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bstract

Modern analytical technologies afford comprehensive and quantitative investigation of a multitude of different metabolites. Typical metabolomic
xperiments can therefore produce large amounts of data. Handling such complex datasets is an important step that has big impact on extent and
uality at which the metabolite identification and quantification can be made, and thus on the ultimate biological interpretation of results. Increasing
nterest in metabolomics thus led to resurgence of interest in related data processing. A wide variety of methods and software tools have been
eveloped for metabolomics during recent years, and this trend is likely to continue. In this paper we overview the key steps of metabolomic data
rocessing and focus on reviewing recent literature related to this topic, particularly on methods for handling data from liquid chromatography
ass spectrometry (LC–MS) experiments.
2007 Elsevier B.V. All rights reserved.
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1. Introduction

Metabolomics is a discipline dedicated to the global study

f metabolites, their dynamics, composition, interactions, and
esponses to interventions or to changes in their environment, in
ells, tissues, and biofluids. Concentration changes of specific
roups of metabolites may be descriptive of systems responses
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o environmental or genetic interventions, and their study may
herefore be a powerful tool for characterization of complex
henotypes [1–3] as well as for development of biomarkers for
pecific physiological responses [4,5].

Multiple experimental platforms are commonly applied in
he studies of metabolites, including NMR, LC–MS, GC–MS,
E–MS and infrared spectroscopy [6–8]. Technologies used

n metabolomics produce large amounts of data, and handling
uch complex metabolomic datasets is an important step that

as big impact on extent and quality at which the metabo-
ite identification and quantification can be made. Since in

etabolomics we are primarily interested in biological systems

mailto:mikko.katajamaa@btk.fi
mailto:matej.oresic@vtt.fi
dx.doi.org/10.1016/j.chroma.2007.04.021
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esponses resulting in metabolite level regulation related to
enetic variation or multitude of environmental changes, it
s important to separate interesting biological variation from
bscuring sources of variability introduced in studies of
etabolites, including at various stages of data processing.
he quality of data processing is therefore an essential step

or our ability to properly analyze and interpret metabolomic
ata.

Data handling tasks in metabolomics can be roughly divided
nto two steps: data processing and data analysis. The data pro-
essing step consists of low-level processing of raw data with
ignal processing methods and combining data between mea-
urements. These tasks transform the raw data into format that
s easy to use in the subsequent data analysis steps. The data
nalysis stage includes tasks for analysis and interpretation of
rocessed data. This typically includes multivariate analyses
uch as clustering of metabolic profiles or discovering impor-
ant differences between groups of samples. In proteomics, a
imilar classification has been proposed, while further divid-
ng the data processing stage into low-level and mid-level
9].

Since metabolomic platforms are being increasingly uti-
ized to characterize biological systems, increasing amounts
f metabolomic data are being accumulated. In order to
eep the data accessible and comparable between laboratories,
here is need for standards for reporting of the experi-

ent details. Minimum information about a metabolomics
xperiment (MIAMET) [10] defines the minimum required
nformation that should be stored from metabolomic exper-
ment along with the measured data. MIAMET description
ontains requirements on storing details of metabolomic data
rocessing and analysis as well as other experiment steps.
ecently presented formal models, like MeMo [11] and
rMet [12], implement the requirements of MIAMET and
ill help in designing MIAMET compatible software tools for
etabolomics.
A broad picture of metabolomics has already been presented

n numerous review articles [3,6,7,13–18]. In this review we
ill focus on the recent literature describing new methods for
etabolomic data processing, especially for LC–MS type of

ata. From the view point of data processing, metabolomics
nd unlabeled proteomic profiling using LC–MS require the
ame processing steps, while the differences are mainly in sam-
le complexity and availability of MS/MS spectra for peptide
dentification. For this reason, few methods for proteomics data
rocessing of relevance to metabolomics are also covered in this
eview.

