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1. Basic Principles

1.1 Units

We mostly use the natural system of units where the Planck constant, speed of light

and the Boltzman constant are equal to one

h̄ = c = kB = 1 . (1.1)

Then the mass M , energy E and temperature T have the same dimensions since

[E] = [Mc2] = [M ] (1.2)

and also we have

[E] = [kBT ] = [T ] = [M ] . (1.3)

Time t and length l have in natural system dimension [M ]−1 as follows from the fact

that

[E] = [h̄ω] = [ω] = [t−1] (1.4)

so that [t] = [M ]−1. In the same way we have

[l] = [ct] = [t] = [M ]−1 . (1.5)

It is useful to know coeficients that relate various units
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Quantity SI dimensions Natuaral dimensions Conversions

mass kg M 1GeV = 1.8× 10−27kg

length m M−1 1GeV −1 = 0.197× 10−15m

time s M−1 1GeV −1 = 6.58× 10−25s

energy kg ·m2 · s−2 M 1GeV = 5.39× 10−19kg ·m · s−1

momentum kg ·m · s−1 M 1GeV = 5.39× 10−19kg ·m · s−1

velocity m · s−1 1 = 2.998× 108m · s−1

cross section m2 M−2 1GeV −2 = 0.389× 10−31m2

force kg ·m · s−2 M2 1GeV 2 = 8.19× 105Newton
The traditional unit of length in cosmology is Megaparsec

1 Mpc = 3.1× 1022m . (1.6)

It is interesting to mention the several units of length that are used in astronomy.

Besides the metric system in use are the astronomical unit (a.u.) which is the average

distance from the Earth to the Sun

1 a.u. = 1.5× 1011m (1.7)

Further, there is a light year, the distance that a photon travels in one year

1 year = 3.16× 107s , 1 light year = 0.95× 1016m (1.8)

parsec (pc)-distance from which an object of size 1a.u. is seen at angle 1arc second

1 pc = 2.1 · 105a.u. = 3.3 light year = 3.1× 1016m (1.9)

It is instructive to give distances of various objects expressed in above units.

10a.u. is the average disance to Saturn, 30a.u. is the same for Pluto, 100a.u. is

the estimate of the maximum distance which can be reached by solar wind (particles

emitted by the Sun). The nearest stars-Proxima and Alpha Centauri are at 1.3pc

from the Sun. The distance to Arcturus and Capella is more than 10pc, the distances

to Canopus and Betelgeuse are about 100pc and 200pc respectively. Crab Nebula-the

remnant of supernova is 2kpc away from us.

The next point on the scale of distance is 8kpc. This is the distance from the

Sun to the center of our Galaxy. Our Galaxy is of spiral type, the diameter of its

disc is about 30kpc and the thickness of the disc is about 250pc. The distance to

the nearest dwarf galaxies that are satelites of our Galaxy is about 30kpc. Fifteen

of these satellites are known, the largest of them are Large and Small Magellanic

Clouds are about 50kpc away. It is also interesting to note that only eight Milky

Way satellites were known by 1994.

The mass density of the usual matter in usual (not dwarf) galaxies is about 105

higher than the average over Universe.
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The nearest usual galaxy-the spiral galaxy M31 in Andromeda constellation- is

800kpc away from the Milky Way. Another nearby galaxy is in Triangulum constella-

tion. Our Galaxy together with Andromeda and Triangulum galaxies , their satelites

and other 35 smaller galaxies constitute the Local Group which is the gravitationally

bound object consisting of about 50 galaxies.

The next scale is the size of clusters of galaxies which is 1− 3Mpc Rich clusters

contain thounsands of galaxies. The mass density in clusters exceeds the average

density over the Universe by a factor of a hundred and even sometimes a thousand.

The distance to the center of the nearest cluster, which is the Vigo constellation, is

about 15Mpc. Clusters of galaxies are the largest gravitationally bound systems in

the Universe.

