Grollarg1.21-letyn.tt → E be a Continuous group homomorph. between two hie graeps Hand G . Then if is smooth . Proof First we show the statement for H ( R , t ) (o - e . y is a Continuous 1- parameter sub group ) . Going If y - x : LIR , t ) → E is a can hin . 1- parameter sub gr . , then 2 is Smooth . EG By Thin - 1.19 , 7 r > O s . t . exp : Bzrlo ) → explB.io)) with rodin, }" hallo sound 0 Eig is a diffeom . onlo on open neighbled . of e E E . Since a is Continuous ( and a lo ) = e) , JE > 0 Set . < (t E. c ] ) E exp ( Br (o )) = : Br (e) . Define ß : TE. E ] → Brlo) ß = exp ; od Brlo) For It) < § we love : explplt)) vs explßlzt) ) = akt ) = alt) alt) = exp 12pA)- - ßLZT) = ZßH) =) ß (E) = f- ß (s ) HSEEE.ae ]. By in ducken , one gets : ß (G) = # ßls) V-se-EE.ee] - KKE IN \ For YN one los : + E) - AGE) " - exr.ws#)T--exrLE.rskD - Falt ) = explttzßlc) ) ltte {II : KEIN , nzz }⇐ = since alt ) - ' = al - t) and exptx) - expk) -1 Since DE IR is denn and botusides of are Continuous , we dednce that alt) = expht f- ßcc) ) FTEIR. So 2 is smooth , since the right hand siehe is . Now Laesion tue general Gte : y : H → G- . Toke a basis Xn , . . , Xu of ff - Then ü ltn . . . .tn/--eapltsXu)..exrltnxn ) detinesadiffeau.frauaneigh-bld.at OEIR " to a neighbhd . of e E It and its inverse u is a mal . Then (you - 1) Hr . . . .tn/--ylexpltnx,)..expltnXnD=ylexpltsX)) . . . ylexpltnxn)) i Continuous 1- parameter subgreups, heuce senden by what we home Shawn . =) you - ^ is Smooth and - keine yis Smooth ↳ colby around e C- H . =) by, " , oy = yo In, implies that y is smooth ↳ uol.ly around any h E H - D Prop.1.LI For a hie group G we elende by Go E G the lonnected Component of G Contra in ing e E G , when is Called the home and Component of the identity of G . ① Go is an open and chered Sunset of G . Lu per tiaeor , G. is a submtd . of G o ) tue seine dimension es G . ② E. is o normal sub group of G . Heule , Go is a hie sub group of E and % is a diserettorologicd group , Called the uauponeut group of G . Proof ① r ② geh E Go =) 7 Continuous Curve ) Cg , Cu : [ 0,17 → E sie . Cglo) Cnlo) = e E G- and Egli ) = g , Cnl 1) = h . =) tun µ (GH) , Cult)) = GH) - Cult) is a Continuous one connect mg e E E wir gh . =) gh E Go since . t → v Lcglt)) is continuous , also g- Z Go for any GE Go . It is a normal sub group : her GEG> , k e G , + → kcglt) k - 1 is Conti nous Curve Conway e E G wie kgk - I =) kgk It Go . ①ad② J Go E G is a lieben group and %. is group , while is a eliscret homologgroup . ( IT : G % , quotient tordog.ae %. . UE %. is open ⇐ IT - 1/0 ) is open in G . gGo E % . IT - 1 ( g. Go ) = G g. h : h e Go } = Ig ( G. ) E G- . p = 4¥ G and H one we group, with hie algebra , O . J and G . Then one has : ① If y : E → H is a hie group homomorph isn , then go G = ex pH . y " ← where y Tey : g → G . ② Es wincides with the subgraep generaked by exp EE . ③ If y . y : E → It are die group koueoueopzisu s.ly' = y ' . then 9) ↳ = 41£. ' Ie petrenko , if G is conaeched , than 4=4 . Prost. ① Recall that Tgy ↳ Lg) = Ly , Y )) ( see proof of ① of Pvp . 