. Data processing

.1. Overview

In mass spectrometry-based metabolomics, the starting point

or data processing is a set of raw data files, each file correspond-
ng to a single biological sample. A single LC–MS data file is

collection of successively recorded histograms, each repre-
enting hits of ionized molecules on the detector during a small
atogr. A 1158 (2007) 318–328 319

ime frame [19]. A histogram consists of a number of m/z and
ntensity data points.

The basic aim of data processing is to transform raw data
les into representation that facilitates easy access to character-

stics of each observed ion. These characteristics include m/z
nd retention time of the ion and an ion intensity measure-
ent from each raw data file. In addition to these basic features,

ata processing can extract additional information like isotope
istribution of the ion.

Since different instrument vendors utilize different propri-
tary data formats, a preliminary step for data processing
equired in software that supports metabolomic data from mul-
iple vendors, is conversion of such raw proprietary data into
ommon raw data format such as netCDF (ASTM E2078-00,
tandard Guide for Analytical Data Interchange Protocol for
ass Spectrometric Data) or mzXML [20]. Vendor software

ackages usually contain scripts that can perform data conver-
ion to netCDF or ASCII formats. Converters to more recent
zXML format have been developed both by research groups

nd companies.
Typical data processing pipeline usually proceeds through

ultiple stages, including filtering, feature detection, alignment
nd normalization (Fig. 1). Filtering methods process the raw
easurement signal with aim of removing effects like mea-

urement noise or baseline. Feature detection is used to detect
epresentations of measured ions from the raw signal. Alignment
ethods cluster measurements across different samples and
Fig. 1. Summary of metabolomic data processing workflow.
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ig. 2. (a) Positions of data points in a small m/z and retention time region of th
reated by binning m/z values to bitmap’s resolution. Image is drawn over the s

.2. Raw data preprocessing and filtering

A frequently used first step in raw data processing is cen-
roiding, which can be done already during data acquisition.
entroiding processes each histogram separately and combines
ultiple data points representing the same peak in the histogram

nto a single data point with a one m/z and intensity value. Using
entroided data in the data processing has the advantage of mak-
ng data files smaller and easier to manage, but it may complicate
oise level estimation in LC–MS data [21] and limit available

trategies for feature detection.

Handling LC–MS data in its raw form is difficult because
istograms are typically non-uniformly sampled, and sampling
ntervals may not be same between histograms. To enable pro-

o

C
s

ig. 3. Examples of raw data filtering in chromatographic direction for a specific
avitzky-Golay filter with five data points.
ole profile mode raw data. (b) Corresponding two-dimensional intensity image
egion as in (a) using MZmine software [36].

essing or visualization of data in its native two-dimensional
orm, all m/z values in histograms must be binned to fixed m/z
alues. Ion intensity for a fixed m/z value can be defined as sum
f all intensities binned together or alternatively computed with
nterpolation from a continuous spectrum. As a result, the data is
ransformed into a two-dimensional matrix, with one index cor-
esponding to the retention time scans, and another to fixed m/z
alues (Fig. 2). Matrix values represent the ion intensities. This
atrix representation facilitates processing data using, for exam-

le, two-dimensional filter masks, with the possible drawback

f losing resolution in m/z domain.

LC–MS data contains both chemical noise and random noise.
hemical noise is typically caused by molecules in buffers and

olvents and can be especially strong at the beginning and end of

m/z value. (a) Raw data, (b) mean filter with window width 0.1 Da, and (c)
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he elution [19], while the random noise is mainly attributed to
he detector. Noise reduction methods aim at removing random
oise from the measurement signal. These methods are typically
mplemented using traditional signal processing techniques such
s filtering with moving average window [22], median filter
21,22] in chromatographic direction and Savitzky-Golay type
f local polynomial fitting [23] and wavelet transformation [24]
n m/z direction. Illustrative examples of spectrum filtering are
hown in Fig. 3.

