Lasten G- hie group A prinzipal E - bundle ⇐ fiber bundle p : P - M with stand . Aber G and structure gr . Glactieg an itself by left uueltpl . ) . There is a right - actien of G an P : r : Px E - P • it nesticts to on action on the fisers , r : TI x G → ! which is free and transitive =) UEPxiudacesadiffeau.E-pg.su - E =P , Prop.2-11-suppose.pe. P → M is a Smooth Suri . ueophetuoeea ne fahs . and r : Px G → P a Smooth right actien of G that preserves the f.has of p and aus transitive ly and freely an edu f.her . Then p : P → M is a principe G bundle ⇐ poden.bg ↳ ud Smooth Kai aus . In particulier , if p :P→ M is a the kuehle wright- alien with a zuootu fisher- pre wrang oden of G an P that is transitive and free an euch find , then p : P→ M is n ßriucipd E bundle . ProofF) / Chase an gen neuer • U = { Ua} , £, of M so that there is a Loud decken Sa: Ua → P of p . Then di ' : µ . × E → p - ' ( Ua ) (× , g) '→ sg (* ) is the inverse a a smooth Loud trivialitäten Ola :p - " (4) → ↳ × G . Note that 4) is a hijea.ae , since ? × E → P, is free Handtasche ✓ x EM . For my x eWas = Von Up # µ ( for dis EI ) . 7 ! yßalx) EG 5. t . salx ) = Sgk ) : Ysak) . Implizit fd . Then . ich plies that Yß, iv. es → E is Smooth ( see also Seetiere 2.5 ) , ( × , g) = 9. (sek) g) = d. ls.KYE.gl = ( × , Ysak ) g) . =) { ( Ua , da ) } , # is u principe E bundle oteos her p :P → M . D . Def.2.12-supp.se y : H → C- is a hie group homomorphie between hie gray , It and G and q : Q - N and p :P- M u principe H ( resp . E- ) bundle . ① Then u morphin of principe l bundles over Y between pg end p is n fiber bundle morphin f : Q → Ps . t . f- ( u . h) = f- Lu) . 4h ) v ne Q , the H - ② Special lose of ① : H is a aozeed sub group of G and y = i : H - G is the in andere . Then a reduction of Structure group to It ofa prinzipal G- - bundle p : P → M is u principe H bundle q : Q IM |ho getan wih auuopu:L of principe unedles f : Q - P over i : Hanf www.lonerskeerdenlihyen M ( t.e.fm- id µ ). Q f- P f- Luk ) f- Lu) - ilu) 9) µ !p fln ) - h Note that f is iujeaine Q ↳ P . ③ A morphin of!riucipd G bundle p : P - M to it self loweriug the identity : PIP r ↳ µ ! p is called a gange transformation . ( Gange theorie in physics one forueuhehecd internes of Principe ) bundles und principe l lonuectiaes ) . leuuuue2.JP : P ) M , q : Q → N Principe kuehles . ① If f : P - Q is a ueorpuism of pnuci pol hnedleg and UEP , then fln) detemines die wehe off on Pp," , . ② Any morphium f : P → Q of principe G - bundles sie . f- : M → N is uol.ffean.is an isomorphem of principe handle . In particulier , ony gange transformation is an isomorphen Y pniucipd E bundle> . PHI ① n ' E Ppm, n ' = U - g for a unique ge G . sur Typ srr.gr f- Lu ' ) = flug) = fln ) . ylg) y : E- → Ht 99 = wie gr . hauen . % ! µ %: " :* an . flug) - fln) g) . Since a I is hijeclive , this im plies f is bijectieu . Remains to show that f- ^ is Snake , since then it is ouhoudiudlyamarpn.in of the Indies and E egu.v.wiaecygfimph.esE - eguivoieucy of f-1 . her 9 :p Yu) → Ux G and 4 : g-Yv) K G he priucipd fihehudle vorn her p andy with f-(U ) = V - Then , ( 4. too " ) 4. g) = (Ek), µ E) g) f-er seine - Smooth luop µ : U → G . =/ y - m ( f- ' (y ) ) - ^ is smooth , since I is odiffea. und innersten in G i ) Smooth - =) 01 of to y - 1 neuste he equal to lag) - Hills ) , nett - 4)Fg ) which is also Smooth . D . Event ① HE E- closed Sungr . of a hie gr . G- Then p : E → % is a principe Hbundle . ② N = real welcher Space of din - n D= flinker isauarpu.zsu.IR " - IV} → M Lpt} . priucipd-GLlu.IR) - bundle one a point Principe right even is give by : n EP , AEELLn.IR) u . A = no A : IR " → N E P Px ELLu.IR ) - P ( u , A) - no A UNEF , then A : = n-tv : IR " - R " E GLK.IR ). and U A = v . ( i. e. ocheuistneus.hu ) The action - oho hee , since not = u =) A- = U u = idü Equiuobutly , elements of P con le identifier wih the see has is for IV . → t.nl} → baiser G- In Standard bois . per TM ③ M n alien . vufd . , x EM . gegen SH - x Ee : - 3=2 FIM) : ↳ MFXIM) This is a priucipd-ELK.IR) - bundle < = with the principe night adrien gun byP ! } S u e- FILM) , A C- Ella, IR) M - O u . A = no A . \ " IM n C- Llu , IR) - athos : "zu IM ua : U , → udk ) EIR " 42 (U. .ua) chart of M . " " ' ⑦ IM Ina : IU, I R " da : P - " (Ua ) → Ua × GLLn.IR) - IM KK) : = (pl) , Tu. . r ) v://FI.ae Ph) % . % - ^ ( x. A) = (x , Tus . Tui : A) = 4. Yak) . A) - I Yak) 4g . : ↳ → GLIn.IR ) smooth . By Prog . 2.4 , FLN) → M is a priucird-CLIu.IR) - hudle , Called the ( linear ) frame handle of M . Note that any Loud secieu s : U → FLN ) of the FLN) girls rise do a Local frame of TM defiued an W . { and Kennedy . ④ Supreme V → M neckar handle with Ihadod Jw N . L FW ) : = : 4. EnEV) Ew) ) linear isau . N→ ! } ! Ethnie of K } . P M Riu quellend the treue bundle of v . is a priucipd ELIN) bundle ; u EEN) A- EGLIN) U . A = hat . Wecker handle Worts for V 9.ve rise to priucisd Indie (harter FLV) ↳ cd Kunden) rechtens of FW ) ¥ ↳ coltranes of V . ( FLTM) = FLM ) ) . -