DIFFERENTIAL GEOMETRY STRUCTURE OF THE COURSE - I.LIEGROUPS.BAsic Theory • Representation> of hie group, • Classification of hie group , • Homogeneaus Spaces , klein geometrie> I.BUNDLES.FIber bundles , Vector bundles and Principe bundles . Associated Vector bundles • Homogenean vector beides HI.CONNECTIONS.linear connection on neckar bundles ( e. g. affine connection; • Principe Connection , an principe connection s • Geometrie structures determiniere ( closses ) of di > tingceisbedaffine connect iaes Leg . Riemann iaecufds , laufend uetds . projedive structures . . . ) ¢ Gauß Bonnet Then . ) • Holouauey group • Cartan Comedians , Carta geometrie . For refereucos / literature : see IS → study material . Evaluation - : • Home work , Lewy oder week) • Ehem . lord I written or beth ? ) . I. LIE GROUPS ( [ op , Lie group, ( leckere notes ) ) . - 1.1.BasicTheoryto.eegroup G we write : • µ : Ex G- → G for the multiplikation leeop ( µ (g. h) = : gh Kg , he G) . . v : G- → G for the inversion wlg ) - g- 1 9-97-5} . EEG for the identity / neutral element . } - e e. g- g. e = e V GEG Det A topologieal group is a t.ro logicdspoce G- eguipped with a group structure ( µ , W , e ) s . l . µ and v are Continuous . Rennen Any abstract group nahe made into a to polog . group he equippiugitwih the Misere topohgy . Det A hie group is a Smooth man : fold G equipped with a group Structure ( m , v. e ) s . I . µ and W are Smooth . Rleuoj.lu Def . 1.2 it is enough to require that µ is sueade , since w is then arkona Lindy smooth by app Ying Kee Im point Fa . Tun . to the Toten µ leg, vlg ) ) e . Det ① A homomorphismen between to pdog . group ( resp . Liegraep) G- and A is a Continuous ( resp . smooth ) wo p y : G- → H that is also group homomorphismen ( ylgh) ylg) ylh) kg , he G) . ② A homomorphen y : G- → H es in ① is called 9µsan isomorphen ' of topdog . (resp . Liegreugs) , if if is a haeeeoueorpuizn ( resp . aliffeouuopcize) - Note that in this COM 4- ^ is also a group homomorphisn . Notation Two hie group , G and It are called Isomorphie it I a We group isauopti.su between them . We wie G = H in this lose . Grau ps of greahest inter est in mathe an . and physics Lens ist of hijecti aus f. M → M of a seh M to it Self with group multiplikation giulu by uaepositieee pelf, Ä ) : = f. Ä t.IE/3ijlM):-setofhijech-iaesofM- Innen wlt ) = f- ^ und es = Idee . Examples-ltopolog.geenges ) . If M hos seine extra Structure , one can Con sicher sub group of ( Bijlre ) . . ) lousishug of hijectiaus presoviug tue extra structure . Suppen M is a topolog . Space Home o ( M ) : = { f : M → M : t is a home omopv.im} Seerose M is a smooth mfd . ( resp . asmoohoneutudu.be. ) Biff ( M) : { f. M → M : f is a diffeau . rptüzn} . Biff+ ( M) = ff : M - M : fis a oieuhatieeerresoveegdifkau} Suppen M is a smooth mhd . eguipreed wie a glaube Structure like a Riemann immer :c 9 Or a syuepledic form w . Hau LM g) ⇐ Sf : M → M : f- diffeau - s.t.f-g.mg} Symp IM . w) : = { f : MTM : fdikeeu.s.tn . für = w}. With the eeceptieuoflsaulM.ge) , there group , ooe all infinite dimensionalen d cannot he see a a we group ( at least not finde dienen sind aus os we can siehe) . They are how euer all nehudlyhopobgicdgraeps.dimlrekdiw.net)Isan LM , g) is a hie group of dim . E - Z ( see Global Analysis) . Now seine example , efochud die graeps . Elaine ( hie greups ) ① IR , CI with respect to + one li e group > and so is any finite dimension d we do space over IR er G w. r . tot ¢ and any cauplex uecker space one even cauplexlie-grapsli.e.holomorpu.cmfds . wie hdoueörpeic gray structure ) . ② IRI hob , G) 3 of