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Chapter 1

Basic Mathematical
Background — Introduction

In this chapter we consider mainly mathematical definitions and con-
cepts that are basic to group theory and the classification of symmetry
properties.

1.1 Definition of a Group
A collection of elements A, B,C, ... form a group when the following
four conditions are satisfied:

1. The product of any two elements of the group is itself an element
of the group. For example, relations of the type AB = C are
valid for all members of the group.

2. The associative law is valid — i.e., (AB)C = A(BC).

3. There exists a unit element F (also called the identity element)
such that the product of E with any group element leaves that
element unchanged AF = FA = A.

4. For every element there exists an inverse, A™'A = AA"' = FE.

It is not necessary that elements of the group commute. In general, the
elements will not commute AB # BA. But if all elements of a group
commute, the group is then called an Abelian group.

1



2 CHAPTER 1. BASIC MATHEMATICAL BACKGROUND

Figure 1.1: The symmetry oper-
ations on an equilateral triangle,
are the rotations by +2m/3 about
0 the origin 0 and the rotations by 7
about the axes 01, 02, and 03.

1.2 Simple Example of a Group

As a simple example of a group, consider the permutation group for
three elements, P(3). Below are listed the 3!=6 possible permutations
that can be carried out; the top row denotes the initial arrangement of
the three numbers and the bottom row denotes the final arrangement.

1 2 3 1 2 3 1 2 3
E_<123> A_<213> B_<132>

2 3 1 2 3
12)F—<231>

This group is identical with the symmetry operations on a equilat-
eral triangle shown in Fig. 1.1. What then are the symmetry operations
of an equilateral triangle?

We can also think of the elements in Eq. 1.1 in terms of the 3 points
of the triangle in the initial state and the bottom line as the effect of
the six distinct symmetry operations that can be performed on these
three points. We can call each symmetry operation an element of the

group.

(1.1)
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1.2. SIMPLE EXAMPLE OF A GROUP 3

Table 1.1: Multiplication® table for permutation group of 3 elements;
P(3)

HOoQWe=d

mOoQwWeoH
QT =HEE>
QrFr+"H-Hgowmw
pivel s Rwi-Nele)
H=E>Qwod
wiles v BN @] leo

T AD = B defines use of multiplication table.

It is convenient to classify the products of group elements. We write
these products using a multiplication table. In Table 1.1 a multipli-
cation table is written out for the symmetry operations on an equilateral
triangle or equivalently for the permutation group of 3 elements. It can
easily be shown that the symmetry operations given in Eq. 1.1 satisfy
the four conditions in §1.1 and therefore form a group. Each symmetry
element of the permutation group P(3) has a one-to-one correspon-
dence to the symmetry operations of an equilateral triangle and we
therefore say that these two groups are isomorphic to each other. We
furthermore can use identical group theoretical procedures in dealing
with physical problems associated with either of these groups, even
though the two groups arise from totally different physical situations.
It is this generality that makes group theory so useful as a general way
to classify symmetry operations arising in physical problems.

We illustrate the use of the notation in Table 1.1 by verifying the
associative law (AB)C = A(BC) for a few elements:

(AB)C =DC =B

A(BC) = AD =B (1.2)

Often, when we deal with symmetry operations in a crystal, the ge-
ometrical visualization of repeated operations becomes difficult. Group
theory is designed to help with this problem. Suppose that the sym-
metry operations in practical problems are elements of a group; this is
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generally the case. Then if we can associate each element with a matrix
that obeys the same multiplication table as the elements themselves,
that is, if the elements obey AB = D, then the matrices representing
the elements must obey

M(A) M(B) = M(D). (1.3)

If this relation is satisfied, then we can carry out all geometrical opera-
tions analytically in terms of arithmetic operations on matrices, which
are usually easier to perform. The one-to-one identification of a gener-
alized symmetry operation with a matrix is the basic idea of a repre-
sentation and why group theory plays such an important role in the
solution of practical problems.

A set of matrices that satisfy the multiplication table (Table 1.1)
for the group P(3) are:

10 1 0 —L ¥
_ — — 2 2
e=(ov) (0 h) (g7
2 2
_1 _ _1 V3 1 V3
c-(m ) o-(an) (2 Y
2 2 2 2 2 2
(1.4)

We note that the matrix corresponding to the identity operation is
always a unit matrix. The matrices in Eq. 1.4 constitute a matrix rep-
resentation of the group that is isomorphic to P(3) and to the symmetry
operations on an equilateral triangle.

1.3 Basic Definitions

Definition: The order of a group = the number of elements in the
group. We will be mainly concerned with finite groups. As an
example, P(3) is of order 6.

Definition: A subgroup = a collection of elements within a group
that by themselves form a group.
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Examples of subgroups in P(3):

E (E,A) (E,D,F)
(E, B)
(E,C)

Theorem: If in a finite group, an element X is multiplied by itself
enough times (n), the identity X™ = E is eventually recovered.

Proof: If the group is finite, and any arbitrary element is multiplied
by itself repeatedly, the product will eventually give rise to a
repetition. For example, for P(3) which has six elements, seven
multiplications must give a repetition. Let Y represent such a

repetition:
Y = X?P = X1 where p > q. (1.5)
Then let p = g+ n so that
XP=X"X1=X1=FX1 (1.6)

from which it follows that
X"=F. (1.7)
Definition: The order of an element = the smallest value of n in

the relation X" = F.

