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Accurate modeling of dispersion is critical to the goal of predictive biomolecular simulations. To
achieve this accuracy, a model must be able to correctly capture both the short-range and asymptotic
behavior of dispersion interactions. We present here a damped dispersion model based on the overlap of
charge densities that correctly captures both regimes. The overlap damped dispersion model represents
a classical physical interpretation of dispersion: the interaction between the instantaneous induced
dipoles of two distinct charge distributions. This model is shown to be an excellent fit with symmetry
adapted perturbation theory dispersion energy calculations, yielding an RMS error on the S101x7
database of 0.5 kcal/mol. Moreover, the damping function used in this model is wholly derived and
parameterized from the electrostatic dipole-dipole interaction, making it not only physically grounded
but transferable as well. Published by AIP Publishing. https://doi.org/10.1063/1.5030434

I. INTRODUCTION

The range of possible problems for molecular mechanics
models to solve is immense. For problems that are too large to
solve with Schrodinger’s equation but too small to be observed
experimentally, we rely on classical models to make predic-
tions and generate hypotheses. This ability has made molecular
mechanics force fields integral to the study of problems from
RNA folding1 to new alloy characterization.2 Because they are
classical approximations to quantum mechanical reality, the
success of these models is entirely dependent on how accurate
that approximation is on a wide variety of systems. To achieve
this, most force fields split the interaction energies of interact-
ing atoms into physically meaningful components. Among the
most significant of these components is the dispersion interac-
tion that arises from the correlation of instantaneous induced
dipoles.

No force field can provide fully accurate predictions for
every component of the total energy of a system. In current
models, this has been typically handled by careful cancella-
tion of errors between the various components (electrostatics,
polarization, repulsion, dispersion, etc.). More recently, how-
ever, a new crop of next-generation force fields is emerging
that aim to reduce this dependence on error cancellation by
comparing directly to ab initio energy decomposition anal-
ysis (EDA) data.3–10 We are working on a model with this
same objective. Previously we have shown that it is possi-
ble to accurately model electrostatics (to within 1 kcal/mol)
in regions where previously error cancellation had long been
relied upon, the so-called “charge penetration” error.11 In

a)Author to whom correspondence should be addressed: ponder@dasher.
wustl.edu

this work, we shall demonstrate that the same is possible
for the dispersion interaction component. While this does
not represent a complete force field capable of condensed
phase simulations, it is an important step toward such a full
model.

Accurately modeling dispersion in classical force fields
is known to be important, particularly for biological systems.
On a phenomenological level, dispersion is what causes neu-
tral atoms and molecules to be weakly attracted to each other.
This makes it essential to modeling simple Lennard-Jones
fluids such as liquid argon, but it is also critically impor-
tant to more complex systems. Dispersion has been shown
to be an essential component of modeling nucleic acid struc-
ture,12 where it contributes to the so-called stacking energy
of nucleic acid bases. It is known to play a part in halogen
bonding, supporting, along with electrostatics, the stabi-
lization energy of the interaction.13,14 Additionally, long-
range dispersion is widely recognized to be important for
the simulation of lipid bilayers.15 This broad spectrum of
applications motivates the necessity of accurate dispersion
models.

The history of dispersion models dates back to Fritz Lon-
don, who first established the canonical 1/r6 dependence of the
London dispersion energy. This model has been enormously
influential. The vast majority of biological force fields in use
today still use this simple model (Amber,16 CHARMM,17 etc.)
or derivatives thereof such as the attractive part of Halgren’s
buffered 14-7 potential18 used in the AMOEBA19 force field.
It is well known, however, that the 1/rn potential expansion
breaks down for short-range interactions where charge dis-
tributions of interacting molecules overlap.20 There is a long
history of attempts to correct this divergence though the use
of damping functions. An important early damped dispersion
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model was the empirical HFD (Hartree-Fock-Dispersion)
scheme proposed by Scoles and co-workers.21 Another notable
attempt to describe this phenomenon was undertaken by Tang
and Toennies who introduced a damping function parame-
terized to account for the overlap in charge distributions.22

A comprehensive review of dispersion damping functions
is beyond the scope of this work, but the original Tang
and Toennies report provides a thorough overview of dis-
persion damping functions up to that point. These types of
formalisms have seen the widest use as dispersion correc-
tions to density functional theory (DFT) calculations.23 DFT-
D schemes have used the Tang-Toennies function, as well
as various other damping functions proposed by Wu and
Yang,24 Chai and Head-Gordon,25 and Johnson and Becke.26

Despite wide use in the DFT community, damped dispersion
functions have been taken up in decidedly fewer molecular
mechanics models. Notably, the Effective Fragment Poten-
tial (EFP) model employs a dispersion model that utilizes
an overlay-based parameter-free modification of the Tang-
Toennies damping function.27,28 And recently, Verma et al.
proposed using the dispersion part of the DFT-D3 formulation
of Grimme23 as a molecular mechanics model.29 However,
while it has been shown that previous damping functions can
effectively account for the change in dispersion upon charge
overlap, they do so largely empirically. In the case of the Tang-
Toennies damping function, for example, the form is based on
a Born-Mayer potential described by an empirically fit width
parameter.

In this paper, we propose a damped dispersion function
similar in spirit to that of Tang and Toennies but rooted in
a physical model of charge distribution overlap. In previous
work, we have shown that a relatively simple model can cap-
ture the physical extent of atomic charge distributions that
leads to the so-called charge penetration error in electrostatic
interactions between molecules.11 Here we will show that this
same model can be used directly and without modification
to create a dispersion model that is elegantly unified with
the electrostatic model. This unification is possible because
both the electrostatic and dispersion terms depend on the den-
sity. The electrostatic term is simply the interaction between
two static densities, while the dispersion term arises from the
interaction of densities associated with instantaneous induced
dipoles. In this work, we will show that the same rough descrip-
tion of the density can be used in both cases to great effect.
This will be done in five parts. First, we elucidate the the-
ory that starts from dipole-dipole interactions and gives rise
to this new damped dispersion function. Second, we describe
the methods of the study. Third, we evaluate the performance
of this function against benchmark Symmetry Adapted Pertur-
bation Theory (SAPT) calculations. Fourth, we will describe
how the model has been implemented with dispersion particle
mesh Ewald (DPME) to boost its efficiency. And finally, we
will discuss the implications of this work and some general
conclusions.

II. THEORY

To present our new damped dispersion model, we shall
first revisit a simple derivation of the original London

dispersion model. We do so first and foremost because it forms
the basis for our damped model, but also because it is instruc-
tive. One of the defining characteristics of a damped dispersion
model, as we shall argue later in the paper, is that it has a
straightforward physical interpretation. Dispersion is correctly
said to be a fundamentally non-classical phenomenon, but the
model we use to describe it need not to be so bound. We will
show that an interpretable model of dispersion can be con-
structed from physical models of atomic polarizability and
charge density.

A. London dispersion

For our description of canonical London dispersion
energy, we will follow that of Maitland et al.30 The dispersion
energy between two atoms arises from the interaction between
instantaneous dipoles of these atoms. To model this system, we
consider a simplified one-dimensional Drude oscillator model,
as illustrated in Fig. 1.

In this representation, each atom is represented by a fixed
charge +Q bound by a spring with spring constant, k, and
an equal and opposite charge −Q with mass, M. This model
is crude, but it captures the essential elements of the disper-
sion interaction. At any point in time, each atom has a dipole
moment, µ = Qz (dependent on the atomic polarizability deter-
mined by k) and those dipole moments are free to interact with
each other.

When atom i and atom j are infinitely separated, the
Schrödinger equation for each can be written as

1
M
∂2Ψi

∂z2
i

+
2

~2

(
Ei −

1
2

kz2
i

)
Ψi = 0, (1)

where the potential energy term is merely the energy of a sim-
ple harmonic oscillator. The same can be written for atom j.
The solutions to this equation can be found trivially, yielding
ground state energies of

Ei =
1
2
~ω0 and Ej =

1
2
~ω0, (2)

where the frequency, ω0, is

ω0 =

√
k
M

. (3)

In the complete non-interacting limit, the total energy of the
system is

E(r → ∞) = Ei + Ej = ~ω0. (4)

This limit in itself is not useful, but if we consider what happens
when the two atoms get closer, we shall see that it sets a use-
ful reference for our potential energy function. If we bring the
two atoms closer so that they do interact, but not so close that
their charge distributions overlap, our Schrödinger equation
is no longer trivially separable. The wave equation for two

FIG. 1. Classical model of dispersion.



