Thm.1.42-supp.ae E is a we group and HEG a closed Sub group . Then the homogene aus Space % 0dm its a Unique structure of a Smooth uefd . s.t.IT : G- → % is u Subversion (Smooth t TGF is snrj . Fg EG) . In particulier , die (4) = dein (G) die LH). More over , C : Ex G/ # → % , llg ' , GH) g) H , is a smooth left- adieu of G an GIH . Proof By Thin . 1.29 , H, is a we sub group of G We wrihe GEG for the liesanahgebrawrresp.to H . Let n) Contract a Smooth atlas for El# . Cheese a vector space camp linear t be of G in J : g- - ka G . Cousine y : k ⑦ G → E (X , Y) n expk ) exply ) . By the proof of Then . 1.29 , we know that 7 open neighbhds W of O in k with explw) n 17--49 and aiüäghbhd . of O in G s.i.FI U ' is a diffeoueorphidm onho an open neighbled . U ' of e in G . By possinlyshrinkiuy W , we mag also essen that for Xn , Xz EW e xp Kr) - ' exp Ke ) e U ' ( by continuity) . Now Laender F : k × H. → G FLX , h ): = exp 4) h Heim : F) ja , !xH → U = : FLWXH ) is a ditfeom . Outro an open neighbh.ae . U of e in G . ty : Assur expkn ) h , = exp Kz ) h . Xs , Xz EW " ^ , hz EH =) hin , = ex pKs )? explxz) E HAU ' - = explv ) =) 7 YEV sie . exp LY) exrlxn ) - ? expl ) 4 Knie ) = 411,0 ) =) 4--0 and Xs - Xz =) h hs i. e F ↳+ µ iujedive . More over , FK , ¥4)) = y IX. Y ) ¢ Loudly oraud Wx 309 we neu wnhe Fas yo Lid , exp - 1) . =) Tk , is a know is aus rphin.tt/e-W.-- By F. Lid , f " ) = f ! F , we warmen that is an isomorphem VX EW , KLEH . =, F is a Local diffeau . er and any point in Wx H Iujediuiey theiugalouddiffeo → U : _ FLWXH) is open end F : Welt → U di fteau . anno U - Contract now the athos her G)µ : IT : G → GIH * LU ) E ↳µ Is open (T - 1 ( TW)) P ' = U =) ITIU ) Set y : W → * LU ) is open) 4k) - IT Lexpk)) Haig 4 is a hauen morphin . Iujedivihy : X " , Xz C- W wie Y, 4) = 4 (Xz) i. e . expks ) H = expkz) H . =) Xn = Xz Since Fis in jechwe an Wx H =) 4 Ninja surjediv.ly of y follow> direct } hautnah ef F . =) 4 is a hijedieu and evidentes it is Continuous as a • up . of Continuous mops . W ' CW open sunset , then IT - ' LYLW ' ) ) = F (It) is open in G =) 41W ' ) E GHz vs open . - Fer ge G , seh Ug : - IT Wg LU )) = { gexplx) H : XEW } E GIH und lel ug , UGTW he defined hy ug : - 4-! log . , { ( Ug , ng ) } , ⇐ a. is a make ahoi hier EIH . ) k ) = ug , lgexpk) lt ) = 4 " Kg ' ) ngexpk) A) =p ! ( F - 1kg ' ) - 1g explx ) ) - C- U =) Ug ° Ug " = pr, o F - 1 . Ilg, _ Igf Xp is Smooth . For this structure an % , F : G - GI # n atmenden Subversion : Yo Toy : Wxv → W is a Smooth Hehlereien .= prn Sun a sub mer > ran wo, the Universal pro nerky that for any weop f : GI# → N ho auohew anode mhd . N f- is Smooth ← f. IT : G- → GIH → N i ) kuende . The univ . in noky imp Lies wenig neue of hie Cb - sv.eu % Id hey applyiug it to the identity LGIH , A) → ( GH, Dß ) hier two Smooth runderes A and B . It remains horhow that l . G x G) → ↳µ „ smooth . leider : G- × G → C- × % Es G/ # is Smooth " - Ko III : Ex E → G- → HH Since IT Is n surj . Sieben . , so is id × IT and Jo the Univ pro nerhy of Summer sei aus ruplies l i ) Smooth O . It is not difticulrko see that : Then . 