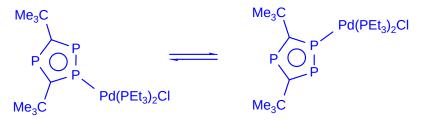
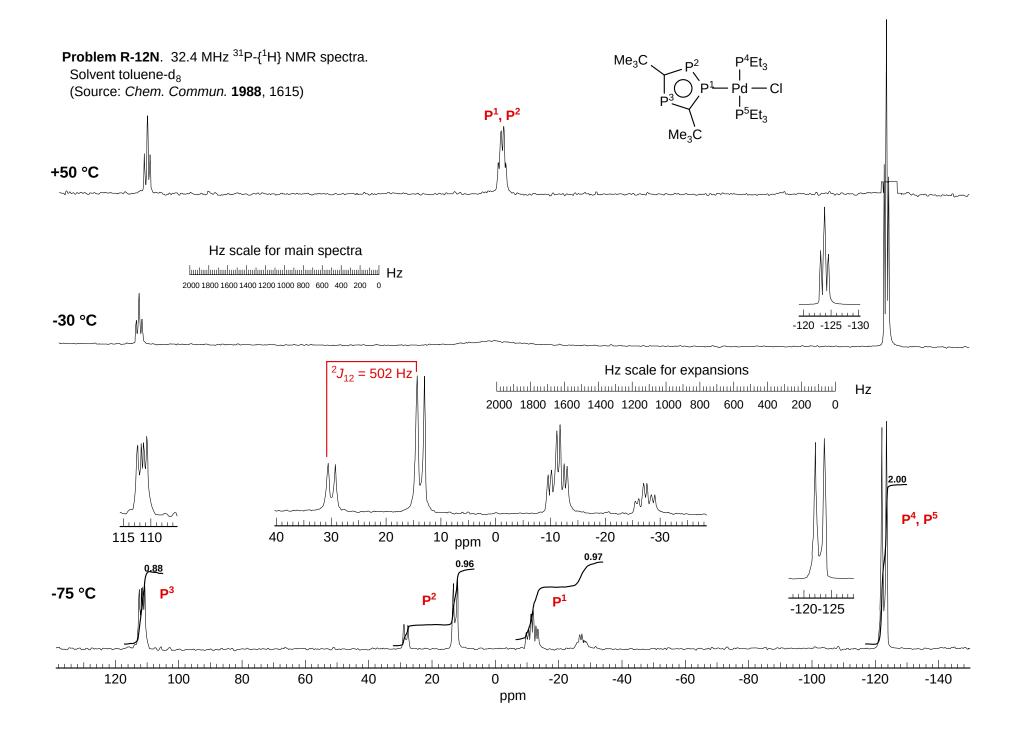
Problem R-12N. Analyze the ¹H decoupled 32.4 MHz ³¹P NMR spectra of a palladium-phosphine complex shown on the next page (Bartsch, R.; Carmichael, D.; Hitchcock, P. B.; Meidine, M. F.; Nixon, J. F.; Sillett, G. J. D. J. Chem. Soc., Chem. Commun. 1988, 1615).


(a) Identify all signals in the low temperature spectrum (-75 °C), and report approximate coupling constants using the form: δ _____, $X_{J_{1-2}} =$ _____ Hz. Use the numberings shown on the structure. For each signal briefly give your reasoning for the assignment.

4		This is the P closest to the two PEt ₃ groups, so expect triplet splitting. Me ₃ C The dtd (J = 502, 49, 22 Hz) at δ -17 is the only signal that shows a triplet, so this must be P ¹ , which should also be coupled to both P ² And P ³ , as observed.	$ \begin{array}{c} $
	P^1	δ -17, ${}^{1}J_{P1-P2}$ = 502 Hz, ${}^{2}J_{P1-P4/5}$ = 49 Hz, ${}^{2}J_{P1-P3}$ = 20 Hz	Me ₃ C
4		P ² should also show the large ¹ <i>J</i> to P ¹ , so it must be the dd (<i>J</i> = 500, 45 Hz) at δ 18. P ¹ and P ² form an <u>AB</u> XY ₂ system, would need to do an AB quartet calculation to get accurate chemical shifts	C ₂₂ H ₂₈ CIP ₅ Pd
	P ²	$δ$ 18, ¹ J_{P1-P2} = 500 Hz, ² J_{P1-P3} = 40 Hz	
3		P^3 is coupled to both P^1 and P^2 (dd, J = 46, 25 Hz), so it has to be the δ 112 signal	al
	P ³	$δ$ 112, ² J_{P3-P2} = 40 Hz, ² J_{P3-P1} = 20 Hz	
3		This is the signal with double area at δ -122, d, J = 48 Hz	
	P ⁴ . P ⁵	δ -122, ${}^{1}J_{P4/5-P1}$ = 46 Hz	

(b) Identify the process which is responsible for the changes in the NMR spectrum at the higher temperatures (-30 °C and +50 °C). The signal at -122 ppm in the +50 °C spectrum is a triplet. Draw a structure or an equation.


The Pd migrates back and forth between P^1 and P^2 , so their chemical shifts are averaged, and both P³ and P⁴/P⁵ become triplets, equally coupled to both. Since the two coupling constants are fairly close (expect the P^4/P^5 coupling to be (49+0)/2 = 25, and P^3 coupling to be (40+20)/2 = 30 Hz in size, the P¹/P² signal becomes an approximate quartet.

The exchange is intramolecular, since the coupling between P^{1}/P^{2} and P^{4}/P^{5} is 8 maintained in the high temperature spectrum

(c) What is the proton frequency (MHz) of the spectrometer which was used for these spectra?

25