084115-3 Rackers et al. J. Chem. Phys. 149, 084115 (2018)

interacting atoms now includes the electrostatic interaction
between the two dipoles and becomes

1
M
∂2Ψ

∂z2
i

+
1
M
∂2Ψ

∂z2
j

+
2

~2

(
E −

1
2

kz2
i −

1
2

kz2
j − Uelectrostatic

)
Ψ = 0.

(5)

One can see that in addition to the simple harmonic oscil-
lator terms, a new potential appears in Eq. (5). This is the
potential energy at any given instant between the two inter-
acting instantaneous multipole distributions. For the dipole-
dipole interaction of the simple Drude model of Fig. 1,
the form of this potential is easily obtained from simple
electrostatics

Uelectrostatic = Udipole−dipole = ∇∇Uchg−chg = ∇∇

(qiqj

r

)
=

1

r3
*.
,
~µi · ~µj − 3

(
~µi ·~rij

) (
~rij · ~µj

)
r2

+/
-
. (6)

If we plug in the Drude dipoles from Fig. 1, µ = Qz, Eq. (6)
becomes

Udipole−dipole =
1

r3
*.
,
µiµj − 3

(µir)
(
µjr

)
r2

+/
-
= −

2µiµj

r3
. (7)

This dipole-dipole energy is the source, as we shall show, of
the canonical 1/r6 leading term dependence of the dispersion
energy.

Combining Eq. (7) with Eq. (5) yields

1
M
∂2Ψ

∂z2
i

+
1
M
∂2Ψ

∂z2
j

+
2

~2

(
E −

1
2

kz2
i −

1
2

kz2
j −

2µiµj

r3

)
Ψ = 0.

(8)

Following the transformation of variables of Maitland, Rigby,
Smith, and Wakeham, we define

λ1 =
zi + zj
√

2
, λ2 =

zi − zj
√

2
(9)

and rewrite Eq. (8) as

1
M
∂2Ψ

∂z2
i

+
1
M
∂2Ψ

∂z2
j

+
2

~2

(
E −

1
2

k1λ
2
i −

1
2

k2λ
2
j

)
Ψ = 0, (10)

where

k1 = k +
2Q2

r3
, k2 = k −

2Q2

r3
. (11)

Equation (10) is simply a transformed version of the original
problem of two independent harmonic oscillators. It can be
solved in the same manner giving

E(r) =
1
2
~(ω1 + ω2), (12)

where

ω1 =

√
k1

M
= ω0

√
1 −

2Q2

r3k
, ω2 =

√
k2

M
= ω0

√
1 +

2Q2

r3k
.

(13)

One can see that as r becomes large, ω1 and ω2 converge to
ω0 where we recover the independent oscillator solution. For
small perturbations, ω1 and ω2 can be approximated with a
binomial expansion

√
1 + x = 1 + 1

/
2x − 1

/
8x + · · · , (14)

so the total energy becomes

E(r) = ~ω0 −
Q4~ω0

2r6k2
+ · · · . (15)

The final step is to subtract the energy of infinitely separated
atoms. This gives the dispersion potential energy

Udispersion = E(r) − E(∞) = −
Q4~ω0

2k2r6
+ · · · , (16)

where the canonical r6 dependence arises from the first non-
zero term from the application of the binomial expansion.

It should be noted that while the dipole-dipole interac-
tion is the dominant electrostatic term of Eq. (5), there are
terms arising from higher-order multipole interactions as well.
The dipole-quadrupole and quadrupole-quadrupole interac-
tions giving rise to the 1/r8 and 1/r10 potentials are derived
in the Appendix. There are a number of models that use these
terms, including EFP, SIBFA (Sum of Interactions Between
Fragments Ab initio computed), and Misquitta and Stone’s
model for small organic molecules.27,31,32 For a perspective
on the importance of these higher order terms for the case of
the neon dimer, the reader is directed to the work of Bytautas
and Ruedenberg.33 The latter reference showed that even for
this simple dimer, the 1/r8 and 1/r10 terms are nearly impossible
to distinguish at reasonable separations. There are odd-power
terms (1/r7, 1/r9, etc.) that can be included in the expansion as
well. These arise from the mixing of the even order terms, are
highly angularly dependent, and spherically average to zero
at long range.34 There has also been recent work on incor-
porating these terms into dispersion models,35,36 where these
higher-order terms give successively better approximations to
the exact dispersion energy. As we will show, however, to reach
the stated accuracy goal of <1 kcal/mol, only the leading term
will be necessary.

For most systems, the perturbation of the dipole-dipole
interaction energy is small compared to the energy holding
the electrons to their respective atoms. This makes taking
only the leading r6 term of Eq. (16) a good approximation
for most long-range intermolecular interactions. In practice,
this is done by introducing a parameter, C, to capture this
dependence
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Udispersion = −
Ci

6Cj
6

r6
. (17)

This model will be referred to throughout the remainder of
the paper as the London dispersion model. Unfortunately, this
method of approximation starts to break down when the charge
distributions of interacting atoms start to overlap. We will
handle this situation through the introduction of short-range
damping, but rather than relying on empiricism for the damp-
ing function, we look to the underlying electrostatics to provide
a consistent model.

B. Short-range electrostatics

A long-standing problem in the modeling of electrostatics
for molecular mechanics models is the so-called charge pen-
etration error. The error arises when charge distributions of
interacting atoms overlap, causing the true electrostatic energy
of the interacting densities to diverge from the point charge or
point multipole approximation. We have shown in previously
published studies11,37,38 that a simple hydrogen-like approxi-
mation of the Coulomb potential does a remarkably good job
at correcting this error.

Why is this germane to a study of dispersion? Disper-
sion, as shown above, can be modeled as arising from a
dipole-dipole interaction. In the context of the multipolar
AMOEBA force field, we have shown that the hydrogen-like
approximation to the Coulomb interaction can be extended
to the interactions between higher-order multipole moments.
In fact, including these corrections for charge-dipole, dipole-
dipole, dipole-quadrupole, etc. interactions is essential to the
transferability and accuracy of the model.11 Here we show
that the dipole-dipole interaction arising from this earlier
model can be used directly to create a new damped dispersion
model.

To illustrate where the dipole-dipole damping comes
from, we follow a similar derivation to that of Ref. 11. The
potential due to the electrons for this model is defined as

V (r) =
qi

r
(
1 − e−αir ) , (18)

where r is the distance from the center of the charge distribution
and α is a parameter describing the width of the distribution.
Application of Poisson’s equation,

∇2V =
ρ

ε0
, (19)

yields the corresponding density,

ρ(r) =
qiα

2
i ε0

r
e−αir . (20)

These two quantities can be used to approximate the Coulomb
interaction energy between two charge distributions,

Uchg−chg
electrostatic =

∫ ∫
ρi(ri)ρj(rj)

rij
dridrj

=
1
2

(∫
ρi(ri)Vj(rj)dri +

∫
ρj(rj)Vi(ri)drj

)
.

(21)

Application of the one-center integral method of Coulson39

gives

Uchg−chg
electrostatic =

qiqj

r
*.
,
1 −

α2
j(

α2
j − α

2
i

) e−αir −
α2

i(
α2

i − α
2
j

) e−αjr+/
-
.

(22)

Equation (22) gives the charge-charge electrostatic energy.
To get the dipole-dipole energy, recall that the full multipole
energy of the i-j interaction can be written as

U total
electrostatic = Uchg−chg + Uchg−dipole + Udipole−chg

+ Udipole−dipole + · · ·

= qiTijqj + qi∇Tijµj − µi∇Tijqj

+ µi∇∇Tijµj + · · · . (23)

For a point-point interaction, T ij is simply 1/r, but for our
model, direct inspection of Eq. (22) yields

Tij =
1
r

*.
,
1 −

α2
j(

α2
j − α

2
i

) e−αir −
α2

i(
α2

i − α
2
j

) e−αjr+/
-
=

1
r

f damp
1 .