1.12 : Lx and Lyck)are y - related ) . www.impliesy.FI " = FLIP" ! y . - Heuce , ylexrk )) = y I FLY (e ) ) = FI" lyle)) - - e = exply ' k ) ) V. XE J . ② If Ä is the Iubgreup generalrat by exp (g) E E , then I ± Ge , since the xp Hx ) is a A- arne wmediwgetoexpkek.is to a To see that Go E Ä , note that , since exp e On diffeom . t.ro neighbhei . . f OE 7 , exp (g) Land thus also Ä ) contoins on open neighbhd.VEG of e E E . Then for ge Ä , Ig ( U ) is an open neighbhd . of g containiend in Ä , since Ä is a sub group . Thies , Ä is on g.eu Kessel of G . But EEG is also aosed , equiualeutly GIÄ is open , since her ge GTG , Jg ( w (U ) ) = { g- hi ' ihr}is on open neighbh . of g. Containers in GIÄ . 9- " ZÄ - g. ii.httThus , Ä , > also Closed . =) Ä = E- . § ③ By ① , y and Y Gina de on . Since they one group how Thin , 4) £ - 4)§ end so the uoim follow, freu ② . D . An application of ① of Then . 1.23 is for example , txampledet: GLLn.IR) → (RVO } , • ) is a hie group det ( A B ) = detl A) der IB ) . houuauophisu . In Global analysis we saw : det ! = Tddet - Trace : g RI . By ① of Then . 1. 23 : - dethel-I~V-xegllu.IR 1. 2 Representation s of hie group, and hie algebra, - Def.1.24-supp.ge E is a hie group . Then a representation of E on a finite - dimension real vector Space V is a hie group homo pleiten y : G- → GLIV) . i. Gxv → V s. l . Equivoleutly.it is a smooth nur 4 - • y Lg , _ ) : V - V is linear trage G . • yle , v ) = v tue G ylg , ylhiu )) = ylgh , r ) kg, he G , keV . Rennen Otten an nettes to Vos the representation of E when y is under > hood . Noten : Ilg, ) = : g. v-i.gr Example.IOG- = G- LU ) Defiuiug ne > presentation /standard representation of Gkv) : y : ELW ) × U → v (A.) Av Vie u uoice of non;) , we can identity G-LU )- Elke , and VEIR " und ye.GL/u.IR)xlR " → IR " be comes luultpliuatieee of A with a weder v ERIK EGLI u.IR . Similorly , any matrix group H E GLIV) ho ) a Standard representative • V . ② Adjoiut representation of a hie group G Denohe by conjg : G → G ↳ njugatieu by GE G . conjglh):- ghg " the G . It is a we group homomorpheisn auch Ad : E → ELI g) = { lin.isauopu.gg} Adlg) : Icon5g . @ → g . is a representation of G on of , called the odjoint representation of G . Let us Check this is a . representation : conjg = Dg . 19 - I f) Ig Innig = Tg- nigel9- ' = Tage! Teig . (*) conjgn = caisg.comin =) t.to/u) wenig. , = @ujg ) - ^ =) Adlg" ) - Adlg) =) Ad : C- → CLIG) is group hammer puh . To see that Ad is smooth , it sufhicieul to how that Lg , x) n Adlg) k) is smarte . Set F : Gx of- TGTTGXTE Flg , x ) n Log , X , 0g. . ) . It is Smooth and so is also Tre . lidax Tm ) ( Flg , x )) = In} . Tee ' ¥ Adlg) k) . If E = E- Llu , IR) , then Con B) = AB A- 1 is a linker uop Wiz : Mut IR ) → Mal IR) . Ad (A) K ) = Tdcociz X = Con = AXA - I V-XEglhe.IR/V-AEGL/u.lR).