We illustrate the order of an element using P(3) where:

e F is of order 1
o A B,C are of order 2
e D, F are of order 3

Definition: The period of an element X = collection of elements
E, X, X?, ..., X" ! where n is the order of the element. The
period forms an Abelian subgroup.

Some examples of periods based on the group P(3) are:
E A
E,B
E.C
E,D,F =E,D,D?

(1.8)
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1.4 Rearrangement Theorem

The rearrangement theorem is fundamental and basic to many theorems
to be proven subsequently.

Rearrangement Theorem: If £, Ay, Ay, ..., A are the elements of a
group, and if Ay is an arbitrary group element, then the assembly
of elements

ALE, ALAL, ... ALA, (1.9)

contains each element of the group once and only once.

Proof: 1. We show first that every element is contained.

Let X be an arbitrary element. If the elements form a
group there will be an element A, = A,;lX . Then A,A, =
ApA; X = X. Thus we can always find X after multiplica-
tion of the appropriate group elements.

2. We now show that X occurs only once. Suppose that X
appears twice in the assembly ApE, ALAq, ..., A Ay, say
X = AgA, = AiA,. Then by multiplying on the left by
At we get A, = A, which implies that two elements in the
original group are identical, contrary to the original listing
of the group elements.

Because of the rearrangement theorem, every row and column of a
multiplication table contains each element once and only once.

1.5 Cosets

Definition: If B is a subgroup of the group G, and X is an element of
G, then the assembly FX, B1 X, By X, ..., B, X is the right coset
of B, where B consists of E, By, Bs, ..., By.

A coset need not be a subgroup. A coset will be a subgroup if X is an
element of B.

Theorem: Two right cosets of given subgroup either contain exactly
the same elements, or else have no elements in common.
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Proof: Clearly two right cosets either contain no elements in common
or at least one element in common. We show that if there is one
element in common, all elements are in common.

Let BX and BY be two right cosets. If ByX = B,Y = one
element that the two cosets have in common, then

B'B,=YX! (1.10)

and Y X! is in B, since the product on the right hand side of
Eq. 1.10 is in B. And also contained in B is EY X!, B Y X1,
ByY X' .. B,YX~'. Furthermore, according to the rearrange-
ment theorem, these elements are, in fact, identical with B except
for possible order of appearance. Therefore the elements of BY
are identical to the elements of BY X ~' X which are also identical
to the elements of BX so that all elements are in common.

We now give some examples of cosets using the group P(3).
Let B = E, A be a subgroup. Then the right cosets of B are

(E,A)E — E,A  (E,A)C — C,F
(E,A)A — A FE (E,A)D — D, B (1.11)
(E,A)B — B,D (E,A)F — F,C

so that there are three distinct right cosets of (F, A), namely

(E,A) which is a subgroup
(B, D) which is not a subgroup
(C,F) which is not a subgroup.

Similarly there are three left cosets of (E, A):

(E,A)
(C,D) (1.12)
(B, F)

To multiply two cosets, we multiply constituent elements of each coset
in proper order. Such multiplication either yields a coset or joins two
cosets.
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Theorem: The order of a subgroup is a divisor of the order of the
group.

Proof: If an assembly of all the distinct cosets of a subgroup is formed
(n of them), then n multiplied by the number of elements in a
coset, C, is exactly the number of elements in the group. Each
element must be included since cosets have no elements in com-
mon.

For example, for the group P(3), the subgroup (F, A) is of order
2, the subgroup (FE, D, F) is of order 3 and both 2 and 3 are
divisors of 6, which is the order of P(3).

1.6 Conjugation and Class

Definition: An element B conjugate to A is by definition B = X AX 1,
where X is an arbitrary element of the group.
For example,

A=X"'BX =YBY! where BX=XA and AY =YB.

The elements of an Abelian group are all self-conjugate.

Theorem: If B is conjugate to A and C' is conjugate to B, then C' is
conjugate to A.

Proof: By definition of conjugation, we can write

B=XAX"!
C=YBY L.

Thus, upon substitution we obtain

C=YXAX 'Y 1=YXAYX)

Definition: A class is the totality of elements which can be obtained
from a given group element by conjugation.
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For example in P(3), there are three classes:
(i) £; (i) A,B,C; (iii) D, F.
Consistent with this class designation is

ABA™" = AF =C (1.13)
DBD™' =DA =C (1.14)

Note that each class corresponds to a physically distinct kind of
symmetry operation such as rotation of m about equivalent two-
fold axes, or rotation of 27 /3 about equivalent three-fold axes.
The identity symmetry element is always in a class by itself. An
Abelian group has as many classes as elements. The identity
element is the only class forming a group, since none of the other
classes contain the identity.

Theorem: All elements of the same class have the same order.

Proof: The order of an element n is defined by A™ = E. An arbitrary
conjugate of Ais B= XAX~!. Then B" = (XAX 1)(XAX!)...
n times gives XA"X ' = XEX ! = E.

1.6.1 Self-Conjugate Subgroups

Definition: A subgroup B is self-conjugate if XBX ! is identical
with B for all possible choices of X in the group.