(24)

We can now apply this new relation for Tij to the definition of
the dipole-dipole energy from Eq. (23),

Udipole−dipole
damp = µi∇∇Tijµj

= f damp
3

~µi · ~µj

r3
− f damp

5

3
(
~µi ·~rij

) (
~rij · ~µj

)
r5

, (25)

where f 3 and f 5 are the damping terms that come from the
derivatives of the f 1

damp term of Eq. (24),

f damp
3 = 1 −

α2
j(

α2
j − α

2
i

) (1 + αir)e−αir −
α2

i(
α2

i − α
2
j

) (
1 + αjr

)
e−αjr ,

f damp
5 = 1 −

α2
j(

α2
j − α

2
i

) (
1 + αir +

1
3

(αir)2
)
e−αir −

α2
i(

α2
i − α

2
j

) (
1 + αjr +

1
3

(
αjr

)2
)
e−αjr .

(26)

Now let us compare Eqs. (25) and (6). Clearly the differ-
ence between the point dipole-dipole interaction and the new
model’s dipole-dipole interaction is the damping terms that
arise from the hydrogen-like model of charge density. For

large separations, f 3 and f 5 approach one and we recover
the point interaction. For small density overlaps, f 3 and f 5

represent a perturbation that damps the point dipole-dipole
interaction.
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C. Overlap damped dispersion

To derive our damped dispersion model, we start from
the earlier derivation of London dispersion. Equations (1)–(5)

remain the same, but instead of inserting the point dipole-
dipole interaction energy into Eq. (5), we now substitute our
damped dipole-dipole interaction from Eq. (25). Following our
simple one-dimensional Drude model, we obtain

1
M
∂2Ψ

∂z2
i

+
1
M
∂2Ψ

∂z2
j

+
2

~2

(
E −

1
2

kz2
i −

1
2

kz2
j − Udipole−dipole

)
Ψ = 0,

Udipole−dipole
damp = f damp

3

~µi · ~µj

r3
− f damp

5

3
(
~µi ·~rij

) (
~rij · ~µj

)
r5

,

(27)

where Udipole-dipole can be simplified to

Udipole−dipole = f damp
3

µiµj

r3
− f damp

5

3(µir)
(
µjr

)
r5

. (28)

Inserting this into the Schrödinger equation yields

1
M
∂2Ψ

∂z2
i

+
1
M
∂2Ψ

∂z2
j

+
2

~2

(
E −

1
2

kz2
i −

1
2

kz2
j −

(
3f damp

5 − f damp
3

) µiµj

r3

)
Ψ = 0. (29)

This can be solved by the same transformation as the non-damped case discussed earlier where

k1 = k −
2Q2

r3
f damp
dispersion, k2 = k +

2Q2

r3
f damp
dispersion,

f damp
dispersion = 3f damp

5 − f damp
3 .

(30)

This results in the solution

E =
1
2
~(ω1 + ω2),

ω1 =

√
k1

M
= ω0

√
1 −

2Q2

r3k
f damp
dispersion, ω2 =

√
k2

M
= ω0

√
1 +

2Q2

r3k
f damp
dispersion.

(31)

Applying the binomial expansion and subtracting the energy
of infinitely separated atoms yield the damped dispersion
energy

Udamp
dispersion = −

Q4~ω0

2k2r6

(
f damp
dispersion

)2
+ · · · . (32)

Just as before, for small density overlaps, the leading term
of Eq. (32) dominates. To convert this into a parameter-
ized molecular mechanics model, we again introduce C6

parameters, giving our final model energy

Udamp
dispersion = −

Ci
6Cj

6

r6

(
f damp
dispersion

)2

ij
. (33)

This model represents an elegant and simple unification of
the electrostatics and dispersion models for molecular mechan-
ics force fields. We will refer to this model throughout the
remainder of the paper as the “overlap damped dispersion”
model. It has some important features:

1. The model retains the canonical 1/r6 asymptotic behavior
as f tends to unity at large separations.

2. The damping function has a straightforward physical
interpretation: it is the integral of the overlap of between
charge distributions on interacting atoms.

3. The damping function follows a similar exponential
form as other previously proposed dispersion damping
functions.

4. The damping function has no adjustable parameters.
The parameters are fixed from the electrostatics charge
penetration damping function.

As we will show in Sec. IV, this model, in addition to being
theoretically compelling, produces good agreement with dis-
persion energies from ab initio energy decomposition analysis
calculations.

III. METHODS

The damped dispersion model we propose requires the
fitting of C6 parameters. To obtain these parameters, validate
their robustness, and assess the model’s accuracy, we set out
a four-step protocol. First, we assemble a database of repre-
sentative molecular interactions. Second, we perform bench-
mark ab initio reference calculations on that database. Third,
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we fit the parameters of our model to the reference ab initio
data. Fourth, we assess the robustness of the fit by validation
of the model on systems outside of the database.

For the scope of this study, we intend to parameterize our
model for the chemical space of biomolecules. To this end,
we use the previously constructed S101x7 database40 for fit-
ting. This database consists of 101 distinct pairs of molecular
dimers. For each of these dimers, seven points along the dis-
sociation curve are established at 0.7, 0.8, 0.9, 0.95, 1.0, 1.05,
and 1.1 times the equilibrium intermolecular distance. Details
on how the structures were generated are available in Ref. 37.
The dimers in this set represent a cross section of typical inter-
actions found in protein and nucleic acid systems. We note
that the points in the dataset at 0.7x the equilibrium distance
are important despite the fact that they are rarely sampled in
condensed phase simulations for most systems. These points
are included to ensure that the shape of the potential at the
closest sampled points (often 0.8x the equilibrium distance) is
accurately captured. A summary of all the pair interactions is
presented in Fig. 2.

In order to parameterize our model, a set of dispersion ref-
erence data is required. Because dispersion is not a physical
observable, we must rely on an ab initio energy decomposition
analysis (EDA) to generate our reference data. We have cho-
sen Symmetry Adapted Perturbation Theory (SAPT)41 for this
purpose. SAPT has a number of features that makes it a rea-
sonable choice. First, SAPT is a perturbation theory approach
that takes the electron density of monomers as its unperturbed
state. This is an exact analogy to molecular mechanics mod-
els where distributed multipoles are calculated from monomer
densities. Second, because of this correspondence, SAPT is the
theory that was used to generate the parameterization of the
electrostatic model referenced in Sec. II. Using SAPT here as
well ensures a straightforwardly unified model. Finally, SAPT

FIG. 2. Dimer pairs in the S101 database. Arrows indicate heterodimers,
while “/2” indicates a homodimer. Reprinted with permission from Wang et al.,
J. Chem. Theory Comput. 11, 2609–2618 (2015). Copyright 2015 American
Chemical Society.

is a well-established theory with a proliferation of studies ana-
lyzing its accuracy with respect to various orders and basis
sets. We use the SAPT2+ level of theory as defined by Sherrill
et al.42 with Dunning correlation consistent basis sets43,44 to
estimate the complete basis set (CBS) limit45 for the SAPT
energy components. The SAPT2+ method with large aug-
mented basis sets has been previously shown to give errors rel-
ative to coupled-cluster single, double and perturbative triple
excitations [CCSD(T)]/CBS of about 0.3 kcal/mol. This was
chosen over the cheaper to compute SAPT0 method, which
gives errors of around 0.5 kcal/mol. In order to minimize the
difference between our SAPT calculations and gold-standard
CCSD(T), we evaluated the residual

R = ���E
CCSD(T )/CBS
total −

(
ESAPT2+/CBS

non−dispersion + cESAPT2+/CBS
dispersion

) ���, (34)

where (Enon-dispersion + Edispersion) represents the total SAPT2+
energy, with a scale factor, c, introduced as a parameter. Min-
imizing this residual with respect to c yielded a scale factor of
c = 0.89 that is used to scale all dispersion energies. For further
details on the construction of the reference data for S101x7,
please see Ref. 37. The Psi4 program was used to perform all
SAPT calculations.46–48 All structures and reference data are
available at the S101x7 online repository.40

To obtain C6 parameters, we performed a nonlinear least
square fit of the SAPT dispersion reference data using a
Levenberg-Marquardt algorithm implemented in the Tinker
molecular mechanics software package. To test the robust-
ness of this parameterization, we leave out some of the
data points and repeat the fit. The model with the new
parameters is then evaluated on the excluded points. As a
validation test case, we also evaluate the performance of
the model on previously published nucleic acid interaction
data.49

The last part of the study is the evaluation of the disper-
sion particle mesh Ewald (DPME) method. DPME has been
implemented in a locally modified version of Tinker and is
available through the Tinker GitHub site.50 To evaluate the
efficiency of this implementation, the DPME method is tested
on a 36 Å periodic cube containing 1600 water molecules. The
PME summation was performed with a ∼1 Å grid, 5th order
B-splines, and an Ewald coefficient of 0.4. Timings are com-
puted on a 6-core, 2.66 GHz Intel Xeon processor for 100
energy evaluations using standard (non-Ewald) and DPME
overlap damped dispersion.

