Connection : G. + ✓ → V represeut . of a we group . ↳ + V* V - (g. b) f) = Ilg I ) FGEG , KIEW HUE ✓ . → gxv " - v . (x. d) ( r) = Jku ) . - IIBUNDESWEshall work in the Smooth category , i e . we will 6ns: der Smooth fiber bundles , vector unedles and Principe bundles . 2.1Fiberbundlesdef.INSupport is a smooth mtd . A (smooth) fiber bundle with standard fdsw F is a Smooth uvp p : E - M between Smooth mfds . E and M s - t . for any × e- M 7 an open neighbhd . U of x in M and a diffeouu . ¢ :p - ' Lu ) → Ux F s . t (*) P " ( U ) ) Ux F P ↳Lpr, Gwen tes . e - • E is called the total Space and M the hate of p : E → M . • ¢ is called a fieser bundle Chart or load trivial ize treu of P : E → M . • for any × e- M , Ex : =p " k ) is called the Reinen lf WEM is open , den p Yu) = : E µ U tweet " . is a the Knolle wihshaderdf.hu F over U . Def.2.2-supp.ae p : E - M is other bundle . • A (Smooth ) oectieu of p is a Smooth uop s : M → E Ey Sir. p! , sk) E Ex . ¥|• A Loud ( suwote) reden o ) P - µ is a sedan of Elw for open zehrt UEM . × Y p We wie TLE ) resp . TLEIU ) for hue set of seetiers resp . Loud zechieus an U of p . ETM . Due to (* ) , a fiber bundle has many Loud seitens UXF ( by K ) they done sp . houeops U → F x # K Ak) ) seciee + Em u f- : U → F Sunde - s but global sectreus night U , E- IR hat * ist . Er Melkt Exitteuce of Loud sauren , ( er 4) ) im plies that MT DREHER" "zu → p : E - M is a surjediwe Subversion . =) Fox e- M , E. =p-1k) e- E Smooth SabuJet . ef E and it is diffeouu . to F . Det A morphin ( resp . isomorph in) between two the bundle p : E - M and E : E → NT is a Smooth uvp ( resp . adiffeau . ) f- : E → E tweet von fires to the ( ft) c EI her Jene FEAT i. e . 7 a man f- : M - Ä St ' E der .ae ) f w E - E " ty ¥ ¥5 bauen Les . = By the universal propwtyofsurj.subwesieus , f- is automat iudlgSmooth . ( If f is an isauarpu . of the bundles , tun f- 1 is too ) . Erahnt ① M and F mtds . prs : MXF → M trivial f-ihn handle over M wir skoudod f.her F . A fieser bundle is called trivial zahle ( or trivial) , if it is is and place to M × FAM . Wehe that H) sag , that any the bundle is locallytniidizable . ② Vector bundles (see Global Analysis ) Vector bundles ore Jeher bundles p : V → M witn shaolerel Juhu a never space ' Ne IR " s . h . for any × EM 4 is avedar Space and there existtoud trivialitaeten on a neigen mhd . U of × , ⑦ :p-40) → Ux IV s . L . → 011 : Vg 544 × N = N Y is linear isomorph im . tty EU - Er ⑨ Tangente handle TM → M of a mhd . M . ~ -9ns ⑤ Any Lauer bundle TMQ - QTM ⑦ TMQ . . ⑦ Tre → µ → IT M - M We how see that ⑥ auch ③ how always many global seclieus . Seetiers of ⑥ are never Leeds and of ④ (9) Jensens resp. K farms . If E is a hie group , we home seenland TEIG " otrivializeble ( by left and right in verrat neuer Held> • G) . TG → Gx g. ( ging) '→ los , Tgsfig ) P ↳ GL Prs ↳Lg) ← ( y , x ) ③ Sur rose G is a hie group and H E G- a Closed kusgnap . Then GIH i ) o smooth mfd und p : § → GIH • surjeaivezibmersiee.by Then . ^ - 42 - *, n , +, expkih In the proof we uaestnched a at Hear . F : Wxlt → U E t g = G ⑦ k oha neige . Genuege . a) Oek oftpoexp × ich sie u Welt → plo) - H c is odifteou . ↳ u % ( plo) EGIH P) is open ) =) p : G- → % is a Lbv handle wie skandal 2W H . = Suppen p : E IM fiber bundle and kt