For example (F, D, F) forms a self-conjugate subgroup of P(3), but
(E, A) does not. The subgroups of an Abelian group are self-conjugate
subgroups. We will denote self-conjugate subgroups by A. To form a
self-conjugate subgroup, it is necessary to include entire classes in this
subgroup.

Definition: A group with no self-conjugate subgroups = a simple
group.

Theorem: The right and left cosets of a self-conjugate subgroup N
are the same.
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Proof: If Nj is an arbitrary element of the group, then the left coset
is found by elements X N, = X N, X 'X = N; X, where the right
coset is formed by the elements N; X where N; = XN, X 1.

For example in the group P(3), one of the right cosets is (F, D, F)A =
(A, C, B) and one of the left cosets is A(E, D, F)=(A, B,C) and
both cosets are identical except for the listing of the elements.

Theorem: The multiplication of the elements of two right cosets of a
self-conjugate subgroup gives another right coset.

Proof: Let NX and NY be two right cosets. Then multiplication of
two right cosets gives

NX)NY) = Ny XNY = No(XN,)Y

= Np(Np X)Y = (NN, ) (XY) = N(XY) (1.15)

and NV (XY) denotes a right coset.

The elements in one right coset of P(3) are (E,D,F)A = (A,C, B)
while (E,D,F)D = (D, F,FE) is another right coset. The product
(A,C,B)(D, F,E) is (A, B,C) which is a right coset. Also the product
of the two right cosets (A, B,C)(A, B,C) is (D, F, E) which is a right
coset.

1.7 Factor Groups

Definition: The factor group of a self-conjugate subgroup is the col-
lection of cosets of the self-conjugate subgroup, each coset being
considered an element of the factor group. The factor group sat-
isfies the four rules of §1.1 and is therefore a group.

1. multiplication - (N X)(NY) = N XY
2. associative law — holds because it holds for the elements.

3. identity — EN where E is the coset that contains the identity
element

4. inverse — (XN)(X'N) = WX)(XN) =N? = EN
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Definition: The index of a subgroup = total number of cosets =
(order of group)/(order of subgroup).

The order of the factor group is the index of the self-conjugate subgroup.

In §1.6 we saw that (F, D, F') forms a self-conjugate subgroup, N.
The only other coset of this subgroup N is (A, B, C), so that the order
of this factor group = 2. Let (A, B,C) = A and (E, D, F) = £ be the
two elements of the factor group. Then the multiplication table for this
factor group is

E A
ELE A
AlA €&
which is also the multiplication table for the group for the permutation
of 2 objects P(2). & is the identity element of this factor group. &
and A are their own inverses. From this illustration you can see how
the four group properties (see §1.1) apply to the factor group. The
multiplication table is easily found by taking an element in each coset,
carrying out the multiplication of the elements and finding the coset of
the resulting element.

1.8 Selected Problems

1. (a) Show that the trace of an arbitrary square matrix X is in-
variant under a similarity transformation UXU 1.

(b) Given a set of matrices that represent the group G, denoted
by D(R) (for all R in G), show that the matrices obtain-
able by a similarity transformation UD(R)U ™! also are a
representation of G.

2. (a) Show that the operations of P(3) in Eq. 1.1 of the class notes
form a group, referring to the rules in §1.1.

(b) Multiply the two left cosets of subgroup (E, A): (B, F) and
(C, D), referring to §1.5 of the class notes. Is the result
another coset?
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(c) Prove that in order to form a normal subgroup it is necessary
to include entire classes in this subgroup.

(d) Demonstrate that the normal subgroup of P(3) includes en-
tire classes.

3. (a) What are the symmetry operations for the molecule ABy,
where the B atoms lie at the corners of a square and the A
atom is at the center and is not coplanar with the B atoms.

(b) Find the multiplication table.

c¢) List the subgroups. Which subgroups are self-conjugate?

)

(c)

(d) List the classes.
)

(e) Find the multiplication table for the factor group for the
self-conjugate subgroup(s) of (c).

4. The group defined by the permutations of 4 objects, P(4), is
isomorphic with the group of symmetry operations of a regular
tetrahedron (7). The symmetry operations of this group are suf-
ficiently complex so that the power of group theoretical methods
can be appreciated. For notational convenience, the elements of
this group are listed below.

e=(1234) g=(3124) m=(1423) 5= (4213)
a=(1243) h=(3142) n=(1432) = (4231)
— (2134) i=(2314) o= (4123) u=(3412)
c=(2143) j=(2341) p=(4132) v = (3421)
= (1324) k= (3214) ¢=(2413) w = (4312)
F=(1342) 1=(3241) r=(2431) y=(4321)

Here we have used a shorthand notation to denote the elements:
for example j = (2341) denotes

1 2 3 4
2 3 41

that is, the permutation which takes objects in the order 1234
and leaves them in the order 2341.
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(a) What is the product vw? wv?

(b) List the subgroups of this group which correspond to the
symmetry operations on an equilateral triangle.

(c) List the right and left cosets of the subgroup (e, a, k,1,s,t).

(d) List all the symmetry classes for P(4), and relate them to
symmetry operations on a regular tetrahedron.