IV. RESULTS
A. Model accuracy

The question that we are attempting to answer in this study
is whether or not a damped dispersion model that is consis-
tent with an underlying electrostatic model is demonstrably
more accurate relative to ab initio data than simpler counter-
parts. To test this question, we employed a two-step approach.
First, we compared the pure London dispersion model with
our new overlap damped dispersion model on the S101x7
database. Then we compared these models to recently pub-
lished work fitting the S101x7 database with a buffered 14-7
potential function.
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TABLE I. Goodness of the fit on the S101x7 database (kcal/mol).

London Overlap damped
dispersion dispersion

Total root mean square error (RMSE) 1.19 0.52
Short-range RMSE (0.7–0.8× equil dist) 1.52 0.65
Long-range RMSE (0.9–1.1× equil dist) 1.04 0.46

To compare the damped and non-damped 1/r6 dispersion
potentials, we fit both to the SAPT2+ dispersion values from
the S101x7 database. The results of these fits are presented in
Table I and Fig. 3.

Clearly the overlap damped dispersion potential performs
better on this set of data, displaying a total root mean square
error of 0.52 kcal/mol, as opposed to 1.2 kcal/mol for the
pure London dispersion function. Figure 3 illustrates how the
overlap damped dispersion model consistently fits the SAPT
dispersion data better than the non-damped model over a range
of interactions energies.

Moreover, the difference in fit quality between the short-
range and long-range points shown in Table I is much smaller
for the overlap damped dispersion model. This seems to indi-
cate that the damping is having the short-range effect we hoped
it might. This issue will be examined further in the robustness
tests.

It is instructive to note exactly what is and is not being
fit in these two models. For both models, the only parame-
ters being fit are one C6 coefficient per atom class. (Atom
class definitions can be found in Table II. They are identi-
cal to those defined in Ref. 11.) It bears emphasizing that for
the overlap damped dispersion model, the damping parame-
ters [αi in Eq. (26)] are not allowed to vary; they are fixed
at the values determined in Ref. 11. These values, recapit-
ulated here in Table II, describe the physical extent of an
atom’s electron distribution. They were fit to the SAPT elec-
trostatic energies of the same S101x7 database in the previ-
ous study. A comparison of the C6 parameters between the
damped and non-damped models in Table III shows that the

FIG. 3. Damped and undamped dispersion models against SAPT2+ disper-
sion energies. The diagonal y = x dashed line indicates perfect agreement. The
overlap damped dispersion model produces a significantly improved fit.

TABLE II. Fixed electrostatic damping parameters.

Element Atom class α (Å�1)

Hydrogen (H)
Non-polar 3.2484
Aromatic 3.4437
Polar, water 3.2632

Carbon (C)
sp3 3.5898
Aromatic 3.2057
sp2 3.1286

Nitrogen (N)
sp3 4.0135
Aromatic 3.6358
sp2 3.7071

Oxygen (O)
sp3, hydroxyl, water 4.1615
Aromatic 4.3778
sp2, carbonyl 3.7321

Phosphorous (P) Phosphate 2.7476

Sulfur (S)
Sulfide 3.3112
Sulfur IV 2.6247

Fluorine (F) Organofluoride 4.4675

Chlorine (Cl) Organochloride 3.4749

Bromine (Br) Organobromide 3.6696

damped dispersion model exhibits a smoother variation within
classes.

The fact that a similar set of parameters produces a
damped dispersion model that yields a fit that is 0.5 kcal/mol

TABLE III. Model C6 parameters.

London Damped
Atom dispersion C6 dispersion C6

Element class (Å6 kcal/mol) (Å6 kcal/mol)

Hydrogen (H)
Non-polar 3.4118 6.3960
Aromatic 4.7993 5.7678
Polar, water 0.9114 5.1133

Carbon (C)
sp3 28.5333 18.1732
Aromatic 23.2125 23.3605
sp2 26.1301 23.0103

Nitrogen (N)
sp3 33.6562 21.4927
Aromatic 18.2114 19.7421
sp2 30.6586 19.4543

Oxygen (O)
sp3, hydroxyl, water 25.5861 15.1656
Aromatic 25.2794 14.8569
sp2, carbonyl 23.1181 18.4344

Phosphorous (P) Phosphate 46.4113 44.8658

Sulfur (S)
Sulfide 62.1844 52.8970
Sulfur IV 39.0781 59.2558

Fluorine (F) Organofluoride 15.0568 13.6549

Chlorine (Cl) Organochloride 44.4420 45.7799

Bromine (Br) Organobromide 59.9587 62.0655
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better than the non-damped model, despite having the exact
same number of fitting parameters, is instructive. It shows
us that the quality is not due to any extra flexibility in the
fitting procedure. This hints that our model may be seizing
some of the same physical reality captured in the electrostatics
model.

The London dispersion model is widely used, but it is cer-
tainly not the only simple dispersion model used in molecular
mechanics force fields. One alternative is Halgren’s buffered
14-7 potential.18 As discussed in Sec. II, the 1/r6 term is only
the first term in the expansion of the dispersion energy. The
buffered 14-7 potential,

UvdW =
∑
vdw

∑
i,j

εij

(
1 + δ
ρij + δ

)7 ( 1 + γ
ρij

7 + γ
− 2

)
, ρij =

rij

σij
,

(35)

attempts to accommodate higher order terms by means of
the buffered 1/r7 attractive term to describe dispersion. The
buffered 14-7 van der Waals potential has been used in a num-
ber of force fields, including AMOEBA, for which a large
amount of analysis involving the S101x7 database has already
been done.

In a recent study, Qi, Wang, and Ren fit the buffered 14-7
van der Waals potential to the sum of the exchange-repulsion
and dispersion data from the S101x7 database yielding a
model they call “vdw2016.”51 Given the quality of the total
van der Waals energy reported, we set out to see how the
corresponding dispersion energies compared to 1/r6 derived
functions.

To assess the performance of the dispersion part of the
vdw2016 model, we performed calculations using only the
attractive part of the buffered 14-7 potential defined in Eq. (35).
The vdw2016 model differs slightly from the damped and non-
damped 1/r6 dispersion models in its number of atom classes.
Where we define just 18 atom classes for the molecules in
S101, Qi, Wang, and Ren found that they need 28 to accu-
rately model the van der Waals energy. For each class, they
allowed two parameters to vary: the well depth, ε, and radius,
σ. Despite this greater flexibility in parameters, the vdw2016
model performs very poorly on predicting the dispersion part
of the van der Waals energy. As is clearly seen in Fig. 4, it is
not nearly attractive enough.

This is unsurprising given the nature of the fit that was
performed. Since the target data were the sum of the exchange-
repulsion and dispersion energies, the fit is highly skewed by
the exchange-repulsion energy. The exchange-repulsion can
often be an order of magnitude large than dispersion, espe-
cially at short-range, and thus drives values obtained for the
fit. This does not mean that vdw2016 does not make an ade-
quate empirical total van der Waals model (indeed buffered
14-7 has almost always been used in its totality), but it does
mean that this parameterization will not work as a stand-alone
dispersion model if the goal is to reduce the cancellation of
errors.

