Categorical Models of Type Theory Exercise Sheet 1

23.02.2022

Exercise I.15

- 1. Given a λ -term s with an occurrence of $\operatorname{App}(\lambda x.t_1, t_2)$, we obtain another term s' with an occurrence of $t_1[t_2/x]$ by replacing $\operatorname{App}(\lambda x.t_1, t_2)$ in s by $t_1[t_2/x]$. In this case we say that $s \beta$ -contracts to s'. We say that $s \beta$ reduces to s' if s' can be obtained from s by finitely many β -contractions and changes of bound variables (α -congruences). We then write $s' \leq_{\beta} s$. A β -conversion is a finite sequence of β -reductions and reversed β -reductions. Two λ -terms s, t are β -congruent if there is a β -conversion from s to t.
 - (a) Show that two λ -terms s, t are β -congruent if and only if $\lambda \beta \vdash s :\equiv t$.
 - (b) Show that two λ -terms s, t are η -congruent (defined accordingly by a finite sequence of (reversed) α -congruences, β -reductions and η -reductions) if and only if $\lambda\beta\eta \vdash s :\equiv t$.
- 2. For a λ -theory $\lambda\beta \subseteq T \subseteq \Lambda^{\mathbb{C}}$, show that $T \vdash \lambda\beta\eta$ if and only if $T \vdash I :\equiv 1$, where $1 = \lambda x \cdot \lambda y \cdot \operatorname{App}(x, y)$ denotes the first Church numeral.
- 3. For $t_1, t_2 \in \Lambda^{\mathbb{C}}$, let $[t_1, t_2] = \lambda z$. App $(App(z, t_1), t_2)$ for a variable $z \notin FV(t_1) \cup FV(t_2)$. For i = 1, 2, let $pr_i = \lambda y$. App $(y, \lambda x_1.\lambda x_2.x_i)$. Show that

$$\lambda \beta \vdash \operatorname{App}(\operatorname{pr}_i, [t_1, t_2]) :\equiv t_i$$

for i = 0, 1 (Pair-Elimination). Vice versa, one can show that it is not true that $\lambda\beta \vdash t :\equiv [\operatorname{App}(\operatorname{pr}_1, t), \operatorname{App}(\operatorname{pr}_2, t)]$ for all $t \in \Lambda^{\mathbb{C}}$ (Pair Uniqueness). This is in Barendregt's Book, Exercise 5.4.4, and more involved. That means, not every λ -term is (provably) a pair of terms.

Exercise I.16 For $s \in \Lambda^{\mathbb{C}}$, a finite set $X = \{x_1, \ldots, x_n\}$ of variables, and a finite set $\{t_1, \ldots, t_n\}$ of λ -terms, define the *simultaneous substitution* of $(t_i | i \leq n)$ in s for $(x_i | i \leq n)$ recursively as follows.

- 1. $x_j[t_i/x_i]_{i \le n} = t_j$ for all $j \le n$.
- 2. $a[t_i/x_i]_{i \leq n} = a$ for all $a \in \mathbb{C} \cup (\operatorname{Var} \setminus X)$.

- 3. $(\lambda x.s)[t_i/x_i]_{i \le n} = \lambda x_j . s[\overrightarrow{t}/\overrightarrow{x}]_{i \le n, i \ne j}$ for $j \le n$.
- 4. $(\lambda x.s)[t_i/x_i]_{i\leq n} = \lambda y.s[t_i/x_i]_{i\leq n}$ if $y \in \operatorname{Var} \setminus (X \cup \bigcup_{i\leq n} \operatorname{FV}(t_i))$ or $X \cap \operatorname{FV}(s) = \emptyset$.
- 5. $(\lambda x.s)[t_i/x_i]_{i \leq n} = \lambda z.s[z/y][t_i/x_i]_{i \leq n}$ if $y \in \bigcup_{i \leq n} FV(t_i) \setminus X$ and $X \cap FV(s) = \emptyset$, for $z \in Var \setminus (X \cup FV(s) \cup \bigcup_{i < n} FV(t_i))$ minimal.
- 6. App $(s_1, s_2)[t_i/x_i]_{i \le n} = App(s_1[t_i/x_i]_{i \le n}, s_2[t_i/x_i]_{i \le n}).$

Show the Substitution Lemma, i.e. for all λ -terms s_i, t_i^j for $i = 1, 2, j \leq n$, and for all pairwise distinct variables x_1, \ldots, x_n , show that if $\lambda \beta \vdash s_1 :\equiv s_2$ and $\lambda \beta :\equiv t_1^j :\equiv t_2^j$ for all $j \leq n$, then $\lambda \beta \vdash s_1[t_i/x_i]_{i \leq n} :\equiv s_2[t_i/x_i]_{i \leq n}$.

Exercise II.3

1. Let (C, \bullet) be an applicative structure and $\llbracket \cdot \rrbracket : \operatorname{Val}(C) \times \Lambda^{\mathbb{C}} \to C$ be a function which satisfies Conditions 1,2 and 4 from the definition of a λ -model (Definition II.1). The triple $(C, \bullet, \llbracket \cdot \rrbracket)$ is said to satisfy *Berry's Extensionality Property* if for all $s, t \in \Lambda^{\mathbb{C}}$, all $x, y \in \operatorname{Var}$, and all $\rho, \sigma \in \operatorname{Val}(C)$, the following implication holds.

$$(\forall c \in C : \llbracket \lambda x.s \rrbracket_{\rho} \bullet c = \llbracket \lambda x.t \rrbracket_{\sigma} \bullet c) \Rightarrow \llbracket \lambda x.s \rrbracket_{\rho} = \llbracket \lambda x.t \rrbracket_{\sigma}$$

Show that the conjunction of Conditions 3,5 and 6 is equivalent to Berry's Extensionality Property.

2. Let $(C, \bullet, \llbracket \cdot \rrbracket)$ be a λ -model. Then for all $s, t \in \Lambda^{\mathbb{C}}$, $x \in \text{Var}$, $\rho \in \text{Val}(C)$, we have

(a) $[\![s[t/x]]\!]_{\rho} = [\![s]\!]_{\rho[[\![t]\!]_{\rho}/x]},$

(b) $[\![App(\lambda x.s, t)]\!]_{\rho} = [\![s[t/x]]\!]_{\rho}.$