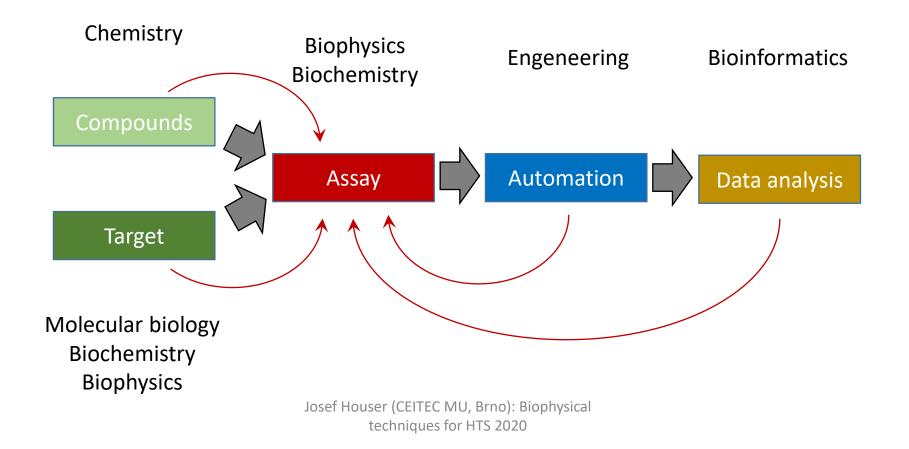
Biophysical techniques for HTS

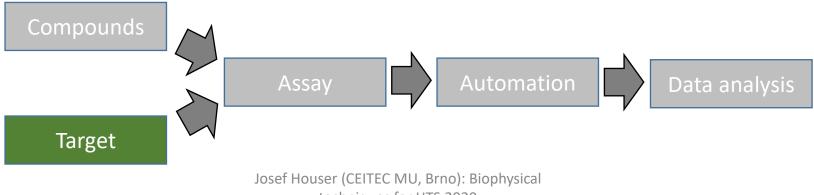
InnoCore IO2.4 HTS for Drug Discovery

Josef Houser houser@mail.muni.cz

Outline

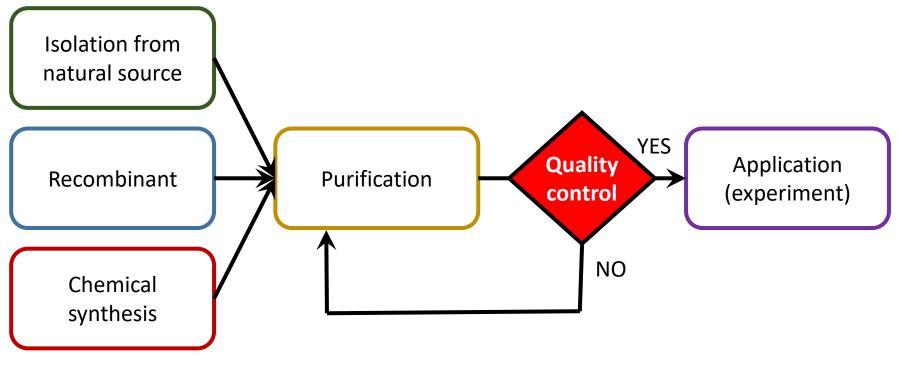

Characterization of target molecule

➢ Basics of target-compound interactions


>Overview of biophysical techniques

HTS scheme

If you want to develop HTS process, you need to know as much as possible about given parts.


Target (biomacromolecule)

techniques for HTS 2020

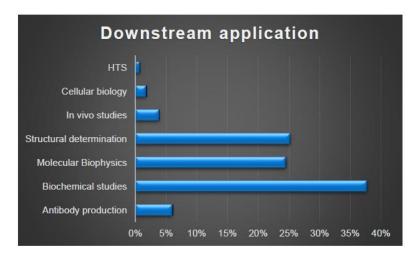
Target molecule

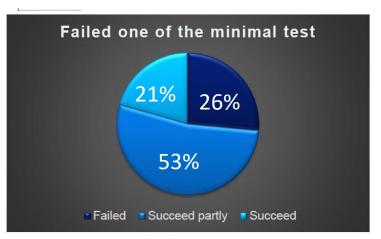
Typically protein, eventually nucleic acid

Minimal requirements for macromolecule

- Identity
 - Sequence, length (truncation), modifications, cofactors
- Purity
 - Contaminants proteins, NA, polysaccharides, small molecules
- Concentration
 - Molar (mol.l⁻¹ = M), mass (mg.ml⁻¹), concentration of active form!