da :p " ( Ua ) → ↳ + F and % :p-1L ! ) UßXF betwo Charts over open zebshs Ua . Us EM 9. L . Was : = Was ↳ Ff . Transition uiop / vorlaege is givae of tue tou : % ° % " . Was x F ↳x F fosaly , _ ) : EF is edi )Kan ↳ it ) - ly , ßaly, f ) ) for Smooth mops 01¥ : Um × F → F s . t . for my yt Ua) Im Msa ( y , _ ) Was → Biff (F) . Local triviolizotreusg.ve rise to tue netten other bundle athos A- = { ( Ua , a ) : × EIG hier p : ET M : • . [ = ! a 01 , :p " ( Ua ) → ↳ x F I d ↳ Und Inwdizatieu . Prop.IN Suppose E is a Set , Monat Fore Snooker infos and p : E. → M a more ( hetweeu Sds ) . Assuue there is • I } open Law of M • for any a EI , a bijectieu da : p " ( Ua ) → ↳ F Str . p ) = pr, o a JUL Prs Flux) • for a , es c- I with Uaj= Was Us # ¢ the tnensitrawop is a) huhdl .mg/Oao/0j1:UapxF→ ↳ × F farm i ( y , f) klug, daslat)) for Smooth mops % : Was × F → F . EM Then E war he uuiquely werde Ihnen o smooth mfd.sk . p : E → M is a the bundle with the bundle atlo) A-= { ( Ua ) :< EY. Proof ( et . Global Analysis , when we used this for veaar hundes) . • Without has of geuwoiky we mag ossuue { ( Y. . 4) ist ]} i ) o neun tobte also, for M and that there one bijedons Hj : p - 1 ( Vj ) → Vj × F KJE ) wh. n one tendiere , of tue gian % ' ß , x EI - • Equipp E with the holloway toplogy : the subsels UEE s.tn Ol; ( Un p-1W; )) is J 2 • neu in Vj, x F VIE#] olefine u topdogy an E . If VEM is open , then ↳ Vj is open in Vg Vj E I and so p - ' (V) is open in E , i.e . p , E. → M i ) Continuous- Fu any WE F open , 0151 (Vj × W ) EE is open VIE ] . ( check this ) . • The hopology an E is Hausdorff , zince pauls indifferent fies war he seperded by Hen Sunset s of M and point) in the some hier neu he sereohed hy gaukelnd of F . Since M and F one Seeed Cannhoble , so is E . • Fix { (Wu , wa) : ke k } an alles Leer F . Then the sets 01514; × W . ) for DEI , KEK form an open come of E and G- x w . obj : 51W;) → vjlvj ) xw.tw ) is a how eonearphizn anno the open gebaut vjlvj ) xwr.tw) C- IRA im IM) tot im (F) One Keri fies directly theol transition maps of here mops one smooth . So , they nehme a Smooth uteos an E wir vdues in 112ohm (MIT dein (F) . In here warts , p Comebacks to Prs and Lance p : E- M is Smooth : Moe one , A- = { lvj , 01; ) : je ]} is a the buchte etwas treu p : ET M . D . 2.2 Bundles with Structure group Def.2.5-supr.ae p : E- M is a lauerte ) fiber bundle with Shared end Gw F Lev Gte a hie group octing suootuly (trau tue Left ) an F . ① A E ottos fer p : E - M (or a reauctieee of structure group Ko G of p : ETM Corvey. GXF→ F) is a fieser bundle athos A- { Na , da) : a- I} her p: E> M sie . for (E. da ) , Yo, ots ) C- lt the transition uop is of the form . Gratien % - % " . Was XF → Ua, × F " F 4. f) i-ly.de/--/y,Ydy).tf) - - for Smooth Ichs Y . . : Usa→ G . (W a fiber handle ② A fiber handle wie structure grau, G is a " " G - Strecke ) f iser handle p : E → M ↳ gehen wir a luoxiweoh ( or eguivoeeuce) G- athos for seine E action au its Standard her . Without has of generality , we mag reshict hohe lose w here Gx F - F is effective , i. e . G- → DifflF) was trivial Kernel . If the action is und effea.ve , then the Kernel K of E- → Biff(F) is a Closed normal sungnap of G and the the Knolle wir streusel gap G- war he also wen es one Win Stunde