In addition to sharp and random distortions, the quality of
C–MS data may also be affected by chemical noise, causing a
hift in the baseline in the intermediate mass range in LC–MS
pectra [19]. Baseline removal is typically a two-step process:
1) finding the baseline shape and (2) subtracting the shape from
he raw signal. For example, Haimi et al. estimate the baseline
y first segmenting a spectrum and then performing a linear
egression through the lowest points of smoothed spectrum
egments [25]. Other one-dimensional background estimation
ethods are low-order polynomial Savitzky-Golay filter [23]

r iterative asymmetric least-squares estimation [26]. Baseline
emoval has also been approached by estimate background from
two-dimensional intensity image and then removing it with

wo orthogonal (retention time and m/z) one-dimensional passes
27].

.3. Feature detection

The purpose of feature detection stage of data processing is
o identify all signals caused by true ions and avoid detection
f false positives. This step also aims to provide as accurate
uantitative information about ion concentrations as possi-
le. Feature detection is an essential step in the metabolomic
ata processing pipeline, yet in practice rarely performed per-
ectly. This is therefore an important area for further method
evelopment.

There are three main strategies for solving the feature detec-
ion problem (Fig. 4).

The first strategy performs detection in two directions by find-
ng peaks independently in both m/z and retention time direction.

uch vectorized peak detection method searches for data points
ith intensity above a threshold level in two directions, and data
oints that meet these criteria are defined as peaks [21,23]. The
hreshold level is determined using all intensity values along the

a
e
h
f

ig. 4. Examples of peak detection strategies. (a) Peak detection performed separate
o extracted ion chromatograms and processing them independently, or (c) fitting a m
atogr. A 1158 (2007) 318–328 321

ector in one direction. Similarly, feature detection can be done
ndependently in two directions with additional constraints on
llowed peak shapes in chromatographic direction [28]. Bellew
t al. developed a feature detection method that works in three
teps [27]: (1) identify local maxima within each scan using
avelet additive decomposition, (2) smooth peaks over time,

nd identify peaks that are sustained over multiple scans and (3)
ssemble all peaks into isotope groups that appear, maximize
nd disappear at the same time.

The second strategy is slicing data to extracted ion chro-
atograms (XIC), with each one covering a narrow m/z range,

herefore avoiding the problem of searching for peaks in m/z
irection. These chromatograms can be processed indepen-
ently in time domain using second-order Gaussian filter to find
eak inflection points for integration [29] or by calculating a
hreshold level based on mean or median of chromatogram and
earching for areas in chromatogram above the threshold level
22].

The third strategy for feature extraction is model fitting
gainst the original raw signal. One such approach is fitting a
hree-dimensional model of a generic isotope pattern to high-
st peak in raw signal and subtracting the fit from signal [30].
his process is repeated iteratively until highest remaining peak

s near the background level. Also Leptos et al. use model
tting with two-dimensional data [31]. Detecting entire iso-

ope patterns instead of individual peaks may improve detection
esults by reducing the number of detected false positive noise
eaks.

Because of challenges in feature detection, direct comparison
f raw data has been proposed as an alternative to the feature
etection step. A simple approach is to compare data points in
aw chromatograms directly [32]. Direct comparison of two-
imensional gas-chromatograms has been applied by Shellie et
l. [33]. Another proposed alternative is to reverse the order of
eature detection and alignment steps [34]. In such case, feature
etection is performed on the merged raw data from pairs of
amples. Peaks that match three simple conditions are searched:
1) peak must be above threshold, (2) corresponding peak must
ave high intensity also in nearby spectra, and (3) there must be

nother peak within the isotopic range of the peak. Also Baran
t al. [35] have presented a method for direct comparison of
yphenated mass spectrometry data. This method visualizes dif-
erences between two or multiple datasets as a two-dimensional

ly in two dimensions (retention time and m/z), (b) by slicing the whole dataset
odel to the data.
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lot and also uses statistical tests for finding differences between
wo groups of replicate samples.

