PROBLEMS FOR HOMEWORK 3 1. Problem 1 Calculate the integral: |z|= 2 n z + 1 sin(n2z2) dz. 2. Problem 2 Using the residue calculus, evaluate the integral ∞ −∞ x sin(nx) x2 + 2x + 2 dx (for n even), or the integral ∞ −∞ x cos(nx) x2 − 2x + 2 dx (for n odd). 3. Problem 3 Using the residue calculus, evaluate the integral ∞ 0 x + n 3 √ x(x2 + 1) dx. 4. Problem 4 Using the residue calculus, evaluate the integral ∞ 0 ln x k √ x(x2 − 1) dx, k = n + 2. 5. Problem 5 Using the residue calculus, evaluate the integral |z|=n+100 1 nz + 1 cos 1 (z − 1)(z − 2) · · · (z − 99 − n) dz. 6. Problem 6 Using the residue calculus, find the sum of the series ∞ k=n+1 k2 + n k4 − n2k2 Problems 1,2 count for 1 point each, problems 3-6 count for 2 points each. 1