gar % . ③ Two G bundles one isouorneic it they are itauornwc ° ' hm hmdles by an isauorwanideuhrhyuugtueG-hudeoes-Examples.IOA (smooth ) vector bundle of rank K is the game as a fiber bundle with standard Jeher u k dein . weder space F - N - IR " with Structure GLIN) - GLLK, IR) ( when GUN) is actrvg an IV by standard tepres . ) . ② p : G → % G- hie group , HEG closed suibgr . is a fieser bundle with Structure group It actiug on It by left umltopliuehiae . For any × E % , J an gen neigte . Uofx and a I Loud sedieu s : U - G of p ( Sly ) H = y VIEW S Dives nik ho Loud trrvidizeetrae g p , PYSLY)) < ¥10:p " Lu) → Ux H folg) = (Ng), sfplgj.bg) + u Lpr, d- " (y , h ) = sly) h ~) H atlas { ( Ua . da ) } ze, in this way - „ 9 ④ ° % ' : Was × H Ups × H plsalg ) ) t ( g. n ) -5 ( sig ) h ) ! (pisdglh ) , :b !!;))= ( b , sslg ) { (g)h ) Sxly ) = ssly ) . h ' home F- - " ' EH . % 9) e H since plsaly ) ) = P Holy) ) Suppose p : E → M an effecliue f. her knolle wir Structure group G- . Then we have given : jene (i ) effea.ve G- actien of G on the standard 2W F (ii ) open love hey U { Ua } , of M liii ) smooth mops %. . Was ↳ → E ka , C- I related by tue pnenerwy that , ihr Was Von Oz FH, = : Wasgtun ¥) Yards ) . Ysaly ) - 4µg) ↳ eVarg . ( * ) is called the wcyae identity / egnatia {=) 4dg) Yaaly) = 4dg ) = - 4. aly) e V-yc.ua C- G 4g ßly) Ysgly) = Ygglg ) = e = , 4µg) = . Ulsglg) - 1 4 gß : Ugnß → G- ← HYE %g .YSI : Urs → G tag) Prop.2.G-supr.ae M and F are smooth uutds . , G aliegr . and we are Give the data d) Xiii ) . Let E : = ! Vax F)µ = { G. x. f) ixtt , x Eva , f cµwluere (d. x. f) n ( ß , x ' , f ' ) if x - x ' and N f- ' = Yak ) . f . → Then the natural project.eu p : ETM ( PLE II ) ) harte mode in ho o knienden her kuehle wir skaderd fuhr F and Shane G . × Prod da : FILL ) → Uaxt 544 ) = %f¥f ) { E. JA ] : 94,4} di " ( y , f) = [ a. y , f ] long egniv . das re p - 14) Leos aneigne hijecliouss.tn . p = pr, opa . nespresanhathewih ↳( ↳ ) am the first camp . Transition maps : % . Ola - ^ : Was × F Was × F ( y , f) 1Tiff = [ P , y , Yeats)f ] - ly.ys.ly/.f)ByProp. 2. U , p : ETM Can he made into a Kunde J.hu wedle wir f.her kuehle otto ) { Wa . Dabei , heute • f-aber handle wih stand . fiho F and Structure group G . D . If we a place { yßa} by a cohoueohogaesß- LEIXI ↳ cycle { 43, } * < ⇐ * [ lassen (i ) end (ii ) oe : Leo Ieee ) - . yaesk) fßk ) - KK ) Yislx) Hapert ✓ htt C- Was for Snooker Ids fa : E KEI . Then the uaestructreu in the proof of Pvp . 6.2 Ieod) ho an isomorphe frhu handle wir buchen group Gau M . . Carver> ely , any sie Aber handle wie studiere greys E definiere a cohouudogy Class of cocycles . Let n ) wow ↳ ok at two Imad Coles of such bundles , weder hindley and principe kuehles . 2.3 Vector bundles ( recall f- neue Global Analysis) - p : V → M vector bundle It is a fieser bundle with > hand . LW a never Space N |and structure group GLLN) . • Fer ung x EM , Vx is a weder Ipoe : y , y ' Elfe , TEIR ytty ' : = 9- ' (vttv ' ) 10 :p Yu) - Ux N WW Olly) = (x - g) = (× , ✓ , ) loudtrividiz. . , + e- U . - Note that this is well def . , i e . independent of here kehrt . ← Heule , TW ) = Space of social is a we do Irene and a modul over the ring ( MdR) ( s , s ' e- TW) ( Sts ' )G) = stets ' k) C- 4T C- ¥ = fs (x ) = fk) Sk) HXEM. • As