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The projective Finsler metrizability problem deals with the question whether a projective-
equivalence class of sprays is the geodesic class of a (locally- or globally-defined) Finsler
function. In this paper we use Hilbert-type forms to state a number of different ways of
specifying necessary and sufficient conditions for this to be the case, and we show that
they are equivalent. We also address several related issues of interest including path spaces,
Jacobi fields, totally-geodesic submanifolds of a spray space, and the equivalence of path
geometries and projective-equivalence classes of sprays.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A Finsler function can in many ways be regarded as a singular Lagrangian. As such, there are many sprays whose base
integral curves are solutions of the Euler–Lagrange equations of a given Finsler function. These sprays are all projectively
equivalent and together they constitute the geodesic class of sprays of the given Finsler function. It is therefore natural
to ask whether or not a given projective-equivalence class (or projective class, for short) of sprays is the geodesic class of
some Finsler function, or, in the terminology of this paper, whether or not a projective class of sprays is projectively Finsler
metrizable.

One may think of (at least) three approaches to formulating the necessary and sufficient conditions for this to be the
case. They differ with respect to what kind of geometric object the conditions are expressed in terms of:

1. a multiplier, that is, a symmetric twice covariant tensor along the tangent bundle projection τ , leading to Helmholtz-like
conditions;
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2. a semi-basic 1-form, leading to the conditions given by Bucataru and Muzsnay [5] for such a form to be a Hilbert
1-form;

3. a 2-form, leading to conditions for such a form to be a Hilbert 2-form.

The third item can be further subdivided:

3.1. the 2-form is given on the slit tangent bundle, leading to conditions similar to those given for the ‘ordinary’ inverse
problem of the calculus of variations by the first author as long ago as 1981 [6];

3.2. the 2-form is given on a certain manifold on which is defined an almost Grassmann structure associated with the
projective class, leading to conditions formulated by the first and third authors in [10];

3.3. the 2-form is given on path space, leading to conditions discussed by Álvarez Paiva in [2].

Note that unlike Álvarez Paiva, who in [2] deals only with reversible paths, that is, paths which have no preferred
orientation, we cover in this paper the more general case of oriented paths, or sprays in the fully general sense.

We have discussed the multiplier approach in detail in [9]. In this paper we deal with the versions of the conditions
involving forms, that is, items 2 and 3.1–3.3 of the lists above.

It might be argued that there are two additional approaches that should be taken into account. One is the use of the
Rapcsák conditions (which are discussed in [15,16] for example). We prefer to think of these conditions as just being
reformulations of the Euler–Lagrange equations. They do play a significant role in our analysis of the multiplier problem,
and have been discussed in [9]. The other is the holonomy method described in [7]. This approach is well-suited to the
problem of determining whether a given spray is the canonical spray of a Finsler function, that is, the one whose integral
curves are parametrized (up to affine transformations) by arc-length. However, it is not easily adapted to the projective
problem which is the subject of this paper. We do not consider it further here therefore.

To the best of our knowledge, this paper states for the first time the metrizability conditions in terms of 2-forms on
the slit tangent bundle. We also address the global aspects of the problem. The main purpose of this paper, however, is
to discuss the relationship between the various approaches enumerated above, and in particular to show that they are
equivalent. Such a discussion is in particular needed because comparison of the different results in the literature is far from
obvious. To give just one example: whereas most authors consider the projective class of sprays as the main object under
investigation, others, in particular Álvarez Paiva, give priority to the paths. We have therefore considered it desirable to
discuss the relationship between what is called by Álvarez Paiva in [2] a path geometry, and a projective class of sprays.
In the course of the discussion it will also be necessary to address a number of issues related to Finsler geometry and
the projective geometry of sprays which are of interest in their own right, including Jacobi fields and totally-geodesic
submanifolds of a spray space. We express our results as far as possible in projectively-invariant terms; in particular, this
means that throughout we use the Finsler function rather than the energy, and avoid reference to the canonical geodesic
spray. In the terminology introduced in [17] we deal entirely with the problem of metrizability in the broad sense.

The paper begins with a version of Álvarez Paiva’s definition of a path geometry adapted to the concerns of this paper.
We show that in fact there is no loss of generality in working with sprays.

In Section 3 we give a summary of the relevant results on the multiplier problem from [9]. In Section 4 we quote the
theorem of Bucataru and Muzsnay mentioned in item 2 above, and show that the conditions it contains are equivalent
to those that must be satisfied by a multiplier. In Section 5 we give the most straightforward of the formulations of the
conditions in terms of the existence of a 2-form with certain properties, and in the following section the somewhat more
sophisticated version in which the 2-form is specified on a certain manifold which carries an almost Grassmann structure
associated with a given projective class of sprays.

All three of the versions of the conditions discussed in Sections 4–6 involve closed 2-forms of which the involutive
distribution D determined by the projective class (see the next section) is the characteristic distribution. A natural further
step therefore is to quotient out by D, as one might say. Where this is possible the manifold obtained is called the path
space, since each of its points represents a geodesic path of the projective class. The 2-form in question passes to the
quotient to define a symplectic form there. In Section 7 we elaborate on this construction and begin the discussion of the
further properties of the symplectic structure. As we show in Section 8, tangent vectors to path space can be thought of
as Jacobi fields. Using this insight we reformulate the positive quasi-definiteness property of the multiplier required for the
local existence of a Finsler function.

One much discussed special case of the projective metrizability problem is that raised by the Finslerian version of
Hilbert’s fourth problem; this indeed is the main subject of [2]. In Álvarez Paiva’s analysis an important role is played by
2-planes in R

n . From the more general point of view adopted here what is significant about planes in R
n is that they are

totally-geodesic submanifolds. We develop a theory of totally-geodesic submanifolds of spray manifolds in Section 9, and
use it to give a modest generalization of one of the results of [2]. The paper ends with an illustrative example.

2. Path geometries and sprays

We first recall some basic concepts from spray and Finsler geometry, mainly to fix notations.
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We shall always assume that the base manifold M is smooth and paracompact. Unless it is explicitly stated otherwise,
we assume that dim M � 3. The slit tangent bundle of M is the tangent bundle with the zero section removed. We shall
denote it by τ : T ◦M → M .

A spray is a vector field on T ◦M such that τ∗Γ(x,y) = y for any x ∈ M and y ∈ TxM , y �= 0, and such that [�,Γ ] = Γ

where � is the Liouville field. It is locally of the form

Γ = yi ∂

∂xi
− 2Γ i ∂

∂ yi

and it determines a horizontal distribution, spanned by the vector fields

Hi = ∂

∂xi
− Γ

j
i

∂

∂ y j
, Γ i

j = ∂Γ i

∂ y j
.

We shall also write V i for the vertical vector fields ∂/∂ yi . Horizontal and vertical lifts of a vector field X on M are denoted
by XH and XV, respectively.

Two sprays are said to be projectively equivalent if their geodesics (base integral curves) are the same up to an orientation-
preserving reparametrization. The geodesics of projectively equivalent sprays, in other words, define oriented paths in M .
Projective equivalence is an equivalence relation on sprays; an equivalence class is called a projective class of sprays. If Γ

is a spray, then any member of its projective class takes the form Γ − 2P� for some function P on T ◦M which satisfies
�(P ) = P . Note that a projective class of sprays determines an involutive two-dimensional distribution D on T ◦M , which is
spanned by � and any spray Γ of the class. This distribution plays an important role in our analysis. We refer to e.g. [15]
for further reading on the geometry of sprays.

We shall work throughout with projective classes of sprays. It might however be regarded as more natural from the
geometrical point of view to see a projective class of sprays as merely a surrogate for the collection of its geodesic paths,
and to think of the metrizability problem as the question of whether a collection of oriented paths, suitably specified, is the
set of geodesic paths of a Finsler structure. Álvarez Paiva for example, in [2, Section 4], has taken such an idea as basic and
formalized it into the concept of a path geometry. In this section we give a definition of path geometry based on Álvarez
Paiva’s, but differing from his in that it deals with oriented paths; and we show that there is no loss of generality in working
with sprays.

For any smooth manifold M we denote by σ : STM → M its sphere bundle, that is, the quotient of T ◦M by the action
induced by �, so that a point s of STM is an equivalence class [y] of vectors y in Tx M , x = σ(s), where the equiv-
alence relation is multiplication by a positive scalar. A path geometry on M is a smooth foliation of STM by oriented
one-dimensional submanifolds S which satisfy what one might call the second-order property, namely that if Ss is the
submanifold through s, the (oriented) tangent space to σ(Ss) at x coincides with [y] (where s = [y]).

