; short-channel effects; quantum effects ID MOSFET AB In this paper, we present a FinFET compact model and its associated parameter extraction methodology. This explicit model accounts for all major small geometry effects and allows accurate simulations of both n- and p-type FinFETs. The model core is physics-based (long-channel model) and some semiempirical corrections are introduced in order to accurately simulate the behavior of ultrashort (L = 25 nm) and ultrathin (W-Si =3 nm) FinFETs. The parameter extraction relies on a software suite allowing an automatic parameter extraction. In this work, the development of our parameter extraction procedure is based on 3-D simulation results. The optimization of parameters related to quantum effects, short-channel effects and channel length modulation illustrates the methodology of parameter extraction. Finally, we compare the FinFET characteristics (drain current and small signal parameters) obtained by our explicit compact model with 3-D numerical simulations for different Fin widths and channel lengths. C1 [Chevillon, Nicolas; Tang, Mingchun; Pregaldiny, Fabien; Lallement, Christophe; Madec, Morgan] Univ Strasbourg, InESS, Strasbourg, France. RP Chevillon, N (corresponding author), Univ Strasbourg, InESS, Strasbourg, France. EM fabien.pregaldiny@iness.c-strasbourg.fr RI Madec, Morgan/AAA-5910-2020; Napieralski, Andrzej/M-1621-2016 OI Napieralski, Andrzej/0000-0002-3844-3435; LALLEMENT, christophe/0000-0002-0708-7212; Madec, Morgan/0000-0001-9537-642X CR Diagne B, 2008, SOLID STATE ELECTRON, V52, P99, DOI 10.1016/j.sse.2007.06.020 Dunga MV, 2006, IEEE T ELECTRON DEV, V53, P1971, DOI 10.1109/TED.2005.881001 Liang XP, 2004, IEEE T ELECTRON DEV, V51, P1385, DOI 10.1109/TED.2004.832707 Lime F, 2008, IEEE T ELECTRON DEV, V55, P1441, DOI 10.1109/TED.2008.921980 Pregaldiny F, 2006, INT J NUMER MODEL EL, V19, P239, DOI 10.1002/jnm.609 Sallese JM, 2005, SOLID STATE ELECTRON, V49, P485, DOI 10.1016/j.sse.2004.11.013 Smit G. D. J., 2007, P WORKSH COMP MOD NS, V3, P520 TANG M, 2009, IEEE T ELEC IN PRESS PYTHON DOCUMENTATION NR 9 TC 3 Z9 3 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-83-928756-0-4 PY 2009 BP 55 EP 60 PG 6 WC Engineering, Electrical & Electronic SC Engineering GA BNY72 UT WOS:000275900300007 DA 2021-04-21 ER PT S AU Davis, K Striegnitz, J AF Davis, Kei Striegnitz, Joerg BE Eugster, P TI Parallel/High-Performance Object-Oriented Scientific Computing: Today's Research, Tomorrow's Practice Report on the 7th POOSC Workshop, ECOOP 2008 SO OBJECT-ORIENTED TECHNOLOGY: ECOOP 2008 WORKSHOP READER SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 22nd European Conference on Object-Oriented Programming (ECOOP 2008) CY JUL 07-11, 2008 CL Paphos, CYPRUS SP Univ Cyprus, Dept Comp Sci, AITO, ACM SIGPLAN, ACM SIGSOFT, IBM, Microsoft Res, Google DE Parallel computing; high-perfomance computing; scientific computing; object-oriented computing AB While object-oriented programming has been embraced in industry, particularly in the form of C++, Java, and Python, its acceptance by the parallel scientific programming community is for various reasons incomplete. Nonetheless, various factors practically dictate the rise of language features that provide higher level abstractions than do C or older FORTRAN standards. These include increasingly complex physics models, numerical algorithms, and hardware (e.g. deep memory hierarchies, ever-increasing numbers of processors, and the advent of multi- and manycore processors and heterogeneous architectures). Our emphases are oil identifying specific problems impeding greater acceptance and widespread use of object-oriented programming in scientific computing; proposed and implemented solutions to these problems; and new or novel frameworks, approaches, techniques, or idioms for parallel/high-performance object-oriented scientific computing. C1 [Davis, Kei] Los Alamos Natl Lab, Performance & Architecture Lab Comp Sci High Perf, CCS 1,MS B287, Los Alamos, NM 87545 USA. [Striegnitz, Joerg] Univ Appl Sci Regensburg, Regensburg 93053, Germany. RP Davis, K (corresponding author), Los Alamos Natl Lab, Performance & Architecture Lab Comp Sci High Perf, CCS 1,MS B287, Los Alamos, NM 87545 USA. EM kei.davis@lanl.gov; joerg.striegnitz@informtik.fh-regensburg.de NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-02046-9 J9 LECT NOTES COMPUT SC PY 2009 VL 5475 BP 104 EP + PG 4 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BJV46 UT WOS:000267260400011 DA 2021-04-21 ER PT B AU Bird, EF Korwin-Kochanowski, R Lock, R AF Bird, Edward F. Korwin-Kochanowski, Robin Lock, Ruth BE Mehdi, Q Elmaghraby, A Anderson, D Chng, E TI BLENDER: EXPERIENCE OF USING RAD TOOLS FOR 3D GAMES DESIGN SO PROCEEDINGS OF CGAMES 2009 USA - 14TH INTERNATIONAL CONFERENCE ON COMPUTER GAMES: AI, ANIMATION, MOBILE, INTERACTIVE MULTIMEDIA, EDUCATIONAL AND SERIOUS GAMES LA English DT Proceedings Paper CT 14th International Conference on Computer Games CY JUL 29-AUG 02, 2009 CL Louisville, KY SP IEEE Comp Soc, TCSIM, IEEE Comp Soc, Louisville Chapter, Soc Modelling & Simulat, IEE, British Comp Soc, Digital Games Res Assoc, Coventry Univ, Serious Games Inst, Int Journal Intelligent Games & Simulat, Univ Wolverhampton, Sch Comp & Informat Technol DE Game development; Blender; Prototyping; AI; Python AB The paper discusses the use of Blender in order to build a prototype 3D game. The game consists of three rooms, various objects, an animated figure and two non-player characters. Blender was used to model the 3D environment, animate the player character, apply physics to objects and impart behaviours onto non-player characters. The rooms were built separately and then integrated into a single application. The player can control the main character using the keyboard. The player character is viewed from a third-person perspective and is able to walk around the rooms and interact with the environment. C1 [Bird, Edward F.; Korwin-Kochanowski, Robin; Lock, Ruth] Wolverhampton Univ, Wolverhampton WV1 1LY, W Midlands, England. RP Bird, EF (corresponding author), Wolverhampton Univ, Wulfruna St, Wolverhampton WV1 1LY, W Midlands, England. EM E.F.Bird@wlv.ac.uk; r.j.k2@wlv.ac.uk; Ruth.Lock@wlv.ac.uk CR BARTON C, 2008, BLENDER GAMEKIT, P159 Brito A., 2008, BLENDER 3D ARCHITECT GUMSTER J, 2009, BLENDER DUMMIES MCKAY R, 2008, BLENDER GAMEKIT, P129 Mullen T., 2008, BOUNCE TUMBLE SPLASH NAKAMURA T, 2006, THESIS TEXAS A M U, P19 VELDHUIZEN B, 2009, BLENDER NR 7 TC 0 Z9 0 U1 0 U2 0 PU UNIV WOLVERHAMPTON PI WOLVERHAMPTON PA SCH COMPUTING & INFO TECH, WULFRUNA ST, WOLVERHAMPTON, WV1 1SB, ENGLAND BN 978-0-9549016-7-7 PY 2009 BP 55 EP 62 PG 8 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BOB92 UT WOS:000276131400008 DA 2021-04-21 ER PT S AU Pinhao, NR AF Pinhao, N. R. BE Petrovic, ZL Malovic, G Maric, D TI Recent developments on PLASMAKIN - a software package to model the kinetics in gas discharges SO SECOND INTERNATIONAL WORKSHOP ON NON-EQUILIBRIUM PROCESSES IN PLASMAS AND ENVIRONMENTAL SCIENCE SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 2nd International Workshop on Non-Equilibrium Processes in Plasmas and Environmental Science CY AUG 23-26, 2008 CL Belgrade, SERBIA SP Serbian Acad Sci & Arts, Inst Phys, Minist Sci & Technol Serbia, Hiden Anal ID PRESSURE MERCURY DISCHARGES; BOLTZMANN-EQUATION; TRANSPORT; APPROXIMATION; COMPUTATION; PROGRAM; VALUES; ATOMS; LINES; TERM AB PLASMAKIN is a user-friendly software package to handle physical and chemical data used in plasma physics modeling and to compute the production and destruction terms in fluid models equations. These terms account for the particle or energy production and loss rates due to gas-phase and gas-surface reactions. The package has been restructured and expanded to (a) allow the simulation of atomic emission spectra taking into account line broadening processes and radiation trapping; (b) include a library to compute the electron kinetics, (c) include a database of species properties and reactions and, (d) include a Python interface to allow access from scripts and integration with other scientific software tools. C1 ITN, P-2685 Sacavem, Portugal. RP Pinhao, NR (corresponding author), ITN, Estrada Nacl 10, P-2685 Sacavem, Portugal. EM npinhao@itn.pt RI Pinhao, N/H-6825-2019 OI Pinhao, N/0000-0002-4185-2619 CR Carver GD, 1997, COMPUT PHYS COMMUN, V105, P197, DOI 10.1016/S0010-4655(97)00056-8 DALE D, 2008, MATPLOTLIB, P45011 DAMELINCOURT JJ, 1983, J APPL PHYS, V54, P3087, DOI 10.1063/1.332515 Hagelaar GJM, 2005, PLASMA SOURCES SCI T, V14, P722, DOI 10.1088/0963-0252/14/4/011 HUMLICEK J, 1982, J QUANT SPECTROSC RA, V27, P437, DOI 10.1016/0022-4073(82)90078-4 Jones E., 2001, SCIPY OPEN SOURCE SC KARABOURNIOTIS D, 1986, NATO ASI SER B-PHYS, V149, P171 KEE RJ, 1996, CHEMKIN 3, P45011 KUMAR K, 1980, AUST J PHYS, V33, P343, DOI 10.1071/PH800343b Loffhagen D, 1996, J PHYS D APPL PHYS, V29, P618, DOI 10.1088/0022-3727/29/3/021 Luque J., 1999, 99009 MP SRI INT MOLISCH AF, 1993, COMPUT PHYS COMMUN, V74, P81, DOI 10.1016/0010-4655(93)90108-O MOLISCH AF, 1993, COMPUT PHYS COMMUN, V77, P255, DOI 10.1016/0010-4655(93)90009-2 Molisch AF, 1996, COMPUT PHYS COMMUN, V93, P127, DOI 10.1016/0010-4655(95)00093-3 MORGAN WL, 1990, COMPUT PHYS COMMUN, V58, P127, DOI 10.1016/0010-4655(90)90141-M Pancheshnyi SV., 2008, COMPUTER CODE ZDPLAS Pinhao NR, 2004, PLASMA SOURCES SCI T, V13, P719, DOI 10.1088/0963-0252/13/4/023 Pinhao NR, 2001, COMPUT PHYS COMMUN, V135, P105, DOI 