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Canonical ensemble

Ensemble in statistical mechanics
Represents the possible states of a mechanical system

In thermal equilibrium with a heat bath(fixed temperature)
The system can exchange energy with the heat bath

The states of the system will differ in total energy

Describe Boltzmann distribution

Principal variables
Thermodynamic - absolute temperature (symbol: T)

Determine the probability distribution of states

Mechanical - number of particles (N), system’s volume (V)
Influence the nature of the system’s internal states
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Thermostats in Molecular dynamics

Newton equations → NVE

Reality → NpT

In vast majority of system → little difference between NVT and NpT

Thermostats
Modulate the temperature of a system

Ensure that the average temperature of a system is the desired one

For NVT - Couple the system to a heat bath that imposes desired T
Deterministic:

Velocity rescale
Nose-Hoover
Berendsen

Stochastic:
Langevin
Anderson
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Anderson thermostat

Coupling by stochastic collisions
Act periodically on a random particle
Instantaneous event

Between stochastic collisions, system evolves in NVE

Simulation
Select two parameters T and f

T - desired temperature of the system
f - frequency of stochastic collisions, strength of coupling to heat bath

The simulations proceeds in NVE until a stochastic collision
Particle suffering a ”collision”

Given a random Momentum from a Boltzmann distribution at T

repeat with frequency f
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Anderson thermostat

Newtonian dynamics + stochastic collisions
Turns MD simulation into a Markov process

Canonical distribution in phase space is invariant under repeated
collisions
Anderson’s algorithm generates canonical distribution

If Markov chain irreducible and aperiodic

Disadvantages
Algorithm randomly decorrelates velocities
Dynamics is not physical

Can’t measure dynamical properties
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Langevin thermostat
Motion of large particles through a continuum of smaller particles
Langevin equation r̈ = ∇φ− γ ṙ + σξ

∇φ - force from positions of particles
similar term to ∂V

∂qi
damping force γ ṙ
σξ - Random force

The smaller particles move with kinetic energy
Give random nudges to large particles
Fluctuation-dissipation relation σ2 = 2γmikBT
To recover the canonical ensemble distribution

Langevin thermostat
Use Langevin equation

Assume that atoms being simulated are embedded in a sea of much
smaller fictional particles
Instances of solute-solvent systems

Solute is desired
Solvent is non-interesting
Solvent influences Solute via random collisions and a frictional force
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Langevin thermostat

Langevin thermostat
At each time step ∆t the Langevin thermostat changes the equation
of motion so that the change in momenta is

∆pi = (∂φ(q)
∂qi
− γpi + δp)∆t

γpi - damp the momenta
δp - Gaussian distributed random number represents the thermal kicks
from the small particles
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Langevin thermostat

Advantages
Fewer computations per time step since we eliminate many atoms

Include them implicitly by stochastic terms

Relatively large time step
∆t - different fastest frequency motions, slower degree of freedom

Disadvantages
Excluded volume effects of solvent not included

Not trivial to implement drag force for non-spherical particles

Solute-solvent system, solvent molecules must be small compared to
the smallest molecules explicitly considered
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Berendsen thermostat

Main problem of velocity-rescaling method
Does NOT allow T fluctuations as in NVT

Berendsen thermostat
Weak coupling method to external heat bath

Corrects deviations of actual T to T0 by multiplying the velocities by
a factor λ

Allows the temperature fluctuations

Tries to minimize local disturbances (like stochastic thermostat does)
while keeping the global effects unchanged

Proportional time-rescaling
Velocities scaled at each time step

Rate of change of T is proportional to the difference in temperature
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Berendsen thermostat

Proportional time-rescaling
dT
dt = 1

τ (T0 − T )

τ coupling parameter
Exponential decay of the system towards the desired temperature

This lead to a modification of the momenta pi → λpi
Rescaling parameter λ
λ2 = 1 + ∆t

τT
(T0T − 1)

Note: Velocity rescale λ2 = T0
T

Drawbacks
Cannot be mapped onto a specific thermodynamic ensemble
Interpolation between the canonical and microcanonical ensemble