We define a distribution D on T ◦M as follows: v ∈ Dy ⊂ T y T ◦M if the projection of v to STM is tangent to S[y] . Then
D is an involutive two-dimensional smooth distribution on T ◦M , containing �. We shall show that D is the distribution
corresponding to a projective class of sprays on T ◦M .

Theorem 1. For any given path geometry on STM, there is a projective class of sprays on T ◦M such that the distribution D is spanned
by � and any spray of the class.

Proof. We have to construct a suitable spray Γ .
There is a covering of T ◦M by open sets U , which we may assume to be connected, such that on U there is a smooth

vector field ZU such that D|U is the span of � and ZU . The projection of ZU to STM is tangent to the foliation, and never
vanishes. We may assume that it is oriented positively with respect to the foliation. Then for every (x, y) ∈ U , τ∗ ZU (x, y) is
a positive scalar multiple of y, say τ∗ ZU (x, y) = ζ(x, y)y where ζ is a positive smooth function on U . Set Γ̃U = (1/ζ )ZU ;
then Γ̃U is a second-order differential equation field on U , and D|U is the span of � and Γ̃U .

The manifold M , which is assumed to be paracompact, admits a global Riemannian metric, say g . Denote by G the
function on T ◦M given by the Riemannian norm, so that G(x, y) = √

gx(y, y). Note that �(G) = G . We can change the
local basis of D|U by adding some scalar multiple of � to Γ̃U , and we can do so in such a way that the new vector field
ΓU = Γ̃U + f � satisfies ΓU (G) = 0: just take f = −Γ̃U (G)/G . Of course, ΓU is also a second-order differential equation field.
It is moreover uniquely determined by the properties that it is a second-order differential equation field in D|U and satisfies
ΓU (G) = 0: for if Γ ′

U also has those properties then ΓU − Γ ′
U is vertical, in D|U , and therefore a scalar multiple of �; but

since ΓU (G) − Γ ′
U (G) = 0, while �(G) = G , the scalar factor must be zero.

It follows that there is a globally-defined vector field Γ , which is a second-order differential equation field in D satisfying
Γ (G) = 0, such that ΓU = Γ |U . For if ΓU and ΓU ′ are the unique local vector fields with those properties on U and U ′ then
by uniqueness they must agree on U ∩ U ′ .

Finally, we show that Γ is a spray, that is, that it satisfies [�,Γ ] = Γ . Now [�,Γ ] − Γ is certainly vertical, simply
because Γ is a second-order differential equation field. Thus [�,Γ ] = Γ + f � for some function f on T ◦M . But Γ (G) = 0,
and [�,Γ ](G) = �(Γ (G)) − Γ (�(G)) = −Γ (G) = 0; but �(G) = G , and so f = 0. �
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3. Some results on the multiplier problem

In order to keep the paper more or less self-contained, we shall quote here some results from [9].
A Finsler function is a smooth function on T ◦M , which is positive, positively (but not necessarily absolutely) homogeneous,

and strongly convex. The last property means that the matrix of functions

gij = ∂2 F 2

∂ yi ∂ y j

must be positive definite. The Hilbert 1- and 2-forms on T ◦M are given, respectively, by

θ = ∂ F

∂ yi
dxi and dθ.

We shall say that Γ is a geodesic spray for F if its base integral curves are solutions of the Euler–Lagrange equations of F .
The set of geodesic sprays for F forms a projective class. A modern introduction to Finsler geometry can be found in [3].

We shall use the term multiplier for a (0,2) tensor field h along the slit tangent bundle projection τ . A multiplier will
also be called a tensor or tensor field for short, and we shall often denote it simply by its components hij(x, y).

The conditions on a multiplier that form the basis of the analysis in [9] are these:

h ji = hij,

hij y j = 0,

∂hij

∂ yk
= ∂hik

∂ y j
,

(∇h)i j = 0,

hik W k
j = h jk W k

i .

Here ∇ stands for the dynamical covariant derivative operator of any choice of spray Γ in the projective class. The ac-
tion of this operator on tensors h is given by (∇h)i j = Γ (hij) − Γ k

i hkj − Γ k
j hik . The functions W k

j are the components of
the (projectively-invariant) Weyl tensor. A result of [9] states that the last condition can equivalently be replaced by the
condition

⊕
Rl

jkhil = 0, where
⊕

stands for a cyclic sum and where Rl
jk are the curvature components of the horizontal

distribution (with [Hi, H j] = −Rl
i j Vl), or by the condition hik Rk

j = h jk Rk
i , where Rk

j = Rk
jl yl are the components of the Jacobi

endomorphism (Riemann curvature).
The conditions displayed above, though expressed in coordinate form, are tensorial in nature. They play the same role in

relation to the projective Finsler metrizability problem as the Helmholtz conditions do for the general inverse problem of
the calculus of variations; though it is not strictly accurate, for ease of reference we shall call them the Helmholtz conditions
in this paper (in [9] we referred to them as Helmholtz-like conditions).

A tensor hij is said to be positive quasi-definite if hij(y)vi v j � 0, with equality only if v is a scalar multiple of y. We shall
say that a multiplier h is quasi-regular if hij(y)v j = 0 if and only if vi = kyi for some scalar k. We shall call a positively-
homogeneous function F whose Hessian with respect to fibre coordinates is quasi-regular a pseudo-Finsler function. We
summarize the relevant results from [9] in the following theorem (they occur as Theorems 2, 3 and 4 in [9]).

Theorem 2.

(1) Given a projective class of sprays over a manifold M, and any contractible coordinate neighbourhood U ⊂ M, there is a positively-
homogeneous function F on T ◦U such that every spray in the class satisfies the Euler–Lagrange equations for F if and only if there
are functions hij on T ◦U which satisfy the Helmholtz conditions.

(2) If F is a (global) Finsler function on T ◦M then its Hessian h satisfies the Helmholtz conditions for the sprays of its geodesic class,
and is in addition positive quasi-definite. Conversely, suppose given a projective class of sprays on T ◦M. If there is a tensor field
h on T ◦M which satisfies the Helmholtz conditions everywhere and is in addition positive quasi-definite, and if H2(M) = 0, then
the projective class is the geodesic class of a global pseudo-Finsler function, and of a local Finsler function over a neighbourhood of
any point of M.

(3) The projective class of a reversible spray on T ◦M is the geodesic class of a globally-defined absolutely-homogeneous Finsler
function if and only if there is a tensor field h which satisfies the Helmholtz conditions everywhere and is in addition positive
quasi-definite.

4. The theorem of Bucataru and Muzsnay

The following theorem appears in [5].
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Theorem 3 (Bucataru and Muzsnay). A spray Γ is projectively metrizable if and only if there exists a semi-basic 1-form θ on T ◦M
such that

rank(dθ) = 2n − 2, iΓ θ > 0,

L�θ = 0, d J θ = 0, dHθ = 0.

We have modified the notation to fit ours. Here J is the tangent structure and H the horizontal projector, both type
(1,1) tensor fields on T ◦M:

J = V i ⊗ dxi, H = Hi ⊗ dxi .

The conditions d J θ = 0 and dHθ = 0 amount to

dθ
(

XV, Y H) + dθ
(

XH, Y V) = 0, dθ
(

XH, Y H) = 0

respectively, where X and Y are any vector fields on M; or in terms of the basis fields,

V i(θ j) = V j(θi), Hi(θ j) = H j(θi), where θ = θi dxi .

We call the conditions in the first line of the theorem the algebraic conditions, those in the second line the differential
conditions, on θ . We show first that the differential conditions are equivalent to the Helmholtz conditions.

Theorem 4. Suppose that, for a given spray Γ , there is a semi-basic 1-form θ satisfying the differential conditions of Theorem 3. Then
hij = V i(θ j) satisfies the Helmholtz conditions. Conversely, suppose that the tensor hij satisfies the Helmholtz conditions. Then there is
a semi-basic 1-form θ which satisfies the differential conditions of Theorem 3, and hij = V i(θ j).

Proof. Suppose that the semi-basic 1-form θ satisfies the differential conditions of Theorem 3. Set hij = V i(θ j). This is
a tensor field along τ of the indicated type. Since V i(θ j) = V j(θi), as we pointed out above, hij is symmetric. Moreover
Vk(hij) = Vk V j(θi) = V j Vk(θi) = V j(hik), since V j and Vk commute. Furthermore L�θ = y j V j(θi)dxi = hij y j dxi = 0. Now
Hi(θ j) = H j(θi), from which it follows that

Γ (θi) = Hi(θk)yk = Hi
(
θk yk) + Γ k

i θk.

