Recall : E is a hie group , representation of G : f-. G → GLLV) hie group homomorph: Im . . Adjoint representation of G . Ad : E Elly) . / T Adlg) : = econjg Def.1.25-supposeg.is a We algebra ouervlk R , Q . A- representation of you a IK Vector spocevis a ke algebra homomorph isn y : g → gllv) = { linear uops ✓→ v } - ( i - e . 4 is linear and YLEXMI ) = [ 4k) , yly )] = YKIOYLY) - 414). 4K) V-X.ee g) . Equivaleutly , a bi linear cuop y : gxv → V s t . YEXMI , v ) = 4k , 4M, r ) ) - 414, ykiu) ) H X. Y EY and tv e- V . By Prop . 1.12 , any representation . y : G- → GLIV) of a we group G in auce) n representation y ' Iy : g. → gfk) of its hie algebra g . For E- = G- Llu , R) , the standard representation 4 of G- Uni IR) gives tue Haidar) on R " : y ' : gllu.IR) × IR " → IR " ( Xiv ) n xv S imitiertes , for my matrix group and its standard representation . For the ad joint regeres . of a we group G , Ad , G- → Gag! the iuduced representation of g. , the so called odjoint representation of g , is givee.by ad : g- gllg) . Ad ) = adk) (y) = IX. 4] KAYE g. . = Te Ad as the fdlowing proposition shows : Prop.1.IE hie group with hie algebra ( g , E , ] ) . ① For XE of and GEE : ↳ (9) = Rad!;) ② For Kitty , odk ) M) = IX. 4] HEY e- g . ③ For XEJ , GEG we love explt Adlg) k )) = gexpltx) g- ^ . ④ For X. YE of we love : Adlexpk )) (4) = öd " (y ) = !!# idk [X. Es , EA .. . IX. 4]])- * = y + [ die] t IV. EX :D] + E. HE , , y]]]+ . . . Proof① ↳ Lg) = Radio) ) . Jg - 99 . conjgTeig × = Tel 9. Teconjg X = RLG) . " Adlg) k ) ↳ Lg) Adlg) X ② ( house a has - s X , . . . , Xu of the necker spacey . Then Adlg ) : g. → g wrresräuds to a nen matrix Kaijlg) ) . f- er eng ge G. - Note that aij : G- → IR eine smarte , since Ad is sueoote . Matrix representation of adk ) : g- g equds ( X. aij ) = In X = ( Li aij ) ( e ) . - Any YEJ Laune written es Y €1; Xi and / G) Ring, = Yiaiilg ) Rxilg) - ¥ ig ; [ 4. Ly] = . #Sig = = aijELx.R.IT/Lx-aij)Rx ; Fo b) Pvp. 1-14 = ↳ yjllieij) Rxi . Evalnahe de eG : ELx.ly] (e) = ;? ys-lx-a.rs/Xi=YY). ③ Since Adlg ) = Teconjg , tue nesulr tolles ehiectkg frau ① of Them . 1.23 . ( y : E- → H Lf o ex PG = exptt. y ' ↳ ujglexpltx ) ) = exp ( Ad G) ( tx)) = explt Adlg ) k) ) . ④ App } ① of Then . 1.23 to Ad : G- → Gllg) . Adlexplx)) (Y) = exp (adlx))(y) = öd y) - " ¥4. od KFV) . o . Prop.1.27-surr.se C- is a we group with hie algebra ( J , [ , ]) . Let y : G → ELW ) he o hie grau representation of G w.hn iuduced representation y ' : g.→ ghlv) of g . ① ylexpltx) ) Lu) = explty ' k ) ) 4) - HI = rtte # * EG , ve V , + ER . + ¥4 4 ' 4) v + . - r ② X. v : = y ' lu) off exrltxk-dd-feqltx.tv Pri ① fellows from ① of Then . 1.23 and ② follow) iuuuediahely freu ① . We will toter develop tue basic representation theory of hie group, and hie degeneres . 1.3 Li e sub group and virtual hie Sub group > - We already de find what a hie Ins group of a hie group is . Prop.1.LT Suppen H is a hie Sungrap of a hie group G . Then It is Closed as a Sunset of the Toro logical space G . ProofAny submfd . N of a mfd . M is loudly Closed , i. e . N is open in its done RT ( emery x EN Los neighbhd U in M s . t . Un N is closed in U ) . → For any subgrap H of a homolog Iced group G , Ä is also • sungar.tt ( ! I.¥9 # !;] " " F) If A is a we Sun gap of a hie gap G , H, is open end denn Ä . Heuce , liegt , bg ( H) EÄ is open in Ä ( sg : ÄÄ hauaeuogeei)since It is denn in IF , dgl H) n HF ¢ , Wi whichim rlies g E H . / - 7h, h ' EH s . l . g. h ' = h → gt #). D Converse ly , one los : That Suppe H is a sub group of a we group E that is Closed as a sunset of the hopolog . Erde G . Then It is a we group . Proof we wie J for the hie dlg . of G and G : = { c ' ( o) : c : IR - E is Smooth , do) - e and c ho> value, in H } - cg . Chief ' G is a linear sub snece . If cnn.cz : IR - HE GEOCuries ovalen lo) = G (o ) = e , then ( (t ) : = GH ) Ghat ) is a 8- arme witnvaues in H and CLO) = e . ( ae R) . Then , c ' 6) EG " - ¥!! ? H) , GH ) ) = %! (Ilo) , acico) = c) lo) to ello ) Leuna 1.7 - - Check: Sepp one ( Xu ! e. „vis a Sequence ing with n = × C- 7 and ter ( tm ) ne! le sequence in IR>• " t . 1in tu = 0 . n →so Then if expltn ) EH the IN , then expltx ) EH HTEIR . - Fix TER . Er ne IN let an he the hargest integer E . Then , ante Et and t antu 0 and a 0are v :LE. c) → g. sie . alt) = explvlt)) V-tel-E.ae) . ( vlo ) - 0 Eeg) . =) und 3¥ ilo ) ¥ rum) ilo) - " 'ok!!: Set tu : - I and Xn : = nv (E) , tue expltnxu ) = explvl?)) = < ( E ) e H T for high By Claire 2 , exp Hello)) EH THEIR . Clair Wrie g- G ⑦ k os a never space ( k is und ueupliueut of Ging . ) Then 7 an open neigend . W of Oek in k st . lxp (W ) n H = { es . To BE WNFINUED . . .