Although the focus on single peaks as features is often an
ppropriate choice when soft ionization techniques such as elec-
rospray ionization are used, this is generally not the case.
enerally features should combine information from isotopic
eaks of an ion, ion adducts, different charge states and also
ragment ions of a compound. Isotope pattern detection can be
one after feature detection by using pattern matching with raw
ata [23] or grouping detected features with suitable m/z dif-
erences [36]. Alternatively, isotope pattern detection can be
ncluded already in the feature detection step by fitting a model
f a generic isotope pattern to raw signal [30]. Multiple ions
ay correspond to different fragments from the same molecule,
aking quantitative analysis a challenge. Deconvolution meth-

ds are therefore needed which can assign different ions to the
ame metabolite. Such methods have been, for example, widely
sed in GC–MS data processing [37–39]. Deconvolution algo-
ithms commonly utilize the fact that different fragments from
he same molecule have the same retention time as well as on
ssumption that their profiles across multiple samples are highly
orrelated as they are subject to the same biological variation

nd systematic error. The main challenge in the use of decon-
olution methods is that metabolomic experiments on complex
iological matrices lead to a large number of overlapping peaks,
ith similar retention times and overlapping isotope patterns.

e
c
(
e

ig. 5. Examples of two-step alignment strategies. First step: (a) alignment using i
atrix calculated from entire raw data. (c) Clustering of detected features.
atogr. A 1158 (2007) 318–328

dditionally, several metabolites may be subject to the same
egulatory mechanisms in a biological system, therefore their
evels are highly correlated. The latter may lead to difficulties
n ability to separate systematic error and biological variability,
hich is needed for successful deconvolution.

.4. Alignment

Despite the advances in chromatographic techniques used
or metabolomics, there is always some variation in retention
imes of a metabolite across different sample runs. Alignment
s needed for correcting retention time differences between runs
nd combining data from different samples.

Most alignment methods work in pair-wise fashion by align-
ng either only pairs of samples or multiple samples against a
elected reference sample or a template. In general, the choice
f reference sample has effect on the alignment results. Align-
ent methods can be roughly divided to two categories: (1)
ethods which use raw data as input material and generate a

et of mappings that transform retention time axis of each run
o a common retention time axis (Fig. 5a and b), and (2) meth-
ds that cluster detected features and produce a matrix where

ach row corresponds to one cluster (i.e. an ion) and columns
ontain some measurement (e.g., peak area) for each sample
Fig. 5c). Some alignment methods combine both approaches,
.g., by first conducting a retention time mapping between runs

nformation from chromatographic profiles or (b) alignment using correlation
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nd then clustering detected features using corrected retention
imes.

Choice of alignment method usually dictates the type of
equired downstream data analysis. Alignment methods in the
rst category require comparing the aligned raw signals for find-

ng differences between samples, while methods in the second
ategory lead to multivariate data analysis, similar to microarray
xpression data analysis in transcriptomics.

A simple, much explored alignment strategy is mapping
he retention time axis of one total ion chromatogram (TIC)
o another. The correlation optimized warping (COW) method
eveloped by Nielsen et al. is one well-known method for this
ask [40]. In addition to the COW method, various other types
f warping algorithms for aligning chromatograms have been
xamined [26,41–43]. Also Fast Fourier Transform has been
pplied to alignment of chromatographic data [44]. Three com-
on approaches for chromatographic alignment were recently

ompared [45].
Since total ion chromatogram represents a collapsed view

f the raw data, using the full two-dimensional raw data can
otentially lead to better alignment results. Examples of align-
ent methods that use the entire raw data include method by
rakash et al. [34] and ChromAlign method [46]. Both algo-
ithms first compute a matrix of similarity scores between pairs
f spectra in two runs. Dynamic programming is then used to
nd the optimal path through the matrix, also defining the map-
ing of spectra between the two runs. In the method by Pierce et
l. a piecewise single dimension retention time alignment algo-
ithm is adapted for aligning two-dimensional data [47]. The
ontinuous profile model (CPM) method divides available two-
imensional data to four m/z bins instead of aligning only a
ingle total ion chromatogram [48].