1.2 Gravitational Field Equations

As we know in General Relativity (GR) the metric tensor is dynamical field and the

equations of GR arise as extremum conditions for the action functional. The princip

equivalence means that all equations has to have the same form in all reference

frames. In other words we require that the action function has to be same in all

reference frames which means that the action is scalar. Since the action is given as

the integral over time of the Lagrangian we find also that the Lagrangian has to be

given as the integral over space section of the spacetime. In summary we postulate

thath the gravity action has the form

Sgr =
∫

d4x
√
−gLgr , (1.10)

where the Lagrangian density Lgr(x) transforms as under coordinate transformations

x′µ = xµ(x)

L′(x′) = L(x) (1.11)

and due to the fact that d4x′
√

−g′(x′) = d4x
√

−g(x) we really see that Sgr does not

change under diffeomorphism transformations.

The simplest possibility is to take the Lagrangian density to be equal to constant

L = −Λ so that

SΛ = −Λ
∫

d4x
√
−g . (1.12)

However this action does not contain the time derivatives of the metric and hence

the dynamics that would follow from this action is trivial. For that reason we should

search more complicated form of the Lagrangian density.

The Lagrange density is a tensor density, which can be written as
√−g times a

scalar that is function of the metric and its derivatives. The question is the form of

given scalar. Since we know that the metric can be set equal to its canonical form and

its first derivatives set to zero at any one point, any nontrivial scalar must involve at

least second derivatives of the metric. The Riemann tensor is of course made from
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second derivatives of the metric, and we argued earlier that the only independent

scalar we could construct from the Riemann tensor was the Ricci scalar R. What we

did not show, but is nevertheless true, is that any nontrivial tensor made from the

metric and its first and second derivatives can be expressed in terms of the metric

and the Riemann tensor. Therefore, the only independent scalar constructed from

the metric, which is no higher than second order in its derivatives, is the Ricci scalar.

Hilbert figured that this was therefore the simplest possible choice for a Lagrangian,

and proposed

LH =
√
−gR . (1.13)

The equations of motion should come from varying the action with respect to the

metric. In fact let us consider variations with respect to the inverse metric gµν ,

which are slightly easier but give an equivalent set of equations. Using R = gµνRµν ,

in general we will have

δS =
∫

dnx
[√

−ggµνδRµν +
√
−gRµνδg

µν +Rδ
√
−g

]

= (δS)1 + (δS)2 + (δS)3 . (1.14)

The second term (δS)2 is already in the form of some expression times δgµν ; let’s

examine the others more closely.

Recall that the Ricci tensor is the contraction of the Riemann tensor, which is

given by

Rρ
µλν = ∂λΓλ

νµ + Γρ
λσΓ

σ
νµ − (λ↔ ν) . (1.15)

We perform the variation of the Riemann tensor in such a way that we firstly perform

variation of the connection coefficients and then we substitute into this expression.

In fact, after some calculations we find the variation of the Riemann tensor in the

form

δRρ
µλν = ∇λ(δΓ

ρ
νµ)−∇ν(δΓ

ρ
λµ) . (1.16)

Therefore, the contribution of the first term in (1.14) to δS can be written

(δS)1 =
∫

d4x
√
−g gµν

[

∇λ(δΓ
λ
νµ)−∇ν(δΓ

λ
λµ)

]

=
∫

d4x
√
−g ∇σ

[

gµσ(δΓλ
λµ)− gµν(δΓσ

µν)
]

, (1.17)

where we have used metric compatibility. However the integral above is an integral

with respect to the natural volume element of the covariant divergence of a vector;

by Stokes’s theorem, this is equal to a boundary contribution at infinity which we

can set to zero by making the variation vanish at infinity. Therefore this term does

not contribute to the total variation.

In order to calculate the (δS)3 term we have to use the variation

δ(g−1) =
1

g
gµνδg

µν . (1.18)
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and consequently

δ
√
−g = −1

2

√
−ggµνδgµν . (1.19)

If we now return back to (1.14), and remembering that (δS)1 does not contribute,

we find

δS =
∫

d4x
√
−g

[

Rµν −
1

2
Rgµν

]

δgµν . (1.20)

However this should vanish for arbitrary variations and consequently we derive Ein-

stein’s equations in vacuum:

1√−g
δS

δgµν
= Rµν −

1

2
Rgµν = 0 . (1.21)

However we would like to get the non-vacuum field equations as well. In other words

we consider an action of the form

S =
1

8πG
SH + SM , (1.22)

where SM is the action for matter, and we have presciently normalized the gravita-

tional action (although the proper normalization is somewhat convention-dependent).