10.1016/S0010-4655(00)00226-5 PINHAO NR, 2007, PYTHON PAPERS, V2, P35 RALCHENKO Y, 1979, NIST ATOMIC SPECTRA, P45011 SAHALBRE.S, 1974, ASTRON ASTROPHYS, V35, P319 SAKAI Y, 1977, J PHYS D APPL PHYS, V10, P1035, DOI 10.1088/0022-3727/10/7/010 SEGUR P, 1984, J PHYS D APPL PHYS, V17, P2199, DOI 10.1088/0022-3727/17/11/007 STORMBERG HP, 1980, J APPL PHYS, V51, P1963, DOI 10.1063/1.327911 NR 24 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2009 VL 162 AR 012006 DI 10.1088/1742-6596/162/1/012006 PG 11 WC Environmental Sciences; Physics, Applied; Physics, Fluids & Plasmas SC Environmental Sciences & Ecology; Physics GA BME53 UT WOS:000272024000006 DA 2021-04-21 ER PT B AU Lim, CS Jain, A AF Lim, Christopher S. Jain, Abhinandan GP IEEE COMPUTER SOC TI Dshell plus plus : A Component Based, Reusable Space System Simulation Framework SO SMC-IT 2009: THIRD IEEE INTERNATIONAL CONFERENCE ON SPACE MISSION CHALLENGES FOR INFORMATION TECHNOLOGY, PROCEEDINGS LA English DT Proceedings Paper CT 3rd IEEE International Conference on Space Mission Challenges for Information Technology CY JUL 19-23, 2009 CL Pasadena, CA SP IEEE DE Aerospace simulation software AB This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script-driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physics-based simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability. C1 [Lim, Christopher S.; Jain, Abhinandan] CALTECH, Jet Prop Lab, Pasadena, CA 91009 USA. RP Lim, CS (corresponding author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91009 USA. EM Christopher.S.Lim@jpl.nasa.gov CR Balaram J., 2002, IEEE 2002 AER C BIG BIESIADECKI J, 1997, 6 DIG AV SYST C IRV BONFIGLIO EP, 2008, AIAA AAS ASTR SPEC C BRAUN GL, 1977, CR2770 NASA European Space Agency, 2005, SMP 2 0 HDB JAIN A, 2003, INT S ART INT ROB AU JAIN A, 2004, IEEE 2004 AER C BIG JAIN A, 1992, 5 ANN C AER COMP C J NAYAR H, 2008, P INT C SIM MOD PROG NEMETH S, 2008, SPACEOPS 2008 C HEID POMERANTZ M, 2009, SMC IT 2009 RODRIGUEZ G, 1991, INT J ROBOT RES, V10, P371, DOI 10.1177/027836499101000406 Wilcox B., 2007, J FIELD ROBOTICS, V24 CHEETAH PYTHON POWER GTK PROJECT PYTHON PROGRAMMING L SIMPLIFIED WRAPPER I GRAPHVIZ GRAPH VISUA PYGTK GTK PYTHON NR 19 TC 2 Z9 2 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-0-7695-3637-8 PY 2009 BP 229 EP 236 DI 10.1109/SMC-IT.2009.35 PG 8 WC Engineering, Aerospace SC Engineering GA BMO51 UT WOS:000273122700030 DA 2021-04-21 ER PT B AU Wilson, RW Stark, AA AF Wilson, Robert W. Stark, Antony A. BE Krupnik, I Lang, MA Miller, SE TI Cosmology from Antarctica SO SMITHSONIAN AT THE POLES: CONTRIBUTIONS TO INTERNATIONAL POLAR YEAR SCIENCE: A SMITHSONIAN CONTRIBUTION TO KNOWLEDGE LA English DT Proceedings Paper CT Smithsonian Poles Symposium 2007 CY MAY 03-04, 2007 CL Smithsonian Inst, Washington, DC HO Smithsonian Inst ID 1ST SEASON OBSERVATIONS; WATER-VAPOR COLUMN; CMB POLARIZATION; SUBMILLIMETER-TELESCOPE; ATMOSPHERIC OPACITY; MICROWAVE SKY; ANISOTROPY; DESIGN; FLUCTUATIONS; RECEIVER AB Four hundred thousand years after the Big Bang, electrons and nuclei combined to form atoms for the first time, allowing a sea of photons to stream freely through a newly transparent universe. After billions of years, those photons, highly redshifted by the universal cosmic expansion, have become the cosmic microwave background (CMB) radiation we see coming from all directions today. Observation of the CMB is central to observational cosmology, and the Antarctic plateau is an exceptionally good site for this work. The first attempt at CMB observations from the plateau was an expedition to the South Pole in December 1986 by the Radio Physics Research group at Bell Laboratories. No CMB anisotropies were observed, but sky noise and opacity were measured. The results were sufficiently encouraging that in the austral summer of 1988-1989, three CMB groups participated in the "Cucumber" campaign, where a temporary site dedicated to CMB anisotropy measurements was set up 2 km from South Pole Station. These were summer-only campaigns. Wintertime observations became possible in 1990 with the establishment of the Center for Astrophysical Research in Antarctica (CARA), a National Science Foundation Science and Technology Center. The CARA developed year-round observing facilities in the "Dark Sector," a section of Amundsen-Scott South Pole Station dedicated to astronomical observations. The CARA scientists fielded several astronomical instruments: Antarctic Submillimeter Telescope and Remote Observatory. (ASTIRO), South Pole Infrared Explorer (SPIREX), White Dish, Python, Viper, Arcminute Cosmology Bolometer Array Receiver (ACBAR), and Degree-Angular Scale Interferometer (DASI). By 2001, data from CARA, together with that from Balloon Observations of Millimetric Extragalactic Radiation and Geophysics (BOOMERANG-a CMB experiment on a long-duration balloon launched from McMurdo Station on the coast of Antarctica) showed clear evidence that the overall geometry of the universe is flat, as opposed to being positively or negatively curved. In 2002, the DASI group reported the detection of polarization in the CMB. These observations strongly support a "concordance model" of cosmology, where the dynamics of a flat universe are dominated by forces exerted by the mysterious dark energy and dark matter. The CMB observations continue on the Antarctic plateau. The South Pole Telescope (SPT) is a newly operational 10-m-diameter offset telescope designed to rapidly measure anisotropies on scales much smaller than 1 degrees. C1 [Wilson, Robert W.; Stark, Antony A.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. EM rwilson@cfa.harvard.edu CR ALVAREZ DL, 1995, THESIS PRINCETON U P Bussmann RS, 2005, ASTROPHYS J, V622, P1343, DOI 10.1086/427935 Chamberlin R, 2002, ASTR SOC P, V266, P172 Chamberlin RA, 1997, ASTROPHYS J, V476, P428, DOI 10.1086/303621 CHAMBERLIN RA, 1995, INT J INFRARED MILLI, V16, P907, DOI 10.1007/BF02066665 Church S, 2003, NEW ASTRON REV, V47, P1083, DOI 10.1016/j.newar.2003.09.033 COBLE K, 1999, ASTROPHYS J LETT, V519, P5 de Bernardis P, 2000, NATURE, V404, P955, DOI 10.1038/35010035 DRAGOVAN M, 1989, AIP CONF PROC, V198, P97 DRAGOVAN M, 1994, ASTROPHYS J, V427, pL67, DOI 10.1086/187366 DRAGOVAN M, 1990, APPL OPTICS, V29, P463, DOI 10.1364/AO.29.000463 ENGARGIOLA G, 1994, REV SCI INSTRUM, V65, P1833, DOI 10.1063/1.1144831 Fixsen DJ, 1996, ASTROPHYS J, V473, P576, DOI 10.1086/178173 GAIER T, 1989, AIP CONF PROC, V198, P84 Ganga K, 1997, ASTROPHYS J, V484, P7, DOI 10.1086/304296 Gerecht E, 1999, IEEE T MICROW THEORY, V47, P2519, DOI 10.1109/22.809001 Goff J.A., 1946, T AM SOC HEAT VENT E, V52, P95 Groppi C, 2000, ASTR SOC P, V217, P48 Halverson NW, 2002, ASTROPHYS J, V568, P38, DOI 10.1086/338879 HARRISON ER, 1970, PHYS REV D, V1, P2726, DOI 10.1103/PhysRevD.1.2726 HOLDAWAY MA, 1995, 139 NAT RAD ASTR OBS Honingh CE, 1997, IEEE T APPL SUPERCON, V7, P2582, DOI 10.1109/77.621767 Hu W, 1997, NEW ASTRON, V2, P323, DOI 10.1016/S1384-1076(97)00022-5 Indermuehle BT, 2005, PUBL ASTRON SOC AUST, V22, P73, DOI 10.1071/AS04037 Keating BG, 2003, PROC SPIE, V4843, P284, DOI 10.1117/12.459274 KOOI JW, 1995, INT J INFRARED MILLI, V16, P2049, DOI 10.1007/BF02073409 KOOI JW, 2002, IEEE T MICROW THEORY, V40, P812 Kovac JM, 2002, NATURE, V420, P772, DOI 10.1038/nature01269 LANDSBERG RH, 1998, B AM ASTRONOMICAL SO, V30, P903 Lane AP, 1997, ASTR SOC P, V141, P289 LASENBY AN, 1998, P MOR WORKSH FUND PA Lay OP, 2000, ASTROPHYS J, V543, P787, DOI 10.1086/317115 Leitch EM, 2002, AIP CONF PROC, V616, P65 Leitch EM, 2002, NATURE, V420, P763, DOI 10.1038/nature01271 Leitch EM, 2002, ASTROPHYS J, V568, P28, DOI 10.1086/338878 Lynch J. T., 1998, Astronomical Society of the Pacific Conference Series, V141, P54 Martin CL, 2004, ASTROPHYS J SUPPL S, V150, P239, DOI 10.1086/379661 Masi S, 2007, NEW ASTRON REV, V51, P236, DOI 10.1016/j.newar.2006.11.063 Masi S, 2006, ASTRON ASTROPHYS, V458, P687, DOI 10.1051/0004-6361:20053891 MEINHOLD PR, 1989, AIP CONF PROC, V198, P88 Nguyen HT, 1996, PUBL ASTRON SOC PAC, V108, P718, DOI 10.1086/133791 Novak G, 2000, ASTROPHYS J, V529, P241, DOI 10.1086/308231 OSTRIKER JP, 1995, NATURE, V377, P600, DOI 10.1038/377600a0 PAJOT F, 1986, ASTRON ASTROPHYS, V154, P55 PAJOT F, 1989, ASTRON ASTROPHYS, V223, P107 PEEBLES PJE, 1970, ASTROPHYS J, V162, P815, DOI 10.1086/150713 PENZIAS AA, 1965, ASTROPHYS J, V142, P419, DOI 10.1086/148307 PETERSON JB, 1989, AIP CONF PROC, V198, P116 PETERSON JB, 2000, ASTROPHYSICAL J LETT, V532, P83 Piacentini F, 2007, NEW ASTRON REV, V51, P244, DOI 10.1016/j.newar.2006.11.058 Platt SR, 1997, ASTROPHYS J, V475, pL1, DOI 10.1086/310453 Radford SJE, 1996, PUBL ASTRON SOC PAC, V108, P441, DOI 10.1086/133745 REICHARDT CL, 2008, ARXIVEPRINTS08011491 Ruhl JE, 2004, PROC SPIE, V5498, P11, DOI 10.1117/12.552473 RUHL JE, 2001, ASTROPHYSICAL J LETT, V453, pL1 Runyan MC, 2003, NEW ASTRON REV, V47, P915, DOI 10.1016/j.newar.2003.09.001 Schieder R., 1989, Experimental Astronomy, V1, P101, DOI 10.1007/BF00457985 Schwerdtfeger W., 1984, WEATHER CLIMATE ANTA SMYTHE WD, 1977, APPL OPTICS, V16, P2041, DOI 10.1364/AO.16.002041 Spergel DN, 2003, ASTROPHYS J SUPPL S, V148, P175, DOI 10.1086/377226 Stark AA, 1997, REV SCI INSTRUM, V68, P2200, DOI 10.1063/1.1148071 Stark AA, 2004, ASTROPHYS J, V614, pL41, DOI 10.1086/425304 Stark AA, 2001, PUBL ASTRON SOC PAC, V113, P567, DOI 10.1086/320281 Stark AA, 2000, PROC SPIE, V4015, P434, DOI 10.1117/12.390436 Swain MR, 1998, P SOC PHOTO-OPT