(e) Find the factor group and multiplication table formed from
the self-conjugate sub-group (e, ¢, u,y). Is this factor group
isomorphic to P(3)?
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Chapter 2

Representation Theory and
Basic Theorems

In this chapter we introduce the concept of a representation of an ab-
stract group and prove a number of important theorems relating to irre-
ducible representations, including the “Wonderful Orthogonality The-
orem”.

2.1 Important Definitions

Definition: Two groups are isomorphic or homomorphic if there
exists a correspondence between their elements such that

A— A
B— B
AB — AB
where the plain letters denote elements in one group and the
letters with carets denote elements in the other group. If the two

groups have the same order (same number of elements), then they
are isomorphic.

For example, the permutation group of three numbers P(3) is iso-

morphic to the symmetry group of the equilateral triangle and ho-
momorphic to its factor group, as shown in Table 2.1. Thus, the

15
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Table 2.1: Table of homomorphic mapping.

Permutation group element Factor group
E,D,F — E
A B, C — A

homomorphic representations in Table 2.1 are unfaithful. Isomorphic
representations are faithful, because they maintain the one-to-one cor-
respondence.

Definition: A representation of an abstract group is a substitution
group (matrix group with square matrices) such that the substitu-
tion group is homomorphic (or isomorphic) to the abstract group.
We assign a matrix D(A) to each element A of the abstract group
such that D(AB) = D(A)D(B).

The matrices of Eq. 1.4 are an isomorphic representation of the
permutation group P(3). In considering the representation

E A
DY BV (-
F C

the one-dimensional matrices (1) and (-1) are a homomorphic repre-
sentation of P(3) and an isomorphic representation of the factor group
E, A (see §1.7). The homomorphic one-dimensional representation (1)
is a representation for any group, though an unfaithful one.

In quantum mechanics, the matrix representation of a group is im-
portant for several reasons. First of all, we will find that the eigenfunc-
tions for a quantum mechanical problem will transform under a sym-
metry operation according to some matrix representation of a group.
Secondly, quantum mechanical operators are usually written in terms
of a matrix representation, and thus it is convenient to write symmetry
operations using the same kind of matrix representation. Finally, ma-
trix algebra is often easier to manipulate than geometrical symmetry
operations.
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2.2 Matrices

Definitions: Hermitian matrices are defined by: A = A*, A* = A,
or AT = A (where the symbol * denotes complex conjugation, ~
denotes transposition, and T denotes taking the adjoint)

ail aig

A=| axn azg - (2.1)
ai1 asy

A=| a2 ax --- (2.2)

Unitary matrices are defined by: A* = {lT = A1
Orthonormal matrices are defined by: A = A~!

Definition: The dimensionality of a representation is equal to the di-
mensionality of each of its matricies, which is in turn equal to the
number of rows or columns of the matrix.

These representations are not unique. For example, by performing
a similarity (or equivalence, or canonical) transformation UD(A)U !
we generate a new set of matrices which provides an equally good rep-
resentation. We can also generate another representation by taking one
or more representations and combining them according to

< D) D,((9A) ) (2.3)

where O = (mxn) matrix of zeros, not necessarily a square zero matrix.
The matrices D(A) and D’(A) can be either two distinct representations
or they can be identical representations.

To overcome the difficulty of non-uniqueness of a representation
with regard to a similarity transformation, we often just deal with the
traces of the matrices which are invariant under similarity transfor-
mations. The trace of a matrix is defined as the sum of the diagonal
matrix elements.
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2.3 Irreducible Representations

To overcome the difficulty of the ambiguity of representations in gen-
eral, we introduce the concept of irreducible representations. Consider
the representation made up of two distinct or identical representations
for every element in the group

(76" i)

This is a reducible representation because the matrix corresponding to
each and every element of the group is in the same block form. We
could now carry out a similarity transformation which would mix up
all the elements so that the matrices are no longer in block form. But
still the representation is reducible. Hence the definition:

Definition: If by one and the same equivalence transformation, all
the matrices in the representation of a group can be made to
acquire the same block form, then the representation is said to
be reducible; otherwise it is irreducible. Thus, an irreducible
representation cannot be expressed in terms of representations of
lower dimensionality.

We will now consider three irreducible representations for the permu-
tation group P(3):

E A B

Iy (1) (1) (1)
Dy (1) (—1) 1

<_
v r) B4 (Y
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A reducible representation containing these three irreducible represen-
tations is:

E A B
1000 1 00 0 10 0 0
r 0100 0 -1 0 0 0 -1 0 0 .
B0 o0 10 0 0 1 0 0 0 -1 ¥ o
0001 0 0 0 -1 00 £ 1
(2.5)
where I'p is of the form
ro|o
0T/ 0 |. (2.6)
O] 0T,

It is customary to list the irreducible representations contained in a
reducible representation 'y as

I'p=I1+T1Ty+T1s. (27)

In working out problems of physical interest, each irreducible rep-
resentation describes the transformation properties of a set of eigen-
functions and corresponds to a distinct energy eigenvalue. Assume I'g
is a reducible representation for some group G but an irreducible rep-
resentation for some other group G’. If I'p contains the irreducible
representations I'y + I'yy + T’y as illustrated above for the group P(3),
this indicates that some interaction is breaking up a four-fold degen-
erate level in group G’ into three energy levels in group G: two non-
degenerate ones and a doubly degenerate one. Group theory doesn’t
tell us what these energies are, nor their ordering. Group theory only
specifies the symmetries and degeneracies of the energy levels. In gen-
eral, the higher the symmetry, the higher the degeneracy. Thus when
a perturbation is applied to lower the symmetry, the degeneracy of the
energy levels tends to be reduced. Group theory provides a systematic
method for determining how the degeneracy is lowered.

