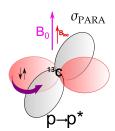
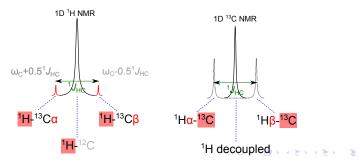
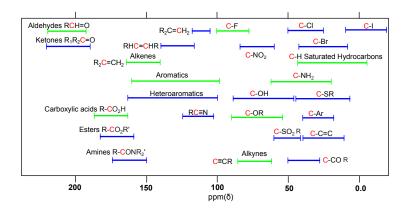

C8953 NMR structural analysis - seminar Symmetry, 1D ¹³C-NMR


Jan Novotny
176003@mail.muni.cz

March 2, 2022

¹H vs ¹³C NMR


	¹ H	¹³ C	
Spin number	¹ H : $s = \frac{1}{2} \times {}^{2}$ H : $s = 1$ ¹³ C : $s = \frac{1}{2} \times {}^{12}$ C : $s = 0$		
Abundance [%]	99.98	1.1	
Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]	26.8	6.7	
Chemical shift range [ppm]	0 - 15	0 - 200	
Nuclear shielding	$\sigma_{\sf dia}$	$\sigma_{\sf dia}$ + $\sigma_{\sf para}$	
Integration of signals	✓	×	
T_1 relaxation [s]	1-20	1-40	
Homonuclear J-interaction	✓	×	
H↔C <i>J</i> -interaction (~ 100-250 Hz)	carbon satellites	$(n+1)$ splitting \times decoupling	



¹H vs ¹³C NMR

	¹ H	¹³ C	
Spin number	¹ H : $\mathbf{s} = \frac{1}{2} \times {}^{2}$ H : $\mathbf{s} = 1$ ¹³ C : $\mathbf{s} = \frac{1}{2} \times {}^{12}$ C : $\mathbf{s} = 0$		
Abundance [%]	99.98 1.1		
Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]	26.8	6.7	
Chemical shift range [ppm]	0 - 15 0 - 200		
Nuclear shielding	$\sigma_{\sf dia}$	$\sigma_{ m dia}$ $\sigma_{ m dia}$ + $\sigma_{ m para}$	
Integration of signals	✓	×	
T_1 relaxation [s]	1-20 1-40		
Homonuclear J-interaction	✓	×	
H↔C <i>J</i> -interaction (\sim 100-250 Hz)	carbon satellites	$(n+1)$ splitting \times decoupling	

Important regions of ¹³C chemical shifts

$^1J_{\text{CH}}$ depends on the bond order (hybridization \Leftrightarrow s-character)

- ightharpoonup -C-H $^1J_{
 m CH} pprox$ 125 Hz
- ► =C-H ${}^{1}J_{\text{CH}} \approx 160 \, Hz$
- ightharpoons \equiv C-H $^1J_{\rm CH} pprox 250~Hz$
- X-C-H
 - ► X = N, O, S, F, Cl, ... ${}^{1}J_{CH}$ ↑
 - \rightarrow X = Li, Mg, ... $^{1}J_{CH} \Downarrow$

$^2J_{\rm CH}<0$ or close to zero (<3 Hz)

often not observable

in 1D ¹³C H-C interaction suppressed by DECOUPLING ⇒ simplification of spectra (splitting removed, sensitivity)

saturation of ¹H energy levels during decoupling enhances relatively intensity of ¹³C signals because of heteronuclear nOe ⇒ quaternary carbons usually less intensive.

Assign correct value of chemical shift to labelled NMR active atoms¹:

¹http://www.chem.wisc.edu/areas/reich/chem605/

Assign correct value of chemical shift to labelled NMR active atoms¹:

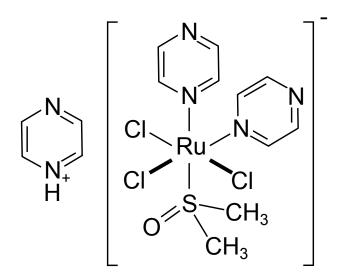
¹http://www.chem.wisc.edu/areas/reich/chem605/http://www.chem.wisc.edu/areas/reich/chem605/

Diastereotopicity¹ Determine the equivalency of geminal protons

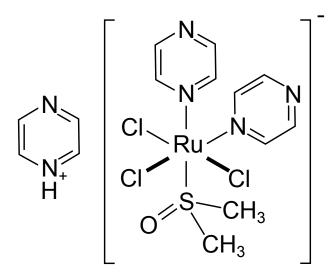
Diastereotopicity¹ Determine the equivalency of geminal protons

