C8953

NMR structural analysis - seminar Vector model & edited ¹³C NMR spectra

Jan Novotný 176003@mail.muni.cz

March 9, 2022

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Determine percentage of dominant regioisomer in attached ¹H spectrum:

Processing simulated NMR signal:

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < つ < (?)

T_1 relaxation

Apply following sequence (inversion recovery) to isolated spin characterized by **a**) $\tau = 2 * T_1$ and **b**) $\tau = 0.2 * T_1$. Draw semi-quantitatively resulting spectrum.

1-1 sequence

Draw the evolution of macroscopic magnetization through the sequence: **90(y)** - τ - **90(y)** - aq Consider the evolution of an isolated spin due to the chemical shift.

1. How does the result differ for the following offsets: $\Omega \tau = 0, \pi/2, \pi$.

2. Draw lineshapes of resulting signal assuming the a) y+ b) x+ corresponds to zero phase of receiver (prior phase correction).

Heteronuclear spin echo

By using vector diagrams determine the result of attached pulse sequence.

1. **Ignore 180 pulse** in hydrogen channel for isolated spin systems **a**) ${}^{13}C{}^{-1}H$ and **b**) ${}^{13}C{}^{-1}H_2$. Explain the role of CPD block.

2. Lets consider **the complete sequence** and isolated spin systems **a**) ${}^{13}C{}^{-1}H$ and **b**) ${}^{13}C{}^{-1}H_2$.

¹³C APT Cinnamic acid

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

DEPT experiment

Fig. 3.3. (a) ¹H broad-band decoupled ¹³C NMR spectrum of a mixture of 3 and 4 in CDCl₃. Traces (b) and (c) are DEPT spectra

590