While the vdw2016 model has been shown to yield good
van der Waals energies, it does so to the detriment of hav-
ing a separate and interpretable dispersion model. To attempt
to remedy this, we performed a second fit of the buffered

FIG. 4. vdw2016 against SAPT2+ dispersion. The diagonal y = x dashed
line indicates perfect agreement. The vdw2016 model systematically under-
estimates the magnitude of the dispersion energy.

14-7 van der Waals form to the S101x7 dataset, vdw2017,
where the exchange-repulsion and dispersion components
were fit independently. The results of this fit are shown in
Fig. 5.

One can see that the systematic deviation in dispersion
that plagues the vdw2016 model is largely alleviated in the
new fit. However, the root mean square error for vdw2107 dis-
persion remains at 1.6 kcal/mol. This occurs despite preserving
the extra flexibility of having 28 atom classes. This seems to
show that while the buffered 14-7 may have a fortunate can-
cellation of errors for the total van der Waals energy, a 1/r6

asymptotic function is a more natural fit to the pure dispersion
interaction.

Comparing the overall fits of the Halgren dispersion
potentials to the (damped or non-damped) London disper-
sion potentials, it is clear that the latter produce a better fit to
the S101x7 dataset. Since the empirical buffered 14-7 poten-
tial seems to offer no advantage in accuracy for dispersion,
there is no reason to further pursue it as a viable interpretable

FIG. 5. vdw2017 dispersion against SAPT 2+ dispersion energies. The diag-
onal y = x dashed line indicates perfect agreement. The vdw2017 model RMS
error is 1.6 kcal/mol.



084115-9 Rackers et al. J. Chem. Phys. 149, 084115 (2018)

dispersion model for the purposes of this study. The next
step is to assess whether the advantage in the accuracy of the
damped dispersion model is worth the extra complexity and
computational effort.

B. Model robustness

Although the overlap damped dispersion model shows a
better fit to the S101x7 dispersion dataset, we would like to be
sure that this advantage over the simpler London dispersion
model is robust. To test this point, we employed two separate
validation assessments. First, we interrogated the quality of the
fit with regard to intermolecular distance. Here our aim was
to ascertain which of the two functions is a more natural fit to
the data. Second, we applied both models to cases outside of
the S101 suite of dimers.

The S101x7 dataset contains sets of dimers arranged at
seven different intermolecular distances (0.7, 0.8, 0.9, 0.95,
1.0, 1.05, and 1.1 times the equilibrium distance). Because
this data set includes a good amount of information about close
contact points, we want to be sure that our models fit the short-
range points well without sacrificing asymptotic behavior. To
judge the long-range fit, we excluded all of the 0.7 and 0.8 times
equilibrium data points and then reoptimized the parameters.
The results, presented in the “long-range” entries of Table IV,
show that for this near-equilibrium regime, the London disper-
sion and overlap damped dispersion models give comparable
fits.

The test of robustness is to then use the parameters
that come out of the near-equilibrium fits and evaluate each
model on the close-contact points that were left out of the
fit. This shows how well the shape of the function matches
the intrinsic shape of the dispersion dissociation curve at
short range. As can be seen in Table IV, there is a difference
between the London dispersion and overlap damped dispersion
models.

The total RMS error of the overlap damped dispersion
model increases modestly when the close-contact points are
included, as should be expected since these points were not
included in the fit. The total RMS error of the non-damped
London dispersion model, however, rises dramatically. While
the long-range quality of the fit (those points that were included
in the fit) is good for both models, the short-range quality
(those points not included in the fit but included in the robust-
ness test) is very different between the two models. The RMS
error on the short-range test points with the overlap damped
dispersion model is less than 1 kcal/mol, but the RMS error

TABLE IV. Dispersion model robustness test (kcal/mol).

London Overlap damped
dispersion dispersion

Total root mean square error (RMSE) 3.12 0.67
Total mean signed error (MSE) 0.91 �0.31
Short-range RMSE (0.7–0.8× equil dist) 5.55 0.84
Long-range RMSE (0.9–1.1× equil dist) 1.15 0.59
Short-range MSE (0.7–0.8× equil dist) 2.71 �0.12
Long-range MSE (0.9–1.1× equil dist) 0.20 �0.38

of the London dispersion model is over 5 kcal/mol. These
errors are clearly caused by the inability of a simple 1/r6 func-
tion to adequately describe both the asymptotic and overlap
regimes. Moreover, it is clear from Table IV that the overlap
damped dispersion model is not sacrificing accuracy in the
asymptotic regime, where it is actually slightly better than the
London dispersion model. A handful of illustrative examples
show how the London dispersion model fit to near-equilibrium
points systematically predicts the dispersion energy to be too
attractive. Figure 6 shows three examples where this effect is
pronounced.

The pentane-pentane, benzene-peptide, and water-PO4H3

interactions are all examples of important component interac-
tions in biology. They also exhibit the importance of damping
the dispersion energy at short range for an ab inito-based force
field. Clearly, including the damping function from the elec-
trostatic model improves the agreement with SAPT dispersion
data at the closest points.

We suggest that the effectiveness of this damping is fun-
damentally tied to the overlap in charge distributions. If we
compare the non-damped London dispersion curves with their
corresponding non-damped electrostatic curves (no charge
penetration correction) in Fig. 6, we see that the divergence
of non-damped energies from their SAPT counterparts occurs
at roughly the same separation. This suggests that deviation
from the 1/r6 asymptotic behavior in the dispersion energy at
short-range is also attributable to the overlap in charge dis-
tributions. We know that the point multipole expansion model
for electrostatic interactions is rigorously accurate until charge
distributions begin to overlap. The fact the divergence in the
point dipole derived dispersion energy occurs at a similar
distance suggests that the same effect is driving this phe-
nomenon. Moreover, the fact that the exact same parameters
can be used to accommodate the change from the asymp-
totic behavior for both electrostatics and dispersion indicates
that these are separate manifestations of the same physical
reality.

Although the London dispersion model may be simpler
and computationally less expensive than the overlap damped
dispersion model, it is clear from this robustness test that the
latter provides a much better description of the dispersion
interaction that spans both the close contact and asymptotic
regimes. For the S101x7 dataset, generally, the 0.8x points
represent the closest intermolecular distance for liquids under
ambient conditions. The robustness test shows that a force
field using the overlap damped dispersion model will rely less
on the cancellation of errors in this area than an undamped
model. Importantly, we note that the overlap damped disper-
sion model retains the 1/r6 dependence at long range as the
damping factor quickly approaches unity when charge distri-
butions no longer overlap. This gives us confidence that the
shape of the function is well suited to the intrinsic shape of the
dispersion dissociation curve.

C. Model analysis and validation

Having established the capability of the overlap damped
dispersion model for short-range interactions, we can ask
how well this model performs on specific important systems.
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FIG. 6. Examples of dispersion (top row) and electrostatic (bottom row) corrections for charge density overlap in (a) benzene-peptide, (b) pentane-pentane, and
(c) water-PO4H3 interactions. The x-axis indicates dimer intermolecular distance as a fraction of each dimer’s equilibrium separation. In all three examples, the
undamped “classical” model diverges from the ab initio result at short range, while the damped model follows the ab initio curve closely.

Dispersion plays an important role in a range of biomolec-
ular interactions, and one should hope a good model would
describe such interactions accurately. Two instructive exam-
ples are water-water interactions and benzene stacking inter-
actions. Both also happen to be instances where charge density
overlap plays a role in their short-range interactions.

The balance between water-water and water-biomolecule
interactions is known to be important to accurate simulations
of biomolecules. Recently, a study by Piana and co-workers
demonstrated that simulations with a few commonly used
water models overpredict the compactness of disordered and
partially disordered proteins.52 They suggest that this occurs
because these typical water models underestimate water-water
and water-protein dispersion interactions relative to ab initio
dimer calculations. This conclusion may be overstated since
for the TIP3P and SPCE models discussed, this underesti-
mation is largely handled through the cancellation of errors
within the rest of the force field. A goal of our work, however,
is to reduce this reliance on such cancellation. The over-
lap damped dispersion model directly addresses this problem
through an accurate prediction of the water dimer dispersion
energy curve. As shown in Fig. 7, the damped model gives
good overall agreement with the shape of the SAPT dispersion
data.