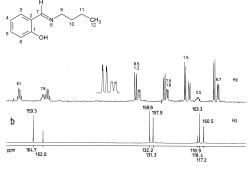
¹http://www.chem.wisc.edu/areas/reich/chem605/ □ > ← ② > ← ② > ← ② > ← ② > ← ② > ← ② + ← ③ + ← ② + ← ③ + ← ④ + ←

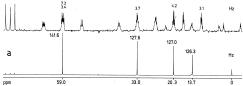
Values of chemical shift of important solvents


Abbr.	Formula	¹ H	¹³ C
ACN	CH₃CN	1.9	118
Benzene	C_6H_6	7.2	128
	CHCl ₃	7.2	77
DCM	CH_2CI_2	5.3	54
DMF	(CH ₃) ₂ NCHO	2.9, 8.0	32, 163
DMSO	$(CH_3)_2SO$	2.5	40
MeOH	CH ₃ OH	3.3, 4.8	49
Water	H_2O	4.8	-

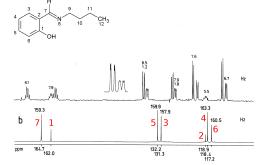
EXPLAIN effect of solvent on the position of residual ¹H water signal:

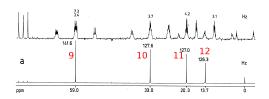

CHCl₃ - 1.6, ACN - 2.1, DMSO - 3.3, MeOH - 4.9


How many ¹³C signal would you expect in the NMR spectrum?

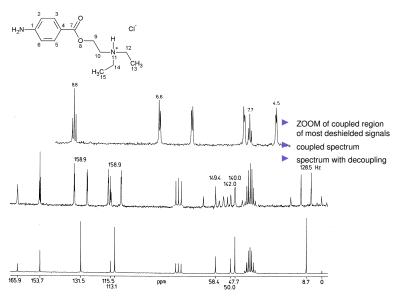


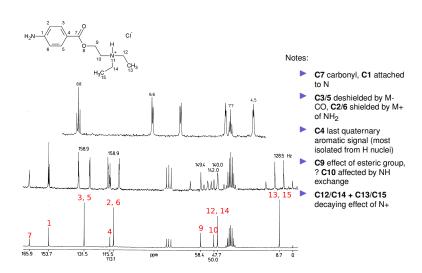
How many ¹³C signal would you expect in the NMR spectrum? **6**



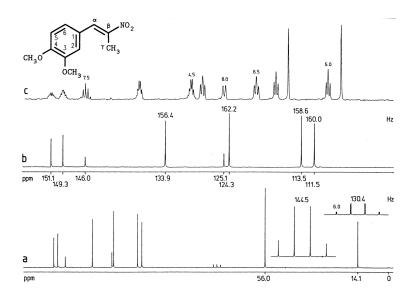

1D ¹³C-NMR 1, bottom without CPD

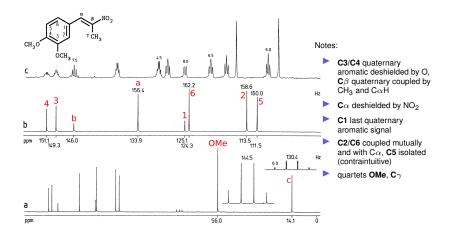
1D ¹³C-NMR 1, bottom without CPD

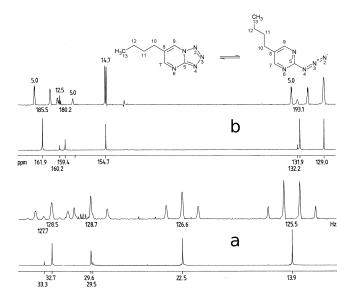



Notes:

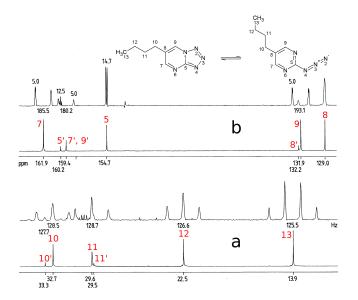
- numbers at top of peaks refers to values J_{HC} constants
- C1+C7 connected to electronegative groups (C1 quaternary)
- C2 ipso aromatic, C4+C6 shielded by M+ of OH
- C5+C4 NOE-enhanced in bit larger extend by close H
- C9→C12: decaying effect of N8


1D ¹³C-NMR 2


1D ¹³C-NMR 2


1D ¹³C-NMR 3, *b* - zoom of right region, *a* - full decoupled spectrum

1D 13 C-NMR 3, b - zoom of right region, a - full decoupled spectrum


1D ¹³C-NMR 4, consider equilibrium minor-major form

Which form dominates and why?

1D ¹³C-NMR 4, consider equilibrium minor-major form

Which form dominates and why?

Next topic

Vector Model + ¹³C APT experiment