Def-3.2-suppc.se p : V → M is a vector bundle . A a linear Connection on ✓ → M is a linear uuop : D : TV ) → TLTTM ① V ) = 1- (Hau LTMN ) ) s → 9s " TM - V ☒g) In) = : Ffsit Tits = f- Rss + df (g) s t s c- TV ) , the TEM)( *) V-f-CULM.IR) . ( Reine . D : 1- (TM ) × TV) → 1-(u) " IR - bi linear ( Kis ) - Is ) ( *) leibuitz.nu/e-← IM .IR) linear in R . • and Soli> fies (*) in S . Exaupte Affine Connections on More linear Connections outM-M.Tbm.3-3-supr.aep : V→ M is a (smooth) vector bundle . Thou there ex ist a linear Connection Von ✓→ M and the Space of all linear connections is on off, ne Space modelled on the vector space 1- (TM ⑦ Hau ( v.v ) ) = 1-(TM ☒ ↳④ V ) of 1 fernes on M with vdues in the vector bundle Hau µ, V ). Proof. Existence : { ( Ua , da) }• ⇐ vector bundle atlas for ✓→ M , da : p - ^ ( Ua ) ins Ua × IR " . For any ✗ c- I and a Sechtem s c- TIV ) wir Support in ↳ , olefine 75 (x ) : = &! ( ( × , ( s . sik ) , . . , s Suk ) ) -4-4 - whee Da ↳ K )) = (× , Srk ) . . . Puk ) ) , and 5)( y) = O Hye Hwa . Now let { f, } be a partition a) unity suberiodiude to two love U = { Va}, < ± . Then T.gs : = fas) for s c- TLTM) , > c- ITU) ✗ EI de feines a linear lonuectiae an ✓ → M . + Freeden . A, c- 1- ( TM ⑦ f) an / v.v ) ) A : TITM) ✗ Mv) → 1-( v) Üs : = Tss + A ( s , s ) is ogoih • liner / MIR ) bi linear . p Connection Üf > = Bfs + fs ) = f- Ist dfls ) s + ACE ) - = Fps + dfls ) s Converse↳ , Ü and Done two Connection ) and Set Als.is ) : = Fs Dis . Evideutky , Alfs , s ) = f Als . s ) und Als As ) = Ffs Ffs = f- (Fs Fs) + df G) s - dflsls - - = f- Als . > ) . = , A c- 1- ( TM ☒ Hau ( V.V) ) . ☐ How do things took in locd ↳ordinäres ? v Suppe ( Ua , na ) is • chart for M . (din LM) = n ) t and ( V2 , da ) is a neuer huelle Choir for ✓ → M M ✗ ( naeklv ) m ) . Then p ) - ↳ ✗ 1pm " < ✗ id → ↳ (4) ✗ REITER" is a chart f- er V . - h g = { si D- " Ö , is the Loud in Dai i S = { SJ e) ja Sector of Voeefiud % = " { [Sitz sie. = • ↳ sie . in in ☒ % ( EK)/ = (x , e) = §, si (E) %. + Sisi Ei " e) j standard go.is ⇐ iii. K = wecker in /Rue . for Smooth function Tj; ( i = 1 , . . , n , jik = 1 , . . , m ) via rederi and by %; = [ Tj? % . Fei k-1 More loupoctkg , wo also nie tei. ) hohotieu : 5 C- 1- ( U ) Sa : ↳ → IR " (10×0 5) (x ) = (x . Sak)) ttx c- Ua . (g)• = dsals. ) + Als /¥)) Az RTL . gllm.IR)) ÷ - 4. SAALE ) = : Ai (Ai ); = Tj " ; = Simulierter , os for affine Connections and hector fields we Love : Fer y : I → M CA - Curve , le Seetiere of V okay g is a Socken of ✗ * V and we home on gesehen % : Tljv) → TGV) . Prop.3.4-supp.ae ✓→ M is ne wecker bundle equipredw.huhinan nenne Chien T . ① Supreme y : I- M is n G- Curve and v c%. ) , ↳ EI . Then I ! Sechtem s along y sie . (F) G) = 0 lttct and s (to ) = v . ② In the setting of ① scypoze [ to.tn ] EI . Then Pt " + . ( J ) : ↳lt. ) → % ) v - s ( ter s as in ① ) is a linear isomorphe . It is called the parallel transport doug Jr detiued by D . / ProA %, s is wellde) . hdeaos os for office Connection . and also the best of the proof is as for affine lonnectieus ( cf . Global Analysis ) . Reuig There " I on abstract hohlen of pwdlel transport for never bundles which t ) äquivalent to a linear Connection . The lineor Connection is ne Covered from the parallel transporte by Fsk ) ÷ ¥) (PE ) " (s ( KH) ) , 1whee J : I → M i ) n Smooth Curve wih flo ) - × , 840) →× . Right hand siehe just depeuds an jlo) =3 × and not on the Curve j . Follow> d. riecht y freu the Local loordiudeexpessiae of Pps) tt ) . Prop.3.5-supp.se ✓ → M is a vector bundle equippeed with a linear Connection T . ① For onyx c- M und v. c- ¥ , there ex ist se 1-(v) wirst) = v and ) (x ) = 0 % cIM . ② For ve k Set Hu : Is (EM ) c- IV for a clone of sect, en s os in ① . Then Hu C- IV is independent of the more of social s o > in ① and it is a linear kompliment to Ke! (V): Tutor) treu . Moreau , H = ↳ „ Hu C- TV is a hector subhuedle of TV → V , Called the horizontal distribution de terminal by T . Pr¥ ① Follow) from the Local Coordinator express Ieee of (Dgs ) (x ) µ hin show, that (7) (x ) depemdsa.ly ermahne and the first deiuohhe of s at × . For s (x ) = v 7 ! unique 1-Id j ? s sie. Es (x ) = O - ② For • Us ectieus s o ) in ① ; Is : IM → IV is the Some and Lance Hu is independent of the Chord of s . pos = 1dm IHN - Since Ip is the inverse a) ✓ Is : IM → Hu , 1- ✗ s is a linear isomeren and TV Hu ⑦ V9 (v). Check that It c- TV is a Smooth neuer subhuudle ¥ (Exercise) . Def . 3.6 V → M wecker bundle wir a linear Connection T . - = = Then to ✗ c- M , v c- Vx , we Love a linear map , Called the horizontal litt , Tv - A.☒ V94) Hoi : IM → Hu c- TV TIP I.{ × ↳ ghor v ) IM Whee shor Im HEIM✓ is the Unique wecker in Hv sie . Ip [ ↳' =3 , . For a never fields c- TLTM) , s "" : v - s ! ' olefiuesu vector fielden V , Called the horizontal lift of s , war . ho P . Reinartz: Horn : IM → Hu c IV v40) ¥ / + =P.tt(Hlu ) c- Hr for any y wir v10) - × ( Pt-X://gcntterus-flowofeueaard.deSupport y : I → M is a YQ-iouuehohok.pe9 Tv) . Smooth Curve , then for any ✓ c- Yu, 7 ! [ : I ' → ✓ , I ' c- I sie . v If" Comunio and Elo ) = u [ ' ( t ) cHd+) KTEI ' . ju is Called the horizontal lift of y w . r . ho T and v F. ( t) = Pt! (g) (v ) c- Volt) For any y c- p - ^ ( glr) ) c- Vgl + | , let S } ' to the horizontal lift of ( t ) . , contre This con Le extended do a noche 2-ehd den ending on all of V . Then I is the unique integral of this rector find wir [ (o ) = ✓ .