Also shown in Fig. 7 is the quality of the fit of the
AMOEBA water0319 model. Since this AMOEBA model is
polarizable, one would expect the dispersion part of its van
der Waals function should be close to the ab initio dispersion
energy due to less reliance on the cancellation of errors. Indeed,

near equilibrium, this model produces excellent agreement,
but at short range, the dispersion energy becomes too negative.
While the absolute energy error may not be large for these close
points, one can see that the error in the slope is much greater.
At an O–O distance of ∼2.6 Å, for example—well sampled

FIG. 7. Performance of various water dispersion models against SAPT2+
dispersion. Model dispersion energies are compared to SAPT2+ dispersion
energies for a range of intermolecular distances of the water dimer. TIP3P53

and TIP4P-D52 are undamped ∼1/r6 models, AMOEBA is the attractive,
∼1/r7, component of the buffered 14-7 potential with parameters from the
water03 force field,19 and the overlap damped dispersion model is from this
work.
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in ambient water54—one can see that the water03 dispersion
force is slightly too attractive. Recent work has suggested that
the cancellation of errors is responsible for the condensed
phase behavior of AMOEBA water,55,56 but as these compen-
satory components are removed for the next generation of the
model, the error in the dispersion becomes more important to
address directly. It is not novel to suggest that modeling the
short and long-range dispersion interactions simultaneously
requires a damping function. What is shown here, however,
is that a simple, rationally constructed, and minimally param-
eterized model yields excellent agreement for this important
interaction.

Another example interaction of importance in biomolec-
ular modeling is the benzene “pi-stacking” interaction. In
addition to being an important exemplar for the nucleic acid
structure and drug binding, this interaction falls into the quali-
tative “dispersion-bound” category,57 so accurately modeling
it is imperative for a dispersion model. Figure 8 shows the
performance of the overlap damped dispersion model against
SAPT.

One can see that the agreement of the overlap damped
dispersion model with the SAPT data is excellent across all
benzene dimer separations. As was observed for the water
dimer, the AMOEBA model produces good agreement near
equilibrium, but characteristically deteriorates at short range.
In particular, the divergence begins at ∼0.85 of the equilib-
rium separation or a ∼3.2 Å C–C distance. This distance is
a close contact for liquid benzene at room temperature and
1 atm—it falls near the start of the radial distribution func-
tion.58 As a model system, it is also close to the stacking
distance between bases in B-DNA,∼3.3 Å. Figure 8 shows that
for small but relevant distances like this, the shape of SAPT
dispersion is more closely matched by the overlap damped
dispersion Model. Although less dramatic than with electro-
statics, the deviation at a short range of the London dispersion
model is due to the same phenomenon that drives the diver-
gence in the electrostatics of the benzene dimer. Figure 8 shows
us that the same treatment can be applied to fix the errors in
both classical models.

FIG. 8. Benzene dimer dispersion. Model dispersion energies are compared
to SAPT2+ dispersion energies for a range of intermolecular distance of the
benzene dimer. The AMOEBA model functional form is the same as in Fig. 7,
with parameters taken from the AMOEBA09 force field.

Finally, to check that the success at accurately fitting, the
S101x7 dataset is not the result of overfitting, we employ a
validation test on a system outside of the training set. For this
purpose, we chose to test the dispersion component of nucleic
acid base stacking interactions. In previously published work,
Parker and Sherrill performed SAPT energy decomposition
analysis calculations on a set of nucleic acid structures to eval-
uate the performance of current force fields. In order to assess
how well a given model reproduces the energy components
of base stacking interactions, Parker and Sherrill performed
SAPT calculations at equilibrium and near equilibrium geome-
tries of all ten possible two base-pair steps of DNA: AATT,
ACGT, AGCT, ATAT, CATG, CGCG, GATG, GCGC, GGCC,
and TATA. To generate trial geometries, Parker and Sherrill
systematically varied the six geometrical degrees of freedom
illustrated in Fig. 9 (shift, slide, rise, tilt, roll, and twist) for each
base-pair step. See Ref. 49 for structure generation specifics
and calculation details.

To see how our model measures up, we compare the
published nucleic acid SAPT dispersion energies with the dis-
persion energies predicted by our overlap damped dispersion
model using atom types, as defined in Table III. The results for
this test set are shown in Fig. 10.

There are two important features to point out in the figure.
First, one will notice that the London dispersion model per-
forms better than either the Amber or CHARMM nucleic acid
dispersion models despite having an identical functional form.
This, as noted by Parker and Sherrill, is primarily due to the
cancellation of errors in the partial charge models. These mod-
els do not explicitly include the effects of charge penetration,
so the dispersion function is called upon to absorb some of the
errors in the electrostatics. What Parker and Sherrill find, how-
ever, is that while this cancellation of errors strategy produces
total energies within 1 kcal/mol relative to dispersion-weighted
CCSD(T∗∗) for structures near B-form DNA, the error in the
total energy across the range of potential energy surface scans
is closer to 2 kcal/mol with some errors over 10 kcal/mol
even for attractive points on the surface. One can see from

FIG. 9. Illustration of the six degrees of freedom explored for nucleic acid
structures. The example shown is for the AC:GT base step. Reprinted with
permission from Parker and Sherrill, J. Chem. Theory Comput. 11, 4197–4204
(2015). Copyright 2015 American Chemical Society.
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FIG. 10. Mean unsigned error in dispersion energy for nucleic acid structures. Model error is relative to SAPT for each of the six structural parameters. The
overlap damped dispersion model reduces the error in the dispersion across all six degrees of freedom. Amber and CHARMM results from Ref. 49.

Fig. 10 that parameterizing a 1/r6 (London dispersion) model
directly to SAPT reduces some of the need for the cancel-
lation of error, but not all. The second and more important
feature one observes is the agreement throughout the poten-
tial energy surface of the overlap damped dispersion model.
In addition to relieving itself of the cancellation of errors bur-
den, one can see that the damped model provides a minimum
factor of two improvements in the mean unsigned error over
the undamped London dispersion model for every degree of
freedom. This has little to do with the behavior of the disper-
sion energy at equilibrium; the divergence occurs primarily for
structures where the electron densities of the two base-pairs
start to overlap.

As an instructive example, take the change in dispersion
energy with respect to the tilt angle for the CATG base step
shown in Fig. 11.

One can see that at equilibrium, both the London and over-
lap damped dispersion models predict the SAPT dispersion

FIG. 11. Dispersion energy of CATG interaction vs. tilt. The non-damped dis-
persion models uniformly overestimate the magnitude of the dispersion energy
as the angle varies from equilibrium in either direction. The overlap damped
dispersion model predicts the shape of the SAPT curve at both equilibrium
and near-equilibrium geometries.

energy with good precision. However, as one changes the
tilt angle in either direction, the dispersion energy of the
undamped model diverges quickly from the SAPT while the
overlap damped dispersion model follows the shape of the
SAPT curve with fidelity. This trend holds across all six
degrees of freedom and all ten base pair steps. Plots like Fig. 11
for each combination are available in the supplementary mate-
rial. The divergence observed for non-damped models matters
because it is not simply confined to high total energy areas of
the DNA potential energy surface. In fact, Parker and Sher-
rill showed that for the stacked A-C pair (one half of the
CATG base step) at a tilt angle of −15◦, the total energy is
−5 kcal/mol. This is only 0.5 kcal/mol above the minimum
total energy of −5.5 kcal/mol. Figure 11 suggests that in order
to accurately model this region of the potential energy sur-
face without large cancellation of errors, a damped dispersion
model is necessary.

V. DISPERSION PARTICLE MESH EWALD
SUMMATION

Accuracy and efficiency are both important features of a
molecular mechanics model. A good dispersion model must
not only be accurate, but also fast to compute. While the accu-
racy of the overlap damped dispersion model has been solidly
established in this paper, the exponentials required for its eval-
uation have the potential to slow potential energy calculations.
To make the overlap damped dispersion model computation-
ally efficient and tractable for use in biomolecular simulations,
we have implemented the model with particle mesh Ewald
(PME) summation in the Tinker molecular mechanics soft-
ware package. In this section, we present a brief overview of
the damped dispersion PME implementation and show how
this implementation provides a substantial speed and accuracy
improvement over the standard cutoff-based van der Waals
implementation.