A simple approach for aligning detected features is cluster-
ng of chromatographic peaks without correction of retention
ime [49]. This method first clusters peaks within each group
f replicates and then between two groups of replicates.
nother straightforward method aligns detected features pair-
ise between each peak list and a dynamically grown template

28]. The alignment is based on proximity in m/z and uncor-
ected retention time. Alignment methods that cluster detected
eatures without implementing a retention time correction gen-
rally require high reproducibility of chromatography as they
an only account for small variations in retention times.

Two-step alignment methods are required when it is neces-
ary to correct retention times between runs before clustering
etected features. An approach introduced by Bellew et al.
equires user to choose a reference sample against which reten-
ion times are mapped non-linearly from every file [27]. To
stablish the mapping, a linear mapping is first created using
ighest intensity mass-matched features, followed by iterative
pplication of smoothing-spline regression methods from the
inear model residuals. Second step of the alignment method
hen matches features on basis of closeness of m/z and mapped

etention time using divisive clustering separately on both prop-
rties.

Smith et al. presented an alignment method that seeks to align
ll samples simultaneously instead of pair-wise matching [29]. c
atogr. A 1158 (2007) 318–328 323

his avoids the problems related to selecting a good reference
ample for pair-wise matching. In this method, detected features
rom all samples are first clustered into groups which can be used
s temporary standards. Inside each cluster, a retention time shift
an be computed for each sample as difference between a feature
nd cluster’s median. Shifts obtained from different clusters can
e used in creating a non-linear retention time deviation contour
or each sample.

Nordström et al. divide alignment methods into three main
trategies: (1) alignment of chromatograms, (2) curve resolu-
ion (peak detection and matching between samples) and (3)
ummation or binning of chromatographic data [50]. Examples
f methods in the two first categories have been presented in
his review. Methods of the third category bin data to time win-
ows in chromatographic direction, moving possible alignment
rrors to the borders of the windows. During the later data anal-
sis stage only window segments are then studied for potentially
nteresting differences.

If detected features can be identified in each sample, the
dentifications can be used to help alignment or even to avoid
he alignment stage. Such strategy is particularly appealing in
roteomics and lipidomics, because automatic identification for
eptides and lipids is generally easier than for other metabolites.
iggs et al. identify a set of landmark peptides from each sam-
le which are used to calculate the retention time shift in the
ocal neighborhood of each landmark [51]. Hermansson et al.
escribe a lipidomics data processing approach without align-
ent, which includes a method for automatically assigning lipid

lasses to detected features [30]. Automatic assignments require
set of manually assigned reference compounds on a reference
hromatogram and a polynomial function relating retention time
nd fatty acid chain length, which is used to predict retention
ime shifts inside each lipid class.

.5. Normalization

The goal of normalization is to remove the unwanted sys-
ematic bias in ion intensities between measurements, while
etaining the interesting biological variation. Chemical diver-
ity of metabolites, leading, for example, to different recoveries
uring extraction or responses during ionization in mass spec-
rometer, makes separation of interesting biological variation
nd unwanted systematic bias a difficult task.

Strategies for normalization of metabolic profile data can be
ivided into two major categories:

1) Statistical models used to derive optimal scaling factors for
each sample based on complete dataset [52], such as nor-
malization by unit norm [53] or median [23] of intensities,
or the maximum likelihood method [2].

2) Normalization by a single or multiple internal (i.e., added to
sample prior to extraction) or external (i.e., added to sample
after extraction) standard compounds based on empirical

rules, such as specific regions of retention time [30,54].

The statistical approach suffers from the lack of an absolute
oncentration reference for different metabolites. In addition,
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onstraining the data to a specific norm based on total sig-
al affects its covariance structure, therefore requiring special
aution when pursuing multivariate analysis of such data [55].
etabolites as physiological end-points, largely affected by the

nvironment, do not posses the self-averaging property, i.e. con-
entration increase in a specific group of metabolites is generally
ot balanced by a decrease of another group.