Following through the same procedure as above leads to

1√−g
δS

δgµν
=

1

8πG

(

Rµν −
1

2
Rgµν

)

+
1√−g

δSM

δgµν
= 0 , (1.23)

and we recover Einstein’s equations if we set

Tµν = − 1√−g
δSM

δgµν
. (1.24)

In fact (1.24) turns out to be the best way to define a symmetric energy-momentum

tensor.

Einstein’s equations may be thought of as second-order differential equations for

the metric tensor field gµν . There are ten independent equations (since both sides are

symmetric two-index tensors), which seems to be exactly right for the ten unknown

functions of the metric components. However, the Bianchi identity ∇µGµν = 0 which

we prove below represents four constraints on the functions Rµν , so there are only six

truly independent equations. In fact this is appropriate, since if a metric is a solution

to Einstein’s equation in one coordinate system xµ it should also be a solution in

any other coordinate system xµ
′

. This means that there are four unphysical degrees

of freedom in gµν (represented by the four functions xµ
′

(xµ)), and we should expect

that Einstein’s equations only constrain the six coordinate-independent degrees of

freedom.

It is important to stress that as differential equations, these are extremely com-

plicated; the Ricci scalar and tensor are contractions of the Riemann tensor, which
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involves derivatives and products of the Christoffel symbols, which in turn involve

the inverse metric and derivatives of the metric. Furthermore, the energy-momentum

tensor Tµν will generally involve the metric as well. The equations are also nonlinear,

that implies that two known solutions cannot be superposed to find a third. It is

therefore very difficult to solve Einstein’s equations in any sort of generality. Then

in order to solve them we have to perform some simplifying assumptions. The most

popular sort of simplifying assumption is that the metric has a significant degree of

symmetry, and we will talk later on about how symmetries of the metric make life

easier.

We are mainly interested in the existence of solutions to Einstein’s equations

in the presence of “realistic” sources of energy and momentum. The most common

property that is demanded of Tµν is that it represent positive energy densities —

no negative masses are allowed. In a locally inertial frame this requirement can be

written as ρ = T00 ≥ 0. We write it in the coordinate-independent notation as

TµνV
µV ν ≥ 0 , for all timelike vectors V µ . (1.25)

This is known as the Weak Energy Condition, or WEC. It seems like a reasonable

requirement however it is very restrictive. Indeed it is straightforward to show that

there are many examples of the classical field theories which violate the WEC, and

almost impossible to invent a quantum field theory which obeys it. Nevertheless, it

is legitimate to assume that the WEC holds in most cases and it is violated in some

extreme conditions. (There are also stronger energy conditions, but they are even

less true than the WEC, and we won’t dwell on them.)

An important property of the energy momentum tensor is that it is conserved.

In the flat background the conservation equation takes the form

∂µT
µν = 0 , (1.26)

where the first equation ∂µT
µi = 0 expresses the conservation of the energy den-

sity while the remaining three equations ∂µT
µi = 0 defines the conservation of the

momentum density. In general relativity the conservation equation takes the form

∇µT
µν = 0 . (1.27)

This equation can be proved using the equation of motion for the metric when we

apply the covariant derivative on both sides of this equation

∇µ

(

Rµν −
1

2
gµνR

)

= 8πG∇µTµν . (1.28)

We show that the left side of this equation is identically zero. Note that generally the

matter fields do not have to be on shell since this equation follows from the variation
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of the action with respect to the metric. To see this we recall the Bianchi identity

for the Riemann tensor

∇ρR
λ
σµν +∇νR

λ
σρµ +∇µR

λ
σνρ = 0 . (1.29)

Now we contract λ and µ indices and by definition Rµ
σµν = Rσν we obtain the identity

∇ρRσν −∇νRρσ +∇λR
λ
σνρ = 0 . (1.30)

Then we contract this equation with gρσ and we obtain

0 = ∇ρR
ρ
ν −∇νR +∇λRλν = 2∇µ(Rµν −

1

2
gµνR) = 0 . (1.31)

which implies that the covariant conservation law of the stress energy-tensor is a

necessary condition for the consistency of the Einstein equation.

On the other hand the stress energy tensor is determined by the matter action.

Clearly when we search the extremum of the action we perform the variation of the

action with respect to the matter fields so that the energy momentum tensor should

be conserved as the consequence of the matter equations of motions as well. Alter-

natively, we can presume the evolution of the matter fields on the fixed background

and in this case the energy-momentum tensor should be conserved as well.