Ewald summation is classically considered to be pri-
marily a solution to the pairwise long-range electrostatics
problem. The Σ1/r electrostatic potential is conditionally

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-006833
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-006833
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convergent which makes direct computation of the electro-
static energy of a periodic system difficult. To circumvent
this problem, Ewald methods split the sum into short-range
and long-range parts, with short-range part being computed
directly and the long-range via Fourier transformation. This
separation not only makes periodic calculations possible, but
also increases the speed with which the energy and gradient
can be evaluated.

The same method can be applied to the dispersion energy
calculation. Here we note that the following derivation is
by no means original. In fact, Essman and co-workers pro-
posed the possibility of using particle mesh Ewald summation
for dispersion in their 1995 paper describing the method of
smooth particle mesh Ewald summation.59 We present here a

brief summary simply to show that the inclusion of a damp-
ing term in this case does not change the ability to use the
method.

The total dispersion energy, as given by Eq. (33) is

Udamp
dispersion = −

∑
i,j

Ci
6Cj

6

r6
ij

(
f damp
dispersion

)2

ij
. (36)

This can be split into a short-range part, a long-range part, and
a “self” term,

Udispersion
total = Udispersion

short−range + Udispersion
long−range + Udispersion

self , (37)

with

Udispersion
short−range =

∑
i,j

Ci
6Cj

6

r6
ij

(
f damp
dispersion

)2

ij

(
1 + β2r2

ij +
1
2
β4r4

ij

)
e−β

2r2
ij , (38a)

Udispersion
long−range =

2π9/2

3V

∑
m,0

|m|3
[

1

2(π |m|/β)3

(
1 − 2(π |m|/β)2

)
e(−(π |m |/β)2+

√
πerfc(π |m |/β))

]
Ŝ(m)Ŝ(−m), (38b)

Udispersion
self = −

β6

12

∑
i

C2
i +

β3π3/2

6V
*
,

∑
i

Ci
+
-

2

. (38c)

Equations (38a) and (38b) are commonly known as the direct
space sum and reciprocal space sum, respectively. The vari-
able, β, is the parameter determining the Gaussian width, m
is defined by the reciprocal lattice vectors, a, as m = m1a1

∗

+ m2a2
∗ + m3a3

∗
, and V is the volume of the unit cell. The

structure factor, S, is defined for dispersion as

Ŝ =
∑

j

Cje
i2π(m ·rj). (39)

The summation in Eq. (38b) is handled in the same manner
as the reciprocal space sum for electrostatics. Tinker uses the
FFTW (Fastest Fourier Transform in the West) package to per-
form the needed Fourier transforms.60 To speed the calculation
and because the dispersion energy decreases quickly with dis-
tance, Eq. (38a), the direct space sum, is truncated at a fixed
distance.

For simple dispersion PME, the choice of direct space
cutoff matters very little; one simply chooses a cutoff that bal-
ances computational effort between direct space and reciprocal
space. For overlap damped dispersion PME, however, some
care must be taken with the choice. This is because Eqs. (38a)–
(38c) as written do not strictly sum to Eq. (36). This imbalance
is caused by the presence of the damping function in the direct
space sum, without an equivalent component in the recipro-
cal space. In practice, however, this is easily overcome with a
rational choice of cutoff distance. The function f damp goes to
unity very quickly with distance (much faster than 1/r6 goes
to zero), so reasonable cutoff distances are easy to obtain.
Figure 12 shows dispersion energy as a function of cutoff
distance.

One can see that for cutoffs longer than 6 Å, the energy of
the PME implementation is constant due to the fact that f damp

is effectively unity for all atom pairs outside of this radius. For
our model, we chose this cutoff of 6 Å to balance the direct and
reciprocal space computational effort. Comparing the PME
and non-PME curves in Fig. 12 illustrates an obvious advan-
tage of using Ewald summation for dispersion interactions.
While the non-PME curve converges to the asymptotic total

FIG. 12. Cutoff distance convergence of the overlap damped dispersion
model. The total dispersion energy of a 36 Å water box is shown for the stan-
dard and particle mesh Ewald (PME) implementations of the overlap damped
dispersion model. The cutoff of the PME implementation refers to the cut-
off of the real space summation. Computational details are enumerated in
Sec. III.
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FIG. 13. Computational effort for over-
lap damped dispersion. The time to
complete 100 iterations of overlap
damped dispersion and buffered 14-7 is
plotted as a function of cutoff distance.

energy very slowly with cutoff distance, the Ewald sum is con-
verged within the 6 Å cutoff distance. The slow convergence of
the non-Ewald sum is the reason many molecular mechanics
models use 12–16 Å cutoffs or van der Waals correction terms
for their dispersion interactions.

Because our model is not forced to use a longer cutoff
distance, it can be faster to compute than standard dispersion
models. As a point of reference, in the AMOEBA model, the
van der Waals calculations currently comprise 10%-15% of the
total calculation time. While this is certainly not the bottleneck
for efficiency, it is important to keep this relative cost low.
In Fig. 13, we compare energy evaluation times for our PME
implementation of the model with the standard implementation
for various cutoff distances.

Figure 13 shows that for standard implementation cut-
off distances of greater than 9 Å, the PME implementation of
the overlap damped dispersion model provides a performance
boost relative to the non-PME implementation. As a point
of reference, Fig. 13 also shows the speed of the AMOEBA
buffered 14-7 van der Waals functional form with its suggested
cutoff distance of 12 Å. Even compared to this model, which
has no required exponential evaluation, the overlap damped
dispersion PME model provides a factor of 2.5 speed increase.
The use of particle mesh Ewald summation minimizes the
work needed in real space, thus enabling the use of our more
complicated and accurate functional form without the loss of
computational efficiency.

Finally, our model benefits from the utilization of simple
combination rules. Using a multiplicative combination rule
as indicated in Eq. (33) makes our DPME method exact. It is
worth noting that many popular force fields, including all three
mentioned in this paper (Amber, CHARMM, and AMOEBA),
use additive combining rules for van der Waals parame-
ters. Particle mesh Ewald methods can be used with additive
combining rules in an approximate manner first proposed
by Erik Lindahl and co-workers.61,62 This method prevents
what would otherwise be a discontinuity in the forces at the
cutoff distance, but does introduce complexity when switch-
ing from direct to reciprocal space combining rules.15 The

overlap damped dispersion PME model avoids this by explic-
itly parameterizing to a multiplicative combining rule. This
implementation is certainly not unique or novel, but it is impor-
tant to the future use of the overlap damped dispersion model
in a complete force field because it shows that the benefit of
a more physics-based short-range model can be realized at no
increase in cost.

VI. DISCUSSION AND CONCLUSIONS

The universe of possible molecular mechanics models is
immense. To discriminate between models and decide which
models work best with each other, we must evaluate them
based upon the goals they wish to achieve. The goal of our
proposed model is use in biomolecular modeling, molecular
dynamics simulation, and free energy calculations. To this end,
it is important for the model to be accurate, transferable, and
interpretable. Accuracy has obvious importance for describ-
ing the interactions of biological molecules with fidelity, but
transferability and interpretability are no less important. In this
last section, we summarize how the overlap damped dispersion
model measures on each of these attributes.

The data in Table I show that when measured against sym-
metry adapted perturbation theory, damping is necessary to
achieve 1 kcal/mol accuracy for the S101x7 data set. Interest-
ingly, the overlap damped dispersion model is also shown to be
more accurate than the attractive part of the slightly more com-
plex buffered 14-7 potential. The root of this behavior seems
to lie with the behavior of the dispersion energy at short range.
Figure 6 shows that a damping function is necessary to fit both
close-contact and large-separation dimer points. In most force
fields, this inaccuracy at short range is handled through the
cancellation of error. Relying on such cancellation, however,
will not work as force fields become more accurate and, more
importantly, is not guaranteed to function favorably across
the wide variety of intermolecular interactions that occur in
biomolecular applications.