INS, V3354, P480, DOI 10.1117/12.317274 Tauber J. A., 2005, IAU S, V201, P86 TUCKER GS, 1993, ASTROPHYS J, V419, pL45, DOI 10.1086/187133 UCHIDA Y, 1985, NATURE, V317, P699, DOI 10.1038/317699a0 WALKER C, 2001, 12 INT S SPAC TER TE WALKER CK, 1992, INT J INFRARED MILLI, V13, P785, DOI 10.1007/BF01011595 Warren S. G., 1996, ENCY CLIMATE WEATHER, P32 YNGVESSON KS, 2001, 12 INT S SPAC TER TE, P14 YOON KW, 2006, P SOC PHOTO-OPT INS, P6275 ZMUIDZINAS J, 1992, IEEE T MICROW THEORY, V40, P1797, DOI 10.1109/22.156607 NR 74 TC 0 Z9 0 U1 0 U2 0 PU SMITHSONIAN INST PRESS PI WASHINGTON PA 900 JEFFERSON DRIVE SW, WASHINGTON, DC 20560 USA BN 978-0-9788460-1-5 PY 2009 BP 359 EP 367 DI 10.5479/si.097884601X.27 PG 9 WC Anthropology; Ecology; Geography; Geography, Physical; History & Philosophy Of Science; Meteorology & Atmospheric Sciences SC Anthropology; Environmental Sciences & Ecology; Geography; Physical Geography; History & Philosophy of Science; Meteorology & Atmospheric Sciences GA BJC33 UT WOS:000264705700027 DA 2021-04-21 ER PT J AU van der Linden, GW Wijnoltz, F Scholten, J Busch, PJ Poelman, AJ Smeets, PH de Groot, B Koppers, WR AF van der Linden, G. W. Wijnoltz, F. Scholten, J. Busch, P. J. Poelman, A. J. Smeets, P. H. de Groot, B. Koppers, W. R. TI Design of the Magnum-PSI safety, control and data acquisition system SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 6th IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research CY JUN 04-08, 2007 CL Inuyama, JAPAN SP IAEA, Natl Inst Fus Sci DE ITER; plasma generator; experiment control; data acquisition; distributed control; Magnum-PSI ID PLASMA-SURFACE INTERACTION; ITER AB The FOM-Institute for Plasma Physics Rijnhuizen has started the construction of Magnum-PSI, a magnetized (3 T), steady-state, large area (80cm(2)) high-flux (up to 10(24) H(+)ions m(-2) s(-1)) plasma generator. The aim of this linear plasma device is to provide a controlled, highly accessible laboratory experiment facility in which the interaction of a magnetized plasma with different surfaces can be studied in detail. Magnum-PSI consists of several subsystems including vacuum, cooling, plasma source, target station, and a number of diagnostic systems. The safety, Control, Data Acquisition and Communication (CODAC) system integrates these subsystems and provides an interface for the Magnum-PSI users. The CODAC system is designed in parallel with the Magnum-PSI hardware to maximize compatibility and usability. The CODAC system must handle the step-by-step construction and expansion of the Magnum-PSI system without compromising human and system safety in each step, combine manual and remote control, and provide a central data storage and implement automated experiment execution. Key features of the CODAC system are a layered, modular and distributed design, the use of intelligent devices (e.g. commercial computer controlled cooling units), a centralized data storage built on HDF5, and a communication layer built on ZeroC (TM) Ice (TM). A significant part of the design is based on existing open source software components, integrated using C and Python code. (c) 2008 Elsevier B.V. All rights reserved. C1 [van der Linden, G. W.; Wijnoltz, F.; Scholten, J.; Busch, P. J.; Poelman, A. J.; Smeets, P. H.; de Groot, B.; Koppers, W. R.] EURATOM, FOM, Inst Plasma Phys Rijnhuizen, NL-3439 MN Nieuwegein, Netherlands. RP van der Linden, GW (corresponding author), EURATOM, FOM, Inst Plasma Phys Rijnhuizen, Edisonbaan 14, NL-3439 MN Nieuwegein, Netherlands. EM G.W.vanderLinden@rijnhuizen.nl CR de Groot B, 2005, FUSION ENG DES, V74, P155, DOI 10.1016/j.fusengdes.2005.06.054 Kleyn AW, 2006, VACUUM, V80, P1098, DOI 10.1016/j.vacuum.2006.02.019 VANROOIJ G, APPL PHYS LETT, V90 *ZEROC INC, DIFF IC CORBA NR 4 TC 3 Z9 3 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD APR PY 2008 VL 83 IS 2-3 BP 273 EP 275 DI 10.1016/j.fusengdes.2008.01.001 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 313ZP UT WOS:000256778800025 DA 2021-04-21 ER PT B AU Langtangen, HP Cai, X AF Langtangen, Hans Petter Cai, Xing BE Bock, HG Kostina, E Phu, HX Rannacher, R TI On the Efficiency of Python for High-Performance Computing: A Case Study Involving Stencil Updates for Partial Differential Equations SO MODELING, SIMULATION AND OPTIMIZATION OF COMPLEX PROCESSES LA English DT Proceedings Paper CT 3rd International Conference on High Performance Scientific Computing CY MAR 06-10, 2006 CL Hanoi, VIETNAM SP Interdisciplinary Ctr Sci Comp, Int PhD Prog, Univ Heidelberg, Complex Proc, Modeling, Simulat & Optimizat, Gottlieb Daimler, Karl Benz Fdn, DFG, Res Ctr Matheon, Berlin Bradenburg Acad Sci & Humanities, Abdus Salam Int Ctr Theoret Phys, Vietnamese Acad Sci &Technol, Inst Math, Vietnam Natl Program Basic Sci, Hochiminh City Univ Technol AB The purpose of this paper is to assess the loss of computational efficiency that may occur when scientific codes are written in the Python programming language instead of Fortran or C. Our test problems concern the application of a seven-point finite stencil for a three-dimensional, variable coefficient, Laplace operator. This type of computation appears in lots of codes solving partial differential equations, and the variable coefficient is a key ingredient to capture the arithmetic complexity of stencils arising in advanced multi-physics problems in heterogeneous media. Different implementations of the stencil operation are described: pure Python loops over Python arrays, Psyco-acceleration of pure Python loops, vectorized loops (via shifted slice expressions), inline C++ code (via Weave), and migration of stencil loops to Fortran 77 (via F2py) and C. The performance of these implementations are compared against codes written entirely in Fortran 77 and C. We observe that decent performance is obtained with vectorization or migration of loops to compiled code. Vectorized loops run between two and five times slower than the pure Fortran and C codes. Mixed-language implementations, Python-Fortran and Python-C, where only the loops are implemented in Fortran or C, run at the same speed as the pure Fortran and C codes. At present, there are three alternative (and to some extent competing) implementations of Numerical Python: numpy, numarray, and Numeric. Our tests uncover Significant performance differences between these three alternatives. Numeric is fastest on scalar operations with array indexing, while numpy is fastest on vectorized operations with array slices. We also present parallel versions of the stencil operations, where the loops are migrated to C for efficiency, and where the message passing statements are written in Python, using the high-level pypar interface to MPI For the current test problems, there are hardly any efficiency loss by doing the message passing in Python. Moreover, adopting the Python interface of MPI gives a more elegant parallel implementation, both due to a simpler syntax of MPI calls and due to the efficient array slicing functionality that comes with Numerical Python. C1 [Langtangen, Hans Petter; Cai, Xing] Simula Res Lab, N-1325 Lysaker, Norway. RP Langtangen, HP (corresponding author), Simula Res Lab, POB 134, N-1325 Lysaker, Norway. EM hpl@simula.no; xingca@simula.no CR CAI X, 2005, SCI PROGRAMMING, V13, P31, DOI DOI 10.1155/2005/619804 CAI X, 2006, LECT NOTES COMPUTATI, V51, P295 LANGTANGEN HP, 2006, SCRIPTING UTILITIES LANGTANGEN HP, 2008, PYTHON SCRIPTING COM *NETL, NETL REP NUM SOFTW RAMACHANDRAN P, PERFORMANCE VARIOUS *SCIPY, SCIPY SOFTW PACK *SCIPY, WEAV PART SCIPY PACK VANROSSUM G, EXTENDING EMBEDDING 2004, PYMPI SOFTWARE PACKA 2004, MATLAB CODE VECTORIZ SOFTWARE RUNNING COM 2004, PYPAR SOFTWARE PACKA NR 13 TC 16 Z9 16 U1 0 U2 4 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-540-79408-0 PY 2008 BP 337 EP 357 DI 10.1007/978-3-540-79409-7_23 PG 21 WC Mathematics, Applied SC Mathematics GA BII10 UT WOS:000259629900023 DA 2021-04-21 ER PT J AU Borcherds, PH AF Borcherds, P. H. TI Python: a language for computational physics SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article; Proceedings Paper CT Conference on Computational Physics (CCP 2006) CY AUG 29-SEP 01, 2006 CL Gyeongju, SOUTH KOREA DE education; graphics; computational physics; computation; python AB Python is a relatively new computing language, created by Guido van Rossum [A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mullender, A.J. Jansen, G. van Rossum, Experiences with the Amoeba distributed operating system, Communications of the ACM 33 (1990) 46-63; also on-line at http://www.cs.vu.nl/pub/amoeba/. [6]], which is particularly suitable for teaching a course in computational physics. There are two questions to be considered: (i) For whom is the course intended? (ii) What are the criteria for a suitable language, and why choose Python? The criteria include the nature of the application. High performance computing requires a compiled language, e.g., FORTRAN. For some applications a computer algebra, e.g., Maple, is appropriate. For teaching, and for program development, an interpreted language has considerable advantages: Python appears particularly suitable. Python's attractions include (i) its system of modules which makes it easy to extend, (ii) its excellent graphics (VPython module), (iii) its excellent on line documentation, (iv) it is free and can be downloaded from the web. Python and VPython will be described briefly, and some programs demonstrated. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. RP Borcherds, PH (corresponding author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. EM p.h.borcherds@bham.ac.uk CR Borcherds P. H., 1986, Physics Education, V21, P238, DOI 10.1088/0031-9120/21/4/008 DONALDSON T, PYTHON 1 PROGRAMMING DOWNEY A, THINK LIKE COMPUTER LUTZ M, 1999, LEARNING PYTHON Scherer D, 2000, COMPUT SCI ENG, V2, P56, DOI 10.1109/5992.877397 TANENBAUM AS, 1990, COMMUN ACM, V33, P46, DOI 10.1145/96267.96281 NR 6 TC 7 Z9 7 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD JUL PY 2007 VL 177 IS 1-2 BP 199 EP 201 DI 10.1016/j.cpc.2007.02.019 PG 3 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 191WC UT WOS:000248161700080 DA 2021-04-21 ER PT J AU Backer, A AF Baecker, Arnd TI Computational physics education with Python SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article AB Educators at an institution in Germany have started using Python to teach computational physics. The author describes how graphical visualizations also play an important role, which he illustrates here with a few simple examples. C1 Tech Univ Dresden, Inst Theoret Phys, D-8027 Dresden, Germany. RP Backer, A (corresponding author), Tech Univ Dresden, Inst Theoret Phys, Mommsenstr 13, D-8027 Dresden, Germany. EM baecker@physik.tu-dresden.de OI Backer, Arnd/0000-0002-4321-8099 NR 0 TC 8 Z9 8 U1 0 U2 6 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD MAY-JUN PY 2007 VL 9 IS 3 BP 30 EP 33 DI 10.1109/MCSE.2007.48 PG 4 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 156RY UT WOS:000245668100006 DA 2021-04-21 ER PT J AU Torras, J Deumens, E Trickey, SB AF Torras, J. Deumens, E. Trickey, S. B. TI Software integration in multi-scale simulations: The PUPIL system SO JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN LA English DT Article DE multi-scale simulations; software inter-operation; QM/MM software AB The state of the art for computational tools in both computational chemistry and computational materials physics includes many algorithms and functionalities which are implemented again and again. Several projects aim to reduce, eliminate, or avoid this problem. Most such efforts seem to be focused within a particular specialty, either quantum chemistry or materials physics. Multi-scale simulations, by their very nature however, cannot respect that specialization. In simulation of fracture, for example, the energy gradients that drive the molecular dynamics (MD) come from a quantum mechanical treatment that most often derives from quantum chemistry. That "QM" region is linked to a surrounding "CM" region in which potentials yield the forces. The approach therefore requires the integration or at least inter-operation of quantum chemistry and materials physics algorithms. The same problem occurs in "QM/MM" simulations in computational biology. The challenge grows if pattern recognition or other analysis codes of some kind must be used as well. The most common mode of inter-operation is user intervention: codes are modified as needed and data files are managed "by hand" by the user (interactively and via shell scripts). User intervention is however inefficient by nature, difficult to transfer to the community, and prone to error. Some progress (e.g Sethna's work at Cornell [C.R. Myers et al., Mat. Res. Soc. Symp. Proc., 538(1999) 509, C.-S. Chen et al., Poster presented at the Material Research Society Meeting (2000)]) has been made on using Python scripts to achieve a more efficient level of interoperation. In this communication we present an alternative approach to merging current working packages without the necessity of major recoding and with only a relatively light wrapper interface. The scheme supports communication among the different components required for a given multi-scale calculation and access to the functionalities of those components for the potential user. A general main program allows the management of every package with a special communication protocol between their interfaces following the directives introduced by the user which are stored in an XML structured file. The initial prototype of the PUPIL (Program for User Packages Interfacing and Linking) system has been done using Java as a fast, easy prototyping object oriented (OO) language. In order to test it, we have applied this prototype to a previously studied problem, the fracture of a silica nanorod. We did so joining two different packages to do a QM/MD calculation. The results show the potential for this software system to do different kind of simulations and its simplicity of maintenance. C1 Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. Univ Florida, Dept Phys, Quantum Theory Project, Gainesville, FL 32611 USA. RP Trickey, SB (corresponding author), Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. EM trickey@qtp.ufl.edu RI Torras, Juan/F-5622-2015 OI Torras, Juan/0000-0001-8737-7609 CR CHEN CS, 2000, MAT RES SOC M Frantziskonis G, 2003, PHYS REV B, V68, DOI 10.1103/PhysRevB.68.024105 Myers CR, 1999, MATER RES SOC SYMP P, V538, P509 *OBJ MAN GROUP, OMG COMM OBJ REQ BRO Smith W, 1996, J MOL GRAPHICS, V14, P136, DOI 10.1016/S0263-7855(96)00043-4 *SUN MICR INC, JAV NAT INT 5 0 SPEC Taylor CE, 2003, COMP MATER SCI, V27, P204, DOI [10.1016/S0927-0256(03)00002-8, 10.1016/S0927-0256(02)00002-8] Taylor DE, 2005, MOL PHYS, V103, P2019, DOI 10.1080/00268970500131199 THIEL W, PROGRAM MNDO97 VERSI Zhu T, 2003, MOL SIMULAT, V29, P671, DOI 10.1080/0892702031000103220 NR 10 TC 20 Z9 20 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0928-1045 J9 J COMPUT-AIDED MATER JI J. Comput-Aided Mater. Des. PD OCT PY 2006 VL 13 IS 1-3 BP 201 EP 212 DI 10.1007/s10820-006-9011-3 PG 12 WC Computer Science, Interdisciplinary Applications; Materials Science, Multidisciplinary SC Computer Science; Materials Science GA 088FV UT WOS:000240798400014 DA 2021-04-21 ER PT J AU Graham, G Afaq, A Evans, D Guglielmo, G Wicklund, E Love, P AF Graham, Greg Afaq, Anzar Evans, David Guglielmo, Gerald Wicklund, Eric Love, Peter TI Contextual constraint modeling in Grid application workflows SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article; Proceedings Paper CT GGF Workshop on Workflow in Grid Systems CY MAR 09, 2004 CL Berlin, GERMANY SP GGF DE workflow; Python; inversion of control AB This paper introduces a new mechanism for specifying constraints in distributed workflows. By introducing constraints in a contextual form, it is shown how different people and groups within collaborative communities can cooperatively constrain workflows. A comparison with existing state-of-the-art workflow systems is made. These ideas are explored in practice with an illustrative example from High-Energy Physics. Copyright (c) 2005 John Wiley & Sons, Ltd. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. Univ Lancaster, Dept Phys, Lancaster, England. RP Graham, G (corresponding author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM ggraham@fnal.gov CR [Anonymous], ENABLING GRIDS E SCI Berman F., 2003, GRID COMPUTING MAKIN Bhatia D, 1997, CONCURRENCY-PRACT EX, V9, P555, DOI 10.1002/(SICI)1096-9128(199706)9:6<555::AID-CPE308>3.0.CO;2-X FOSTER I, 2002, P 14 INT C SCI STAT Foster I, 2004, GRID BLUEPRINT NEW C GRAHAM GE, 2003, P CHEP 2003 TUCT007 Gropp W, 1996, USING MPI PORTABLE P KEAYS R, 2002, THESIS U QUEENSLAND Pierce B., 1991, BASIC CATEGORY THEOR RAMAN R, 1998, P 7 IEEE INT S HIGH VONLASZEEWSI G, 2004, P 37 HAW INT C SYST OPEN CI GRID GRID2003 NR 13 TC 0 Z9 0 U1 0 U2 0 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD AUG 25 PY 2006 VL 18 IS 10 BP 1277 EP 1292 DI 10.1002/cpe.989 PG 16 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 074IC UT WOS:000239804900016 DA 2021-04-21 ER PT J AU Rickett, CD Choi, SE Rasmussen, CE Sottile, MJ AF Rickett, Christopher D. Choi, Sung-Eun Rasmussen, Craig E. Sottile, Matthew J. TI Rapid prototyping frameworks for developing scientific applications: A case study SO JOURNAL OF SUPERCOMPUTING LA English DT Article; Proceedings Paper CT 5th Symposium of the Los-Alamos-Computer-Science-Institute CY OCT 12-14, 2004 CL Santa Fe, NM SP Los Alamos Comp Sci Inst DE components; CCA; python AB In this paper, we describe a Python-based framework for the rapid prototyping of scientific applications. A case study was performed using a problem specification developed for Marmot, a project at the Los Alamos National Laboratory aimed at re-factoring standard physics codes into reusable and extensible components. Components were written in Python, ZPL, Fortran, and C++ following the Marmot component design. We evaluate our solution both qualitatively and quantitatively by comparing it to a single-language version written in C. C1 S Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. Los Alamos Natl Lab Los Alamos, Los Alamos, NM 87545 USA. RP Rickett, CD (corresponding author), S Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. EM Christopher.Rickett@gold.sdsmt.edu; sungeun@lanl.gov; crasmussen@lanl.gov; matt@lanl.gov RI Sottile, Matthew/J-1386-2019 OI Sottile, Matthew/0000-0001-7436-5246 CR Armstrong R., 1999, Proceedings. The Eighth International Symposium on High Performance Distributed Computing (Cat. No.99TH8469), P115, DOI 10.1109/HPDC.1999.805289 BEAZLEY DM, 2003, FUTURE GENERATION CO, V19 Chamberlain B.L., 2001, THESIS U WASHINGTON DEMMEL JW, 2003, LBNL44289 DICKENSON RE, 2002, CAN WE ADV OUR WEATH, V83 GEUS R, 2003, PYCON DC 2003 Godunov S.K, 1959, MATTHEW, V47, P271 KOHN S, 2001, P 10 SIAM C PAR PROC LOWRIE