To proceed note that the matter action is diffeomorphism invariant so that the

conservation of the energy momentum tensor should follow from the invariance of the

action under general diffeomorphism transformation. In fact, under transformation

x′µ = xµ + ξµ . (1.32)

Then

g′µν(x′) = gρσ
∂x′µ

∂xρ
∂x′ν

∂xσ
⇒

g′µν(x′) = gµν(x) + gνλ(x)∂λξ
µ + ∂λx

µgλν(x)

(1.33)

If we expand

g′µν(x′) = g′µν(x+ ξ) = g′µν(x) + ∂λg
′µνξλ = g′µν(x) + ∂λg

µνξλ (1.34)

we find the variation gµν as

δgµν(x) = g′µν(x)− gµν(x) = −∂λgµν(x)ξλ + gµλ∂λξ
ν + ∂λξ

µgλν . (1.35)

Now we proceed to the transformation property of the matter fields. Their form

depends on the character of these fields, whether they are scalars, vectors,..... For

example, in case of the scalar field we find

φ′(x′) = φ(x) ⇒ φ′(x)− φ(x) = −∂λφξλ (1.36)
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Since the action is invariant under the diffeomorphism invariance we obtain

δξSm =
1

2

∫

d4x
√
−gTµν(∇µξν +∇νξµ) +

∫

d4x
√
−g δLm

δψ
δψξ = 0 , (1.37)

where we also used the fact that the variation of the metric can be written as

g′µν − gµν = ∇µξν +∇νξµ (1.38)

Note that the equation (1.37) has to be zero of shell. Let us now presume that

the matter field equations are satisfied which implies that the second term in (1.37)

vanishes. Then using integration by parts we can rewrite (1.37) into the form

δξSm(on shell) = −
∫

d4x
√
−gξµ∇µTµν = 0 (1.39)

that using the fact that ξµ is arbitrary implies the conservation of the stress energy

tensor.

We continue with the study of the Einstein equations where we now discuss the

possibility of the introduction of a cosmological constant. In order to introduce it we

add it to the conventional Hilbert action. We therefore consider an action given by

S =
∫

d4x
√
−g(R− 2Λ) , (1.40)

where Λ is some constant. The resulting field equations are

Rµν −
1

2
Rgµν + Λgµν = 0 , (1.41)

and of course there would be an energy-momentum tensor on the right hand side if

we had included an action for matter. Λ is the cosmological constant. In order to

find its meaning it is convenient to move the additional term in (1.41) to the right

hand side, and think of it as a kind of energy-momentum tensor, with Tµν = −Λgµν
(it is automatically conserved by metric compatibility). Then Λ can be interpreted

as the “energy density of the vacuum,” a source of energy and momentum that

is present even in the absence of matter fields. This interpretation is important

because quantum field theory predicts that the vacuum should have some sort of

energy and momentum. In ordinary quantum mechanics, an harmonic oscillator with

frequency ω and minimum classical energy E0 = 0 upon quantization has a ground

state with energy E0 = 1
2
h̄ω. A quantized field can be thought of as a collection of

an infinite number of harmonic oscillators, and each mode contributes to the ground

state energy. The result is of course infinite, and must be appropriately regularized,

for example by introducing a cutoff at high frequencies. The final vacuum energy,

which is the regularized sum of the energies of the ground state oscillations of all the

fields of the theory, has no good reason to be zero and in fact would be expected to

have a natural scale

Λ ∼ m4
P , (1.42)
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where the Planck mass mP is approximately 1019 GeV, or 10−5 grams. Observations

of the universe on large scales allow us to constrain the actual value of Λ, which turns

out to be smaller than (1.42) by at least a factor of 10120. This is the largest known

discrepancy between theoretical estimate and observational constraint in physics,

and convinces many people that the “cosmological constant problem” is one of the

most important unsolved problems today. On the other hand the observations do

not tell us that Λ is strictly zero, and in fact allow values that can have important

consequences for the evolution of the universe.

1.3 Basic principles of Cosmology

In this section we review basic facts about classical cosmology, following mainly [3].