∆t = τT , fluctuations of Ekin vanish and phase space distribution
reduces to NVT
τT →∞, corresponds to an isolated system (NVE)
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Nose-hoover thermostat

Idea
Simulate a system which in the NVT ensemble

Introduce a fictitious dynamical variable = friction

Friction slows down or accelerates particles
Measure kinetic energy and energy given by bipartition theorem

1
2KBT per degree of freedom

Scale velocities of particles so that we have desired T
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Nose-hoover thermostat
Varibles
ri , - positions

vi = ṙi = dri
dt , - velocities

pi = mi · ri , - momentum

ṗi = mi v̇i = miai , - force

Dynamical equations
ṙi = pi

mi

ṗi = fi − pi · ζ(t)
fi = −∂V (q)

∂qi
ζ physical meaning friction, changes with time

ζ̇ = 1
Q

[∑N
i=1mi ·

v2i
2 −

3N+1
2 kBT

]
Q determines the relaxation of the dynamics of the friction, heat-bath
mass, large Q denotes weak coupling
T denotes the target temperature
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Harmonic oscilator, r(0) = 0, p(0) = 1, ζQ (0) = 1 or 10
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Nose-hoover thermostat Wrong behavior - Solution

Need invariant probability distribution

Nose-Hoover chain method
ṗi = fi − pi · ζ1(t)

ζ̇1 = 1
Q1

[∑N
i=1mi ·

v2i
2 −

3N+1
2 kBT

]
+ p2ζ2

ζ̇j = 1
Qj

[
Qj−1ζ2j−1 −

1
2kBT

]
+ pj+1ζj+1

Thermostat masses affect dynamics in achieving canonical
distribution

Large masses - microcanonical distribution (NVE)
Small masses - fluctuations of the momenta greatly inhibited
Q1 = 3N+1

2 kBT/ω
2

Qj = 1
2kBT/ω

2

Allows the thermostats to be in approximate resonance with both the
system variables, which are assumed to have fundamental frequency ω,
and each other
Mass choice in chain method less critical than in single metllod
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Harmonic oscilator, r(0) = 0, p(0) = 1, ζQ (0) = 1

Chain dynamics (M=2)

Distribution good approximation
to NVT

Dynamics fills phase space

Changes in the initial conditions
dont have an appreciable effect
on the results

Choice of thermostat mass is
not critical
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The Lyapunov exponent

The Lyapunov exponent
Measure of the degree of chaos present in a dynamical system

More chaotic the dynamics of a system → the more quickly it fills
phase space

Calculation
Systems containing M = 1-15 thermostats

Wide variety of initial conditions (Q= 1)
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Lyapunov exponent of harmonic oscillator as a function of
the number of thermostats, Q=1
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Nose-hoover thermostat - Conclusion

Thermostating the extended variable
Stiff complex systems (proteins)

Difficult to start near equilibrium
Large unphysical oscillations in T may develop
Additional thermostats will effectively damp such oscillations
More stable simulations

Summary
Very good approximation to the canonical ensemble even in
pathological cases

Wide application
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Thermostat Artifacts in Replica Exchange Molecular
Dynamics Simulations

Replica exchange molecular dynamics (REMD) simulations
Enhance the conformational sampling of molecular dynamics

Several “replicas” simulated in parallel at different T

At regular intervals - attempts to exchange replicas to increase
conformational sampling efficiency at lower T
After accepted exchange - Particle velocities:

Reassigned from a Maxwell-Boltzmann distribution at T
Old velocities are scaled (T1/T2)( 12 ) and vice versa
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REMD

Berendsen Thermostat
Dont produce correct NVT

Detailed balance condition of replica exchange is not satisfied

Protein folding in water
Helix-forming peptide with a weak-coupling Berendsen thermostat
Conformational equilibrium is altered

Folded state is overpopulated by about 10 % at low T
Underpopulated at high T
Enthalpy of folding deviates by almost 3 kcal/mol