Now apply V j and use [V j,Γ ] = H j − Γ k
j Vk to obtain

V jΓ (θi) = Γ (hij) + H j(θi) − Γ k
j hik = V j Hi

(
θk yk) + Γ k

i j θk + Γ k
i h jk,

where Γ k
i j = V j(Γ

k
i ). But [V j, Hi] = −Γ k

i j Vk , and V j(θk yk) = h jk yk + θ j = θ j . Thus V j Hi(θk yk) + Γ i
jkθk = Hi(θ j), and so

Γ (hij) − Γ k
j hik − Γ k

i h jk = (∇h)i j = 0.

Finally, note that [H j, Hk](θi) = −Rl
jkhil: but then

⊕
[H j, Hk](θi) = −

⊕
Rl

jkhil = 0

in virtue of the fact that Hi(θ j) = H j(θi). But as we remarked above, the vanishing of
⊕

Rl
jkhil is equivalent to hik W k

j =
h jk W k

i . Thus hij satisfies the Helmholtz conditions.
Conversely, suppose that hij satisfies the Helmholtz conditions. Since Vk(hij) = V j(hik) there are locally-defined func-

tions θ̄i , determined up to the addition of arbitrary functions of the xi alone, such that hij = V j(θ̄i); and V j(θ̄i) = V i(θ̄ j). We
next show that for any choice of the θ̄i , the functions Hi(θ̄ j) − H j(θ̄i) are independent of the yk . Now

∂

∂ yk

(
Hi(θ̄ j)

) = Hi(h jk) − Γ l
ikh jl.

It is a simple and well-known consequence of the assumptions that (∇h)i j = 0 and Vk(hij) = V j(hik) that

Hi(h jk) − Γ l
ikh jl = H j(hik) − Γ l

jkhil,

whence Hi(θ̄ j) − H j(θ̄i) is independent of the yk . Thus

χ = (
Hi(θ̄ j) − H j(θ̄i)

)
dxi ∧ dx j
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is a basic 2-form. We show that χ is closed. In computing dχ we may replace the partial derivative with respect to
xk with Hk . We have

⊕
Hk(Hi(θ̄ j) − H j(θ̄i)) = ⊕[H j, Hk](θ̄i) = −⊕

Rl
jkhil . But this vanishes if hik W k

j = h jk W k
i . So χ is

closed, and hence (locally) exact. If now χ = dψ with ψ = ψi dxi , and θi = θ̄i − ψi , then

(
Hi(θ j) − H j(θi)

)
dxi ∧ dx j = χ − dψ = 0.

Set θ = θi dxi . Then V i(θ j) = hij , d J θ = 0 and dHθ = 0; moreover L�θ = hij y j dxi = 0; so θ satisfies the differential condi-
tions of Theorem 3. �

The condition on the rank of dθ gives the following corollary.

Corollary 1. The projective class of sprays containing Γ is the geodesic class of a pseudo-Finsler function if and only if there is a
semi-basic 1-form θ on T ◦M which satisfies the differential conditions of Theorem 3, and in addition rank(dθ) = 2n − 2.

Proof. Let {dxi, φi} be the local basis of 1-forms dual to the local basis of vector fields {Hi, V i} corresponding to the
horizontal distribution determined by Γ . Then

dθ = Hi(θ j)dxi ∧ dx j − V i(θ j)dxi ∧ φ j = −hij dxi ∧ φ j.

It follows from the fact that hij y j = 0 that iΓ dθ = i� dθ = 0; thus in general rank(dθ) � 2n − 2, and rank(dθ) = 2n − 2 if
and only if hij is quasi-regular. �

The condition iΓ θ > 0 now comes into its own in ensuring that the pseudo-Finsler function is actually a Finsler function:
θ (if it exists with the given properties) is the Hilbert 1-form, and iΓ θ = F , so this condition, together with the rank
condition on dθ , say that there is a positive pseudo-Finsler function. But it can be shown that a pseudo-Finsler function
which takes only positive values is a Finsler function, a result originally due to Lovas [12] which is quoted in [5].

It is worth remarking, with reference to the relation between Theorem 3 and Theorem 5 below, that if one adds to θ

the pull-back of any closed 1-form on M then dθ is unchanged; and this operation corresponds exactly to adding a total
derivative to F . So in a sense the inequality condition in Theorem 3 requires that there must be, among all of the pseudo-
Finsler functions with a given Hilbert 2-form, determined up to the addition of a total derivative, one (at least) which is
everywhere positive. The result of the analysis leading to Theorem 1 in [9] suggests however that to expect this positivity
condition to hold globally over M is somewhat ambitious.

5. Formulations in terms of 2-forms

Let Γ be a (semi-)spray and {dxi, φi} the local basis of 1-forms corresponding to its horizontal distribution. A symmetric
tensor h = hij(y)dxi ⊗dx j can always be lifted to a 2-form ω = hij(y)dxi ∧φ j on T ◦M . This procedure was called the Kähler
lift of h in [13], since ω is clearly a generalization of the Kähler form of a Riemannian metric.

Recall that for a given projective class of sprays we denote by D the distribution on T ◦M spanned by � and any spray
of the class; it is involutive.

Lemma 1. Suppose given a projective class of sprays, and a symmetric tensor hij such that hij y j = 0. Let Γ be any spray of the class,
and ω = hij dxi ∧ φ j the corresponding Kähler lift of h. Then ω is a concomitant of the class, that is, it is the same whichever spray in
the class is used to define it. Moreover, the characteristic distribution of any such 2-form ω contains the distribution D defined by the
class.

Proof. Any other member of the projective class is of the form Γ̃ = Γ −2P�, where P is a positively-homogeneous function
on T ◦M . For the local basis {dxi, φ̃i} corresponding to Γ̃ we have

φ̃i = φi + P dxi + yi V j(P )dx j,

from which the first result readily follows. Clearly iΓ ω = i�ω = 0, as a consequence of the fact that hij y j = 0. �
Theorem 5. Let Γ be a spray, and let ω be a 2-form on T ◦M such that

1. the characteristic distribution of ω contains D, the distribution spanned by the projective class of Γ ;
2. LΓ ω = 0;
3. for any pair of vertical vector fields V 1 , V 2 , ω(V 1, V 2) = 0;
4. for any horizontal vector field H and any pair of vertical vector fields V 1 , V 2 , dω(H, V 1, V 2) = 0.
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Then over any coordinate neighbourhood U ⊂ M, ω = hij dxi ∧ φ j where hij satisfies the Helmholtz conditions. Conversely, if hi j

satisfies the Helmholtz conditions then for any spray Γ in the projective class the 2-form ω = hij dxi ∧ φ j on τ−1U has the foregoing
properties.

Assumptions 3 and 4 may be stated as follows: for every (x, y) ∈ T ◦M the vertical subspace of T(x,y)T ◦M is isotropic for
ω and iH dω.

Proof of Theorem 5. We may express ω in terms of the basis {dxi, φ j} defined by Γ . It has no term in φi ∧ φ j because of
assumption 3. Thus we may write

ω = aij dxi ∧ dx j + hij dxi ∧ φ j

where a ji = −aij . A straightforward calculation yields

LΓ ω = (
Γ (aij) − 2aikΓ

k
j − hik Rk

j

)
dxi ∧ dx j + (

(∇h)i j + 2aij
)

dxi ∧ φ j + hijφ
i ∧ φ j.

Since this must vanish, it follows (working from right to left) that hij is symmetric; that (∇h)i j = aij = 0 because one is
symmetric, the other skew; and that hik Rk

j is symmetric in i and j. In particular, ω = hij dxi ∧ φ j ; it then follows from the

first assumption that hij y j = 0. Now

dω = Vk(hij)dxi ∧ φ j ∧ φk (
mod dxi ∧ dx j),

so that

dω(Hi, V j, Vk) = Vk(hij) − V j(hik) = 0.

Thus the coefficients hij satisfy the Helmholtz conditions.
The converse is straightforward. �

Corollary 2. If a 2-form ω has the properties stated in Theorem 5 then

1. ω(XH, Y H) = 0 and ω(XH, Y V) = ω(Y H, XV) for any vector fields X, Y on M;
2. ω is closed;
3. LZ ω = 0 for any vector field Z in D.

Proof. 1. These follow from the explicit form of ω.
2. A straightforward calculation gives

dω = 1

2
hil R

l
jk dxi ∧ dx j ∧ dxk + (

Hi(h jk) + hilΓ
l
jk

)
dxi ∧ dx j ∧ φk.