R, 2003, LAUR044031 LOS AL NA LOWRIE RB, 2004, LAUR044032 LOS AL NA LOWRIE RB, 2003, LAUR044035 LOS AL NA Peterson P., F2PY FORTRAN PYTHON PYRE A, PYTHON FRAMEWORK RASMUSSEN C, 2001, P LOS AL COMP SCI S *SCIRUN, 2002, SCI COMP PROBL SOLV SNYDER L, 1999, PROGRAMMING GUIDE ZP NR 16 TC 7 Z9 7 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 EI 1573-0484 J9 J SUPERCOMPUT JI J. Supercomput. PD MAY PY 2006 VL 36 IS 2 BP 123 EP 134 DI 10.1007/s11227-006-7953-6 PG 12 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 042DA UT WOS:000237506300003 DA 2021-04-21 ER PT S AU Murakami, K Yoshida, H AF Murakami, K. Yoshida, H. GP IEEE TI A Geant4-Python Interface: Development and Its Applications SO 2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6 SE IEEE Nuclear Science Symposium and Medical Imaging Conference LA English DT Proceedings Paper CT 15th International Workshop on Room-Temperature Semiconductor X- and Gamma-Ray Detectors/ 2006 IEEE Nuclear Science Symposium CY OCT 29-NOV 04, 2006 CL San Diego, CA SP IEEE DE Geant4; Python; Scripting; ROOT; GUI AB We present a Geant4-Python interface called "Geant4Py", which provides a set of Python modules for using Geant4 on Python. Also we show various applications using Geant4Py, including compile-free scripts, on-line histogramming analysis with ROOT, web applications, GUI applications and tools for physics validation, educational uses and medical simulation, discussing runtime performance which can be tuned between execution speed and interactivity for each use-case. These applications show the flexibility and usefulness of dynamic configuration of user applications using Python. C1 [Murakami, K.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Yoshida, H.] Univ Educ, Naruto, Japan. RP Murakami, K (corresponding author), High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. EM Koichi.Murakami@kek.jp OI Murakami, Koichi/0000-0001-5777-5796 FU CREST of Japan Science and Technology Agency (JST)Japan Science & Technology Agency (JST)Core Research for Evolutional Science and Technology (CREST) FX Manuscript received November 27, 2006. This work was supported in part by CREST of Japan Science and Technology Agency (JST). CR Agostinelli S, 2003, NUCL INSTRUM METH A, V506, P250, DOI 10.1016/S0168-9002(03)01368-8 Allison J, 2006, IEEE T NUCL SCI, V53, P270, DOI 10.1109/TNS.2006.869826 NR 2 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1095-7863 BN 978-1-4244-0561-9 J9 IEEE NUCL SCI CONF R PY 2006 BP 98 EP 100 DI 10.1109/NSSMIC.2006.356115 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BUC53 UT WOS:000288875600018 DA 2021-04-21 ER PT J AU Pfeiffer, A Moneta, L Innocente, V Lee, HC Ueng, WL AF Pfeiffer, A Moneta, L Innocente, V Lee, HC Ueng, WL TI The LCG PI project: Using interfaces for physics data analysis SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article AB In the context of the LHC computing grid (LCG) project, the applications area develops and maintains that part of the physics applications software and associated infrastructure that is shared among the LHC experiments. The "physicist interface" (PI) project of the LCG application area encompasses the interfaces and tools by which physicists will directly use the software, providing implementations based on agreed standards like the analysis systems subsystem (AIDA) interfaces for data analysis. In collaboration with users from the experiments, work has started with implementing the AIDA interfaces for (binned and unbinned) histogramming, fitting and minimization as well as manipulation of tuples. These implementations have been developed by re-using existing packages either directly or by using a (thin) layer of wrappers. In addition, bindings of these interfaces to the Python interpreted language have been done using the dictionary subsystem of the LCG applications area/SEAL project. The actual status and the future planning of the project will be presented. C1 CERN, CH-1211 Geneva 23, Switzerland. Acad Sinica, Taipei 115, Taiwan. RP Pfeiffer, A (corresponding author), CERN, CH-1211 Geneva 23, Switzerland. EM Andreas.Pfeiffer@cern.ch CR BRUN R, 1996, P AIHEPN 96 LAUS SWI CHYTRACEK R, 2003, P ACAT WORKSH TSUK J, V534, P115 Cirrone G. A. P., 2004, IEEE T NUCL SCI, V51 DONSZELMANN M, 2004, P CHEP 04 INT SWITZ, P445 Gamma E., 1995, DESIGN PATTERNS PAPADOPOULOS I, 2004, P CHEP 04 INT SWITZ, P475 PFEIFFER A, 2003, P ACAT WORKSH TSUK J, V534, P106 VANROSSURN G, 2003, INTRO PYTHON NR 8 TC 6 Z9 5 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2005 VL 52 IS 6 BP 2823 EP 2826 DI 10.1109/TNS.2005.860150 PN 2 PG 4 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 012WP UT WOS:000235371900016 OA Green Published DA 2021-04-21 ER PT B AU Bunn, J van Lingen, F Newman, H Steenberg, C Thomas, M Ali, A Anjum, A Azim, T Khan, F Rehman, WU McClatchey, R In, JU AF Bunn, J van Lingen, F Newman, H Steenberg, C Thomas, M Ali, A Anjum, A Azim, T Khan, F Rehman, WU McClatchey, R In, JU GP IEEE Comp Soc TI JClarens: A Java framework for developing and deploying web services for grid computing SO 2005 IEEE International Conference on Web Services, Vols 1 and 2, Proceedings LA English DT Proceedings Paper CT IEEE International Conference on Services Computing CY JUL 11-15, 2005 CL Orlando, FL SP IEEE Comp Soc Tech Comm Serv Comp, BEA Syst, IEEE, IBM Res, IEEE IT Profess Magazine AB High Energy Physics (HEP) and other scientific communities have adopted Service Oriented Architectures (SOA) [1][2] as part of a larger Grid computing effort. This effort involves the integration of many legacy applications and programming libraries into a SOA framework. The Grid Analysis Environment (GAE) [3] is such a service oriented architecture based on the Clarens Grid Services Framework [4][5] and is being developed as part of the Compact Muon Solenoid (CMS) [61 experiment at the Large Hadron Collider (LHC) [7] at European Laboratory for Particle Physics (CERN) [8]. Clarens provides a set of authorization, access control, and discovery services, as well as XMLRPC and SOAP access to all deployed services. Two implementations of the Clarens Web Services Framework (Python and Java) offer integration possibilities for a wide range of programming languages. This paper describes the Java implementation of the Clarens Web Services Framework called 'JClarens.' and several web services of interest to the scientific and Grid community that have been deployed using JClarens. C1 CALTECH, Pasadena, CA 91125 USA. RP Bunn, J (corresponding author), CALTECH, Pasadena, CA 91125 USA. RI McClatchey, Richard H/M-4183-2015 OI McClatchey, Richard H/0000-0002-0042-5960; Anjum, Ashiq/0000-0002-3378-1152 CR AKARSU E, 1998, WEBFLOW HIGH LEVEL P AKARSU E, 1999, 8 IEEE INT S HIGH PE Ali A, 2004, IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES, PROCEEDINGS, P716, DOI 10.1109/ICWS.2004.1314803 BALLINTIJN M, 2004, P CHEP BUYYA R, GRIDBUS TOOLKIT ENAB CASANOVA H, 1997, INT J SUPERCOMPUTING, V11 Foster I, 1997, INT J SUPERCOMPUT AP, V11, P115, DOI 10.1177/109434209701100205 FOSTER I, 2002, 14 INT C SCI STAT DA GRIMSHAW A, 1997, COMMUNICATIONS ACM, V40 IN J, 2004, P COMP HIGH EN PHYS IN JU, 2005, P 19 IEEE INT PAR DI JOHNSTON W, 1999, 8 IEEE INT S HIGH PE LEGRAND I, INT WORKSH ADV COMP STEENBERG C, 2004, CLARENS GRID ENABLED TEENBERG C, 2003, CLARENS WEB SERVICE VANLINGEN F, 2004, GRID ENABLED ANAL AR NR 16 TC 2 Z9 2 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 0-7695-2409-5 PY 2005 BP 141 EP 148 PG 8 WC Computer Science, Information Systems SC Computer Science GA BCU72 UT WOS:000231306500016 OA Green Accepted DA 2021-04-21 ER PT S AU Jourdren, H AF Jourdren, H BE Plewa, T Linde, T Weirs, VG TI HERA: A hydrodynamic AMR platform for multi-physics Simulations SO ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS SE LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING LA English DT Proceedings Paper CT Workshop on Adaptive Mesh Refinement Methods CY SEP 03-05, 2003 CL Univ Chicago, Chicago, IL HO Univ Chicago AB The development at CEA/DAM of a new AMR multi-physics hydrocode platform led to convincing results on a wide range of applications, from interface instabilities to charge computations in detonics. In this paper, we focus on: 1. A selection of numerical results illustrating gains to be expected from AMR in such fields, including precise comparisons between AMR and uniform grids (up to 100 millions cells in 2D using CEA's teraflops machine TERA-1). 2. An introduction to the hyperbolic framework and resulting suite of consistent multimaterial compressible flow solvers (hydrodynamics, hypo-elasticity, nT hydro and nT MHD). 3. A presentation of an innovative hydrocode architecture, allowing three different parallel modes at runtime: (i) a MPI mode for uniform or well-balanced AMR grids, (ii) a multithread mode on SMPs and (iii) a hybrid MPI/multithread mode on clusters of SMPs. Multithreading is used there to diminish grain sizes, to control memory cache effects and dynamic load balancing. 