Homogeneity


- Oligomeric state, aggregation
- Stability folding
 - Presence of 2D structure, stability in time, heating/ionic strength


Poor sample = Poor data

Results of the combined ARBRE / P4EU survey:

- 186 samples from 47 laboratories tested for quality
- 30% failed at least one test
- All used for some downstream application

Adapted from Arthur Sedivy, VBCF, Vienna

Experimental techniques to characterize the macromolecule

- Identity
 - Mass spectrometry (MS), (Immunoblotting)
- Purity
 - SDS-PAGE, MS, UV-VIS spectrometry

Concentration

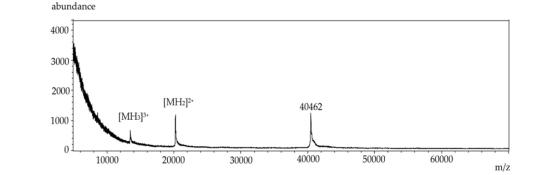
- UV-VIS spectrometry (Trp absorbance, Bradford, Folin, peptide bond)
- Homogeneity
 - DLS, GPC (SEC), SEC-MALS, AUC
- Stability folding
 - TSA (DSF), nanoDSF, DSC, CD, IR

Identity Be sure what you work with

Sample identity

- Exact composition of sample (sequence, modifications, cleavage)
- Influence on MW, pl, interactions

Signal peptide MQFLTSLAAAASLVSLASARISGIALPQTVKAGDNINAIVVTEGYIQSVQDIAIAFGCAPAA SAYPGTLSTLLGSFYLGPEQCNVQNNITEPITIPESLVPGEYVIAASLFSLYGASSSPTVSN MVTVNVGNETSTTYYRSQFCVGNSNSTVGLGGYTRKINALSGTVAD Intein Methylation Methylation


Sample identity – MS

- Detecting of exact mass of particles
- Various applications based on set-up

Identification

Intact mass analysis

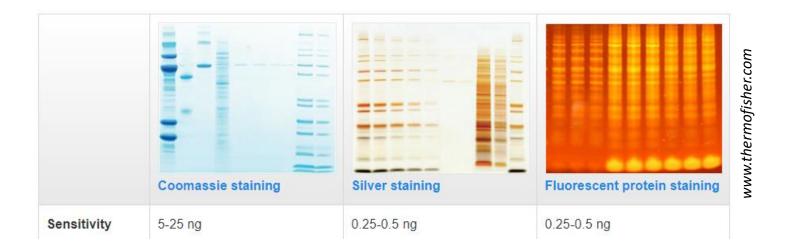
1	MKKESINTSG	PDNTK SSISD	EIEISNEISW	TALSGVISAA	NNADGR LEVF
51	GVGTNNAVWH	NWQTVPNTGS	SWSGWHSLNE	GATSK PAVHI	NSDGRLEVFV
101	RGTDNALWHN	WQTVPGAGWS	GWQSLGGQIT	SNPVVYINSD	GRLEVFARGA
151	DNALWHIWQT	APHAGPWSNW	QSLNGVLTSD	PTVYVNASGR	PEVFARSNDY
201	SLWYIKQTAS	HTYPWTNWQS	LSGVITSNPV	VISNSDGRLE	VFAR GSDNAL
251	WHIWQVAPNA	GWTNWRSLSG	IITSDPAVHI	NADGRLEVFA	RGPDNALWHI
301	WQTATSDAWS	EWTSLSGVIT	SAPTVAKNSD	GWLEVFARGA	NNALCHIQQT
351	TSSWSTWTSL	GGNLIDASAI	K		

Purity What accompanies your target

Sample purity – methods

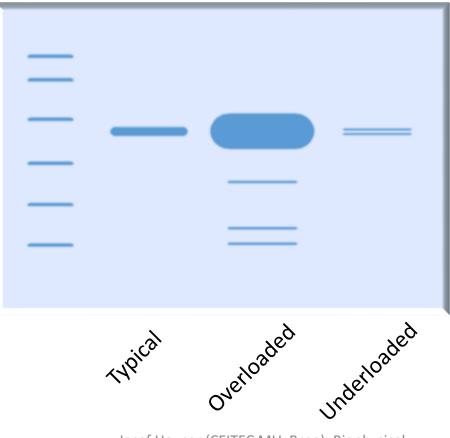
• SDS-PAGE

- UV-VIS spectroscopy
- Mass spectrometry
- SEC (SEC-MALS)
- FFF (FFF-MALS)