are hie group ) W - r . to multipliziere . ( the Loher is ogoinauaeple.ve group) . Also , UH): S ^ = { z EG : tz 1=1} w r . to do heult minder is a hie group . f- and H ③ The product Ex H of two we group, is ogain a We group . In poh.cn her , the n dim . Torus TT is a hie group - T " : = Vln ) x . . × U L1 ) For men E Z > • also IR " × Tn is a we group The ↳ the ex haust all come cted kommenden hie groupS ④ If G is a hie group , then a hie Sub group Hoff is a sub group of G that is also asubmfd . Since the multpl . on It is just the restrictien of tue die an E- , it is Smooth and to It is a hie group . ⑤ Seppose V is a red or Loup lex vector Space (dimv ) C-LU) : = { linear isomorphes of V } E End W) = / { linea uops is a hie group w . r . to to VTVJ . open subsetdf neuer waupositieu of know maps . Mae End (v ) . ( If V is a couplet war Ignace , teuer GLLV) is a wauplex hie group) . Via a more of has is of V , we can identity Volk " for IK = IR or E und ELN) with . G- Lln , IK ) : = { AE Mnllk) : A innehabe } µ hin wahllos euer IK and can positiv of Ii war ueop, be comes matrix heult pliuetieu . It is called the general Linear group . ⑥ Matrix: (also called line ) one hie sub group of GLLV) resp . G- Lln , IK ) ( IK = Q.IR) . Recall freue Global Analysis , • Special linear group SLln.lk) - { AEGLLn.lk ) : det.LA)- 1 } ( Sun , d) is even uauplex die group ) . • Orthogonal group> : Ing : = (IP %) c- Mulk) n = pt 9 . defilees standard inner product on IR " of Signature ( ng ) : < x. y ) : = xt Ip , qy V-x.ge IR " . 01mg) = { AEELK.IR ) : At Ing A = Ip, } = 9 AEGLln.IR) : < Ax , Ay > = < x. y > V-x.DE IR " } . linear arthog . grey of Sign . ( ng ) . q - O : Olp , O) = Oln ) =3 AEGLlu.IR) : AEA " }. q - 1 : Oh , 1) Lorentzen gnap , ( = linear isometrie) e ) Minkowski lpoce) . > linear sywplectic grap : In = du ' ! ) EM.dk) defilees o sywpcedic Structure an IR " : WK , y) = xt Ing V-x.ge/R4.Spl2n,IR)--fAEGLI2n,iR) : At In A In } = 2 A E / , - : wkiy) - wltx, 1-g)Feiger} Suppen l E , m . W , e) is a hie group . Then we elende by z • Ig : G → G left ueultpciuetien by ge G . Igh) = µ ( g , h) = gh the G . • f 9 : E → E right ueultplicatioa by GE G . 19h ) = µ ( h . g) = hg the G . Leutnant For any GE G , Jg ( resp. 19 ) is a diffeauorph.su with inverse bge ( resp . 191 ) . In particulier , if U E G- is on open neighborhood of GEG , then juhu) ( resp . f " IU) ) i ) an open neighbhd . of kg ( resp . gh) . More over , for g. ne E we home bye! - Ignund f ! p " - f " 9 . Profen Jg resp . f 9 can he written es coeepositieees of Smooth Koop) i k G - Gx G - G u - Lg , h ) KG - Igand siwühdy bei f 9 : hm, In . g) Ä hg . Cleary , they are difteeau . wir neueres by, und f 5 ? Rest is also der freie definitions . / Lemma1.5_SupposeGisoliegreupr@Ferg.hEG- , SETGG , ZEIG one has (g)µ Isin ) Tigre tgehs . - - ( m : Ex E → G Tm : T ( G- + G) → TG )② For any g c- E , = TEXTE Tgv = Telmo Tgbg, = Teigig 19 " . In particulier , Teu : TEE → Te G land ) - IDTEE ' Proof . g.nl Ex G) - ① Tun, µ : Tg G- × TNG → Tgn G is linear weg . Iggy kn) Ignite ( s , o ) + Taille) . Lev c :LE.a) → E ke a Curve regeres . 9 ( ie . do ) = g , c ' lo) = s ) . - Then nesperat tu kaugal neuer 14,0) EINE;D Toni " " ) - G)* µ# Hin ) =D! !!!lett ) = = Tgl) Similarly , T.g.ng.MLO.ie/=dd-I+M=o9idt))=ddFfIgldaD---TndghWherec : l E. a) → G is a Curve terres . 2 ( do) - h , c ' lo) =L ) j - ↳ ② e = µ ( g , wlg)) g( g. vlg ) ) -7 GDifferenzierung =, O Tag! ) (Tglds , Tgvs) Tg 99) + Tgigtgvs the Tgf . - - =) Tgeig Tgus = Tg 154 ⇐ Tgvs = - Teigige; Seward konnte tollaus siuileeiy been di ft . e- µ Ivlglg). D .