4. Finally, an overview of the user-model API is given, in both C++ and Python vector modes, for platform extensions using Strang-type operator splitting. C1 CEA, DAM Ile France, Dept Sci Simulat & Informat, F-91680 Bruyeres Le Chatel, France. RP Jourdren, H (corresponding author), CEA, DAM Ile France, Dept Sci Simulat & Informat, BP 12, F-91680 Bruyeres Le Chatel, France. CR Despres B, 2001, NUMER MATH, V89, P99, DOI 10.1007/s002110000242 Gentile NA, 2001, J COMPUT PHYS, V172, P543, DOI 10.1006/jcph.2001.6836 GERASIMOV BL, 1982, LECT NOTE PHYS, V170, P211 GITTINGS ML, 1992, DEF NUCL AG NUM METH Godunov S.K, 1959, MATTHEW, V47, P271 LAGOUTIRE F, 2000, THESIS U PARIS 6 VONNEUMANN J, 1950, J APPL PHYS, V21, P232, DOI 10.1063/1.1699639 YOUNGS D, AWRE449235 NR 8 TC 19 Z9 19 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1439-7358 BN 3-540-21147-0 J9 LECT NOTES COMP SCI PY 2005 VL 41 BP 283 EP 294 PG 12 WC Astronomy & Astrophysics; Mathematics, Applied SC Astronomy & Astrophysics; Mathematics GA BBP86 UT WOS:000226971600019 DA 2021-04-21 ER PT B AU Clarke, JA Mark, ER AF Clarke, JA Mark, ER GP IEEE Comp Soc TI Extending post-processing and runtime capabilities of the CTH shock physics code SO Proceedings of the HPCMP, Users Group Conference 2005 LA English DT Proceedings Paper CT Annual Conference on High Performance Computing Modernization Program CY JUN 27, 2005-JUN 30, 2006 CL Nashville, TN SP DoD Sci & Technol Comm, User Advocacy Grp, HPCMPO Outreach Team, US Dept Defense, UGC AB CTH is a multi-material, large deformation, strong shock wave, solid mechanics code that runs on most UNIX workstations and MPP supercomputers. CTH is one of the most heavily used computational structural mechanics codes on DoD High Performance Computing (HPC) platforms. While CTH includes some internal graphics capabilities, it is preferable to take advantage of widely used scientific visualization packages like EnSight and Para View to analyze the results of calculations. A new method has been devised that extends the capabilities of CTH to allow three dimensional polygonal models to be written directly from a running calculation in a format compatible to both EnSight and ParaView. Additionally, an interpreter for the scripting language Python has been embedded into CTH, and it's post-processor Spymaster. Embedded Python allows for almost limitless, parallel capabilities to be added that do not require a recompilation or relinking of the CTH executable. Examples of these capabilities include one and two way code coupling, and Behind Armor Debris (BAD) applications. C1 USA, Res Lab, Aberdeen Proving Ground, MD 21010 USA. RP Clarke, JA (corresponding author), USA, Res Lab, Aberdeen Proving Ground, MD 21010 USA. CR BEAZLEY DM, 1997, P 6 INT PYTH C SAN J, P21 Clarke JA, 2002, CONCURR COMP-PRACT E, V14, P1161, DOI 10.1002/cpe.685 Clarke JA, 1997, IEEE COMPUT SCI ENG, V4, P55, DOI 10.1109/99.590858 Cummings J, 2002, J SUPERCOMPUT, V23, P39, DOI 10.1023/A:1015733102520 LITTLEFIELD DL, 2001, BRIEF DESCRIPTION NW NR 5 TC 1 Z9 1 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 0-7695-2496-6 PY 2005 BP 300 EP 303 PG 4 WC Computer Science, Interdisciplinary Applications; Multidisciplinary Sciences SC Computer Science; Science & Technology - Other Topics GA BEA11 UT WOS:000236397600046 DA 2021-04-21 ER PT S AU Yeh, P AF Yeh, P BE Metzler, SD TI Noodle: An environment for HENP data processing and analysis SO 2003 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-5 SE IEEE Nuclear Science Symposium and Medical Imaging Conference LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium/Medical Imaging Conference CY OCT 19-25, 2003 CL Portland, OR SP IEEE, Nucl & Plasma Sci Soc DE object-oriented; scripting environment; python; data processing AB Noodle is an object-oriented environment for typical data processing in high energy and nuclear physics where data processing modules written in C++ can be dynamically loaded with ease. The primary design goal is to allow physicists to concentrate on data, logic and physics rather than tedious programming. It provides an intuitive object-oriented scripting interface in python language to control module parameters and data flow. Noodle also provides dependency resolution to encourage data versioning. The usecases and system architecture will be shown. C1 Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. RP Yeh, P (corresponding author), Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. CR Brun R, 1997, NUCL INSTRUM METH A, V389, P81, DOI 10.1016/S0168-9002(97)00048-X NR 1 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1095-7863 BN 0-7803-8257-9 J9 IEEE NUCL SCI CONF R PY 2004 BP 821 EP 823 PG 3 WC Nuclear Science & Technology; Imaging Science & Photographic Technology; Radiology, Nuclear Medicine & Medical Imaging SC Nuclear Science & Technology; Imaging Science & Photographic Technology; Radiology, Nuclear Medicine & Medical Imaging GA BAS86 UT WOS:000223398000180 DA 2021-04-21 ER PT S AU Innocente, V Lee, HC Moneta, L Pfeiffer, A Ueng, WL AF Innocente, V Lee, HC Moneta, L Pfeiffer, A Ueng, WL BE Seibert, JA TI The LCG PI project: Using interfaces for physics data analysis SO 2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7 SE IEEE Nuclear Science Symposium and Medical Imaging Conference LA English DT Proceedings Paper CT Nuclear Science Symposium/Medical Imaging Conference CY OCT 16-22, 2004 CL Rome, ITALY SP IEEE Commun Soc, Nucl & Plasma Sci Soc AB In the context of the LHC Computing Grid (LCG) project, the Applications Area develops and maintains that part of the physics applications software and associated infrastructure that is shared among the LHC experiments. The "Physicist Interface" (PI) project of the LCG Application Area encompasses the interfaces and tools by which physicists will directly use the software, providing implementations based on agreed standards like the AIDA interfaces for data analyis. In collaboration with users from the experiments, work has started with implementing the AIDA interfaces for (binned and unbinned) histogramming, fitting and minimization as well as manipulation of tuples. These implementations have been developed by re-using existing packages either directly or by using a (thin) layer of wrappers. In addition, bindings of these interfaces to the Python interpreted language have been done using the dictionary subsystem of the LCG-AA/SEAL project. The actual status and the future planning of the project will be presented. C1 CERN, CH-1211 Geneva, Switzerland. RP Innocente, V (corresponding author), CERN, CH-1211 Geneva, Switzerland. EM Andreas.Pfeiffer@cern.ch OI Pfeiffer, Andreas/0000-0001-5328-448X CR Cirrone GAP, 2004, IEEE T NUCL SCI, V51, P2056, DOI 10.1109/tns.2004.836124 Gamma E., 1995, DESIGN PATTERNS MONETA L, 2003, P ACAT WORKSH DEC SERBO V, 2004, P CHEP 2004 C SEP IN NR 4 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1095-7863 BN 0-7803-8700-7 J9 IEEE NUCL SCI CONF R PY 2004 BP 2082 EP 2085 PG 4 WC Nuclear Science & Technology; Physics, Nuclear; Radiology, Nuclear Medicine & Medical Imaging SC Nuclear Science & Technology; Physics; Radiology, Nuclear Medicine & Medical Imaging GA BCZ05 UT WOS:000232002103015 DA 2021-04-21 ER PT B AU Ali, A Anjum, A Azim, T Thomas, M Steenberg, C Newman, H Bunn, J Haider, R Rehman, WU AF Ali, A Anjum, A Azim, T Thomas, M Steenberg, C Newman, H Bunn, J Haider, R Rehman, WU GP IEEE Computer Society TI JClarens: A Java based interactive physics analysis environment for data intensive applications SO IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES, PROCEEDINGS LA English DT Proceedings Paper CT IEEE International Conference on Web Services (ICWS 2004) CY JUL 06-09, 2004 CL San Diego, CA SP IEEE, TCSC AB In this paper we describe JClarens; a Java based implementation of the Clarens remote data server. JClarens provides web services for an interactive analysis environment to dynamically access and analyze the tremendous amount of data scattered across various locations. Additionally this research is aimed to develop a service oriented Grid Enabled Portal (GEP) that provides interface and access to several Grid services to give a homogeneous and optimized view of the distributed and heterogeneous environment. Other than showing platform independent behavior provided by Java, the use of XML-RPC based Web Services enabled JClarens to be a language neutral server and demonstrated interoperability with its Python variant. Extreme care has been taken in the usage and manipulation of various Java libraries to cater the needs of high performance computing. The overall exercise has yielded in a prototype with strong emphasis on security and virtual organization management (VOM). This shall provide a common platform to support development of larger, more flexible framework with future aims to integrate it with a loosely coupled, decentralized, and autonomous framework for Grid enabled Analysis Environment (GAE). C1 Natl Univ Sci & Technol, Rawalpindi, Pakistan. RP Ali, A (corresponding author), Natl Univ Sci & Technol, Rawalpindi, Pakistan. OI Anjum, Ashiq/0000-0002-3378-1152 CR ASHIQ A, 2003, GRID COOP C SHANGH DULLMANN D, 2003, COMPUTING HIGH ENERG Foster I, 2001, INT J HIGH PERFORM C, V15, P200, DOI 10.1177/109434200101500302 Foster I, 2002, PHYSL GRID OPEN GRID STEENBERG CD, 2003, P CHEP 2003 NR 5 TC 1 Z9 1 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 0-7695-2167-3 PY 2004 BP 716 EP 723 DI 10.1109/ICWS.2004.1314803 PG 8 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications SC Computer Science GA BAP71 UT WOS:000223166900084 OA Green Accepted DA 2021-04-21 ER PT J AU Akasaka, N Akiyama, A Araki, S Furukawa, K Katoh, T Kawamoto, T Komada, I Kudo, K Naito, T Nakamura, T Odagiri, J Ohnishi, Y Sato, M Suetake, M Takeda, S Takeuchi, Y Yamamoto, N Yoshioka, M Kikutani, E AF Akasaka, N Akiyama, A Araki, S Furukawa, K Katoh, T Kawamoto, T Komada, I Kudo, K