Energetické suroviny Nerostné zdroje světa, fossil fuels part 02, hydrocarbons, … Ropa – strategická surovina Ceny a mezinárodní konflikty Historie cen ropy http://www.wtrg.com/prices.htm Produkce - cena Geneze kerogenu (Robb 2005) vznik geopolymerů a krakování Vznik uhlovodíků Ropa - oblasti Vznik uhlovodíků - paleogeografie Ropné pasti - ložiska Ropné pasti II. Nejvýznamnější produkční oblasti  Perský záliv  Severní moře  Rusko (z.Sibiř)  jv. Asie  severní Afrika  … Kaspická oblast v.Kaspického moře – poloostrov Mangyšlak, ploché vrásové struktury, pískovce sv.jury – ropa, klastika sp.křídy – plyn z.pobřeží, Apšeronský poloostrov, oligocén, miocén, pliocén, (paleodelta Volhy) Perský záliv SA - Ghawar – karbonáty, jura, Safaniya – křída Irán – oligocén, miocén, antiklinální struktury vápenců Irák – rozsáhlé antiklinály vápenců, eocén, oligocén Kuvajt – ložisko Burgan, rozsáhlé ploché dómové struktury, křídové pískovce, hloubky 1000-1500m Perský záliv Severní moře ploché antiklinální struktury, karbonské dolomity, jurské pískovce Ropa a zemní plyn v ČR http://www.petroleum.cz/ropa/vyskyt-ropy-soucasnost.aspx Mexico basin Geologic cross section through the Gulf of Mexico basin. Rusko - uhlovodíky západosibiřská provincie – jurská a křídová klastika východosibiřská provincie – kambrické, prekambrické hor., permské a křídové sedimenty Velká ložiska z.Sibiře Oil and gas reserves Arktida Plyn z břidlic – „břidlicový plyn“ – shale gas Čína shale gas - USA stabilizace cen energií? Marcellus shale Další zdroje uhlovodíků Rozšíření hydrátů metanu One of the most extensively studied gas hydrate deposits is Blake Ridge, offshore North Carolina and South Carolina. Challenges of producing methane from this deposit are the high clay content and the low methane concentration. [3] This map is an example of the proximity of continentalmargin deposits to potential natural gas markets. Image by NOAA. genetic types of gas hydrates Hydráty metanu I.  v laboratoři: cca z 1. poloviny 19.stol.  v přírodě: známo cca ze 60.let 20.stol. Hydráty metanu II. Image courtesy Southwest Research Institute. „8“CH4 46H2O http://www.netl.doe.gov/technologies/oil-gas/FutureSupply/MethaneHydrates/about-hydrates/chemistry.htm struktura led-metan Example of methane- ethane double hydrate (only 2 cages are shown) slabší než vodíkové můstky, vzájemné působení molekulových dipólů Van der Waalsovy síly CH4.7H2O Jak vypadají makroskopicky? A close-up of methane hydrate observed at a depth of 3,460 feet (1,055 meters) off the U.S. Atlantic Coast. NOAA Okeanos Explorer Program/2013 Northeast U.S. Canyons Expedition. Důsledky složení a struktury (Credit: Image courtesy of U.S. Department of Energy) Mars Enceladus Enceladus Offset Spreading Center December 15, 2008 Enceladus in Eclipse January 7, 2009 The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Oct. 31, 2008 at a distance of approximately 137,000 kilometers (85,100 miles) from Enceladus (moon of Saturn) ... fractures that cause degassing of a clathrate reservoir ... (Susan et al. 2006, Science 15) I na Zemi - uvolňování metanu This colorized image of the ocean surface taken from the space shuttle makes the sea and clouds look like an artist's abstract dabs and brushstrokes. The bright streaks are oil slicks produced by hydrocarbons seeping naturally from seafloor vents. Vrstvičky hydrátů metanu Vrstvy hydrátů In 2001, researchers using the submersible Alvin photographed hydrate forming under a rock overhang near Blake Ridge, offshore of Georgia, at a site where the Ocean Drilling Project drilled in 1995. Image courtesy of Woods Hole Oceanographic Institution. Vznik metanu (hydrátů) CH2O + O2 → CO2 + H2O (1) 2CH2O + SO4 2– → 2CO2 + S2– + 2H2O (2) CH4 + SO4 2– → CO2 + S2– + 2H2O (3) 2CH2O → CH4 + CO2 (4) CO2 + 8e– + 8H+ → CH4 + 2H2O (5) Methane is produced in reaction 4 by fermentation and in reaction 5 by carbonate reduction. The CO2 required in reaction 5 is produced in reactions (1) to (4). The methane produced freezes in the sea water to form methane hydrate and is deposited in the space between grains of ocean sediment as cement. Thermogenic alteration occurs when sediments containing organic carbon are deeply buried within a sedimentary basin resulting in elevated temperatures. When the temperature reaches ~100°C, the organic carbon breaks down to form methane (CH4) and carbon-dioxide (CO2). Methane formed by thermogenic alteration percolates up through the sedimentary pile and combines with water to form the methane hydrate. Formation of Gas Hydrate in marine environments CH2O + O2 -> CO2 + H2O (1) 2CH2O + SO4 2– -> 2CO2 + S2– + 2H2O (2) CH4 + SO4 2–; -> CO2 + S2– + 2H2O (3) 2CH2O -> CH4 + CO2 (4) CO2 + 8e– + 8H+ -> CH4 + 2H2O (5) In nature organic carbon from the detrital remains of dead organisms is converted into methane in two ways, biogenically (bacteria) and thermogenically (heat). Bacteria that live in marine sediments survive by consuming organic carbon from the dead biota deposited with the sediment. This bacterial activity occurs in the top 10's of meters of the ocean floor. The main reactions used by different bacteria are (1) bacterial oxidation, (2 & 3) bacterial sulphate reduction, (4) bacterial fermentation and (5) bacterial carbonate reduction: Methane is produced in reaction 4 by fermentation and in reaction 5 by carbonate reduction. The CO2 required in reaction 5 is produced in reactions (1) to (4). The methane produced freezes in the sea water to form methane hydrate and is deposited in the space between grains of ocean sediment as cement. Thermogenic alteration occurs when sediments containing organic carbon are deeply buried within a sedimentary basin resulting in elevated temperatures. When the temperature reaches ~100°C, the organic carbon breaks down to form methane (CH4) and carbon-dioxide (CO2). Methane formed by thermogenic alteration percolates up through the sedimentary pile and combines with water to form the methane hydrate. systém H2O-CH4Stabilita fází systému H2O-CH4 bar Stabilita hydrátů CH4 The Hydrate Stability Zone in Subsea Sediments Hydráty v mořských sedimentech http://www.pet.hw.ac.uk/research/hydrate/hydrates_where.cfm Hydráty - Sibiř *A huge pillar of solidified (natural) gas hydrate produced in a methane pipeline rupture under below-zero (-63oC) conditions; the height of the pillar can be estimated, by comparison with the hut, as about 60 m. The photograph was taken in Siberia by Novosti Press Agency and is reproduced from Makogon (1987). Frabk H. Herbstein, Crystalline Molecular Complexes and Compounds, Oxford Univ.Press, 2005 Průzkum a prognózy Zdroje hydrátů v číslech http://www.gas-hydrate.org.cn/permafrost/perm_11.pdf Průzkum a těžba Význam hydrátů metanu environmental risk fossil fuels reserves