Quantitative analytical methods have commonly relied on
tilization of isotope labeled internal standard for each metabo-
ite measured. However, in broad metabolic profiling approaches
his is not practical. The number of metabolites is large, they are
hemically too diverse to afford a common labeling approach,
nd many of them may not even be known. The availability
f stable isotope labeled references is generally also very lim-
ted. Recent studies in in vivo labeling of microbial metabolome
ffer a promising solution to this bottleneck for microbial

etabolomics. In such studies, the standardized extracts grown

n stable isotope labeled medium and thus containing mainly
sotope labeled metabolites, can provide standards for most of
he measured metabolite [56,57].
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Peak detec
t-test meth
Visualizati

assHunter Profiling software Agilent Technologies, Santa
Clara, CA, USA

Feature ex

etabolic Profiler Bruker Daltonic & Bruker
BioSpin, Billerica, MA, USA

Bucket raw
table with
libraries. P

etAlign PlanResearch International
B.V., Wageningen, The
Netherlands

Filtering, b
detection,

S Resolver Pattern Recognition Systems,
Bergen, Norway

Resolve m
multidetec
individual

rofile Phenomenome Discoveries,
Saskatoon, Canada

File conver
alignment.
and data m

osetta Elucidator Rosetta Biosoftware, Seattle,
WA, USA

Peak detec
analysis an

ieve Thermo Fisher Scientific,
Waltham, MA, USA

Direct com
comparing
Uses Chro
chromatog
atogr. A 1158 (2007) 318–328

Using a set of selected internal and external standards is an
lternative when a full set of isotope labeled standard is not
vailable. In such case, the assignment of the standards to nor-
alize specific peaks remains unclear. One possible approach

s to assign a specific standard to metabolite peaks based on
imilarity in specific chemical property such as retention time
n liquid chromatography (LC) column. For example, Bijlsma
t al. utilize three external standard references for lipid profil-
ng, chosen as mono-, di-, and triacyl lipid species representing

ost abundant lipid classes in their respective region of retention
ime [54]. A related approach normalizes metabolites based on

ultiple internal standards, with the normalization factor based
n distance to the metabolite peaks both in the retention time
nd m/z [28]. However, such approaches still suffer from the
roblem that retention time or mass-to-charge ratios are not
ecessarily descriptive of all matrix and chemical properties

eading to obscuring variation. For example, in the lipid sepa-
ation based on reversed-phase LC diverse lipid species such as
eramides, sphingomyelins, diacylglycerols, and several phos-
holipid classes, are overlapping in retention time, and it is not

Main application field and examples

eak detection, and alignment.
and multivariate methods for
is

Metabolomics with MS and NMR data

rsion, analyzing spectra to
s and concentrations

Metabonomics with NMR data [63]

eak extraction, m/z and
me alignment. Metabolite
on using third-party databases.
so analysis and interpretation
d integrated database

Cross-omics platform for
transcriptomics, proteomics and
metabolomics. Metabolomics module
works with MS data

of chromatographic data.
can be used also for

pic data

Chromatographic alignment

tion and alignment. Principal
analysis (PCA)

Metabonomics with LC–MS data
[61,64,65]

tion and alignment. PCA and
ods for data analysis.
on and reporting

Metabolomics with LC–MS data [66]

traction and alignment Proteomics with LC–MS data

data into retention time, m/z
intensities. Identification using
CA for data analysis

Metabolomics with MS and NMR

aseline correction, peak
alignment

Broad, LC–MS and GC–MS data
[59,67–69]

ulticomponent data from
tion instrumentation into
contributions

Broad, LC–MS and GC–MS data [61,70]

sion, peak detection and
Tools for statistical analysis
ining

Metabolomics with MS data

tion and alignment, statistical
d visualization

Proteomics with LC–MS data

parison approach to
multiple LC–MS datasets.

mAlign [46] for
raphic alignment

Proteomics with LC–MS data
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easonable to assume same normalization factor can be applied
o all these species.

