Yesterday We detiue nation of a we group ( G. µ , w , e ) . Jg : E → E Sgk ) = µ lgih ) g8 : C- → G Formlos : TM , Tv Recall from Global Analysis . f : M - M is a diffeoue . of a smooth mfd . M . Pull back : f- * : HIM ) → HIM ) ( ff Kf ) I , of ) is linear and fis ) Effet ) ✓ sieht *(M) . Det Se pro se E is a hie group . Then a Vector fiel d 4 E It (G) is called left ( resp . right) invariant , if djs = s (resp . 9 ) ; = s ) Vage G . Denon by HfG ) ( resp . HRLG) ) the Sunset of ACE) of left ( resp . right ) invariant vectorfield . By lineority of the pulbboar , Hd G) and HR (G) are subSpaces of ALG ) . They are even subabgennes of the infinite dimensionale algebra (HLG ) , I , ] ) rede , by uauhpotihility e) E , ] wih the pull back . Nie brocketoftiecq Proton Suppen G is a hie group and set of : TEE . ① For my XE of , ↳ Lg) : = Teig X ETGG (resp . Rxlg) : - Ifk cTGG ) is a left ( resp . right) invariant vector fiele • G . ② The mops Gxog → TG detined by ( GEIGY) and Lg , x ) n Rxlg) are di ffeomophism . ③ The map X.→ ↳ ( resp . AHR × ) detines → a linear isomorph in witn muerte 4ns le ) between g and H , (G) ( resp . X-p ( G ) ) . Proof . ① By ② ↳ and Rx are Smooth never Leeds . Lehe ) neue theol ↳ is left - iuuaieut : Telgte) X ng d 4)Lh) Tsg ) ! ↳ (gh ) -154534T- - = IV ofg.tn/X--4lh)V-heG Id 19 ' Lx = ↳ Kg eG . Simi Early , One shows that Rx is right invariant . ② Defilee the map F : E- xg → TG XTG ginen by Flug , x ) : (0g , X) . ETGG It is Smooth and so is TMOF : Gxg → TG vs uaupositieu of Sunde maps . By Leuna 1.5 , Tarot : ( g. X ) → ↳ lg ) To show Trio F is n aeiffeauerp him we war> what a Kunde inverse of TM . F . Define E : TG - TEXTE hy Ekg) : = ( 0g. . , Sg ) ETg.li × Igf - It is smooth ( since inversion is a made) and so is 1- µ . F , which by Leuna 1.5 is giveu by Tm . E . Sgt Tg } i } c- IG J . ETGG =) The map sg → Lg , Tgslgig ) E Gx J * TG - Gig is Shoot and it is an inverse to (g)H ↳ (g) Eeg → TG . Sim italy , one proms the Statement for Lg , + IN Rxlg ) . ③ By ① , X n Lx defines a linear map g → ALLE ) ↳ lg ) = Te } X ( m- X ) . ldglfsetzt E) , tun slg) - kg. . )! Lg ) = Teig sle ) = 4¥) kg c- G . Similorly , fer XD Rx . D Def.tl G we group , TEE = : g . ① The diffeaueopuisu Gx ] → TG gina by (g. x) ↳ Lg) kresp.lg.HN Rxlg)) of Pvp . 1.7 is called the natural lett) tz→G : TG xg \ Lp:/G② For KEY , Lx ( resp . Rx ) is called the left ( resp . right ) , nveieuruectortiekdgeueretedhy XEJ . Note that any ↳ ( resp . Rx ) is nowhere raus hing on E und ausging a basis Xs , . . , Xu of the Wow Space g , txnlg) , . . , 4dg ) ( resp . Rxslg) , . . . Rxnlg) ) forma basis of TGE VGEG . = For any ge G , bj Is , z ] = tsj : , jz] = Ihre] By Pvp - 1.7 , t e¥2 is + sie C- Hd ) . Lance a finit- dimensionalen algebra of ( ACE ) , ), Vice isauopnize GEILE) freue Prop . 1. 7. ③ , = = we can Transport E , ] to a brackel on of . Def.IN Suppose E is a hie group . Then the tangent Space of : Te G at the identity e E E togetue wite tue war [ , ] : g + g → 7 ← Exil] Thx , Ly] (e) is called the hie algebra of G One has by Constructions La, yj [ ↳ 14] . From the pro parties of the lieb rocket of vector fields it fellows : Prop.1.cn The bucket T , ] : gxg → g in Def . 1.9 is bi linear and the follow.mg yropoties hold : His Hew syuuuetrc : [ X , Y] = - EY, ×] YX , 4cg . LID It seti stieg tue Jacobi - Identity [X , EY, Z]] + EY , EZ, x]] t [Z , [ 44]] =D KX , Y , 7 E J - Def.1.ec① A real ( resp - Complex) ggf algebra is a real ( resp . Complex) Vector Space equipped with a IR l resp . E- ) bi linear map E , ] : g xg → g s . t.IO and of Pop . 1.10 hold . ② A hie algebra homomorph: zu (resp . isouuopuisue) between hie algebra s of and G is a linear wo J - G si . YLEX.BG/--E4khyHgD. ( resp . de linear isomorphismen) ③ A e) subalgebra of a hie algebra g is a sub Space G of gs.tn. IX. Y] EG ttx , YEG . Examp①Gus: der a finite dimensionen weder spie V . • s a hie greup.w.r.to t . Then the left - trividizatieu of TV is the und neue TV = Vx V and the left - iuuorenl - - 42nd) Carrey and to love > heul functions . VTV . In particulier , the hie brucker of two left iur . vechedf.ee, Veurshes . Heule , the hie algenre of V is just V eguipnad with the Zero hnockel ( EYW] - O it v. w EV ) . ↳ her , we will see that hie algebra of ony 45) • www.taticlliegreuphosalwoyszeroliebrockef, i. e . is an abelian die algebra los are says) . ② G and It two hie group , with hie algebra ( g , E. Ig ) und ( G, E. Jg) . Then the hie group Ex H ho, die algebra : Ex H ) = IG × TEH = g ⑦ G . with the hie bucket [ KM ) , lx ' , 4 ' ) ] = ( Exit ' Ig , EY, Y ' }) . K X , X ' E g , 4,4 ' EG Heule , the hie algebra of Gx It is what one Calls the direct sum of the hie algebra g and f . ( Check this a on exercise ) . ③ G- = ELIN , IR ) E Mu ( IR) . g. = Minh TELlu.IR/--ELlu.lR) „ + Mulk). igeln.IR) For AE Gun .IR ) , ↳ : GLK.IR ) → Ellen IR) is the restrichten of the linear map ) : MDR) → Mulk). =) Ist# (B. × ) = (AB , AX ) . CTBGLlu.IR) × E Mu ( pz ) and (A. AN II . = ) ↳ LA) = T.at#X--AX/kIeutitylld.X)wihXan-d Viewing ↳ as a function GLK.IR ) → Mal IR ) , we know that right - mit × y II „ „ [ ↳ , Ly] ( td ) = Tdly ↳ Hd) Tdlx Lylld) = XY YX KX , Y Eg MDR ). Lie algebra of Ellie , IR ) is g- gllu.IR) = MUIR) equipned with the Liebrecht giveu by the ↳ mmuhator of matrices .