Representation theory is useful for the treatment of physical prob-
lems because of certain orthogonality theorems which we will now dis-
cuss. To prove the orthogonality theorems we need first to prove some
other theorems (including the unitarity of representations in §2.4 and
the two Schur lemmas in §2.5 and §2.6.)
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2.4 The Unitarity of Representations

This theorem which shows that in most physical cases, the elements
of a group can be represented by unitary matrices. This theorem is
then used to prove lemmas leading to the proof of the “Wonderful
Orthogonality Theorem”.

Theorem: Every representation with matrices having non-vanishing
determinants can be brought into unitary form by an equivalence
transformation.

Proof: By unitary form we mean that the matrix elements obey the
relation (A71);; = Ajj = A}, where A is an arbitrary matrix
of the representation. The proof is carried out be finding the
corresponding unitary matrices if the A;; matrices are not already
unitary matrices.

Let Ay, As,---, A, denote matrices of the representation. We
start by forming the matrix sum

h
H=>Y AAl (2.8)

z=1

where the sum is over all the elements in the group and where the
adjoint of a matrix is the transposed complex conjugate matrix
(A1)ij = (As)};- The matrix H is Hermitian because

H' =Y (A,AD =37 A, AL (2.9)

T

Any Hermitian matrix can be diagonalized by a suitable unitary
transformation. Let U be a unitary matrix made up of the or-
thonormal eigenvectors which diagonalize H to give the diagonal
matrix d:

d=U"HU =Y U A, AU =Y U'A,UU AU =3 A A

(2.10)
where we define A, = U1A,U for all z. The diagonal matrix d is
a special kind of matrix and contains only real, positive diagonal
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elements since

S(A), (2.11)

Il
M M M
M M M

One can form out of the diagonal matrix d two matrices (d*/? and
d='/?) such that

Vi @)
d'? = Vs (2.12)
O g
and . o
Vi
42 = i (2.13)
o .

where d'/? and d~'/? are real, diagonal matrices. We note that
the generation of d~'/2? from d'/? requires that none of the djy
vanish. These matrices clearly obey the relations

(@)t =d'? (2.14)
(a2 = a2 (2.15)
(d*)(d"/?) =d (2.16)
so that
d2d=1? = d712d"? = 1 = unit matrix. (2.17)

We can also from Eq. 2.10 write
d=d"d"* =% A, Al (2.18)
We now define a new set of matrices

A, = d V24,4 (2.19)

and

Al = (U4, = U AU (2.20)
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Ai — (d—l/QAmdl/Q)T — dl/Q‘AALd—l/Z' (221>

We now show that the matrices A, are unitary:

A;Alm;{r (dfl/QAxdl/Q)(dl/ZA:Ldfl/Z)
d~V2A,dATd1/?

= d 2y A A A ATa?
Yy

xT

= 4V (A A)(AA)Td 2

Yy

= 42y A AL a7 (2.22)

by the rearrangement theorem. But from the relation

d=>" AAl (2.23)

aooad “
it follows that A, A, =1 so that A, is unitary.

Therefore we have demonstrated how we can always construct a
unitary representation by the transformation:

~

Ay = d V2UT AU (2.24)
where ,
H=>Y AAl (2.25)
r=1
h A ~
d=>Y A.Al (2.26)
r=1

U is the unitary matrix that diagonalizes the Hermitian matrix
H and A, = U 'A,U.

Note: On the other hand, not all symmetry operations can be repre-
sented by a unitary matrix; an example of an operation which cannot be
represented by a unitary matrix is the time inversion operator. Time in-
version symmetry is represented by an anti-unitary matrix rather than
an unitary matrix. It is thus not possible to represent all symmetry
operations by a unitary matrix. Time inversion symmetry is discussed
later in the book.
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2.5 Schur’s Lemma (Part I)

Schur’s lemmas on irreducible representations are proved in order to
prove the “Wonderful Orthogonality Theorem” in §2.7.

Lemma: A matrix which commutes with all matrices of an irreducible
representation is a constant matrix, i.e., a constant times the unit
matrix. Therefore, if a non-constant commuting matrix exists,
the representation is reducible; if none exists, the representation
is irreducible.

Proof: Let M be a matrix which commutes with all the matrices of
the representation Aj, Ao, ..., Ay

MA, = A, M. (2.27)
Take the adjoint of both sides of Eq. 2.27 to obtain
ATMT = MTAT. (2.28)

Since A, can in all generality be taken to be unitary (see §2.4), multiply
on the right and left of Eqgs. 2.28 by A, to yield

MTA, = A, M (2.29)

so that if M commutes with A, so does M, and so do the Hermitian
matrices H; and H, defined by

H\=M + M
(2.30)
Hy=i(M — M),
H;A, = A,H; where j=1,2. (2.31)

We will now show that a commuting Hermitian matrix is a constant
matrix from which it follows that M = H; — ¢H, is also a constant
matrix.