Recently a promising new method was introduced: normal-
zation using optimal selection of multiple internal standards
NOMIS), that learns the optimal assignment of internal or exter-
al standard peaks for each other detected peak in the sample
rom a repeatability study [58]. The basic premise of the NOMIS
pproach is that monitoring of multiple standard compounds
cross multiple sample runs may help determine how the stan-

ards are correlated, which variation is specific to a particular
tandard, and which patterns of variation are shared between the
easured metabolites and the standards so they can be removed.
ased on this premise, a statistical model was developed that

s
(

s

able 2
reely available software for metabolomic data processing

ame Features Main application
examples

hrompare [71] Comparison of chromatographic
peak lists and raw chromatograms,
automatic and manual normalization

Metabolomics wi

OMSPARI [72] Visualization to aid searching for
differences between pair of runs

Metabolomics wi
GC–MS data [73

ontinuous profile
models [48]

Alignment and normalization of time
series data

Proteomics with L

iRes [74] Processing and analysis spectral data Metabolomics wi

CMSWARP [75] Retention time alignment and feature
clustering

Proteomics with L
LC–MS/MS data

apQuant [31] Noise filtering, peak detection and
visualization.

Proteomics with L

athDAMP [35] Direct comparison of raw data sets
without peak picking. Includes
methods for preprocessing (binning,
baseline subtraction, smoothing) and
normalization

Metabolomics wi
GC–MS and CE–

ET-IDEA [77] Extracts ion intensity data for listed
ion/retention time values from
multiple runs

Metabolomics wi
GC–MS and CE–

SFACTs [8] Alignment and comparison of raw
chromatograms or peak lists
generated with a third-party software

Metabolomics wi
LC–MS data

Sight [78] Visualization and visual analysis and
comparison of multiple runs

Proteomics with L

sInspect [27] Peak detection, alignment,
normalization and visualization

Proteomics with L

Zmine [36] Noise filtering, peak detection,
alignment, normalization and
visualization. Distributed computing

Metabolomics wi
GC–MS data [62

pecArray [24] Noise filtering, centroiding, peak
detection, alignment and
visualization

Proteomics with L

uperHirn (Mueller,
submitted)

Peak detection, alignment and
normalization. Includes also analysis
capabilities

Proteomics with L

align [82] Peak detection, alignment between
samples and quality control

Proteomics with L

CMS [29] Noise filtering, peak detection and
alignment

Metabolomics wi
GC–MS data [62
atogr. A 1158 (2007) 318–328 325

odels the systematic variation of metabolites as a function of
ariation of standard compounds.

. Software tools for data processing

Increasing demand for better metabolomic data processing
ethods led to a number of software packages to meet the

hallenge. New tools are still being released and also some of
he existing tools are still under further development. Available

olutions can be roughly divided to two categories: commercial
Table 1) and freely available (Table 2) tools.

One difference between the groups of commercial and free
oftware can be seen in the transparency of the implementation.

field and License type Platform

th GC-FID data Licence type unknown,
available for download

Microsoft Excel Visual
Basic

th LC–MS and
]

GNU General Public
License

Implemented in C, for any
recent platform including
Linux and Windows

C–MS data Free for educational and
research use, source code
available

Toolbox for Matlab

th NMR data Free for research and
clinical purposes

Implemented in C++, for
Windows platform

C–MS and
[76]

Unknown Implemented in C++

C–MS data Harvard University
open-source compatible
license

Implemented in C, for
Windows and Linux
platforms

th LC–MS,
MS data

Free Package to Mathematica

th LC–MS,
MS data

Freely available to
academic users upon
request

Windows, .NET platform

th GC–MS and Freely available upon
request for academic and
non-commercial use

Implemented in Java

C–MS data Free of charge Windows platform

C–MS data Free software available
under Apache 2.0 License

Implemented in Java.
Requires R statistical
language

th LC–MS and
,79–81]

GNU General Public
License

Implemented in Java

C–MS data GNU General Public
License

Implemented in C, for
Linux platform

C–MS data Not yet available Implemented in C++, for
Unix platforms

C–MS data Available upon request
from the author

Implemented in C++

th LC–MS and
,83,84]

