¥1.29 Suppen H is a Closed sub group of a hie group E . Then A is a hie sub group of G . Prof G : = { c ' (O ) : c : IR → HEG is suwotu , e lo ) = e } ← g . is a linear subjroce at J . G={XEgiR3 . Clair Write g = G ⑦ k as a vector space ( k is a linear lomplimeur of Ging ) . Then 7 an open neighbhd . W of OER in k s . h . exp (W) n H = { e } . Converse } , ass neue tweet ' s not the con . Then I a Sequence of dtueemls Yn E k s . t.li#.Yu=OaudexpLYu)EH KEIN . ¥0 For u norm II . H au k , puh Xu : _ 1Yu . " Yul ) By possiwgho a Seed Sequence if necessery , we con assad that li:X, = :X tk . Tun 11×4=1 ( in pwtiaew , X # O). Set tu: = 11411 . Then expltu Xu ) = exp ( Yu ) e H KEIN . [ heim 2 and 3 show that XEG , which is n coutrodidiae # 4¥! H ) 4g to O # X and * k . De f-in the folkwang cuop : F : Gxlz → G FIX , y ) : = expk) exp ( Y ) = µ leer exply)) IF is oliver isomorphen , haue 7 open neighbds . V and W of Off and O c- k respect . s . L . FI " Vxw → Flyw ) = : U is a diffeoun ouho an open neigubwd . U of e in G . By possible shrinkiug W , we way ossuue exrlw) n It - les by deine 4 . = Ehestand to €04 is a hijectieuonko Us H . Iudeed , exp W) E Us H , since WEG . Moreau , any × E Us H war he unique Ly Witten vs + = exp 4)exp (D for X EV and b YEW . =) exp 4) = explx ) - x e H - EH C- H =) ein IY ) e 4=0 EH =) ( U , u : = F w ) is a submfd.am for H de find eraud e e G and ( In LU ) , u.tn. . ) is one for any h EH =) H E G is a suwotusubmfd.DE/amples① y : E- → H hie group homomorphismen Then Kerl g) = 4- ' (e) is a normal sub group of E , which is closed - Heere , Kerl y ) is a hie subgrag of G . ⑤ Center of a group G : 2- (G ) : = { ge C- : gh = hg the G } . This subgraep of G . Now that to any he G : fn : G → G- is snuoote . 9A g- ' high (in parkuhr Continuous ) . = file ) = lege G : gh = hg } EE is Closed . → 2- ( G ) = h fiele) ⇐ G is aozad . h EG =3 ZLG ) is a liesusgnaepef G . ③ Any chered subgraep of G-Lluc IR ) is a hie • ubgrags of ELIn.IR) . For some purposes the nation of a hie subgrenp of a we group is too restriktive : Def.1.30-supp.ae E is a hie group . Then a virtual hie sub group of G is the image of an iüective Lie group hauouuupunei : H - G . Prop.1.31-letC.be a we group and i : H - G a Virtual hie Sub group . ① i is an immersion ( i. e . Tui : TNH → Info is iujechn the H ) In particulier , i ' = Tei : G → J is on in jede hie algebra hauaeorpn.sn . ( Henie , G can he ideutitied with the sub . legen. i ' (G) Eg). ② Assur G and It one conueched . Then i LH) is normal subgrap ← G ( = i ' ( G )) Eg is an ideal ( i.e. EYYIEG + + EG , YE g) . Prof ① i = ! iosn. . implies i ' Ii : G - of " interne ⇐ Ii : IH -9nF - is ins . KHEH . By Thin . 1.2310 , ilexrltx ) ) = expci (ti ' k ) ) So , i ' k ) =D impliesexp.tt/tx)=e-VtE1R * EG - Htc IR . by ins ectivity of i . =, X - O ② By definiten , ILH ) EG is anormal hebgrap ⇐ wniglilh) ) EILH ) Kg EG, the H - „ =3 ' For my XEG and TEIR , expltx) EH and conjg (i (expltx))) = conjglexplti ' k ))) = Tun . Ei ( H ) 1.23 = explt Adlg) ( i ' k )) Prop . 