The cluster parameters 1. Reddening 2. Distance modulus 3. Age 4. Metallicity Determination in the order: Reddening, age, distance modulus simultaneously, metallicity with possible iterations Distance:V0-MV AV k.AV Turn-off Grocholski & Sarajedini, 2003, MNRAS, 345, 1015 Reasons for the interstellar extinction • Light scatter at the interstellar dust • Light absorption => Heating of the ISM • Depending on the composition and density of the ISM • Main contribution due to dust • Simulations and calculations in Cardelli et al., 1989, ApJ, 345, 245 Cardelli et al., 1989, ApJ, 345, 245 Important parameter: RV = AV/E(B-V) Normalization factor Standard value used is 3.1 Be careful, different values used! Depending on the line of sight Reddening Maps Piskunov et al., 2006, A&A, 445, 545 http://argonaut.skymaps.info/ http://www.univie.ac.at/p2f Determination of the reddening - Isochrones • From two temperature sensitive parameters, the determination of the reddening is not possible • You need one “other” observational index • First choices: (U – B), (u – b), [X], b • Normally, you only have V, J, H, K, and so on Good estimate for the reddening and distance Distance modulus • Apparent DM: (V - MV) which still includes the reddening • Absolute DM: (V - MV)0 or (V0 - MV) which not includes the reddening • Be careful there is always a mixture in the literature! How to determine the DM? • Direct isochrone fitting • Calibrate MV directly via photometry and spectroscopy with known reddening and V magnitude => distance directly • Advantage: statistical sample Distance:V0-MV AV k.AV Turn-off Turn off point • Where is the turn-off point located? –Color/temperature –Absolute/apparent magnitude/luminosity • Direct correlation with the age • Difficult to define for young star clusters • First, classical method, just „to look“ at color-magnitude-diagram Mermilliod, 1981, A&A, 97, 235: no newer paper available! Dereddened indices „Bluest“ (U – B)0 at main sequence MV of red giants Mermilliod, 1981, A&A, 97, 235 No direct error estimation possible Possible to use for star clusters between 20 Myr and 800 Myr Mermilliod, 1981, A&A, 97, 235 Very precise method Possible to use between for star clusters between 20 Myr and 300 Myr (U – B)0 for cooler stars = older ages is almost constant Not very accurate but still useful, never done for 2MASS and NIR Calculation of Isochrones The calculation of theoretical isochrone (= lines of equal age) is done with stellar atmospheres Free parameter : Metallicity [X, Y, Z] 1. Zero Age Main Sequence [Teff , L]0 2. Chemical and gravitational evolution 3. [Teff , L](t) 4. Adequate stellar atmosphere = PHYSICS 5. Absolute fluxes 6. Folding with filter curves 7. Colors, absolute magnitudes and so on Which astrophysical “parameters” are important? • Equations of state • Opacities • Model of convection • Rotation • Mass loss • Magnetic field • Core Overshooting • Abundance of helium • … Maeder & Mermilliod, 1981, A&A, 93, 136 Maeder & Mermilliod, 1981, A&A, 93, 136 Different treatment of convection A comparison of isochrone sets • Grocholski & Sarajedini (2003, MNRAS, 345, 1015) compared the following isochrones: 1.“Padova”: Girardi et al., 2002, A&A, 391, 195 2.Baraffe: Baraffe et al., 1998, A&A, 337, 403 3.“Geneva”: Lejeune & Schaerer, 2001, A&A, 366, 538 4.Y2: Yi et al., 2001, ApJS, 136, 417 5.Siess: Siess et al., 2000, A&A, 358, 593 Automatic Methods Jorgensen & Lindegren, 2005, A&A, 436, 127 Definition of different „important“ areas (Box) in the CMD. Do this allocation as you like. Turn-off point, location of the red giant clump, and so on. Count the number of stars in each box. Warning: you always „lose“ stars because of discrete boxes. Only for t > 300 Myr 1 Gyr Other methods • https://github.com/hektor-monteiro/OCFit • https://asteca.readthedocs.io/en/latest/ • An et al., 2007, ApJ, 655, 233 • Buckner & Froebrich, 2013, MNRAS, 436, 1465 • Fernandes et al., 2012, A&A, 541, A95 • Frayn & Gilmore, 2003, MNRAS, 339, 887 • Kharchenko et al., 2005, A&A, 438, 1136 • Monteiro et al., 2010, A&A, 516, A2 • Oliveira et al., 2013, A&A, 557, A14 • Pinsonneault et al., 2003, ApJ, 598, 588 Metallicity - Basics • Metallicity as [X:Y:Z] • X = Hydrogen • Y = Helium • Z = „the rest“ 𝑋 ≡ 𝑚 𝐻 𝑀 Y ≡ 𝑚 𝐻𝑒 𝑀 Z = σ𝑖>𝐻𝑒 𝑚𝑖 𝑀 = 1 – X – Y Metallicity - designations • [dex], e.g. [Fe/H] = -0,5 dex dex factor dex factor -2 0,01 0,1 1,26 -1,5 0,03 0,2 1,58 -1 0,10 0,3 2,00 -0,9 0,13 0,4 2,51 -0,8 0,16 0,5 3,16 -0,7 0,20 0,6 3,98 -0,6 0,25 0,7 5,01 -0,5 0,32 0,8 6,31 -0,4 0,40 0,9 7,94 -0,3 0,50 1 10,00 -0,2 0,63 1,5 31,62 -0,1 0,79 2 100,00 The Sun as standard star • „Our“ standard star for the normalisation of the metallicity is the Sun • We define: – Mass – Luminosity = absolute (bolometric) magnitude – Temperature = spectral type = color – Age – Chemical composition – Internal structure (rotation, magnetic field, convection, diffusion, pulsation, …) Abundance - Sun Asplund et al. Abundance - Sun Asplund et al. Metallicity => different opacity Isochrones for 10 Myr Metallicity - isochrones Schaller et al., 1993, A&AS, 101, 415 Different He abundances – [Z] constant Color-Magnitude Diagram Gaia Collaboration, 2018, A&A, 616, A10 Color-Magnitude Diagram Color-Magnitude Diagram