F4280 Technologie depozice a povrchovych uprav: 7.3.2 Cold Atmospheric Pressure Discharges ka Zajíčková 1 /18 7.3.2 Cold Atmospheric Pressure Discharges Plate-to-plate configuration (a)_ Up to ± 30kV High-voltage pulsed DC or AC or RF Streamers (b) m uiei T i Dielectric barrier ...... Plasma (c) Substrate —i——■:—*:—n—«:——i. K \—^—T\ T > > í I i -t ■< < > > > i :<<<<<<<<< :- :■ < < < < > > > > 9 Plasma jet configuration HE [ uW or RF _f I1! Substrate At low p, the collision frequency is low electron energies remain high compared to ion neutral energies non-equilibrium (cold) plasma. At high p, the collision frequency is high plasma tends to equilibrate temperatures formation of streamers (fast-moving ionization fronts in the form of filaments) - precursors of sparks (hot plasmas) Suppression of sparks using: ► high-frequency AC fields or short-pulsed DC power ► dielectric barriers on AC electrodes ► high gas flow rates ► special electrode shapes with multiple structures ► suitable gas, e.g. He. Tuner Dielectric L. Bärdos, H. Baränkovä, Thin Solid Films F4280 Technologie depozice a povrchových úprav: Filamentary x Homogeneous AP-DBDs ka Zajíčková 2/18 Atmospheric Pressure DBD (AP-DBD; Two forms of dielectric barrier discharges (DBDs) with parallel plate electrodes: ► filamentary ► homogeneous Stabilization of homogeneous DBDs requires suppression of filament formation. Important role of metal foil U.V. -----ľ ----I silicone film ceramics metal mesh 0 0 35 329» ► structure and material of electrodes e.g. M. Kogoma, S. Okazaki, JPD (1994) 27 1985 ► higher frequencies of power supply T. Nozaki et al., Plasma Process. Polym. (2008) 5 300) ► gas mixture (He, Ne, N2, Ar + NH3 etc.): ► homogeneous DBD in He, Ar/NH3 and N2 F. Massines et al. Surf. Coat. Technol. 174-175, 8 (2003); Plasma Phys. Controlled Fusion 47, B577 (2005). ► PECVD in HMDSO/N2 and HMDSO/N2/synthetic air mixtures D. Trunecetal. J. Phys. D: Appl. Phys. 37 (2004) 2112; J. Phys. D: Appl. Phys. 43 (2010) 225403 ► PECVD in Ar/C2H2 M. Elias etal. J. Appl. Phys. 117(10) (2015) 103301 F4280 Technologie depozice a povrchových úprav: Filamentary x Homogeneous AP-DBDs Lenka Zajíčková 3/18 Homogeneous Dielectric Barrier Discharges Two different forms of homogeneous discharges were classified by Massines et al. Both start with Townsend breakdown initiating a Townsend discharge but ► in He, during the current increase, the discharge transits to a glow discharge (ne « 1011) having a cathode fall and a positive column if gas gap is > 2 mm - atmospheric pressure glow discharge (APGD) ► in N2, the ionization level is too low (ne « 108) to allow formation of cathode fall and the glow regime cannot be achieved - atm. pressure Townsend discharge (APTD). Visualisation of a Townsend Avalanche Electric field i Key C Ionisation even! - ionising electron path - Liberated electron path. ■--------- Anode y DC Voltage i Source Original ionization event Cathode 1000 800 - > tu 600 ■§ 400 1 1 1 . . 1 1 1 1 1 Dark Discharge 1 1 1 1 1 11 1 1 1 Glow Discharge, Arc - 1........ i . . i 10 -15 -10 10"iU 10" Current (A) 101 C: avalanche Townsend discharge ► D: self-sustained Townsend discharges ► F: sub-normal glow discharge ► G: normal glow discharge F4280 Technologie depozice a povrchových úprav: Filamentary x Homogeneous AP-DBDs Lenka Zajíčková 4/18 Homogeneous DBD (APGD) in Ar/acetylene filamentary DBD in Ar filamentary DBD in Ar/CH4 homogeneous DBD in Ar/C2H2 (80 /is (one half-period) exposure time) ► difference caused by possibility of Penning ionization of C2H2 in Ar ► Ar 1 s5 metastable -11.55 eV, C2H2 ionization potential 11.40eV butCH4 12.61 eV > > > 0.3 0.1 0.2 t(ms) (a) DBD in pure Ar, (b) DBD in Ar/( (c) APGD in Ar/C2H2 M. Eliáš etal., J. Appl. Phys. 117(10) (2015) 103301 F4280 Technologie depozice a povrchových úprav: Filamentary x Homogeneous AP-DBDs ka Zajíčková 5/18 Why to Use Homogeneous DBD for Deposition? .. to eliminate unwanted surface structures and non-uniformities D. Trunec, Z. Navrátil, P. Sťaheletal. J. Phys. D: Appl. Phys. 37(2004)2112: deposition in APTD (HMDSO/N2) and in filamentary discharge 0 u,rti 0 |_im H. Caquineauet. all Phys. D:Appl. Phys. 42(2009) 125201: Local increased of the deposition rate, "deposition spots", due to non-uniform power dissipation in micro-filaments. a deposition 2 deposition areas F4280 Technologie depozice a povrchových úprav: Filamentary x Homogeneous AP-DBDs Lenka Zajíčková 6/18 Why to Use Homogeneous DBD for Deposition? modification of temperature sensitive and porous polymer nanofibers Interesting novel material, polymer nanofibers, can be prepared by electrospinning but it requires further modification of surface properties (as usually with polymers) Classical nozzle electrospinning: Taylor «Ad ?.\v.nnh y Up Cunvcttivc flow -tiniriLtry rf-cünt k-tgoYLrriLd I by (he «L*C-frf iurÍBMlwitofi 1 tO.*lříEPM[aN£ fřfUliiOíi ! iLini- if Ir.irisiliftn hriivii.'ii liquid and sol id i iLQW *ÍCELEfl*TIOřr RflPIDflCCELEPATION target Nozzle-less electrospinning by Nanospider™ from ELMARCO: Substrate A Fibers I Rotating cylinder^™ ^^^^ Tank with polymer solution a) polycaprolactone electrospun nanofibers b) coated by plasma polymerization in homogeneous DBD F4280 Technologie depozice a povrchovych uprav: Film Uniformity? Gas Dynamics Modelling ka Zajíčková roblem of Film Uniformity Amospheric-pressure plasmas are characterized by high collision frequencies of particles (several orders of magnitude higher compared to low pressure) =>- Delivery of active species to the substrate is much more advection than diffusion-driven (opposed to low-pressure). High electron-neutral collision frequency =>- fast monomer conversion Basic gas delivery set-ups Gas flow Gas flo* Gas flow i—^![I^^Q^[p[g aSĚÍ3 J. * 4 <|r T T V T are modified for optimization of flow patterns by gas dynamics simulations P. Cools et ai, Plasma Process. Polym. H. Caquineau et al. J. Phys. D: Appl. 2015, 12, 1153-1163 Phys. 42(2009) 125201 IFigures Schematic representation of the four different in let set-ups: a) Sideway inlet, b) ring inlet c) porous glass inlet, and d) microplasma-electrode. gas i: i Iii. hü i grounded 4 «Kodes ■.i ili.Ir.IV: F4280 Technologie depozice a povrchovych uprav: Film Uniformity? Gas Dynamics Modelling as Dynamics Simulations in Our Set-up ka Zajíčková Solving the Navier-Stokes equations (laminar flow) in full 3D geometry for pure Ar (results are shown for 1550 seem): Surface: Velocity magnitude (m/s) Arrow Surface: Velocity field 0.03 0.025 „ 0.02 - 0.015 m ro 0.01 c P 0.005 o ° 0 N -0.005 -0.01 -0.015 ▲ 2.49 2 1.5 1 0.5 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 "0 y-coordinate [m] y o Surface: Velocity magnitude (m/s) Arrow Surface: Velocity field ▲ 2.49 -0.015 -0 04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04"0 x-coordinate [m] ▼ 0 =>- Complex flow patterns inside the buffer chamber make the flow through the slit relatively even but better designs of the buffer chamber can be found! F4280 Technologie depozice a povrchovych uprav: Film Uniformity? Gas Dynamics Modelling ka Zajíčková Variations of four different geometries tested gas inlet plastic tube buffer chamber exit slit bottom ceramics [electrode underneath) HJfJfJcr electrodes V 0.02 -0.05 0,02 0.02 -0.05 xyJ L. Zajíčková et al. Plasma Physics and Controlled Fusion 59(3) (2017) 034003 F4280 Technologie depozice a povrchových úprav: Film Uniformity? Gas Dynamics Modelling Lenka Zajíčková 10/18 Variations of four different geometries tested Velocity magnitude [m/s] and direction Velocity magnitude [m/s] and direction ■ s\\ \ \ \ \ \ s ■ ---/ / / / y / ■---' s / / / / / . / , ' s / / / / S l ' s s ////// I '////// / / / / / / / mm i í f f f í * f í í !/!/// S / s r------. / / / / / s s s ^ ^Z. /////,-.-.--_-_--_ 11 \ \ \ \ \ \ \ !!(!!!! » s. ■ •. v N S N N \ S X \ \ \ \ \ \ í i i WS1 - 2 0 x-coordinate [cm] 1.4 1.2 1 0.8 0.6 0.4 0.2 y 1 0.8 0.6 0.4 0.2 x-coordinate [cm] Velocity magnitude [m/s] and direction Velocity magnitude [m/s] and direction o u : \ \ \ . \ \ \ V \ \ V \ \ s \ \ v. V \ S N \ v. s, s. I s \ \ S \ N N X \ \ V V V V \ ' / / / / / / S S S / / / / I s s////// t j s / s / / / / / / 11 ' í í í í Íí í í í Í ž í í í í í í U ÍÍ ! / ?///// S S S\ ■! ' ' .-' .-- .-- .■- . - ---„ _ ■-. ■-. '•,---- — ■ N \ ^. --- . s •-. x x x -» — ■ \ \\\\\\\\\\" - 2 0 x-coordinate [cm] \ 1.4 1.2 1 0.8 0.6 0.4 0.2 0 u 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 x-coordinate [cm] F4280 Technologie depozice a povrchovych uprav: Film Uniformity? Gas Dynamics Modelling Lenka Zajíčková 11/18 Does It Work in Real Life? (case study for DBD co-polymerization of MA and C2H2 in Ar, no electrode movement) igas inlet plastic tube buffer chamber exit slit bottom ceramics _nr [electrode underneath) COppcl electrodes xyJ Interference colours are measured by imaging spectroscopy refractometry fitting of optical data provides spatially resolved film thickness f I B 0 mm 5 10 15 20 25 215 nm 200 180 160 140 120 100 F4280 Technologie depozice a povrchových úprav: Atmospheric Pressure Plasma Jets ka Zajíčková 12/18 Atmospheric Pressure Plasma Jets ► operating in local thermal equilibrium (LTE) Te ~ Tn, ne > 1015 cm-3 - transferred arc (torch), plasmatron ► translational plasmas (non-LTE but with a significant heating of the background gas 7"n ~ several thousand Kelvin - gliding arc, expanding sparks, non-transferred arc ► non-LTE "cold" plasma jets Te > Tn, Tn = 300 - 1000K, ne < 1013 cm"3 Geometry 1 Gas CM Tube I Tube I Geometry 2 Geometry 3 Geometry 4 Geometry 7 Ti ha Gas Geometry 5 G.ir, Tube bo 2 J Gas Geometry 6 Ar Electrode 1 Electrode 2 Plasma Region (3 t Gas flow B3I (^) High Voltage Source (^^^ Microwave generator Q High Current Sou | | Insulator or metal J Insulator Microwave resonator AY* J. Winter at al. Plasma Sources Sei. Technol. 