1.26 Theiß: ttoeukeuydt.co yiehds , Adlg) (i ' k)) Ei ' (G) For D= explt Y) for Key , t-VJEG.tw> ging Adkexplhe)) ( i ' (G)) ⇐ IYG) Htt IR , tyeg. Different . otto yidds : µ adv) Li 'S)) Ei ' (G) Khg " EY, i ' LG)] E i ' (G ) klag . i.e . i ' (G) Eig is on ideal . ⇐ ' iodid KYE J . =) A = äd ") ( ing)) Prop. 1.26 c- i ' (G) Since G is umrechnet und Ad a group homomorph . , ② of Them . 1.23 Shows teud ¥4) Ei ' (G) ttge G . =) Ez exp (Adl g) i ' k)) = coujglilexpk)) EILH )Prep . 1.26 EIYG) . KXEG . Since It is lonnecheed and loujg a group Kanonieren.su , this shows that con } ( i ( H) ) Eil A) tg e- G . D . Def.1.32-supp.se J is a hie algebra and G = of on ideal ( IX. 4) CG Ka eg. Yt G) . Then the quotient ueao spon 71g = { X. G : AEG} has a natural hie algebra Strecke TXTG , Yt G)⇐ IX. Y] + G Check this is well debuet if G is an ideal . Tor ( 71g , [ , ] ) is called the quotient of of by the ideal G . QUESTION : For a hie group G , is any Sub algen re G of of a hie algebra ofeliesubgraep.GG ? Tweets Seppose E is a we group with hie algebra J and let GE of be a susalgebre - Then there ex;D s " Unique connected Virtual Lie sun group i : H → G s - t . i ' LIH) =L ( i ' ' IH -7J isaeerguisn . ) . More over , i ( H) ⇐ G is an initial sabmfd . Proof Left trivielizotieee of TG : ← TEIG - g. P ↳Lpr, } ETGG ↳ Als , Tgrg.is ) ↳Lg) ← Lg , × , „ Tebgt . (et ECTE he the smooth distribution wrresj.to C- xlg under the left trivial > atien . E : = { 3g ETGE . Tg }, } EG }g ETGG Chase u hosis IX. , . . . # } of G CJ , then ↳fg) , . . , 4g ) fern o bonus of Eg . . Clair ECTG is integroble . By the Frobenius Then . , it is sufti Lied to know that E is invehtive . g. ye TLE) ( i e - sgihg eEg Kg cG) . slg ) = Ä ) Lxilg ) ygef.si ; ni : GTR KG ) = Äh ↳ : Ig ) are smooth Ki . [ 5 , q] = Isis : ↳ ; , § Li La ;] = = . [ " ↳ i i Ri , ↳ j ] s . -44 ) .si/Lx;--SiRjELxi.LxjIt3ilLxi2j)4y.tKiL-y-)-si)4;- = L [Xi , Xj ] - CG. , since G is a subelgesre . =) Es , y ] (g) CEg Kg eG . CIaim-2.tt : = FEE leef of the fdietieee FE 6. resp . i : Hans G ho E through e e- G . is a wnn.ec ted virtual hie sub group of G s . t i i ( H) is an initial submtd and i ' LTEH ) - G . Frau G- A class , we know that i : Fe ↳ G is connected in: tielsubmtd of Goal Ii (Tete ) =L . H remains to show that It is a smooth hie group : Note that , Egn Tn} Eu Kg, he G . → Farge G , Ig IEE) = TEE . It ge FE , then Fj FE and Lance g. ne FEE , gh = GEE) Fj = FF - - - g. e- FE . g- ' EFF since rg LFF ) FF . =) HE FEE - G is a group homomorph:L . µ # f / ↳ G is a Smooth os anstreichen of a smarten uvp ( µ : Ex E → G) and here µ " : Hr H - H i) Smooth Iueootu by the universal properhy of initial subuufol . It remains to show uuigueuess : Ferrari : H → G Is u nennend virtual hie subgr . winke aeg IH - GE J . ß Then TGH = Telgte # = Eg . =) H is an integre subuefd of E . Also, e EH , impu.es HEFE . Recall exp (G) EHEFEE. - - = Since up (G) generales FEE by Them . 