we know frau heuser fields , ve cheer bundle how many global seciiens , since Load zectieus heute extended by zero vie bump functions . Def.2.jp : V - M and q : W → N two neuer bundles . ① w.tn shaderd 2W , IV and 1W Then a vector bundle morphin ( resp . isomorph ihn ) hetweeu p und 9 is a Jeher bundle morrison ( resp . isomorph . ) f : V - W wir under Gay way I : M → N sie . for any + am f) µ : K - Kfz, is linear . ② In the special Lease M = N and f- = idee , a Uecker handle morphin f : V - W iuducos a linear luop f-* : TW ) → TIW ) . f- * Ist = fos 1M - W Prop.2.tl p : VTM , q : W - M Vector bundles and IT : TW ) → TIW) a linear weg . Then OI = f- * fw a weder handle vorhin f : VTW ⇐ ¢ is linear 0hm .IR ) . Prod (f . analog ums statement for teuer finds in GA - Cbs) Exercise . Tl TM → TN ix. tEia f : MAN 4ueop hetweeu mfds . , denen Tf : TM - TN is a neuer nude warrior louuiugf Utiweg Prop . 2.4 . ( af . Global Analysis ) , we love . v - M , 4 : = Yuki - M is a vector handle and it is called the dual of V . • VTM , W -1M weder kuehle , than their Lenker Product ✓ ① W : Hauk ① We : IS also a vector bundle aus M < . 1 " V . S " V one also notudly woher kuehles . Rennen k - Theory - = Continuous woher kuehles ( usuolly langte weder kuehles ) bevor some nice homolog . X . V - X . W → × V W → X Set of isomorphem nasses ef neuer unedles der X is a www.hahvlsemi-gneupw.r . ho ⑦ ( weit 0 , gruen by id : #→ MX viewed es weder bd . du X wir 0 dim . Jshos ) . ¥ → 2 One war laustrudr en one lieu group KH ) Otte t of this semi - group ( Grothendieck geup ) . 2.4.Princiralfiserbundledef.INLet E be a hie group . A principaliser bundle with structure group G (or principe Gbundle ) is o fieser bundle p : P - M with Standard Eher G and structure E octrmgonitselfbyleftmultpucah.eu . By definitiv , then means one ho ) an atlo ) l ( 4. %) REIS her ns.t.gs.o/a-1lx.g)--lx.4saH:g ) Yßa : Usa- E Junk mops - The fires of a priuard E - bundle one difteau . ho G , hat they don't have a natural group Strecke , since left multiplikatives in a group are not your honour reims ! But eam fiber I has a naturel transitive night • den of G , which is free i e . dl rsohsory geup = " Eu = { es tut Px ( u - gu → g- e In particulier , for any tixed Pa , iuoeuae, VIE ) • einen . %; Eku E - Px = Ses How is this night lecken o ) C- an ten there of p detiued ? leuma2.10-supr.ae p :P- M is a principle - bundle Fur ne P , gt G- seh g rlu.gl : - u :3 : = Hä King ) EP - = Wwe ! :p " ( 4) → ↳ × E is n paarother laude war wie + e- Ua and Halle ) = E Ua x G. . Then r : Px G- → P dehnen o devote right active of E an P , called the priucipd right action e) Gon P . More over , this actien preserve, tue there of p auch testen d) to a free and Transit.ve rigu . neuen af G au each the Px . PRI r : Px C- → P is well de find , i. e . Independent of the Choreo of Chart , since left and right multiplen hier umlenken ' n E Px Summe % is mehr Chart • and x and % Lu) - K , h ' ) Thai h ' = Yak) h und 0/5^4 , h ' g) = 0/54, Ysaklhg ) - = Ohio;D: King ) = Fg) - ( leorly , ris Smooth and since right -uralt - of G an G is right - achten , r is a Smooth right action . By laustnectieu , r : II x E- → ? V - EM . and it is transitive . It is also Lee . ( n g- n ⇐ h - g - h ⇐ e = g ) Kdu ) = ( x , h ) D -