Non-canonical ensembles with narrowed potential energy fluctuations
Artificially bias toward replica exchanges between low-energy folded
structures at high T and high-energy unfolded structures at low T
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Folding probabilities
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REMD

Folding probabilities
For NVT REMD does not affect folding populations
Berendsen - REMD alters the relative populations

Folded states become overpopulated at low T
Underpopulated at high T

Replica exchange molecular dynamics (REMD) simulations
Thermostats producing incorrect canonical ensemble

REMD distort the configuration-space distributions

For REMD use only thermostats correctly representing NVT
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Simple Quantitative Tests to Validate Sampling from
Thermodynamic Ensembles

Some aspects of molecular distributions can be checked directly

NVE
Total energy is conserved with statistically zero drift

NVT
Potential energy independent on particle momenta (except in systems
with magnetic forces)
Kinetic energy will follow the Maxwell–Boltzmann distribution

Consistency of distribution, estimated using standard statistical
methods

Average kinetic energy corresponding to the desired T

NPT
Proper average instantaneous pressure computed from the virial and
kinetic energy
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Difficult tests

Proper distribution for the potential energy

Proper distribution for total energy of an arbitrary simulation system

Many possible distributions which have the correct average
temperature or pressure but do not satisfy the proper Boltzmann
probability distributions for our specific ensemble of interest
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Basis of the ensemble validation techniques

Thermodynamic ensembles all have similar probability distributions
with respect to macroscopic intensive parameters and microstates

P(~x |β) ∝ exp(βH(~p,~r)) canonical
where P(x |y) indicates the probability of a microstate determined by
variable(s) x given a macroscopic parameter(s) y

The probability density of observing a specific energy in the canonical
ensemble

P(E |β) = Q(β)−1Ω(E )exp(−βE )
Ω(E) density of states, Q canonical partition function

No knowledge of Ω(E ) distribution, cant identify proper distribution
Ratio of distributions from two simulations performed at different T

Two different β, other parameters the same
Unknown Ω(E) cancels

lnP(E |β1)
P(E |β2) = [β2A2 − β1A1]− [β2 − β1]E

which is of the linear form α0 + α1E . Note that linear coefficient
α1 = − [β2 − β1] is independent of the (unknown in general) Helmholtz
free energies A2 and A1.
Helmholtz free energy A = −β−1lnQ
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General and easy
Can be derived for any of the standard thermodynamic ensembles
Require only energy(NVT), volume(NpT) and particle numbers(µVT)

NVT
Bin Total energies
Distributions must be sufficiently close together

Statistically well-defined probabilities at overlapping values of E

Fit the ratio of the histogram probabilities to a line in overlap region
Slope deviates from −(β2 − β1) → not canonical distribution

Shortcomings
Necessary test for canonical distribution

Not sufficient - not a direct test of ergodicity

No info whether states of same energy sampled with equal probability

No info whether there are states that are not sampled

Can be trapped in a portion of allowed phase space

Additional tests of convergence or ergodicity required
Lukáš Sukeník (MU) NVT, Thermostats March 13, 2017 26 / 31



Example
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Ensemble validation of water simulations

900 TIP3P water molecules in NVT

Nosé – Hoover algorithm
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Lennard-Jones system

a - Berendsen thermostat
Slope of energy ratios 7 times higher than expected
Low β (high T) simulation over-samples that particular kinetic energy
Incorrect, overly narrow kinetic energy distribution

b - Nosé – Hoover thermostat
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Conclusion

Validity checks
Molecular distributions characterized by Boltzmann distributions

Easily check for consistency with the intended ensemble
Robust and general method

Regardless of the details of a simulation
Require only 2 simulations with differing external parameters such as T,
p or µ

Cancel out system-dependent properties(densities of states)
Result in linear relationship between the distributions of extensive
quantities (energy, volume, enthalpy and number of particles)
Slope of the relationship completely determined by the intensive
variables set by user

Necessary, but not sufficient condition
Ergodicity
Full sampling of phase space
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The End
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