24 (2015) 064001 F4280 Technologie depozice a povrchových úprav: Translational Plasma Jets Lenka Zajíčková 13/18 A. Fridman, Plasma Chemistry, Cambridge University Press 2008 Gas Output v Non-Equilibrium r State Gas Inlet Equilibrium State Breakdown The glide arc can be operated in the transitional regime (combines the benefits of both equilibrium and non-equilibrium discharges): ► the discharge starts thermal ► becomes non-thermal during the space-time evolution SurfaceTreat f = 50 Hz max. P = 500 W, max. U= 10kV typical operation conditions: 500 W, 10kV, (dry) air 11.8 slm F4280 Technologie depozice a povrchových úprav: Translational Plasma Jets Len ka Zajíčková 14/18 PlasmaTreat Jet Jet Principle Working gas Working gas flow rate [slm] Additive Power [W] Frequency Treated area 0 [mm] Plasmatreat rotating plasma jet (PT) Electrical arc Dry air 30 — 1000 21 kHz 33 AFS Plasmajet® (AFS) Electrical arc Dry air 5-10 — 200-500 16-31 kHz 8 SurfaceTreat gliding arc (GA) Electrical arc Dry air 11.8 Ar 550 50 Hz 27-36 RF plasma slit jet (RF) CCP/ICP Ar 50-100 N2 300-600 13.56 MHz 150-300 Working gas PlasmaTreat Jets in general: non-transferred arc (DE10223865 A1, US2002179575, DE102008058783 A1), 1-100 kHz, airflow, plasma cleaning, activation, deposition F4280 Technologie depozice a povrchových úprav: Translational Plasma Jets ka Zajíčková 15/18 Jet Principle Working gas Working gas flow rate [slm] Additive Power [W] Frequency Treated area 0 [mm] Plasmatreat rotating plasma jet (PT) Electrical arc Dry air 30 — 1000 21 kHz 33 AFS Plasmajet® (AFS) Electrical arc Dry air 5-10 200-500 16-31 kHz 8 SurfaceTreat gliding arc (GA) Electrical arc Dry air 11.8 Ar 550 50 Hz 27-36 RF plasma slit jet (RF) CCP/ICP Ar 50-100 N2 300-600 13.56 MHz 150-300 Turned to be not suitable for modification of polypropylene (too hot). F4280 Technologie depozice a povrchových úprav: Translational Plasma Jets ka Zajíčková 16/18 urfaceTreat Jet Jet Principle Working gas Working gas flow rate [slm] Additive Power [W] Frequency Treated area 0 [mm] Plasmatreat rotating plasma jet (PT) Electrical arc Dry air 30 - 1000 21 kHz 33 AFS Plasmajet® (AFS) Electrical arc Dry air 5-10 — 200-500 16-31 kHz 8 SurfaceTreat gliding arc (GA) Electrical arc Dry air 11.8 Ar 550 50 Hz 27-36 RF plasma slit jet (RF) CCP/ICP Ar 50-100 N2 300-600 13.56 MHz 150-300 F4280 Technologie depozice a povrchových úprav: RF Plasma Jets asma Jets ka Zajíčková 17/1 "Cold" plasmas required for surface modification of thermosensitive materials (bonding, painting, printing) or plasma medicine/agriculture Non-LTE atmospheric pressure plasma jets need to prevent the transition to arc pulsed or high f discharges, a dielectric barrier at one or both the electrodes Earliest cold RF plasma jet Development of cold RF jets in Brno, Masaryk University proposed by Koinuma et al. APL60 (1992) 816 M. Klima et al. Czech Patent PV147698 (1998), US6,525,481 (2003) J. Janca et al. Surf. Coat. Technol. 116-119 (1999) 547 F4280 Technologie depozice a povrchových úprav: RF Plasma Jets ka Zajíčková 18/1! cademic" RF Plasma Slit J et Jet Principle Working gas Working gas flow rate [slm] Additive Power [W] Frequency Treated area 0 [mm] Plasmatreat rotating plasma jet (PT) Electrical arc Dry air 30 — 1000 21 kHz 33 AFS Plasmajeť® (AFS) Electrical arc Dry air 5-10 — 200-500 16-31 kHz 8 SurfaceTreat gliding arc (GA) Electrical arc Dry air 11.8 Ar 550 50 Hz 27-36 RF plasma slit jet (RF) CCP/ICP Ar 50-100 N2 300-600 13.56 MHz 150-300