• Lie group G • its hie algebra : g- IG E , ] : Gag g . = GEILE ) P Ta- Prop.1.cn Suppose G and It are hie group, und q : G → A is a hie group homomorph isn . ① Then y !Tey : IG = g- IH =L ( de) - e). Is a homomorphisn of hie algebra . ② If E is wmmutetivela.be Lion , then the hie brocket on J is Zero ( i. e . ( g , [ , ]) is what one calls on abelian hie algebra ) . Proof ① Recall from Global Analysis , If f : M → N G- ueop ¥between mfds . and si C- KLM ) und R ; e- HIN) for i - 1.2 are f- related li e . Ifs ; k ) = R, Ifk) ) THEM)then Iss , sz] is f- related to [ Es .kz] . By assumption , ylgk) = y (g) ylh ) , which Says 90dg = tag; y Vg e- G . - Different iating gtye} = Thug; 4 " =) Tgy ↳ Lg) Te !] ' k) erwürgten, _ - = 4¥19)) oh XE of So , Lx and Ly, # are y related KX Eeg . By H ) , for any X Meg , [ Lx , Ly] is y - related to The") , Lyyy) ] I that is ' qq.jp/JTyELx.LyJ=ILyiq,LyyyIoYEveheheateEG:-yEXyJ)--[ Lyn) .LY/fy)JLeI ② If E is abelian , then U : G → E is a group homomorph her . ✓ lgn) - _ hi ! g- 1 = g- ? h - ' = vlg) Kh ) . µ G- oihelian By ① , U ' : of → g. is a hie algebra komm . " → LIFE - 1dg =) KAM cg. , EX , y] = EX, Y] =) It it] =D V-x.VE g. . Gr.1.13-supp.de E is a We group and A E G a hie Sub group Then the hie algebra f of It is notwally a sub algebra of J . In particulier , the hie algebra of my matrix group HE Elle, IR) is a sub algebra of (geln.IR) , E , ] ) , when E , ] is the comme hat er a) matrices . Prof. Ap ply ① of Pro p . 1.12 to the in Austen i : Hans G . | Lance , Ii = ; ) : G ↳ g is the natural Mansion Tettau TEE . ) Prop.1.14-supg.ae E is a hie group wih hie dg . 1g , E , ]) . ① Rx = so * L - × F X E J ⑦ [ Rx , Ry] = - R µ ] KAYE of . ③ Thx , Ry] = 0 V-x.YEg.pro#.see home work . Now lotus Andy the flow of left (resp . right ) invariant weder fields . Prop.tl E a we group , s a lett. ( resp . right) inuoiaet weder Jiehd on E . ① F)(g) = g. File) trage G ( resp . F)G) = FILE) ] tgt G) . ② s is Complete . Prof. ① If s is left - invariant , then s is Ig - related to its elf kg e- E . Heule , FLI.bg = Dj FI Kg e- G . Eva make de : FLI Lg) = g. FLI (e ) ② Follow, from a criteria we psroved in Global Analysis und ① : If ZE > o si . any inhgrd one through any point of a ne das find } is definiert an C-E. E ) , tun 4 is landete • Def.1.IE we group . A one parameter sub group of G is a hie group homomorphismen < : ( R , t ) → G (i. e . a : IR → E i) u Co Curve S L . < Ist f) = als) - alt) In putin , x ( o) = e . Vs, TEIR) Lennart E hie group , a : R → E - ueop with a lo) - e , Xzg . Then the folkwang are eguiv. : ① × is a one parameter sub group with a ' lo ) = X ② alt) = File) ③ alt) = FIX le ) Proof . ① ② Juke (s )) < ' H) =L , lstt ) = 7)* µ !als ) = Te! # = ↳ KHD =) d it on integral • me of ↳ and since a lo ) - e , we neuste home alt) = FEY(e ) by uniqueness . ② ① alt) = F (e) is smooth Curve in G with * lo) e and a ' lo ) = ↳ Lab ) ) = X . Since it is a flow ( of . Global Analysis ) we how : altes = FLI le ) = FLIEGE!) ) griffin By excuouging rdes of s and t one power timing hat ① ⇐ ③ . . D Det.IE a we group with hie dg . ( J . I , ] ) . Then the exponentiellen p of G is gruen by exp : g → G expk ) : = FLY ( e ) By definition , explo) = e Thani E hie group wih hie algebra g , exp : of → G tue exponentiellemp . Then the folkwang hotels : ① The map oxp is Smooth and Toe xp : Ig → IG =]IS g - aquds ldg : ign g . Heine , exprestn.cn to a diffeouuerpuism from ten open neighborhood of O C- J in of to an open neigend . of e e E in G . ② For XEJ , ge E one has : F Lg ) = gexpltx ) FLEX (g) = expltx ) - g - Proof We know that IX. g) ↳ ↳ ' g) is a Smooth way g. × G- → TG by Pvp. 1.7 . Heuce , IX. g) m ( O , Lxlg) ) is a smooth vectofidd on g. × E . Hs integral curues are tns ( X , FL# Ig)) and they are smooth . In particulier , Kit ) n LX , FLI " Lg )) is ssuooth bund Lance exp is Smooth . Now , F (e) = FLY" le ) = expltx) µ a If c : I - G is an integre Curve of ↳ , then the Cat) ts an Integral one of a ↳ = ↳× Hat IR . und so FL Lg ) = g. exp HX ) by P-rop.1.AT . For FLEX (g) = Flöhe ) g = expltx ) - g µ P Bop . 1.15 kennen 1.17 . Toexp µ, rltx ) d) Le ) ↳ le) HXEJ . =) Iexp = 1dg . es warnend . Evm ① 6ns der the www.hotiveliegreep ( R > • , - ) Its hie algebra is IR with trivial hie bnecket . The lettiuueieuh weder bind geuedad by × ER is ↳ la) = ax „ F! × Integral Curve of Lx : ↳ KH) ) = < ' H ) „ through Me R > • c)× clo ) = 1 Solution is alt) = eHenie , exp : IR → IR > • is the und exponentieller . ② E- = GLlu.IR ) XE g- gllu.IR ) ↳( A ) = AX fer AE Gllu , R ) . ↳ ICH) ) = eilt ) " and < 6) = Id c Unique solution is the matrix exponierend FEI ( If II . It is the operator norm an M . LIR) , then DX " H E DX II " and so this power sei es uaevrges absolutely and mit windig an uaepoce Sets ) . exp LXTY) =/ e xp k) . exp ( y ) un less X and Y www.he . Def.1.LI ( Exponent ich werdindes ) G we group with hie algebra J , V Ey is on open neigend . of OEG Set . expyv : V → explv)= : U is a diffeau.euho on open neighbwal U of e C- G ① Then LU , KPI ) is a bad aarr her G- wih e EU and ( Sgv) , Ig. expy; ) a bad warte around GE G . „ Canonical Coordinator of the trist Kind " . ② Chose u basis { Xs . . . , Xu } of the weder Space @ , then v : IR " → G giveu by P ✓ (t! . . .tn/:=explt1Xn)..expLtuXn)resIrrcrstoadiffeau. freu on open neighbwd . V of OER" onho an open neighbwd . eof e E G- . tudeed , ¥76) = X ; auch so Fr ( a ! . . . - a " ) = a " X , + . . t a " Xu ( U , Tj = : n ) und 1dg LU ) , dgon ) are Local Charts around EEG und ge G . „ Coordinator of the secaud Kind . " . €-1.1 Levy : H → G- a Continuous group homomorphie between hie group Hand G . Then if is smooth .