The first term vanishes because
⊕

hil R
l
jk = 0, the second because Hi(h jk)+hilΓ

l
jk is symmetric in i and j, as we established

in the proof of Theorem 4.
3. For any Z ∈D, LZ ω = d(i Z ω) + i Z dω = 0. �

Corollary 3. A projective class of sprays is the geodesic class of a locally-defined pseudo-Finsler function (that is, one defined over a
coordinate neighbourhood U ⊂ M) if and only if there is a 2-form ω on τ−1U with the properties stated in Theorem 5, such that the
characteristic distribution of ω is precisely the distribution D spanned by � and any spray of the class.

We next describe how the positive quasi-definiteness condition on h may be specified as a condition on ω. For any
chosen Γ of the class, for x ∈ M and y ∈ T ◦

x M we define a quadratic form q(x,y) on Tx M by q(x,y)(v) = ω(x,y)(vH, vV). Notice
that q(x,y)(y) = ω(x,y)(Γ,�) = 0. This definition may appear to depend on a choice of Γ from the projective class. The
two-dimensional subspaces of T y T ◦M of the form 〈vH, vV〉 are well defined for a given Γ , but change if Γ is changed to a
different member of the projective class. But if we change Γ to Γ − 2P� then vH changes to vH − P vV − vV(P )�(x,y) , and
this makes no difference to the value of ω(x,y)(vH, vV). So the quadratic form q(x,y) is in fact a concomitant of the class.

Corollary 4. If the quadratic form q is positive quasi-definite everywhere on T ◦M then in a neighbourhood of any point in M there is
a local Finsler function of which the projective class of sprays is the geodesic class.

Proof. This follows directly from the explicit form of ω. �
Putting these local results together with Theorem 2 we obtain the following global theorem.



70 M. Crampin et al. / Differential Geometry and its Applications 31 (2013) 63–79
Theorem 6. If F is a (global) Finsler function on T ◦M then its Hilbert 2-form ω = dθ satisfies the conditions of Theorem 5 for the sprays
of its geodesic class, and in addition the corresponding quadratic form q is positive quasi-definite everywhere. Conversely, suppose given
a projective class of sprays on T ◦M. If there is a 2-form ω on T ◦M which everywhere satisfies the conditions of Theorem 5 and whose
corresponding quadratic form q is everywhere positive quasi-definite, and if H2(M) = 0, then the projective class is the geodesic class
of a global pseudo-Finsler function, and of a local Finsler function over a neighbourhood of any point of M.

We can illustrate the role of the cohomology condition in this theorem, in a way a little different from the way it appears
in the proof of Theorem 2 in [9], by examining the obstructions to the existence of a global semi-basic 1-form θ whose
exterior derivative is the closed 2-form ω.

We first prove the local version of the result. We shall make use of the obvious fact that a form (of any degree) on T ◦M
which is semi-basic and closed is basic (and closed).

Lemma 2. Let ω be a 2-form on T ◦M which is closed and which vanishes when both of its arguments are vertical. Then for any
contractible coordinate neighbourhood U ⊂ M there is a semi-basic 1-form θ on τ−1U such that ω = dθ .

Proof. Set ω = aij dxi ∧ dx j + bij dxi ∧ dy j . The dx ∧ dy ∧ dy term in dω is Vk(bij)dxi ∧ dy j ∧ dyk . This must van-
ish, whence Vk(bij) = V j(bik). Assuming that dim M � 3 it follows that there are functions bi(x, y) on τ−1U such that
bij(x, y) = V j(bi)(x, y). Then

ω + d
(
bi dxi) =

(
aij + ∂b j

∂xi

)
dxi ∧ dx j .

The right-hand side is semi-basic and closed, so basic and closed, so there is a 1-form ψ on U such that ω +d(bi dxi) = dψ .
Thus ω = dθ with θ = ψ − bi dxi , which is semi-basic. �

To derive the global theorem we shall need the following concepts and results.
An open covering U = {Uλ: λ ∈ Λ} of M which has the property that every Uλ , and every non-empty intersection of

finitely many of the Uλ , is contractible is known as a good covering. It can be shown (see [9]) that every manifold over
which is defined a spray admits good open coverings by coordinate patches.

The Čech cohomology group Ȟ2(U,R) of a good open covering U of M is isomorphic to the de Rham cohomology group
H2(M). In particular, if H2(M) = 0 then Ȟ2(U,R) = 0; it is this form of the assumption that we shall actually use in the
proof.

Suppose that for a given good open covering U of M by coordinate neighbourhoods, for each λ,μ ∈ Λ for which Uλ ∩ Uμ

is non-empty there is defined on Uλ ∩ Uμ a function φλμ , and that these functions satisfy the cocycle condition φμν −φλν +
φλμ = 0 on Uλ ∩ Uμ ∩ Uν (assuming it to be non-empty). Then there is a locally finite refinement V = {Vα: α ∈ A} of U,
and for each α a function ψα defined on Vα , such that on Vα ∩ Vβ (assuming it to be non-empty) φαβ = ψα − ψβ , where
φαβ is defined from some φλμ by restriction. This result, which is proved using a partition of unity argument in [9], is a
particular case of the fact that Čech cohomology is a sheaf cohomology theory (see [18]).

Theorem 7. Let ω be a 2-form on T ◦M which is closed and which vanishes when both of its arguments are vertical. Suppose that
H2(M) = 0. Then there is a semi-basic 1-form θ on T ◦M such that dθ = ω.

Proof. Let U be a good open covering of M by coordinate neighbourhoods. On each Uλ there is a semi-basic 1-form θλ such
that ω = dθλ . On Uλ ∩ Uμ , d(θλ − θμ) = 0; that is, θλ − θμ is semi-basic and closed, so there is a function φλμ on Uλ ∩ Uμ

such that θλ − θμ = dφλμ . On Uλ ∩ Uμ ∩ Uν , d(φμν − φλν + φλμ) = 0, so φμν − φλν + φλμ is a constant, say kλμν . For any
four members Uκ , Uλ , Uμ , Uν of U whose intersections in threes are non-empty

kλμν − kκμν + kκλν − kκλμ = 0.

That is to say, k is a 2-cocycle in the Čech cochain complex for the covering U with values in the constant sheaf M × R.
Under the assumption that H2(M) = Ȟ2(U,R) = 0, it must be a coboundary. Thus we can modify each φλμ by the addition
of a constant, so that (after modification) φμν − φλν + φλμ = 0. There is thus a refinement V = {Vα: α ∈ A} of U, and
for each α a function ψα defined on Vα , such that on Vα ∩ Vβ (assuming it to be non-empty) φαβ = ψα − ψβ . But then
θα − dψα = θβ − dψβ on Vα ∩ Vβ . So if we set θ = θα − dψα on Vα , θ is a well-defined semi-basic 1-form on T ◦M such
that dθ = ω. �

We have shown that when H2(M) = 0 there is a globally-defined semi-basic 1-form θ such that dθ = ω. In virtue of the
other conditions on ω, this 1-form must satisfy the differential conditions of the theorem of Bucataru and Muzsnay.
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6. Almost Grassmann structures

We now make a detour to discuss another approach to the construction of a 2-form indicating Finsler metrizability, which
gives a new geometrical interpretation of the vertical subspaces, on the one hand, and the two-dimensional subspaces of the
form 〈vH, vV〉, on the other, which play an important role in the conditions for the existence of a Finsler function discussed
in the previous section. This approach necessitates the use of an almost Grassmann structure [1].

Formally, an almost Grassmann structure on a manifold N of dimension pq, p � 2, q � 2, may be regarded as a Cartan
geometry modelled on the Grassmannian of p-dimensional subspaces of R

p+q [14]. One way to define such a structure
is by specifying a class of local bases of 1-forms {θ i

α}, any two such local bases of the class being related by a formula

θ̂ i
α = Bi

j Aβ
αθ

j
β where (Aα

β ) and (Bi
j) are local matrix-valued functions, respectively p × p and q × q, both non-singular.

Given an almost Grassmann structure, we denote the local basis of vector fields dual to a local basis of 1-forms {θ i
α} in

the structure by {Eα
i }, so that any vector v ∈ Tx N may be written as vi

α Eα
i (x). Of special interest are those vectors v for

which the coefficient matrix (vi
α) has rank 1; the set of such v forms a cone in Tx N called the Segre cone. That is to say, the

Segre cone at x ∈ N consists of those elements of Tx N that can be expressed in the form sαti Eα
i (x) with respect to one, and

hence any, basis {Eα
i } defined by the structure, where (sα) ∈ R

p and (ti) ∈ R
q . For fixed non-zero (ti), as (sα) varies over

R
p we obtain a p-dimensional subspace of Tx N contained in the Segre cone; we call it a p-dimensional plane generator of

the Segre cone. The p-dimensional plane generators of Segre cones are parametrized by the points of the projective space
Pq−1. Similarly, on fixing non-zero (sα), as (ti) varies over R

q we obtain a q-dimensional plane generator of the Segre cone.
There is an almost Grassmann structure of type (2,n) associated with each projective class of sprays on the 2n-

dimensional manifold T ◦M . This structure is not, however, defined on T ◦M itself, but on a related 2n-dimensional bundle
T ◦M → M obtained from a vector bundle T M → M by deleting the zero section.