GNU General Public
License

Implemented in R
statistical language
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reely available tools are frequently released as open-source,
hich means that the details of the used algorithms are avail-

ble for review and also for further development. Commercial
olutions typically do not reveal at least some aspects of their
mplementation, although they cannot be generally categorized
s black boxes. For example, Sieve software (Thermo Fisher Sci-
ntific, Waltham, MA, USA) includes published ChromAlign
lignment method [46]. Several commercial tools, for example
osetta’s Elucidator (Rosetta Biosoftware, Seattle, WA, USA),
ontain scripting capabilities for incorporating new analysis
ethods and automation.
The applicability range of available software tools is broad:

he smallest tools are tailor-made for a specific task like
hromatographic alignment, while the biggest software suites
ombine everything from instrument control to data analysis
nto a single package. The data processing approach shared by
he majority of the software tools includes the standard steps for
ltering, feature detection, alignment and normalization. Some

ools such as MathDAMP [35] and Sieve support the analysis
pproach using direct raw data comparison without a preceding
eature detection step.

The software tools usually produce their output as a matrix
ontaining peak intensities for all detected ions in different
amples, which can be processed with various statistical tools.
specially the commercial solutions also include some in-built
tatistical methods for the downstream data analysis. The most
ommonly available methods for data analysis are the princi-
al component analysis (PCA) used for projecting multivariate
ata to a low-dimensional plot, and standard statistical tests such
s t-test. Availability of elementary data analysis options inside
he software gives possibility to have an overview of the pro-
essed data and also helps in going back from analysis results to
aw data, which is more laborious by using external statistical
ools.

Some aspects to consider in choosing the software for
etabolomic data processing are quality of processing, ease of

se, performance and overall cost of the software. Quality of
rocessing can be difficult to assess since there there is not any
enerally accepted benchmark [59]. Programs with a graphical
ser interface are easier to start using, but in the long run, also
cripting and batch processing capabilities are usually needed.
ata processing of a huge set of raw data measurements can be

ime consuming. For speeding up the processing, MZmine tool
ncludes capabilites for distributing the computation to multi-
le processors or computers [36]. This can be useful feature
specially when running data processing on a multi-processor
orkstation. However, on a large, shared distributed computing

nvironment a command-line based software consisting of inde-
endent modules for each processing step is likely going to be
asier solution to set up that an integrated software package with
uild-in distributed computing capabilities.

For proteomics software tools, there exists a recent review
rticle that covers some of the tools listed here [60]. There

re also a few articles comparing software tools by apply-
ng them on the same dataset: MarkerLynx and MS Resolver
61], as well as MZmine and XCMS [62]. In the Internet,
istings of available software tools can be found at MS-Utils

[

[

atogr. A 1158 (2007) 318–328

ebsite (http://www.ms-utils.org/) and the Fiehn laboratory
ebsite (http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/
eak Alignment/).

. Conclusions

Development of new methods and software tools for
etabolomics has been an active area of research during recent

ears. Several new methods for different stages of metabolomic
ata processing were examined in this review. Since improve-
ents are still needed at each stage of data processing, the
ethod development trend is likely going to continue also in the

oming years. One path leading to future innovative solutions
an be seen in combining multiple processing stages together,
or example metabolite identification with feature extraction and
lignment.

Since each new data processing algorithm needs to be eval-
ated as part of the whole data processing chain, software
ackages should ideally support incorporation of new algo-
ithms developed by researchers. Open source strategy is one
ay to address this need, and softwares such as MapQuant [31],
sInspect [27], MZmine [28,36], SpecArray [24] and XCMS

29] will likely play an important role in facilitating progress in
etabolomic data processing.
As data processing methods and software implementations

or metabolomics mature, there will be increasing need for
eneration of reference datasets so that the methods could
e objectively compared. Current standardization efforts such
s the Metabolomics Standards Initiative supported by the
etabolomics Society (http://www.metabolomicssociety.org/)

im to provide such datasets and standards.
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