1.23 , we laechele that H = FEE . D . Yesterday : G hie group with t.ie alg . g . If GEG is a sabo Genre , then 7 ! wnnecheed virtual wie sub group i : HTG s . h . i ' LTE H ) = G . Tweets ( Ado ' s Theorem ) Suppose of is a finite dein . hie algebra . Then g. adeuits an injective representation y : g- ge µ ) ouho seine finite - dich . weder space V . In particulier , g. is isomorphe to a sub algebra of gew) . Proof see literature . Thm.1. ( Lie ' s 3rd Fundamental Theorem ) Let of be a fiuik dim . hie algebra . Then I a hie group G with hie algebra g . Prof By Them . 1.34 , we can identity of with a sub algebra of some egllv) . Now at Theorem 1.33 im plies 7 a virtual hie subgraep G- → GLLV) with hie algebra g. Egllv) . REI But it is not true that any come cheat we group is isomorphe to a virtual hie Sun group of some GLCV) . - 1. 4 . Homogeneaus Spaces and Klein geometry- we group, arise es transformation graeps of a space (Vector space or mfd . ) preservicug some additional Structure on that space - seeIntroduction - e : G- → Bij k) Def.1.ec G is a group , X a Set . ^ P A left action of C- on X is a ueop l : Ex X → X s. t . lle , x ) = x the X and llg , llh , x ) ) = llgh , x ) KLEI . For tixed GEG we wrihe lg : = elg , _ ) :X → × and for fixed xe X we w.ie Ü : = Cl- , × ) : G- → X . Simihrly , au has the metten of a right action off an X It is giveu by a ueop r : Xx C- → X s - h . rk , e) = × and rlrk.gl , h ) = rlx , gh ) KXEX itg , HEG . We seh r9 : = rl , g) : X → X and rx . = rk , _ ) : G → × hier fixed GEG resp . XEX . Notation : We anwende llg , x ) : g.x = gx resp . rk , g) : = x - g = xg Note that gm eg and gr, rot de line mops Gz→B) ( Lgs . r 9 " one the inverses of Lg resp . r 9) It is a group homomorphen for grieg ( gut lg, = § . G) and a anti group homomorphen her gtt rot ( r 9 " = r ! rot) . Rennen Einen a right actien r , then lg : = r 9 " is a Left adieu und uaeuusdy . Det.1.37-G.eu a leftachten l : Gx X → X , the or bit of × EX is giveu by ⇐ × = im LE ) = { gx : ge G } EX ⇐ Simi Carly , die olefine, tue arhil of a right- actien . Prop.1.38-Giveumsupp.ae l : Ex X → X is a leftocker . Then for point , in X „ being in the san orbit " dehne, an eeguivdeuce relation on X . ( × ey , if 7g e- Es. ) . + = gy ). The set of egnivdence Classe GV is called the orbit space Kf den actien) . Simi lorly , to a night adieu and then we elende the arnie space by XYG . Proof If x. y EX s . t . Ex n Ey # ¢ , then 7 g. h E G- s.tn . g- = kg - = ) x - 5) y = : × eGy and Gx E Gy ( 5×-5 g-1h y e- Ey Bysyuuidry , also Gy E Ex ( y Vg × eG) t.IE G) . Haue , Gx = Ey . D . Eta : G group , HEG seibgreup [ : H x E → G de line a left (resp . night)4. g) i-mlh.gr/--hgactieuafH an C- . r : Ex H → G( Gh ) 1- 9h . HIE right but Space EAT left cosel spence . Def.1.IE : Ex X - X left adrien . ① e is called transitive , if Ex = X for a (heuceyny ) × EX . ② For onyx e- X , the stahilizer or isotropes group Gx of x is giveu by G-i. = { ge G : gx - × } E G . Sim : harley , die defilees tue Corre :p . objeas for right octieees . Note yz Gx , i e . y = gx for some ge G , Ey = Gg; 9 " C+ J . | g # gx Mnahe & : G → G- × iuduce, a hijeotien % Ex . I - * In deed , geh EG sie. lxlg) = = ? ( h ) , then of × = g-thx , i. e . g- the Ex . = ) h E g Ex and so g Ex = h Ex . Def.1.40-sunr.ae G is a group . Then a G- homogene aus space is a set X eguipred with a transitiv Heft) actien l : Gx X - X of G . In this hase , fer a y point XEX , we get abi jeden %! X . Under this identification , the left adieu of G- an X be comes left multiplikation by elements of Gen %× : C : G- × %+ → %- × ( g , JE× ) -195 Ex - Now , if E is a torolog . group ( resp . a hie group ) and X a topolog . space ( resp . a smooth cnfd . ) / We von nequ.ve an actien to be Continuous ( resp . smooth ) , i. e . we l : Gxx → X ( resp . r :X × G - X ) to be continuous ( resp. . tuootu ) . EI. C- hie group . A representation of G is a smooth left action on a never space X - V , l y : E × V > V s ! . ylg , _ ) = lg : VTV is linear Vg e- G- . Gruen a continuous lett actien of a hopdog . Joop an a hopdg . Space , then GTX is uotwdly egnipred weh a. hopdogy : IT : X → GH Eeuipp GIX with the quotient torology f- find tordog . W . r . to IT) , i.e . the finest to podogys.TT is Continuous . Due los : U E GLX is open ⇐ IT - 1 LU ) EX is open . For any honolg . space Y , widme map f : GUN Y is but innen ) ← fort , X - Y is Continuous - Topologie an GIX might he " had " , even if E and X are " nice " topolog . Spaces . Prop.1.41-Etor.bg . group , H E E a horolog . subgrarp . and IT : E - GIH, the natural Continuous project ieee . - ① lg : GIH → % lglg ' H ) = gg ' H tg E E . is continuous ( Ex % → G) Continuous left - action ) . ② % is Hausdorff =-D His aosed lkrdog ) Proof ① U E % open suhzel , then we weed ho show that 4g) " Lu) is open Age C- . Set V : = { lg.gl/EGxG:g-g'EITYu)} = µ " ( IT Yu)) E Ex E - is open in Ex E , since IT and µ are continuous . IT ' : Ex E → Ex HH is continuous and open" ( dax IT Since IT : C- → % is gar . =) IT ' LV) - { lg.gl/t):gg'HeU3--flgTLU)is open . ② , =) / GIH is Hausdorff point' are closed . Since IT : G → GIH is Continuous , H - IT - 1 ↳ H ) is Closed . F- " Assur H E E it Closed . 4 : Ex C- → G ylg.ge/--g-ng~ is continuous . 4 " LH) { (g. j ) : GH JH} e- Ex G is Closed - For any par ( g. g) e- G- + G)4- ' LH ) . 7 open neighbh . - " Wand Üofg resp-5in G . Sir . U × Ü is on open neigen . of lgig ) in Gx E und internen wg 4- ' LH) . =\ IT LU) and TLÜ) are open neighbu . of GH # JH rette die leg heut don't in Used ( by lorswucti + hop. group O Note that , if E is a ching on a torologicol Hausdorffspace X , then § E E is a Closed subgreup cand Lance % is Hausdorff . ( %. -7 Ex laut innen, hrjedia , but not u homeocaopldze in general ) . Tkm.1.42-supp.se G is a hie group and H E G- an Closed sub group (Lance a hie sub group by Then . 1.29 ) . Then the homogene aus Space % odmits a Unique structure of a Smooth uefd . s.LT : G- → GIH is a Smooth sub messen ( i e . TGT : TGG → GIGA is swj . + g e- G) . In particulier , dein (G) = dim (G) - dimltt) . Moreau , l : Ex % → 4¥ , llg.g.lt/--gg'H, is a smooth left - action of G an GIH .