We may construct T M using a technique described in [10]. We let VM be the manifold of equivalence classes [±θ]
of non-zero volume elements θ ∈ ∧n T ∗M , and let ν : VM → M be given by ν([±θ]) = x where θ,−θ ∈ ∧n T ∗

x M . Given
coordinates xi on M , define the map v by

θ = v(θ)
(
dx1 ∧ · · · ∧ dxn)

x

and let x0 = |v|1/(n+1) be a fibre coordinate on ν . In this way ν : VM → M becomes a principal R+ bundle with fundamental
vector field Υ = x0∂/∂x0. Now consider the tangent bundle TVM → VM and the vector fields

Υ V = x0 ∂

∂ y0
, Υ̃ = Υ C − �̃ = x0 ∂

∂x0
− yi ∂

∂ yi

where �̃ is the dilation field on TVM . The distribution spanned by these two vector fields is integrable, and the quotient
is a manifold T M which does not project to VM but does define a vector bundle over M . The fibre coordinates (ui) on the
new bundle are defined in terms of the fibre coordinates (yi) of T M by ui = x0 yi ; the quotient manifold may be thought
of as the tensor product of the ordinary tangent bundle with the bundle of scalar densities of weight 1/(n + 1).

The construction of the almost Grassmann structure may also be found in [10]. For any spray

yi ∂

∂xi
− 2Γ i ∂

∂ yi

on T ◦M there is a well-defined horizontal distribution on T ◦M , spanned locally by the vector fields

Ki = ∂

∂xi
−

(
Γ

j
i − 1

n + 1
u jΓi

)
∂

∂u j
,

where ui are the natural fibre coordinates on T ◦M and

Γ
j

i = ∂Γ j

∂ yi
, Γi = ∂Γ k

k

∂ yi
.

If two sprays are related by a projective transformation with function P , the vector fields are modified according to the rule

Ki �→ Ki − P
∂

∂ui
.

We shall write, for v ∈ Tx M ,

vH = viKi, vV = vi ∂

∂ui
.

Now suppose given a projective class of sprays. Choose a particular spray in the class; from the remarks above we see
that in a coordinate patch with coordinates (xi, ui) the 1-forms
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θ i
1 = dxi, θ i

2 = dui +
(

Γ i
j − 1

n + 1
uiΓ j

)
dx j

transform as

θ̂ i
1 = J i

jθ
j

1 , θ̂ i
2 = | J |−1/(n+1) J i

jθ
j

2

under a coordinate transformation, where J i
j is the Jacobian matrix of the transformation on M and | J | is its determinant,

and as

θ̂ i
1 = θ i

1, θ̂ i
2 = θ i

2 + Pθ i
1

under a projective transformation. It follows that the set of locally-defined 1-forms {Ai
j Aβ

αθ
j
β}, with α,β = 1,2, i, j =

1,2, . . . ,n, with (Ai
j), (Aβ

α) arbitrary local non-singular-matrix-valued functions, of size n × n and 2 × 2 respectively, is
defined independently of the choice of coordinates and of the choice of spray within the projective class. These 1-forms
therefore determine an almost Grassmann structure of type (2,n) on T ◦M .

The Segre cone at a point (x, u) of T ◦M consists of vectors of the form avH + bvV for a,b ∈ R and v ∈ Tx M . The n-
dimensional plane generators of the Segre cone are obtained by fixing a and b and letting v range over Tx M; they consist
of the horizontal subspace with respect to each spray of the projective class together with the vertical subspace. For the
two-dimensional plane generators we fix v and allow the coefficients to vary over R

2. Notice that D(x,u) , where D is the
involutive two-dimensional distribution spanned by � and any spray of the class, is a two-dimensional plane generator of
the Segre cone at (x, u).

Each Finsler geometry on T ◦M determines a projective class of sprays, and therefore determines an almost Grassmann
structure on T ◦M . We may determine a relationship between the two structures using the fact that if ω is a closed form
on T ◦M satisfying i�ω = 0 then its pull-back (ν∗)∗ω by ν∗ : T ◦(VM) → T ◦M is projectable to a form on T ◦M , and apply
this to the Hilbert 2-form.

Theorem 8. (See [10].) To each Finsler function F on T ◦M there is associated a closed 2-form � on T ◦M, such that the characteristic
distribution of � is the two-dimensional distribution D corresponding to the geodesic sprays of F , and such that the n-dimensional
plane generators of the Segre cones are isotropic with respect to � .

Conversely, suppose given a projective class of sprays on T ◦M and corresponding almost Grassmann structure. If there is a 2-form
� on T ◦M such that

1. the n-dimensional plane generators of the Segre cones are isotropic with respect to � ;
2. the characteristic distribution of � is D;
3. � is closed

then the projective class is the geodesic class of a locally-defined pseudo-Finsler function.

Proof. In fact � must take the form hij dxi ∧ θ
j

2 with hij the Hessian, or putative Hessian, of F , much as in Theorem 5: see
[10, Theorems 4 and 6] for the details. �

We can now further refine this result. Let α be a 2-covector on some vector space V of dimension at least two, and W
a two-dimensional subspace of V . Then either α|W ≡ 0, or α(w1, w2) = 0 for w1, w2 ∈ W only if w1 and w2 are linearly
dependent. In the former case we say that α vanishes on W .

Corollary 5. If the 2-form � vanishes on a 2-plane generator of Segre cones only if it is a generator determined by D then either h or
−h is positive quasi-definite, and there is a local Finsler function whose geodesic class is the given projective class.

Proof. At any (x, u) ∈ T ◦M we have, for v ∈ TxM , �(vH, vV) = hij vi v j . This cannot vanish unless v is a scalar multiple
of u. Thus, at each point of T ◦M , h is either positive or negative quasi-definite. By continuity either h or −h must be
positive quasi-definite everywhere. �
7. Path space

We take up the argument from where we left it in Section 5.
We now assume that we can quotient out by the foliation on T ◦M defined by the involutive distribution D, that is, that

there is a (2n − 2)-dimensional manifold PD – path space – such that π : T ◦M → PD is a fibration whose fibres are the
leaves of the foliation. So we have a double fibration

M
τ←− T ◦M

π−→ PD.
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(It has to be admitted that in general there is no reason for the path space of a projective class of sprays to be a
smooth manifold. For the geodesic class of sprays of a Riemannian metric, for example, two well-known cases where the
path space can be given the structure of a smooth manifold are the cases where the Riemannian manifold is either a
Hadamard manifold (i.e. a complete simply connected Riemannian manifold of non-positive curvature) or a manifold with
closed geodesics of the same length. These two cases are discussed in detail in e.g. Ferrand [11] and Besse [4], respectively.)

For any x ∈ M , denote by x̂ the submanifold π(T ◦
x M) of PD , that is, the image under π of the fibre of T ◦M over x: it is

the submanifold consisting of all paths through x. It is of dimension n − 1, because � is vertical.
The following theorem is our version of Theorem 4.1 of [2].

Theorem 9. A projective class of sprays is the geodesic class of a pseudo-Finsler function if and only if there is a symplectic 2-form Ω

on PD such that x̂ is a Lagrangian submanifold of PD with respect to Ω , for every x ∈ M.

Proof. Suppose that the projective class of sprays is derivable from a pseudo-Finsler function. Let ω = hij dxi ∧ φ j be the
Hilbert 2-form on T ◦M . It satisfies the conditions of Theorem 5, is closed, has D for its characteristic distribution, and
satisfies LZ ω = 0 for every vector field Z in D. It therefore passes to the quotient, that is, there is a 2-form Ω on PD
such that π∗Ω = ω. Then Ω is non-singular. Moreover π∗ dΩ = 0; but π is surjective, so dΩ = 0. Thus Ω is symplectic.
Let p ∈ x̂ and ξ,η ∈ T p x̂. Then there is y ∈ T ◦

x M , and v, w ∈ T y T ◦
x M (i.e. vertical vectors at y) such that p = π(y), ξ = π∗v ,

η = π∗w , and

Ωp(ξ,η) = Ωp(π∗v,π∗w) = π∗Ωp(v, w) = ωy(v, w) = 0.