The transferability of the overlap damped dispersion
model is coupled to this idea of eliminating a reliance on the
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cancellation of errors. The most notable feature of the model,
aside from its accuracy, is the fact that it has no additional
adjustable parameters beyond the simple London dispersion
model. The damping function, as presented in Sec. II, is
entirely determined by the electrostatic model presented in
Ref. 11 with no additional fitting or parameterization. This
property of the model suggests two things. First, the overlap
damped dispersion model is easily transferable to a range of
chemical space because of the limited number of parameters.
Evidence of this is shown in Figs. 10 and 11 where the S101-
fitted parameters were used to predict the dispersion energy
of nucleic acid base stacking interactions. Second, it hints at
a physical reality behind the model. The fact that parame-
ters generated through fitting to intermolecular electrostatic
interactions, where density overlap is the determining factor
in short-range interactions, work well for our dispersion model
is a strong indicator that the same phenomenon is driving
short-range dispersion.

This physical picture of short-range dispersion is what
makes the overlap damped dispersion model interpretable.
There are many damping functions that can be used to cor-
rect for the behavior of the dispersion energy at short range.
Several of these damping functions can likely be parameter-
ized to yield results against symmetry adapted perturbation
theory that are as accurate as those presented here. What
the current model offers over the alternatives is a physical
interpretation. In this model, the dispersion interaction is the
result of the electrostatic interaction between the instanta-
neous induced dipoles of two distinct charge distributions.
This characteristic of the model is valuable for two reasons.
First, it gives us some intuition about the nature of intermolec-
ular interactions. Second, the interpretability of the model
makes it easier to extend the model to new areas of chemi-
cal space. We make no claim that the 18 atom classes used
in this paper will accurately describe all of the variety of
chemistries in organic molecules. What is clear, however, is
that the interpretation of the damping parameter as a measure
of an atom’s charge distribution gives a clear path to determin-
ing new parameters where necessary. In this way, the overlap
damped dispersion model is systematically improvable. As
advanced molecular mechanics models evolve, this property
will be important to their ongoing development. As models
grow to explicitly take into account the short-range interactions
between molecules, this dispersion model fits neatly into that
framework.

Accurately modeling the short-range interactions between
molecules is important to making trustworthy predictions on a
range of biomolecular problems. Drug binding,63 intrinsically
disordered protein behavior,64 and nucleic acid structure65 are
all areas where advanced force fields have been shown to be
necessary for correct predictions. As models get more com-
plex, the tendency is to accumulate additional parameters and
with them empiricism. In the case of dispersion, this paper
shows that a simple physical model can be employed that
adds no new parameters while reducing the need to rely on
the cancellation of errors. Moreover, combined with a disper-
sion particle mesh Ewald implementation, the evaluation of
the necessary equations can be achieved as fast or faster than
the standard implementation of simple non-damped models.

This yields a simple physically interpretable model ready for
the next generation of advanced molecular mechanics models.
We are currently working on incorporating this model, along
with the previously published charge penetration function, into
a complete force field.

SUPPLEMENTARY MATERIAL

See supplementary material for plots showing the disper-
sion energy for ten different DNA base steps, including the
energy as a function of rise, twist, shift, slide, roll, and tilt.
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APPENDIX: HIGHER-ORDER DISPERSION TERMS

As indicated in the text, the full dispersion interaction
between two real atoms also includes higher-order compo-
nents that give rise to 1/r8, 1/r10, etc. terms. These terms
come from instantaneous higher-order multipole interactions
between atoms. Similar to the 1/r6 term, these can be derived
from a simple Drude oscillator model of atomic polarizability.
As the derivation of the origin of these terms is not readily
available in the literature, we present here a derivation that
continues the series started in the text.

1. Dipole-quadrupole dispersion

The derivation of the dipole-quadrupole dispersion energy
starts from Eq. (5) in the text, where, instead of the dipole-
dipole energy, the dipole-quadrupole interaction energy now
enters into the Schrodinger equation,

1
M
∂2Ψ

∂z2
i

+
1
M
∂2Ψ

∂z2
j

+
2

~2

(
E −

1
2

kz2
i −

1
2

kz2
j

−Udipole−quadrupole

)
Ψ = 0. (A1)

For a Drude oscillator dipole, interacting with a linear Drude
oscillator quadrupole, the energy of the interaction is given
by

Udipole−quadrupole = ∇∇∇Uchg−chg = −
3
(
µiΘj + µjΘi

)
r4

. (A2)

If we assume the magnitude of the dipole and quadrupole
moments on i and j to be identical, combining Eqs. (A1) and
(A2) yields

1
M
∂2Ψ

∂z2
i

+
1
M
∂2Ψ

∂z2
j

+
2

~2

(
E −

1
2

kz2
i −

1
2

kz2
j −

6µΘ

r4

)
Ψ = 0.

(A3)

We now follow a similar transformation of variables as in the
text and define

λ1 =
zi + zj
√

2
, λ2 =

zi − zj
√

2
(A4)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-006833
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and rewrite Eq. (8) as

1
M
∂2Ψ

∂z2
i
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1
M
∂2Ψ

∂z2
j

+
2

~2
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1
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k1λ
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1
2

k2λ
2
j

)
Ψ = 0, (A5)

where

k1 = k +
6Q2zj

r4
, k2 = k −

6Q2zj

r4
. (A6)

Equation (A6) is again a transformed version of the indepen-
dent harmonic oscillator problem. It can be solved in the same
manner giving

E(r) =
1
2
~(ω1 + ω2), (A7)

where

ω1 =

√
k1

M
= ω0

√
1 −

6Qzj

r4k
, ω2 =

√
k2

M
= ω0

√
1 +

6Qzj

r4k
.

(A8)

Applying the binomial expansion
√

1 + x = 1 + 1/2x − 1/8x + · · · , (A9)

the total energy becomes

E(r) = ~ω0 −
36~ω0

8r8k2
+ · · · . (A10)

We then subtract the energy of infinitely separated atoms. This
gives the dipole-quadrupole term of the dispersion potential
energy

E(r) = −
36~ω0

8r8k2
+ · · · . (A11)

It should be noted here that the spring constants, k, and frequen-
cies,ω, are not the same as those for the dipole-dipole interac-
tion. Therefore, just as with the dipole-dipole term, parameters
are introduced to give the dipole-quadrupole dispersion model
energy,

Udispersion = −
Ci

8Cj
8

r8
. (A12)

2. Quadrupole-quadrupole dispersion

At the risk of repetition, the quadrupole-quadrupole
derivation follows almost exactly the formulation above. The
Schrodinger equation now reads
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−Udipole−quadrupole

)
Ψ = 0. (A13)

In this case, we have two linear Drude oscillator quadrupoles,
interacting with each other. The energy of the interaction is
given by

Uquadrupole−quadrupole = ∇∇∇∇Uchg−chg = −
6ΘiΘj

r5
. (A14)

Combining Eqs. (A13) and (A14) yields
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(A15)
The transformation of variables is identical to the dipole-
quadrupole case
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√

2
, λ2 =
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2
, (A16)

which gives
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where

k1 = k +
6Q2zizj

r5
, k2 = k −

6Q2zizj

r5
. (A18)

Equation (A17) again gives us the independent harmonic
oscillator problem with the solution

E(r) =
1
2
~(ω1 + ω2), (A19)

where
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(A20)

Applying the binomial expansion as before, the total energy
becomes

E(r) = ~ω0 −
36Q4z2

i z2
j ~ω0

8r10k2
+ · · · . (A21)

Subtracting the energy of infinitely separated atoms gives
the quadrupole-quadrupole term of the dispersion potential
energy

E(r) = −
36Q4z2

i z2
j ~ω0

8k2r10
+ · · · . (A22)

Again, the spring constants, k, and frequencies, ω, are place-
holders specific to this quadrupole-quadrupole interaction. To
generalize, parameters are introduced to give

Udispersion
(quadrupole−quadrupole) = −

Ci
10Cj

10

r10
, (A23)

the quadrupole-quadrupole dispersion energy.
As is apparent from the above sequence of derivations,

this pattern of even power dispersion coefficients continues
indefinitely for as many higher-order multipole moments as
one wishes to include. (We should note that at 1/r10 terms and
higher, multiple multipole interactions start to be included in
terms. The 1/r10 term, for example, involves a dipole-octopole
component as well as quadrupole-quadrupole.) This pattern
allows us to extrapolate to the full parameterized dispersion
expansion

Udispersion
ij = −

even∑
k≥6

Ci
kCj

k

rk
. (A24)
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