Naito, T Nakamura, T Odagiri, J Ohnishi, Y Sato, M Suetake, M Takeda, S Takeuchi, Y Yamamoto, N Yoshioka, M Kikutani, E TI KEKB accelerator control system SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE accelerator control; control computer system; EPICS; safety control system; timing system AB The KEKB accelerator control system including a control computer system, a timing distribution system, and a safety control system are described. KEKB accelerators were installed in the same tunnel where the TRISTAN accelerator was. There were some constraints due to the reused equipment. The control system is based on Experimental Physics and Industrial Control System (EPICS). In order to reduce the cost and labor for constructing the KEKB control system, as many CAMAC modules as possible are used again. The guiding principles of the KEKB control computer system are as follows: use EPICS as the controls environment, provide a two-language system for developing application programs, use VMEbus as frontend computers as a consequence of EPICS, use standard buses, such as CAMAC, GPIB, VXIbus, ARCNET, RS-232 as field buses and use ergonomic equipment for operators and scientists. On the software side, interpretive Python and SAD languages are used for coding application programs. The purpose of the radiation safety system is to protect personnel from radiation hazards. It consists of an access control system and a beam interlock system. The access control system protects people from strong radiation inside the accelerator tunnel due to an intense beam, by controlling access to the beamline area. On the other hand, the beam interlock system prevents people from radiation exposure by interlocking the beam operation. For the convenience of accelerator operation and access control, the region covered by the safety system is divided into three major access control areas: the KEKB area, the PF-AR area, and the beam-transport (BT) area. The KEKB control system required a new timing system to match a low longitudinal acceptance due to a low-alpha machine. This timing system is based on a frequency divider/multiply technique and a digital delay technique. The RF frequency of the KEKB rings and that of the injector Linac are locked with a common divisor frequency. The common divisor frequency determines the injection timing. The RF bucket selection system is also described. (C) 2002 Elsevier Science B.V. All rights reserved. C1 High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. RP Katoh, T (corresponding author), High Energy Accelerator Res Org, KEK, Oho 1-1, Tsukuba, Ibaraki 3050801, Japan. RI Kikutani, Eiji/E-8263-2012; Kikutani, Eiji/AAC-6587-2019; Furukawa, Kazuro/C-2639-2011 OI Kikutani, Eiji/0000-0003-1518-8045; Kikutani, Eiji/0000-0003-1518-8045; Furukawa, Kazuro/0000-0003-4187-2836 CR Akiyama A., 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366), P343, DOI 10.1109/PAC.1999.795700 AKIYAMA A, 1997, P ICALEPCS 97 BEIJ C, P243 CROWLEYMILLING MC, 1974, IICO742 CERN LAB DALESIO L, 1995, P ICALEPCS 95 CHIC U DALESIO LR, 1993, P INT C ACC LARG EXP, P179 KAJI M, 1998, P 1 AS PART ACC C AP, P501 KATOH T, 1995, CONTROL SYSTEM DESIG, P2205 KATOH T, 1997, HARIMA SCI GARDEN CI, P452 KATOH T, 1998, P 1 AS PART ACC C TS, P504 KATOH T, 1999, P 7 INT C ACC LARG E, P101 KATOH T, 1987, COMMUNICATION SYSTEM, P67 KATOH T, 1999, P 7 INT C ACC LARG E, P214 KATOH T, 1994, P CTDCA VECC CALC DE KATOH T, 2001, P WORKSH ACC OP 2001, P5 KATOH T, 1997, P ICALEPCS97 BEIJ CH, P15 *KEKB DES GROUP, 1995, 957 KEKB DES GROUP KIKUTANI E, 1999, P 7 INT C ACC LARG E, P278 KRAIMER M, 1999, ICALEPCS 99 TRIEST I LUTZ M, 1996, PROGRAMMING PYTHON NAITO T, 1997, P ICALEPCS 97 BEIJ N, P247 NAKAMURA TT, 1999, P 7 ITN C ACC LARG E, P406 NAKAMURA TT, 2000, P 7 EUR PART ACC C E, P1865 ODAGIRI J, 1999, P 7 INT C ACC LARG E, P367 Odagiri J., 1997, P ICALEPCS 97 BEIJ C, P240 ODAGIRI JI, 2001, P PAC2001 CHIC ILL U OUSTERHOUT JK, HIGHER LEVEL PROGRAM *PCL, PCL PROC CONTR LANG TAKEDA S, 1987, 1987 PART ACC C MARC VANROSSUM G, PHYTHON TUTORIAL *VIST CONTR SYST I, VSYST SOFTW PROD Wolfram S., 1991, MATH SYSTEM DOING MA, V2nd ed. YAMAMOTO N, 1883, P EPAC 2000 VIENN AU YAMAMOTO N, 1998, P 1 AS PART ACC C TS, P498 YAMAMOTO N, 1999, P 7 INT C ACC LARG E, P600 NR 34 TC 9 Z9 9 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2003 VL 499 IS 1 BP 138 EP + AR PII S0168-9002(02)01786-2 DI 10.1016/S0168-9002(02)01786-2 PG 30 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 652EA UT WOS:000181365800009 DA 2021-04-21 ER PT S AU Backer, A AF Backer, A BE DegliEsposti, M Graffi, S TI Numerical aspects of eigenvalue and eigenfunction computations for chaotic quantum systems SO MATHEMATICAL ASPECTS OF QUANTUM MAPS SE Lecture Notes in Physics LA English DT Proceedings Paper CT Summer School on the Mathematical Aspects of Quantum Maps CY SEP 01-11, 2001 CL UNIV BOLOGNA, BOLOGNA, ITALY HO UNIV BOLOGNA ID STATISTICAL PROPERTIES; SPECTRAL STATISTICS; HELMHOLTZ EQUATION; INTEGRAL-EQUATION; PERIODIC-ORBITS; SMOOTH BOUNDARY; 3D BILLIARD; QUANTIZATION; MAPS; DIRICHLET AB We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown. Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard. We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed. C1 Univ Ulm, Theoret Phys Abt, D-89081 Ulm, Germany. RP Backer, A (corresponding author), Univ Ulm, Theoret Phys Abt, Albert Einstein Allee 11, D-89081 Ulm, Germany. OI Backer, Arnd/0000-0002-4321-8099 CR Abramowitz M., 1984, POCKETBOOK MATH FUNC Arnold V. I., 1968, ERGODIC PROBLEMS CLA AURICH R, 1993, PHYSICA D, V64, P185, DOI 10.1016/0167-2789(93)90255-Y Aurich R, 1996, PHYSICA D, V92, P101, DOI 10.1016/0167-2789(95)00278-2 AURICH R, COMMUNICATION Backer A, 1997, J PHYS A-MATH GEN, V30, P1991, DOI 10.1088/0305-4470/30/6/023 Backer A, 2002, J PHYS A-MATH GEN, V35, P539, DOI 10.1088/0305-4470/35/3/307 Backer A, 1999, J PHYS A-MATH GEN, V32, P4795, DOI 10.1088/0305-4470/32/26/301 BACKER A, 1995, PHYS REV E, V52, P2463, DOI 10.1103/PhysRevE.52.2463 BACKER A, 2001, QUANTUM CHAOS QUANTU, P717 BALAZS NL, 1989, ANN PHYS-NEW YORK, V190, P1, DOI 10.1016/0003-4916(89)90259-5 Baltes H.P., 1976, SPECTRA FINITE SYSTE BERRY MV, 1979, ANN PHYS-NEW YORK, V122, P26, DOI 10.1016/0003-4916(79)90296-3 BERRY MV, 1977, P ROY SOC LOND A MAT, V356, P375, DOI 10.1098/rspa.1977.0140 BERRY MV, 1984, PROC R SOC LON SER-A, V392, P15, DOI 10.1098/rspa.1984.0022 BISWAS D, 1990, PHYS REV A, V42, P3170, DOI 10.1103/PhysRevA.42.3170 BOASMAN PA, 1994, NONLINEARITY, V7, P485, DOI 10.1088/0951-7715/7/2/010 BOASMAN PA, 1995, P R SOC-MATH PHYS SC, V449, P629, DOI 10.1098/rspa.1995.0063 BOASMANN PA, 1992, THESIS H H WILLS PHY BOGOMOLNY EB, 1992, NONLINEARITY, V5, P805, DOI 10.1088/0951-7715/5/4/001 BOHIGAS O, 1984, PHYS REV LETT, V52, P1, DOI 10.1103/PhysRevLett.52.1 Bouzouina A, 1996, COMMUN MATH PHYS, V178, P83, DOI 10.1007/BF02104909 BRODY TA, 1981, REV MOD PHYS, V53, P385, DOI 10.1103/RevModPhys.53.385 BURMEISTER B, 1995, THESIS U HAMBURG, V2 BURMEISTER B, 1995, UNPUB EXACT TRACE FO BURTON AJ, 1971, PROC R SOC LON SER-A, V323, P201, DOI 10.1098/rspa.1971.0097 Ciskowski R.D., 1991, BOUNDARY ELEMENT MET DeBievre S, 1996, COMMUN MATH PHYS, V176, P73, DOI 10.1007/BF02099363 DEBIEVRE S, 2001, CONT MATH, V289 DEBIEVRE S, 1996, PHYSIQUE THEORIQUE, V69, P1 DEGLIESPOSTI M, 1993, ANN I H POINCARE PHY, V58, P33 DEMATOS MB, 1995, ANN PHYS-NEW YORK, V237, P46, DOI 10.1006/aphy.1995.1003 Dietz B, 1993, CHAOS, V3, P581, DOI 10.1063/1.165962 Doron E, 1992, CHAOS, V2, P117, DOI 10.1063/1.165914 DUARTE P, 1994, ANN I H POINCARE-AN, V11, P359 ECKHARDT B, 1986, J PHYS A-MATH GEN, V19, P1823, DOI 10.1088/0305-4470/19/10/023 Eckmann JP, 1997, HELV PHYS ACTA, V70, P44 ESPOSTI MD, 1995, COMMUN MATH PHYS, V167, P471, DOI 10.1007/BF02101532 Giorgilli A, 2000, PHYS LETT A, V272, P359, DOI 10.1016/S0375-9601(00)00452-7 HAAG G, 1999, THESIS U ULM Haake F., 2001, SPRINGER SERIES SYNE Hannay J. H., 1980, Physica D, V1D, P267, DOI 10.1016/0167-2789(80)90026-3 HARAYAMA T, 1992, PHYS LETT A, V165, P417, DOI 10.1016/0375-9601(92)90341-I HELLER EJ, 1984, PHYS REV LETT, V53, P1515, DOI 10.1103/PhysRevLett.53.1515 HELLER EJ, 1991, P 1989 HOUCHES SCH C HESSE T, 1997, THESIS U ULM HORNBERGER K, 1999, J PHYS A, V33, P2829 Keating JP, 2000, NONLINEARITY, V13, P747, DOI 10.1088/0951-7715/13/3/313 KEATING JP, 1991, NONLINEARITY, V4, P309, DOI 10.1088/0951-7715/4/2/006 KEATING JP, 1991, NONLINEARITY, V4, P277, DOI 10.1088/0951-7715/4/2/005 Ketzmerick R, 1999, PHYSICA D, V131, P247, DOI 10.1016/S0167-2789(98)00230-9 KLEINMAN RE, 1974, SIAM REV, V16, P214, DOI 10.1137/1016029 Kosztin I, 1997, INT J MOD PHYS C, V8, P293, DOI 10.1142/S0129183197000278 KURLBERG P, 2001, INTERNAT MATH RES NO, P995 KUTTLER JR, 1984, SIAM REV, V26, P163, DOI 10.1137/1026033 LAZUTKIN VF, 2000, RAMARK SOME REMARKS Li BW, 1998, PHYS REV E, V57, P4095, DOI 10.1103/PhysRevE.57.4095 LI BW, 1994, J PHYS A-MATH GEN, V27, P5509, DOI 10.1088/0305-4470/27/16/017 MARTIN PA, 1982, WAVE MOTION, V4, P391, DOI 10.1016/0165-2125(82)90007-5 MEISS JD, 1992, REV MOD PHYS, V64, P795, DOI 10.1103/RevModPhys.64.795 MEZZADRI F, 1999, THESIS U BRISTOL Pisani C, 1996, ANN PHYS-NEW YORK, V251, P208, DOI 10.1006/aphy.1996.0113 PORTER CE, 1956, PHYS REV, V104, P483, DOI 10.1103/PhysRev.104.483 PRIMACK H, 1995, PHYS REV LETT, V74, P4831, DOI 10.1103/PhysRevLett.74.4831 PROSEN T, 1994, J PHYS A-MATH GEN, V27, pL459, DOI 10.1088/0305-4470/27/13/001 Prosen T, 1997, PHYS LETT A, V233, P332, DOI 10.1016/S0375-9601(97)00492-1 Prosen T, 1997, PHYS LETT A, V233, P323, DOI 10.1016/S0375-9601(97)00499-4 PROSEN T, 1993, J PHYS A-MATH GEN, V26, P1105, DOI 10.1088/0305-4470/26/5/029 RIDDELL RJ, 1979, J COMPUT PHYS, V31, P42, DOI 10.1016/0021-9991(79)90061-5 RIDDELL RJ, 1979, J COMPUT PHYS, V31, P21, DOI 10.1016/0021-9991(79)90060-3 ROBNIK M, 1984, J PHYS A-MATH GEN, V17, P1049, DOI 10.1088/0305-4470/17/5/027 SARACENO M, 1990, ANN PHYS-NEW YORK, V199, P37, DOI 10.1016/0003-4916(90)90367-W SCHANZ H, 1995, CHAOS SOLITON FRACT, V5, P1289, DOI 10.1016/0960-0779(94)E0066-X Sieber M, 1997, PHYS REV E, V55, P2279, DOI 10.1103/PhysRevE.55.2279 SIEBER M, 1990, PHYS LETT A, V148, P415, DOI 10.1016/0375-9601(90)90492-7 SIEBER M, 1993, J PHYS A-MATH GEN, V26, P6217, DOI 10.1088/0305-4470/26/22/022 Sieber M, 1998, NONLINEARITY, V11, P1607, DOI 10.1088/0951-7715/11/6/010 Simonotti FP, 1997, PHYS REV E, V56, P3859, DOI 10.1103/PhysRevE.56.3859 SOMMERFELD A, 1984, VORLESUNGEN THEORETI, V6 STEIL G, 1999, EMERGING APPL NUMBER, P617 Strelcyn J.