Conversely, suppose that there is a 2-form Ω on PD with the stated properties. Set ω = π∗Ω . Then dω = 0, and the
characteristic distribution of ω is D. Evidently LΓ ω = 0 for any spray in the class. Let x ∈ M , y ∈ T ◦

x M , and v, w ∈ T y T ◦
x M

(i.e. any vertical vectors at y). Then

ωy(v, w) = π∗Ωp(v, w) = Ωp(π∗v,π∗w) = 0

because π∗v,π∗w ∈ T p x̂. Now apply Corollary 3. �
When dim M = 2 the dimension of PD is also 2, so in this case there is essentially no condition in Theorem 9, because

every 2-form is closed, and x̂ is one-dimensional. That is, every volume form (nowhere vanishing 2-form) on PD satisfies
the conditions of the theorem. Moreover, we see that the freedom in choice of Hessians of pseudo-Finsler functions is
the same as the freedom in choice of volume forms in 2 dimensions, that is, multiplication by a function on PD . These
observations give another interpretation of the results on the two-dimensional case in [9].

8. Jacobi fields

Roughly speaking, a point in path space PD represents a geodesic, and so a tangent vector to path space at a point in it
is an ‘infinitesimal connecting vector to a nearby geodesic’, that is, a Jacobi field along the initial geodesic. This observation,
when tidied up, gives another interpretation of the requirement that x̂ is a Lagrangian submanifold of PD with respect
to Ω .

In order to discuss Jacobi fields we have to fix the parametrization, that is, choose a specific spray Γ from the projective
equivalence class. However, since the argument to be presented below leads merely to a reinterpretation of the conditions
just mentioned, which we know from the previous section to be defined for the whole projective class, it clearly makes no
difference which particular spray from the class we choose to work with.

Let t �→ γ (t) ∈ M be a geodesic, that is, a base integral curve of Γ . Then t �→ γ̄ (t) = (γ (t), γ̇ (t)) is an integral curve of
Γ in T ◦M , and in coordinates

γ̈ i(t) + 2Γ i(γ (t), γ̇ (t)
) = 0.

Let Z be a vector field along γ̄ such that LΓ Z = 0. We set ζ = τ∗ Z , a vector field along the geodesic γ ; then the condition
LΓ Z = 0 is equivalent to Z = ζ H + (∇ζ )V where ∇2ζ i + Ri

jζ
j = 0. That is to say, ζ is a Jacobi field along γ , and there is

a 1–1 correspondence between Jacobi fields along γ and vector fields which are Lie transported along γ̄ . Evidently γ̇ is a
Jacobi field along γ , corresponding to the restriction of Γ to γ̄ . Moreover, t �→ tγ̇ (t) is a Jacobi field along γ , corresponding
to the restriction to γ̄ of tΓ + �. These Jacobi fields in the tangent direction of γ may be regarded as trivial. We denote by
Jγ the space of Jacobi fields along γ . It is a 2n-dimensional real vector space. We denote by J0

γ the quotient of Jγ by the
two-dimensional subspace consisting of the trivial Jacobi fields which lie in the direction tangent to γ .

There is a leaf of the involutive distribution D containing γ̄ : call it Lγ . It consists of all points of T ◦M of the form
(γ (t), esγ̇ (t)) for (s, t) ∈ R

2 (assuming that γ is defined on R). The leaf Lγ determines a point p = π(Lγ ) ∈ PD . Now let Z
be a vector field defined over Lγ (but not tangent to it; strictly speaking, Z is a vector field along the injection Lγ → T ◦M).
The Lie derivative of such a vector field Z by any vector field in D is well defined; and Z projects to an element of T p PD
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if and only if every such Lie derivative lies in D|Lγ . That is to say, for every vector field Z on Lγ such that L� Z ∈ D and
LΓ Z ∈D, π∗ Z is a well-defined element of T p PD; and every element of T p PD is of this form for some such Z .

We shall show that there is an isomorphism of J0
γ with T p PD . We know that any ζ ∈ Jγ lifts to a vector field Z along

γ̄ such that LΓ Z = 0. We shall first show that such a vector field Z can be extended to a vector field (also denoted by Z )
on Lγ such that L� Z =LΓ Z = 0.

Lemma 3. Let t �→ Z(t) be a vector field along γ̄ such that LΓ Z = 0. Then there is a unique vector field (s, t) �→ Z(s, t) on Lγ such
that L� Z =LΓ Z = 0 and Z(t) = Z(0, t).

Proof. Let δs be the 1-parameter group generated by � acting on Lγ , so that for any (x, y) ∈ Lγ , δs(x, y) = (x, es y). Let
Z(t) be any vector field along γ̄ and set Z(s, t) = δs∗ Z(t). Then L� Z = 0 and Z(0, t) = Z(t); moreover Z(s, t) is uniquely
determined by these properties. Now [�,Γ ] = Γ , whence L�LΓ Z = LΓ L� Z +LΓ Z = LΓ Z . It follows that (LΓ Z)(s, t) =
esδs∗(LΓ Z)(0, t) = esδs∗(LΓ Z)(t). So if (LΓ Z)(t) = 0 then (LΓ Z)(s, t) = 0. �

We define a linear map j : Jγ → T p PD as follows. For ζ ∈ Jγ let Z(t) be the corresponding vector field along γ̄ , and
Z(s, t) the vector field on Lγ whose existence is guaranteed by the lemma. Then π∗ Z is a well-defined element of T p PD ,
and we set π∗ Z = j(ζ ). We shall show that the kernel of j is spanned by the trivial Jacobi fields γ̇ and tγ̇ , whence
j : J0

γ → T p PD is an isomorphism by dimension.

Proposition 1. The linear map j : J0
γ → T p PD is an isomorphism.

Proof. Let us denote by ϕ the map R
2 → Lγ given by ϕ(s, t) = (γ (t), esγ̇ (t)). Then evidently

ϕ∗
(

∂

∂s

)
= �ϕ(s,t).

Furthermore

ϕ∗
(

es ∂

∂t

)
= es

(
γ̇ i(t)

∂

∂xi
+ esγ̈ (t)i ∂

∂ yi

)
.

But γ̈ (t)i = −2Γ i(γ (t), γ̇ (t)), and Γ i is positively homogeneous of degree 2 in the fibre coordinates; thus

ϕ∗
(

es ∂

∂t

)
= esγ̇ i(t)

∂

∂xi
− 2e2sΓ i(γ (t), γ̇ (t)

) ∂

∂ yi

= esγ̇ i(t)
∂

∂xi
− 2Γ i(γ (t), esγ̇ (t)

) ∂

∂ yi

= Γϕ(s,t).

Thus we can use s and t as coordinates on Lγ , with

� = ∂

∂s
, Γ = es ∂

∂t
.

A vector field on Lγ which projects onto 0 ∈ T p PD takes the form

Z(s, t) = σ(s, t)
∂

∂s
+ τ (s, t)

∂

∂t
.

Then L� Z = 0 if and only if σ and τ are independent of s. Furthermore,

LΓ Z = es
(

∂σ

∂t

∂

∂s
+

(
∂τ

∂t
− σ

)
∂

∂t

)
,

so that LΓ Z = 0 if and only if σ = a is constant and τ (s, t) = at + b where b is constant. Then

Z(s, t) = a�ϕ(s,t) + (at + b)e−sΓϕ(s,t),

and in particular

Z(0, t) = a(tΓγ̄ (t) + �γ̄ (t)) + bΓγ̄ (t).

That is to say, Z corresponds to a linear combination of trivial Jacobi fields, and so the kernel of j is spanned by the trivial
Jacobi fields. �
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Now let γ be a geodesic of Γ through x ∈ M , with γ (0) = x for convenience. Denote by Jγ ,0 the space of Jacobi fields
along γ which vanish at x, and J0

γ ,0 the quotient of Jγ ,0 by the constant multiples of tγ̇ (t). Then j maps J0
γ ,0 onto T p x̂,

and is an isomorphism.
Let ω be a 2-form on T ◦M such that LΓ ω = 0 (Theorem 5, assumption 2). Let ζ1 and ζ2 be Jacobi fields along γ , and Z1

and Z2 the corresponding vector fields on Lγ as given in Lemma 3. Then since LΓ Z1 =LΓ Z2 = 0, Γ (ω(Z1, Z2)) = 0, that is
to say, ω(Z1, Z2) is constant along every integral curve of Γ in Lγ . Suppose further that for x ∈ M , ω|T ◦

x M = 0 (Theorem 5,
assumption 3). If now ζ1(0) = ζ2(0) = 0, so that Z1(0) and Z2(0) are vertical, then ω(Z1, Z2) = 0 on the ray s �→ esγ̇ (0)V

in Lγ . But this is transversal to Γ in Lγ , so ω(Z1, Z2) = 0 on Lγ .
It is this property of ω which corresponds to the property that the submanifolds x̂ are Lagrangian in Theorem 9 (when

ω satisfies the conditions of Theorem 5 and Corollary 2): note that π(Lγ ) = p ∈ x̂, and we have in effect shown that Ωp

(where Ω is the projection of ω) vanishes on any pair of vectors in T p x̂.
We consider next the positive quasi-definiteness condition. Take x ∈ M and y ∈ T ◦

x M , and let γ be the geodesic with
γ (0) = x and γ̇ (0) = y. Let v ∈ Tx M: there are unique Jacobi fields ζ1(t), ζ2(t) along γ such that

ζ1(0) = v, ∇ζ1(0) = 0; ζ2(0) = 0, ∇ζ2(0) = v.