Since H; (j = 1,2) is a Hermitian matrix, it can be diagonalized.
Let U be the matrix that diagonalizes H; (for example H;) to give the
diagonal matrix d

d=U""H;U. (2.32)
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We now perform the unitary transformation on the matrices A, of
the representation A, = U'A,U. From the commutation relations
Eqgs. 2.27, 2.28 and 2.31, a unitary transformation on all matrices
H;A, = A, H; yields

(UTH;U) (U 'AU) = (UTTAU) (U H,U) (2.33)

d Ag A, d

So now we have a diagonal matrix d which commutes with all the
matrices of the representation. We now show that this diagonal matrix
d is a constant matrix, if the A, matrices (and thus also the A, matrices)
form an irreducible representation. Thus, starting with Eq. 2.33

dA, = Ad (2.34)
we take the ij element of both sides of Eq. 2.34
di(Ay)iy = (A)igdy; (2.35)

so that R
(Az)ij(dis — dj;) = 0 (2.36)

for all the matrices A,.

If d;; # d;j, so that the matrix d is not a constant diagonal matrix,
then (A,);; must be 0 for all the A,. This means that the similarity
transformation U~'A,U has brought all the matrices of the represen-
tation into the same block form, showing that the representation A, is
reducible. But we have assumed the A, to be irreducible — therefore
d;; = dj; and Schur’s lemma part 1 is proved.

2.6 Schur’s Lemma (Part 2)

Lemma: If the matrix representations DM (A;), DM(A,), ..., DV (A)
and D®(A,), D?(A,),..., D®(A,) are two irreducible represen-
tations of a given group of dimensionality /1 and /5, respectively,
then, if there is a matrix of ¢; columns and ¢, rows M such that

MDW(A,) = DP(A,)M (2.37)
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for all A,, then M must be the null matrix (M = O) if {1 # l5. If
{1 = ly, then either M = O or the representations D (A,) and
D®(A,) differ from each other by an equivalence or similarity
transformation.

Proof: Since the matrices which form the representation can always
be transformed into unitary form, we can in all generality assume
that the matrices of both representations D™ (A,) and D@ (A4,)
have already been brought into unitary form.

Assume ¢; < /5, and take the adjoint of Eq. 2.37

[DW(A)]TMT = MT[D® (A,)]". (2.38)
The unitary property of the representation implies [D(A,)]" = [D(A,)]™! =
D(A;'), since the matrices form a substitution group for the elements
A, of the group. Therefore we can write Eq. 2.38 as

DWOAYMT = MTDP (A, (2.39)
Then multiplying Eq. 2.39 on the left by M yields:

MDW(AYMY = MMTDP (ALY = DO (A;HYMMT (2.40)

which follows from applying Eq. 2.37 to the element A_! which is also
an element of the group:

MDW(A;Y = D@ (AT M. (2.41)

We have now shown that if MDW(A,) = D®(A,)M then MM?*
commutes with all the matrices of representation (2) and MM com-
mutes with all matrices of representation (1). But if MM commutes
with all matrices of a representation, then by Schur’s lemma (part 1),
MMT is a constant matrix of dimensionality (5 X £3):

MM =cl, (2.42)

where 1 is the unit matrix.
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First we consider the case /1 = f5. Then M is a square matrix, with
an inverse:

Mt
M1'=— c#0. (2.43)
c
Then if M~ # O, multiplying Eq. 2.37 by M ~! on the left yields:
DW(A,) =M 'DP(A)M (2.44)

and the two representations differ by an equivalence transformation.
However, if ¢ = 0 then we cannot write Eq. 2.43, but instead we
have to consider MM = 0:

ST MM, = 0= My}, (2.45)
k k
for all 75 elements. In particular, for i« = j we can write

> My M, => " |My|> =0 (2.46)
k k

Therefore each element M;, = 0 and M is a null matrix. This completes
proof of the case /1 = ¢, and M = O.

Finally we prove that for ¢; # (5, then M = (. Suppose that
{1 # sy, then we can arbitrarily take ¢; < f5. Then M has ¢; columns
and ¢, rows. We can make a square ({5 X {5) matrix out of M by adding
(¢y — ¢1) columns of zeros

{1 columns

0 00
0
{5 Tows M 00

=}
=}

- O

= N = square ({5 x {3) matrix.

000
(2.47)
The adjoint of Eq. 2.47 is then written as

il

00 ;
00 0 ---0]|=N (2.48)
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so that
NN' = MM =c1 dimension ({3 x {3). (2.49)

Zk NikNlZz‘ - Zk Nz'kN;;c =cC
Dk NikNi*k = cls.

But if we sum over ¢ we see by direct computation 3>, ; Nix N, = 0, so
that ¢ = 0. But this implies that every element N;, = 0 and therefore
also My, = 0, so that M is a null matrix, completing the proof of
Schur’s lemma (part 2).

2.7 Wonderful Orthogonality Theorem

The orthogonality theorem which we now prove is so central to the
application of group theory to quantum mechanical problems that it
was named the “Wonderful Orthogonality Theorem” by Van Vleck,
and is widely known by this name.