-M., 1991, COLLOQ MATH, V62, P331 Tasaki S, 1997, PHYS REV E, V56, pR13, DOI 10.1103/PhysRevE.56.R13 TUALLE JM, 1995, CHAOS SOLITON FRACT, V5, P1085, DOI 10.1016/0960-0779(94)E0056-U VERGINI E, 1995, PHYS REV E, V52, P2204, DOI 10.1103/PhysRevE.52.2204 Zelditch S, 1997, ANN I FOURIER, V47, P305, DOI 10.5802/aif.1568 ZYCZKOWSKI K, 1992, ACTA PHYS POL B, V23, P245 NR 86 TC 32 Z9 32 U1 0 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0075-8450 EI 1616-6361 BN 3-540-02623-1 J9 LECT NOTES PHYS PY 2003 VL 618 BP 91 EP 144 PG 54 WC Mathematics; Physics, Mathematical SC Mathematics; Physics GA BW90P UT WOS:000183559100004 DA 2021-04-21 ER PT J AU Cummings, J Aivazis, M Samtaney, R Radovitzky, R Mauch, S Meiron, D AF Cummings, J Aivazis, M Samtaney, R Radovitzky, R Mauch, S Meiron, D TI A virtual test facility for the simulation of dynamic response in materials SO JOURNAL OF SUPERCOMPUTING LA English DT Article; Proceedings Paper CT 2nd Symposium of the Los Alamos-Computer-Science-Institute CY OCT 15-18, 2001 CL SANTA FE, NEW MEXICO SP Los Alamos Comp Sci Inst DE parallel computing; shock physics simulation AB The Center for Simulating Dynamic Response of Materials at the California Institute of Technology is constructing a virtual shock physics facility for studying the response of various target materials to very strong shocks. The Virtual Test Facility (VTF) is an end-to-end, fully three-dimensional simulation of the detonation of high explosives (HE), shock wave propagation, solid material response to pressure loading, and compressible turbulence. The VTF largely consists of a parallel fluid solver and a parallel solid mechanics package that are coupled together by the exchange of boundary data. The Eulerian fluid code and Lagrangian solid mechanics model interact via a novel approach based on level sets. The two main computational packages are integrated through the use of Pyre, a problem solving environment written in the Python scripting language. Pyre allows application developers to interchange various computational models and solver packages without recompiling code, and it provides standardized access to several data visualization engines and data input mechanisms. In this paper, we outline the main components of the VTF, discuss their integration via Pyre, and describe some recent accomplishments in large-scale simulation using the VTF. C1 CALTECH, Pasadena, CA 91125 USA. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. MIT, Cambridge, MA 02139 USA. RP Cummings, J (corresponding author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. RI Radovitzky, Raul A/A-5353-2009 OI Radovitzky, Raul A/0000-0001-6339-2708 CR COHEN RE, 2000, THERMAL EQUATION STA GLAISTER P, 1988, J COMPUT PHYS, V74, P382, DOI 10.1016/0021-9991(88)90084-8 Godunov S.K, 1959, MATTHEW, V47, P271 GUITINO AM, 2001, UNPUB J COMPUTER AID LEW A, 2001, UNPUB J COMPUTER AID MORANO E, UNPUB LEVEL SET APPR PARASHAR M, 1999, DAGH DATA MANAGEMENT PULLIN DI, 1980, J COMPUT PHYS, V34, P231, DOI 10.1016/0021-9991(80)90107-2 Samtaney R, 1997, PHYS FLUIDS, V9, P1783, DOI 10.1063/1.869294 SAMTANEY R, 1994, J FLUID MECH, V269, P45, DOI 10.1017/S0022112094001485 VAN LEER B, 1977, J COMPUT PHYS, V23, P276, DOI 10.1016/0021-9991(77)90095-X NR 11 TC 26 Z9 26 U1 0 U2 4 PU KLUWER ACADEMIC PUBL PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 J9 J SUPERCOMPUT JI J. Supercomput. PD AUG PY 2002 VL 23 IS 1 BP 39 EP 50 DI 10.1023/A:1015733102520 PG 12 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 558CF UT WOS:000175947100004 DA 2021-04-21 ER PT B AU Campbell, A Gerhards, R Grab, C Martyniak, J Mkrtchyan, T Levonian, S Nowak, J AF Campbell, A Gerhards, R Grab, C Martyniak, J Mkrtchyan, T Levonian, S Nowak, J BE Chen, HS TI A dataflow meta-computing framework for event processing in the H1 experiment SO PROCEEDINGS OF CHEP 2001 LA English DT Proceedings Paper CT International Conference on Computing in High Energy and Nuclear Physics (CHEP 01) CY SEP 03-07, 2001 CL BEIJING, PEOPLES R CHINA SP Inst High Energy Phys, Chinese Acad Sci, Natl Nat Sci Fdn China DE dataflow; meta-computing; CORBA; C plus; python; Java; H1 ID HERA AB Linux based networked PCs clusters are replacing both the VME non uniform direct memory access systems and SMP shared memory systems used previously for the online event filtering and reconstruction. To allow an optimal use of the distributed resources of PC clusters an open software framework is presently being developed based on a dataflow paradigm for event processing. This framework allows for the distribution of the data of physics events and associated calibration data to multiple computers from multiple input sources for processing and the subsequent collection of the processed events at multiple outputs. The basis of the system is the event repository, basically a first-in first-out event store which may be read and written in a manner similar to sequential file access. Events are stored in and transferred between repositories as suitably large sequences to enable high throughput. Multiple readers can read simultaneously from a single repository to receive event sequences and multiple writers can insert event sequences to a repository. Hence repositories are used for event distribution and collection. To support synchronisation of the event flow the repository implements barriers. A barrier must be written by all the writers of a repository before any reader can read the barrier. A reader must read a barrier before it may receive data from behind it. Only after all readers have read the barrier is the barrier removed from the repository. A barrier may also have attached data. In this way calibration data can be distributed to all processing units. The repositories are implemented as multi-threaded CORBA objects in C++ and CORBA is used for all data transfers. Job setup scripts are written in python and interactive status and histogram display is provided by a Java program. Jobs run under the PBS batch system providing shared use of resources for online triggering, offline mass reprocessing and user analysis jobs. C1 DESY, D-2000 Hamburg, Germany. RP Campbell, A (corresponding author), DESY, Notkestr 85, D-2000 Hamburg, Germany. RI Levonian, Sergey/M-8693-2015 CR Abt I, 1997, NUCL INSTRUM METH A, V386, P310, DOI 10.1016/S0168-9002(96)00893-5 BERTHON U, NEW DATA ANAL ENV H1 BERTHON U, REPROCESSING H1 DATA BLOBEL V, FPACK GEN STANDALONE BLOBEL V, LOOK SYSTEM DATA ANA CAMPBELL AJ, 1992, IEEE T NUCL SCI, V39, P255, DOI 10.1109/23.277493 JOHNSON AS, JAVA ANAL STUDIO NR 7 TC 0 Z9 0 U1 0 U2 0 PU SCIENCE PRESS PI MONMOUTH JUNCTION PA 2031 US HIGHWAY 130 STE F, MONMOUTH JUNCTION, NJ 08852-3014 USA BN 1-880132-77-X PY 2001 BP 651 EP 655 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA BU64P UT WOS:000176592500173 DA 2021-04-21 ER PT S AU Pfeiffer, A AF Pfeiffer, A BE Vandoni, CE TI Introduction to the Anaphe/LHC plus plus software suite SO 2000 CERN SCHOOL OF COMPUTING SE C E R N REPORTS LA English DT Proceedings Paper CT 2000 CERN School of Computing Conference CY SEP 17-30, 2000 CL MARATHON, GREECE SP CERN AB The Anaphe/LHC++ project is an ongoing effort to provide an Object-Oriented software environment for future HEP experiments. It is based on standards-conforming solutions, together with HEP-specific extensions and components. Data persistence is provided by the Objectivity/DB Object Database (ODBMS), while the visualisation is based on Qt (for 2-D presentation) and OpenInventor (for 3-D). To complement the standard package, a set of C++ class libraries for histogram management, Ntuple-like analysis (based on Objectivity/DB) and for presentation graphics (based on Open Inventor) have been developed. A new tool for physics data analysis, named Lizard, has been developed based on a set of abstract interfaces (as defined by the AIDA project). Its implementation is based on the python scripting language and the existing C++ class libraries of Anaphe/LHC++. C1 CERN, Geneva, Switzerland. RP Pfeiffer, A (corresponding author), CERN, Geneva, Switzerland. CR *CLHEP, CLASS LIB HEP *GEANT4, TOOLK SIM PASS PART MOSCICKI JT, MINIMIZATION FITTING *RD45, PERS OBJ MAN HEP NR 4 TC 0 Z9 0 U1 0 U2 0 PU C E R N PI GENEVA PA MEYRIN, CH-1211 GENEVA, SWITZERLAND SN 0007-8328 BN 92-9083-178-2 J9 CERN REPORT PY 2000 VL 2000 IS 13 BP 43 EP 49 PG 7 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BT50N UT WOS:000173158800003 DA 2021-04-21 ER EF