Let Z1, Z2 be the corresponding vector fields along γ̄ such that LΓ Z1 = LΓ Z2 = 0. Then the quadratic form q(x,y) on Tx M
defined in Section 5 is given by

q(x,y)(v) = ω(x,y)

(
vH, vV) = ω(x,y)(Z1, Z2) = Ωp(ζ1, ζ2)

where p = π(x, y) and ζ1, ζ2 ∈ T p PD are the elements determined by the Jacobi fields ζ1(t), ζ2(t) by means of j. We have
the following version of Corollary 4.

Corollary 6. A projective class of sprays is the geodesic class of a local Finsler function if and only if there is a symplectic 2-form Ω on
PD such that x̂ is a Lagrangian submanifold of PD with respect to Ω , for every x ∈ M, and moreover Ωp(ζ1, ζ2) > 0 for all non-zero
ζ1, ζ2 ∈ T p PD of the special form described above.

9. Totally-geodesic submanifolds

In Álvarez Paiva’s analysis of Hilbert’s fourth problem ([2]; see also [8]) 2-planes in R
n play an important role: see for

example Theorem 4.5 of [2], which relates the positivity properties of an admissible 2-form ω (our Ω) to the pull-back of ω
to each two-dimensional submanifold of path space consisting of all lines in a 2-plane. This can be generalized to the kind
of situation discussed here if we change 2-planes to two-dimensional totally-geodesic submanifolds, as we now explain.

Let N be a proper embedded submanifold of M . We define a submanifold N̂ of T ◦M , of twice the dimension, as follows:
N̂ = {(x, y) ∈ T ◦M: y ∈ Tx N}. Thus N̂ is T ◦N considered as a submanifold of T ◦M . Evidently � is tangent to N̂ (if y ∈ Tx N
then also et y ∈ TxN). Moreover, if v is any vector tangent to N then vV is tangent to N̂ , since vV

y is the tangent at t = 0 to
the curve t �→ y + tv , and if y ∈ Tx N and v ∈ Tx N then y + tv ∈ Tx N for all t .

We say that the submanifold N is totally geodesic with respect to the spray Γ if Γ is tangent to N̂ . Then every geodesic
γ of Γ in M which starts at a point x = γ (0) of N and is tangent to N there (so that γ̇ (0) ∈ Tx N) lies totally within N: it
is the projection of the integral curve of Γ through (γ (0), γ̇ (0)), which lies in N̂ . Note that since � is tangent to N̂ , if Γ is
tangent to N̂ so is any projectively-equivalent spray: that is, being totally geodesic is a projective property (as it should be,
since it should be concerned with geodesic paths rather than parametrized geodesics).

Lemma 4. If N is totally geodesic then if v is any vector tangent to N, vH is tangent to N̂.

Proof. We can find coordinates on M such that N is given by xα = 0, α = dim N + 1, . . . ,n. We use a, b for indices
1, . . . ,dim N . Clearly N̂ is given by xα = 0, yα = 0. With

Γ = yi ∂

∂xi
− 2Γ i ∂

∂ yi
,

N is totally geodesic if and only if Γ α(xa,0, ya,0) = 0. Now

Ha = ∂

∂xa
− Γ i

a
∂

∂ yi
.

But on N̂

Γ α
a

(
xb,0, yb,0

) = ∂Γ α

a

(
xb,0, yb,0

) = 0.

∂ y
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Thus on N̂

Ha = ∂

∂xa
− Γ b

a
∂

∂ yb
,

which is tangent to N̂ . �
For convenience, when speaking of vector fields in relation to a submanifold we shall use ‘on’ to mean not just ‘defined

on’ but also ‘tangent to’.
When N is totally geodesic the space of vector fields on N̂ is spanned by the vector fields XV, XH, where X is any vector

field on N; notice that XV and XH coincide with � and Γ where y = X(x), that is, on the image of the corresponding
section. Now

[
Γ, XV] = −XH + (∇ X)V,

[
Γ, XH] = (∇ X)H + Φ(X)V.

For a totally-geodesic submanifold these formulas make sense on N̂ with X any vector field on N . Then since Γ , XV and
XH are all tangent to N̂ , so is (∇ X)V, and so is Φ(X)V. Of course [�, XV] = −XV and [�, XH] = 0.

We now consider two-dimensional totally-geodesic submanifolds. Any such submanifold N defines a two-dimensional
submanifold N̄ of PD , whose points consist of geodesic paths in N; alternatively, N̄ = π(N̂) where π is the projection
T ◦M → PD .

Suppose we have a closed 2-form ω on T ◦M whose characteristic distribution is spanned by Γ and �, as in Theorem 5.
Then ω = hij dxi ∧ φ j . As we know, to determine whether h is positive quasi-definite at any (x, y) ∈ T ◦M we must consider
ω(x,y)(vH, vV) as v ranges over Tx M . Moreover, ω determines a symplectic form Ω on PD , according to Theorem 9.

Proposition 2. Let N be a two-dimensional totally-geodesic submanifold of M, N̄ = π(N̂). Then for any p ∈ N̄ and any ξ,η ∈ T p N̄,

Ωp(ξ,η) = ±ω(x,y)(vH, vV) where (x, y) ∈ N̂ with π(x, y) = p, for some v ∈ TxN.

Proof. Let γ be a geodesic of Γ in N whose path projects to p; set x = γ (0) ∈ N , y = γ̇ (0) ∈ Tx N . Now let ν(t) be a
vector field along γ everywhere tangent to N and independent of γ̇ ; then {ν(t), γ̇ (t)} is a basis of Tγ (t)N . Let ξ,η ∈ T p PD:
then there are Jacobi fields ξ(t), η(t) along γ corresponding to ξ and η; furthermore, the vector fields X = ξH + (∇ξ)V,
Y = ηH + (∇η)V satisfy LΓ X = LΓ Y = 0; and ω(γ (t),γ̇ (t))(X(t), Y (t)) is constant and equal to Ωp(ξ,η). Since N is totally
geodesic, if ξ,η ∈ T p N̄ then ξ(t), η(t) ∈ Tγ (t)N . We can express ξ(t) and η(t) in terms of the basis {ν(t), γ̇ (t)}: say ξ(t) =
a(t)ν(t) (mod γ̇ (t)), η(t) = b(t)ν(t) (mod γ̇ (t)). Then

∇ξ = ȧν + a∇ν, ∇η = ḃν + b∇ν
(
mod γ̇ (t)

)
,

and so

Ωp(ξ,η) = ω(X, Y )

= ω
(
ξH + (∇ξ)V, ηH + (∇η)V)

= ω
(
ξH, (∇η)V) − ω

(
ηH, (∇ξ)V)

= ω
(
aνH, ḃνV + b(∇ν)V) − ω

(
bνH, ȧνV + a(∇ν)V)

= (aḃ − bȧ)ω
(
νH, νV)

.

But ω(X, Y ) is constant along γ , so in the end

Ωp(ξ,η) = (aḃ − bȧ)(0)ω(x,y)

(
ν(0)H, ν(0)V)

.

Now if a(0)ḃ(0) − b(0)ȧ(0) = 0 then ξ(t) and η(t) are linearly dependent, and so Ωp(ξ,η) = 0. Otherwise, one can scale ν
to eliminate the overall scalar factor: that is, set

v = 1√
|a(0)ḃ(0) − b(0)ȧ(0)|

ν(0). �

Now h is everywhere positive quasi-definite if and only if for every (x, y) ∈ T ◦M and for every v ∈ Tx M , ω(x,y)(vH,

vV) � 0, and ω(x,y)(vH, vV) = 0 if and only if v is a scalar multiple of y. Suppose that Γ has the property that for every
x ∈ M and every two-dimensional subspace of Tx M there is a totally-geodesic submanifold N through x with the given
subspace as its tangent space. Then for every point p ∈ P D and every two-dimensional subspace of T p PD there is a two-
dimensional submanifold N̄ through p with the given subspace as its tangent subspace. We conclude therefore:
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Proposition 3. Let Γ be such that for every x ∈ M and every two-dimensional subspace of Tx M there is a totally-geodesic submanifold
through x with the given subspace as its tangent space. If h is everywhere positive quasi-definite, the pull-back of Ω to any submanifold
N̄ as above is non-vanishing (i.e. it is a volume form). Conversely, if Ω has this property then either h or −h is everywhere positive
quasi-definite.