Theorem: The orthonormality relation

N h
;Wﬁmw%w Y= onrbudu (250)

is obeyed for all the inequivalent, irreducible representations of a

group, where the summation is over all h group elements Ay, As, ...

and ¢; (1 = 1,2) is the dimensionality of representation I';. If the
representations are unitary, the orthonormality relation becomes

* h
S DR [DUNR)] = Forwdudir. (25D
R
Proof: Consider the #5 x ¢; matrix
M =Y D (R)XD"(R™) (2.52)
R

where X is an arbitrary matrix with /5 rows and ¢; columns
so that M is a rectangular matrix of dimensionality ({5 x ¢1).
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Multiply M by D)(S) for some element S in the group:

D¥)(S)M =>" D™)(S)D")(R) X DY(R™) (2.53)
N—— R
f2><f1
Then carrying out the multiplication of two elements in a group
DY) ()M =" D™ (SR) X DY(R'S™HDW)(S)  (2.54)
Loxt R
2 X1

where we have used the group properties of the representations
I'y and I's. By the rearrangement theorem, the above equation
can be rewritten

DY) (S)M =>"D®)N(R) X D(R™) D™ (S) = M D(8S).
R

" (2.55)

Now apply Schur’s lemma part 2 for the various cases.

Case 1 (1 # (5 or if /; = /5, and the representations are not

equivalent.
Since D2 (S)M = M D")(S), then by Schur’s lemma part 2, M
must be a null matrix. From the definition of M we have
2 4y —
0= M, =33 DE(R)X D\ (RY). (2.56)
R A
But X is an arbitrary matrix. By choosing X to have an entry 1

in the v/ position and 0 everywhere else, we write:

0 0 0

0
X = g Xy)\ = 571/5)\V’ (257)

- O O O
O O O O
- O O = O
O O OO
- O O O

It then follows by substituting Eq. 2.57 into Eq. 2.56 that

0=>" D (R)DL(R™). (2.58)
R
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Case 2 /; = /5 and the representations ['; and I'; are equivalent

If the representations I'y and I'y are equivalent, then ¢; = {5 and
Schur’s lemma part 1 tells us that M = c1. The definition for M
in Eq. 2.52 gives

4 _
My = e = 33 DY(R) X\ D\? (R7). (2.59)
R A

Choose X in Eq. 2.57 as above to have a non-zero entry at vv/’
and 0 everywhere else. Then X, = 04,05 so that

VV’

8 = > DI2(R) DS2(R™) (2.60)
R

where ¢!, = ¢/c,,. To evaluate ¢!, choose p = p' in Eq. 2.60
and sum on

Cor D O = ZZD ZD
- ¢
(2.61)
since D\2)(R) is a representation of the group and follows the

multiplication table for the group. Therefore we can write

by = ZD IRy =Y DY (E) = 21 (2.62)
R

But D,(ff,)(E) is a unit (¢3 X f3) matrix and the /v matrix ele-
ment is d,,,. The sum of unity over all the group elements is h.
Therefore we obtain

h
=0 (2.63)
ly
Substituting Eq. 2.63 into Eq. 2.60 gives:
h 0) o
7Ot = % D)(R) DSA(R™Y). (2.64)

We can write the results of case 1 and case 2 in compact form

. €)oo h
> D (R) Dy (R™) = 761,10, 8y (2.65)
R J
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For a unitary representation Eq. 2.65 can also be written as:

sz DY (R) D, (R) = g—japj,rj,éwéwu (2.66)

This completes the proof of the wonderful orthogonality theorem.

2.8 Representations and Vector Spaces

Let us spend a moment and consider what the representations in
Eq. 2.66 mean as an orthonormality relation in a vector space of
dimensionality h. Here h is the order of the group which equals
the number of group elements. In this space, the representa-
tions D,(fyj) (R) can be considered as elements in this h-dimensional
space:

VS =| DU (A1), DEP(Ay), ..., DD (AW (2.67)

2l

The three indices I'y,, 1, v label a particular vector. All distinct
vectors in this space are orthogonal. Thus two representations are
orthogonal if any one of their three indices is different. But in an
h-dimensional vector space, the maximum number of orthogonal
vectors is h. We now ask how many vectors VM(,ZJ) can we make?
For each representation, we have ¢; choices for 1 and v so that
the total number of vectors we can have is -, é? where we are
now summing over representations. This argument yields the
important result

> 02 <h. (2.68)
J

We will see later that it is the equality that holds in Eq. 2.68.

The result in Eq. 2.68 is extremely helpful in finding the totality
of irreducible (non-equivalent) representations. In our example of
P(3) we have h = 6. Therefore 3~ EJQ- = 6. The representations we
found in §2.3 were two one-dimensional and one two-dimensional
representation. Therefore 3,07 =17 +1° +2° = 1+ 144 = 6.
This tells us that no matter how hard we try, we will not find any
more irreducible representations for P(3) — we have them all.
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2.9 Suggested Problems

1. Show that every symmetry operator for every group can be rep-
resented by the (1 x 1) unit matrix. Is it also true that every
symmetry operator for every group can be represented by the (2
X 2) unit matrix? If so, does such a representation satisfy the
Wonderful Orthogonality Theorem? Why?
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Chapter 3

Character of a
Representation

We have already discussed the arbitrariness of a representation with re-
gard to similarity or equivalence transformations. Namely, if D) (R)
is a representation of a group, so is U"'D)(R)U. To get around this
arbitrariness we introduce the use of the trace (or character) of a matrix
representation which remains invariant under a similarity transforma-
tion. In this chapter we define the character of a representation, derive
the most important theorems for the character, summarize the conven-
tional notations used to denote symmetry operations and groups and
list some of the most important character tables for the point groups.