There are many reviews available on hep-th, see for example [4, 5, 6] 1. Contemporary

cosmological modes are based on the idea that the Universe is pretty much the

same everywhere-the idea known as Copernican principle. It is clear that this

principle can be applied on the large scales only where local variations of density is

averaged over. In other words, the Universe is spatially homogeneous and isotropic

on the largest scales. Since these claims need more explanation let us pause in our

explanation of cosmology and give some more precise definition of mathematical

claims given above.

1.4 Map of Manifolds

Since we do not have enough time with explanation of the notion of manifold we

presume that reader has enough knowledge regarding this point.

Let M and N be manifolds (generally with different dimensions) and let φ :

M → N be a map. In a natural manner, φ ”pulls back” a function f : N → R on N

to the function f ◦ φ → M → R that is derived by composing f with φ. Similarly,

in a natural way, φ maps tangent vectors at p ∈ M to tangent vectors at φ(p) ∈ N .

In other words it defines ma φ∗ : Vp → Vf(p) in following way: For V
∫

Vp we define

φ∗(v) by

(φ∗(v))(f) = v(f ◦ φ) (1.43)

for all smooth f : N → R. It is easy to see that φ∗v satisfies the properties of tangent

vector at φ(p). Further, in the coordinate bases of a coordinate system (xν) at p and

a coordinate system (yµ) at φ(p) the upper expression takes the form

wµ(y)
∂

∂yµ
f(y) = vν(x)

∂

∂xν
f((φ(x))) = vν(x)

∂f(y)

∂yµ
∂yµ

∂xν
⇒

wµ(φ(x)) = vν(x)
∂yµ

∂xν
, (φ∗v)µ ≡ wµ .

(1.44)

1Our metric signature is −+++. We use units h̄ = c = 1 and define the reduced Planck mass

by Mp = (8πG)−1/2 ≈ 1018GeV .
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In the same way we can use φ to ”pull back” one forms at φ(p) to one forms at p.

We define the map (”pull back”) φ∗ : V
∗

φ(p) → V ∗

p by requiring that for v ∈ Vp

(φ∗ω)µv
µ = ων(φ

∗v)ν , (1.45)

where we used tensor notation. Using the definition of the map φ∗ given in (1.44)

we easily get

(φ∗ω)µ = ων

yν

∂xµ
. (1.46)

We can easily extend the action of φ∗ to map tensors of type (0, l) at φ(p) to tensors

of type (0, l) at p by

(φ∗T )µ1...µl
v
µ1

1 . . . v
µl

l = Tµ1...µl
(φ∗v1)

µ1 . . . (φ∗vl)
µl . (1.47)

In the same way we can extend the action of φ∗ to map tensors of type (k, 0) at p to

tensors of type (k, 0) at φ(p) by

(φ∗T )µ1...µk(ω1)µ1
. . . (ωk)µk

= T µ1...µk(φ∗ω1)µ1
. . . (φ∗ωk)µk

(1.48)

If φ : M → M is diffeomorphism and T is a tensor field on M we can compare T

with φ∗T . If φ∗T = T then even though we have moved T via φ it is still the same.

In other words φ is a symmetry transformation for the tensor field T . In the case of

the metric gµν a symmetry transformation-a diffeomorphism φ such that

(φ∗g)µν = gµν

is called an isometry.

Let us now return to our explanation of basic principles of cosmology. Our first

task is to formulate precisely the mathematical meaning of this assumption. The

evidence comes from the smoothness of the temperature of the cosmic microwave

background. In other words, given any two points p and q there is an isometry

which takes p into q. We must mention that there is no necessary relationship

between homogeneity and isotropy; a manifold can be homogeneous but nowhere

isotropic (such as R × S2 in the usual metric) or it can be isotropic around a point

without being homogeneous (such as a cone, which is isotropic around its vertex but

certainly not homogeneous). On the other hand, if a space is isotropic everywhere

then it is homogeneous. On the other hand it should be pointed that, in general,

at each point, at most one observer can see the universe as isotropic. For example,

if ordinary matter fills the universe, any observer in motion relative to the matter

must see an anisotropic velocity distribution of the matter. With this fact in mind

we have to give precise formulation of the notion of isotropy than the clam that

Isotropy is the claim that the Universe looks the same in all directions.: A spacetime

is said to be (spatially) isotropic at teach point if there exists a congruence of time-

like curves (observes) with tangent vectors denoted uµ filling the spacetime and
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