The question arises, are there any spray spaces with this property – other than those covered by Hilbert’s fourth problem,
namely those for which the paths are straight lines? For a two-dimensional totally-geodesic submanifold N , with x ∈ N and
y, v ∈ Tx N , Φy(v) ∈ Tx N also: that is, Φy(v) is a linear combination of y and v (if v is a multiple of y then Φy(v) = 0). If
this holds for all y and all v ∈ Tτ (y)M then the space must be isotropic: Φ i

j = λδi
j + μ j yi (= Ri

j). We don’t know, however,
whether this is sufficient as well as necessary. But it is well known that every isotropic space is projectively metrizable, see
e.g. [5,7].

10. Example

The following example, which is an extension of Shen’s circle example from [15], was introduced in [9].
Consider the projective class of the spray

Γ = u
∂

∂x
+ v

∂

∂ y
+ w

∂

∂z
+

√
u2 + v2 + w2

(
−v

∂

∂u
+ u

∂

∂v

)

defined on T ◦
R

3. As we showed in [9], the geodesics of Γ are spirals with axis parallel to the z-axis, together with straight
lines parallel to the z-axis and circles in the planes z = constant. Evidently both

√
u2 + v2 = μ and w are constant; and

therefore (or directly)
√

u2 + v2 + w2 = λ is also constant. The geodesics are the solutions of ẍ = −λ ẏ, ÿ = λẋ, z̈ = 0, which
are

x(t) = ξ + r cos(λt + ϑ), y(t) = η + r sin(λt + ϑ), z(t) = wt + z0,

where ξ , η, r, ϑ are constants, with w2 = λ2(1 − r2). The initial point on the geodesic (the point where t = 0) is (x0, y0, z0)

where x0 = ξ + r cosϑ , y0 = η + r sinϑ . The projections of the geodesics on the xy-plane are circles of centre (ξ,η) and
radius r = μ/λ: note that 0 � r � 1, the circle degenerating to a point when r = 0. For w/λ �= 0,±1 the geodesics are
spirals, with axis the line parallel to the z-axis through (ξ,η,0). The case r = 0 corresponds to w/λ = ±1 and the geodesics
are straight lines parallel to the z-axis (in both directions). The case r = 1 (w = 0) gives circles of unit radius in the planes
z = z0.

Consider the genuine spirals, that is, take r �= 0 and w �= 0. Note first that the circle which is the spiral’s projection on
the xy-plane is always traversed anticlockwise, though z(t) may increase or decrease with increasing t , depending on the
sign of w . Next, we may fix the origin of t so that z0 = 0: then ϑ determines the point on the circle in the xy-plane where
t = 0. Let us (in general) set w/λ = ν: then ν is constant with −1 � ν � 1, and also is homogeneous of degree 0 as a
function on T ◦

R
3. We can eliminate t , to express the spiral paths (ν �= 0) as

x = ξ +
√

1 − ν2 cos(z/ν + ϑ), y = η +
√

1 − ν2 sin(z/ν + ϑ).

Then (ξ,η, ν,ϑ) smoothly parametrize the set of genuine spirals.
(However, it is not possible to parametrize smoothly the full set of paths.)
We have a map (x, y, z, u, v, w) �→ (ξ,η, ν,ϑ) where

ξ = x − v/λ, η = y + u/λ, ν = w/λ, ϑ = arccos(v/μ) − λz/w.

Then

dξ = dx − d(v/λ), dη = dy + d(u/λ), dν = d(w/λ).

It is simplest to compute dϑ from the implicit definition, which can be written

cos(z/ν + ϑ) = v/μ, sin(z/ν + ϑ) = −u/μ,

from which it follows that

dϑ = −d(z/ν) − μ−2(v du − u dv) = −d(z/ν) − (
λ/μ2)(v d(u/λ) − u d(v/λ)

)
.

The 1-forms dξ , dη, dν and dϑ are evidently independent.
Consider the 2-form Ω = dξ ∧dη+ν dν ∧dϑ . It is a symplectic form. The spiral paths through (x, y, z) map to the points

(ξ,η, ν,ϑ) for which

ξ = x −
√

1 − ν2 cos(z/ν + ϑ), η = y −
√

1 − ν2 sin(z/ν + ϑ),
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where we treat x, y and z as constants. On the 2-manifold so defined we have

dξ = ν√
1 − ν2

cos(z/ν + ϑ)dν +
√

1 − ν2 sin(z/ν + ϑ)
(−(

z/ν2)dν + dϑ
)
,

dη = ν√
1 − ν2

sin(z/ν + ϑ)dν −
√

1 − ν2 cos(z/ν + ϑ)
(−(

z/ν2)dν + dϑ
)
,

whence

dξ ∧ dη = −ν dν ∧ dϑ.

That is, every such 2-manifold is Lagrangian for Ω .
We next compute the pull-back ω of Ω to T ◦

R
3. We do so by using the formulas above for dξ , dη etc., but no longer

treat x, y and z as constants. We have

dξ ∧ dη = (
dx − d(v/λ)

) ∧ (
dy + d(u/λ)

)
= dx ∧ dy + dx ∧ d(u/λ) + dy ∧ d(v/λ) + d(u/λ) ∧ d(v/λ).

On the other hand,

ν dν ∧ dϑ = dz ∧ d(w/λ) − μ−2 d(w/λ) ∧ (
(v w)d(u/λ) − (uw)d(v/λ)

)
.

But since (u/λ)2 + (v/λ)2 + (w/λ)2 = 1

u d(u/λ) + v d(v/λ) + w d(w/λ) = 0,

whence

w d(w/λ) ∧ d(u/λ) = v d(u/λ) ∧ d(v/λ),

w d(w/λ) ∧ d(v/λ) = −u d(u/λ) ∧ d(v/λ),

and therefore

d(w/λ) ∧ (
(v w)d(u/λ) − (uw)d(v/λ)

) = (
u2 + v2)d(u/λ) ∧ d(v/λ).

Finally, we have

ω = dx ∧ dy + dx ∧ d(u/λ) + dy ∧ d(v/λ) + dz ∧ d(w/λ).

The 2-form ω satisfies the conditions of Theorem 5 and Corollary 3. Thus Γ should admit a pseudo-Finsler function.
In fact Γ comes from the pseudo-Finsler function

F (x, y, z, u, v, w) =
√

u2 + v2 + w2 + 1

2
yu − 1

2
xv.

This is globally well defined but only locally a Finsler function. A straightforward calculation confirms that its Hilbert 2-form
is ω (up to sign).

The function F is a Finsler function, that is, is positive, only for x2 + y2 < 4. It is globally pseudo-Finsler. To obtain a
Finsler function in a neighbourhood of an arbitrary point (x0, y0, z0) we can make a simple modification to

F̃ (x, y, z, u, v, w) =
√

u2 + v2 + w2 + 1

2
(y − y0)u − 1

2
(x − x0)v;

this is positive for (x − x0)
2 + (y − y0)

2 < 4. Note that it differs from F by a total derivative.
The planes z = constant are totally-geodesic submanifolds. Indeed, if we denote by N any such plane then w = 0 on the

corresponding submanifold N̂ of T ◦
R

3, and the restriction of Γ to N̂ is the spray

u
∂

∂x
+ v

∂

∂ y
− v

√
u2 + v2 ∂

∂u
+ u

√
u2 + v2 ∂

∂v

of Shen’s circle example. We consider this as a spray defined on T ◦
R

2. It has for its geodesics all circles in R
2 of radius 1,

traversed counter-clockwise. The path space is smoothly parametrized by the coordinates (ξ,η) of the circles’ centres.
Again, this spray is locally projectively metrizable. One local Finsler function is the restriction of the one given for the

spiral example, namely

F (x, y, u, v) =
√

u2 + v2 + 1
yu − 1

xv.

2 2
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A straightforward calculation leads to its Hilbert 2-form:

dθ = −dx ∧ dy + 1

μ3
(v du − u dv) ∧ (v dx − u dy).

But this is just −dξ ∧ dη. So in this case there is a globally-defined path space equipped with a global symplectic form. The
Hilbert 2-form passes to the path space and coincides with this symplectic form there. Moreover, it does so globally, despite
the fact that F is only locally defined as a Finsler function (though again it is global as a pseudo-Finsler function).
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