1.43 = Suppen M is a smooth uufd . eguirneed with l : Ex MTM • Smooth Marine Left udrieurof a hie group G- . Then to any × e- M , ¥ is aosed a schied suehgreup of G - : and the naturel hr jeder -0%6 -7 C-* = M is a di ffeauopu.sn . × - 9 Ex - g-× Until the 19h ceuhury (heitere Riemann im geometry) I people under >hood hy „ geometry " denn exckesiudy Euch denn geometry . In oder to in Corporate non - Enclidhae gedehntes (parallel postenhabe das not hold) F. Klein Propanol in its Erlangen programm bruder mehren of the geometry . Geometry in the Sense of Klein ( Klein geometry) EE Gmtd . M equipment when a Smooth transitive Left - adieu of a we group . If we fix a hose mit × c- M and sel § = : H , then M = % is n homogenen hspoe wir G adiug an GIH by Left multiplikatoren . The geometry srecikedkysua.eu adieu is the Steady of figures Ipropertres of tigures that are Left inuoieub under the group . So the geometrie studiere an M " Speak ed iudinechly hy Soyrug what its on home air ms ( syuuehes) one . Exocet ① High- school geometry / Euch denn geometry . M - IR " - G- EY ) { ¥ Axtb : IIII! } . equippeed wir shaudud lsom LIR" , gen) . immer product < , > . G × M → M transitive left odieuef G an M . ( ( A , b) , × ) in Axtb × - OEIR " G. = Ola) IR " = Euch )P 0h ) . ② Affine geometry M - IR " G = Afflu) = { xt) Axt : At GUu.IR ), 4- IR} Ä { ↳ . . . , a) e- IR " " : x. = 1} ± IR " " ohne - uywpwe.ee. Elements of GLIut1.IR ) that Preserve A " are of hee £"" { %-) : be IR " , A- e- Gun .IR/3EGLheHiR) % ⇐ Afk) Aftlu ) 4) EA " Atf" )) / - • GLK.gg Afflu ) x A- " → A " transitive bfsodieu . = IR " . No measure of distance and Kugler , but the concept of parallel Wies , Co linear ihy . . . still leute . ③ M = S " E IR " " eguipreed with wund mehre Ira - - Olnt 1) = Isaak" . grd ) i 0 Int n ) x S " → S" ads transitweg an S " . S " = Okt )au ) - GF Ola ) . es =/? Orr , o) C- IR " t , Analogwe of the parallel rushulölehe for the endogene of " line , " en S" , handy tue geodlsics of g.a I does not hold ! Any two great Circles me et et kenn raus . ④ IR " " = IM " " eguipradw.tn standard ↳entziehe × Ko . . . , au ) inner product Cry> = - x. g. t nxiyi = xt [ ' n . . ) y HI Ex e- IR" " : < × , × ) = - 1 , × . > 0 } ↳ n - dein ky neben space equipment with its standard mehr C 9 nyp * . „ Parallel postulate " deoe ) hat bald hier geodes.cc does und bald : 7 infiurhelymoygeodesi.es through • Minh not iuwsed.my a 9in an . ⑤ Classical projectine geometry . IRP " = n dein . proj . Space = 1- dich . kebsnoce of IR htt . IT : IR " " hol → IRP" - Project we Lines of IRP " = im Gls of 2- dem . subgpoceg of 11241 under IT C- LLut1.IR) × IRP " → IR Ph- transitive Left edien . ( A , [ × ] ) -7 [Ax] Ex ] 2- ( GLIutn.IR ) ) = ( IRIS d) I.„ + , / " : g) × - Ix PGL Luxe , IR ) : = G"" " ' " %( Eda +1 , IR ) µ " mond subgneup . pnejechve linear group . =p left adieu ¥42) × IRP " IRP " PGLlutn.IR) ⇐ { f- : IRP) IRPN : f- mops rrejea.ve Lines= IRP" . ho psosechwelimsßf. PGLlutt.IR)# ¥) ] " stabil zu of line Een]