3.1 Definition of Character

Definition: The character of the matrix representation x%(R) for
a symmetry operation R in a representation D(R) is the trace
(or the sum over diagonal matrix elements) of the matrix of the

representation:
4
X(zj)(R) = trace D(Zj)(R) = Z D(ej)(R)w (3.1)
p=1

where /; is the dimensionality of the representation I'; and j is a
representation index. From the definition, it follows that repre-

33
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sentation I'; will have h characters, one for each element in the
group. Since the trace of a matrix is invariant under a similarity
transformation, the character is invariant under such a transfor-
mation.

3.2 Characters and Class

We relate concepts of class (see §1.6) and character by the following
theorem.

Theorem: The character for each element in a class is the same.

Proof: Let A and B be elements in the same class. By the definition
of class this means that A and B are related by conjugation (see

§1.6)
A=Y 'BY (3.2)

where Y is an element of the group. Each element can always be
represented by a unitary matrix D (see §2.4), so that

D(A)=D(Y ') D(B) D(Y)=D YY) D(B) D(Y). (3.3)

And since a similarity transformation leaves the trace invariant,
we have the desired result for characters in the same class: x(A) =
X(B), which completes the proof.

The property that all elements in a class have the same character is
responsible for what Van Vleck called “the great beauty of char-
acter”. If two elements of a group are in the same class, this means
that they correspond to similar symmetry operations — e.g., the class
of two-fold axes of rotation of the equilateral triangle, or the class of
three-fold rotations for the equilateral triangle.

Sometimes a given group will have more than one kind of two-fold
symmetry axis. To test whether these two kinds of axes are indeed
symmetrically inequivalent, we check whether or not not they have the
same characters.

We summarize the information on the characters of the represen-
tations of a group in the celebrated character table. In a character
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Table 3.1: Character table for the permutation group P(3): Group
(LD377.

Class — Cq 3Cs 2Cs
irreducible X(E) | x(A,B,C) | x(D, F)
representation Iy 1 1 1
1 'y 1 -1 1
Iy 2 0 -1

Table 3.2: Classes for the permutation group P(3): Group “D3”.

Ds P(3)
Class 1 F (identity) 1C,  (identity class) (1)(2)(3)
Class 2 A, B,C (3 elements) 3Cy (rotation of 7 about 2-fold axis) (1)(23)
Class 3 D, F' (2 elements) 2C3 (rotation of 120° about 3-fold axis) (123)

table we list the representations in column form (for example, the left
hand column of the character table) and the class as rows (top row
labels the class). For example, the character table for the permutation
group P(3) (see §1.2) is shown in Table 3.1. (Sometimes you will see
character tables with the columns and rows interchanged relative to
this display.) We will later see that the name for this point group is D3
(Schoenflies notation). In Table 3.1 the notation NyCy is used in the
character table to label each class C, and Ny, is the number of elements
in C;. If a representation is irreducible, then we say that its character
is primitive. In a character table we limit ourselves to the primitive
characters. The classes for group D3 and P(3) are listed in Table 3.2.

Now that we have introduced character and character tables, let us
see how to use the character tables. To appreciate the power of the
character tables we present a few fundamental theorems for character.
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3.3 Wonderful Orthogonality Theorem for
Character

The “Wonderful Orthogonality Theorem” for character follows directly
from the wonderful orthogonality theorem (see §2.7). There is also a
second orthogonality theorem for character which is discussed below
(see §3.6).

Theorem: The primitive characters of an irreducible representation
obey the orthogonality relation

> XT(RT) XT(R) = hér, (3.4)
R

or

S xRy X (R) = hor, r,, (35)
R

where I'; denotes irreducible representation j with dimensionality
¢;. This theorem says that unless the representations are identi-
cal or equivalent, the characters are orthogonal in A-dimensional
space, where h is the order of the group.

Proof: The proof of the wonderful orthogonality theorem for charac-
ter follows from the Wonderful Orthogonality Theorem (see §2.7)
itself. Consider the wonderful orthogonality theorem (Eq. 2.51)

, I _ h
ST DU(R)DYI (R = 60, 1,8y (3.6)
R

V! g]
Take the diagonal elements of Eq. 3.6:

_ (£50) [ 5 h
Z D;(fLJL)(R)DM’M’ (R 1) = [5Fj,f‘j/6u#/5lilﬂ’ (37>
R J

Now sum Eq. 3.7 over p and p’ to calculate the traces or characters

_ 1) o h
%: S DE(R)S D,/ (R = Zjapj7rj, > SO (3.8)
H w p!
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where we note that

Z Oy Oy = Z O =4 (3.9)
o

pp!

so that
Zx(ej)(R)X(fj/)(R—l) — h5rj,rju (3,1())
R

completing the proof. Equation 3.10 implies that the primitive
characters of an irreducible representation form a set of orthog-
onal vectors in group-element space. Since any arbitrary rep-
rese