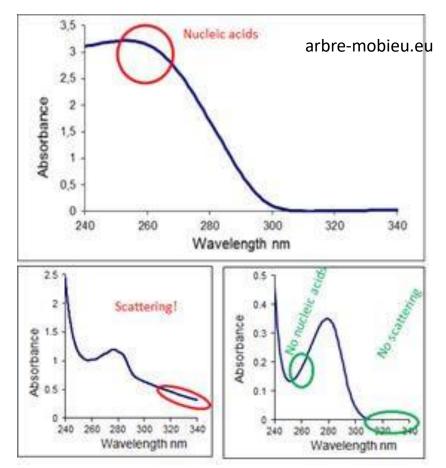

Small molecules: Co-factors Ligands Salts Lipids Saccharides

Macromolecules:

Proteins Protein isoforms Nucleic acids Polysaccharides Binding partners


SDS-PAGE

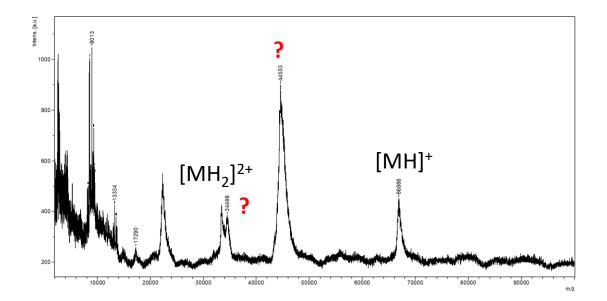
- Polyacrylamide gel (8 20 %)
- SDS uniform (?) protein charge (composition dependent)
- Reducing agent (optional) β ME
- Staining CBB, Silver, Fluorescent, Radiological


SDS-PAGE

• Use overloaded as well as underloaded sample

UV-VIS spectroscopy

- 240 340 nm
 (200 340 nm)
- Determination of protein/NA concentration
- Detection of:
 - Nucleic acid contamination
 - Aggregation
 - UV-absorbing contaminants



arbre-mobieu.eu

Mass spectrometry

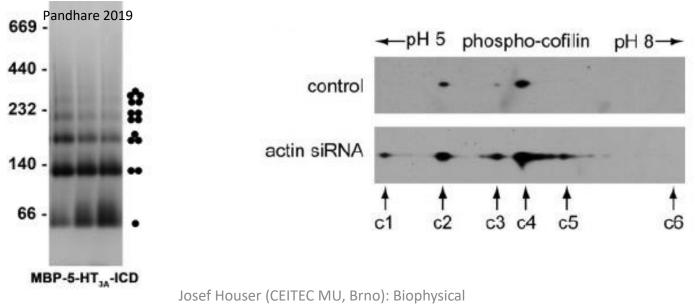
Intact mass analysis –

protein and non-protein contaminants

Homogeneity Are all target molecules identical

Sample homogeneity

- Macroscopic precipitation visual detection
- Microscopic oligomeric states, folding states, microheterogeneity – biophysical methods

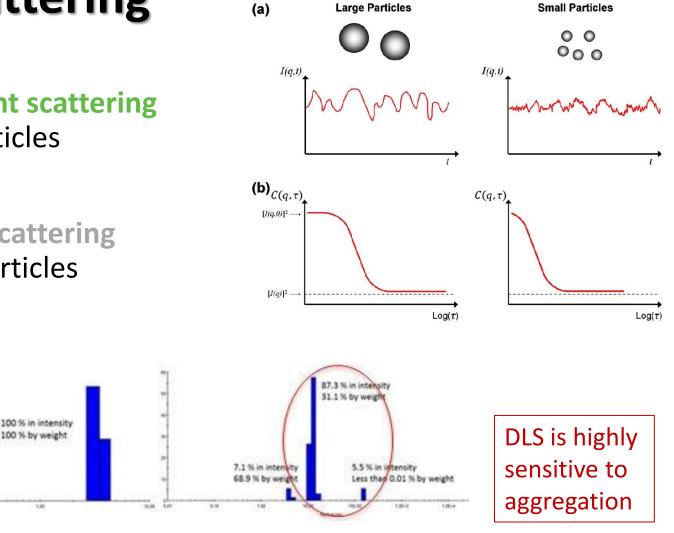

Macroscopic

Heterogeneity

Microscopic

Native electrophoresis

- Possibility to observe various oligomers (relatively imprecise and unreliable) and isoforms (2D PAGE preferred)
- Not efficient for aggregation detection

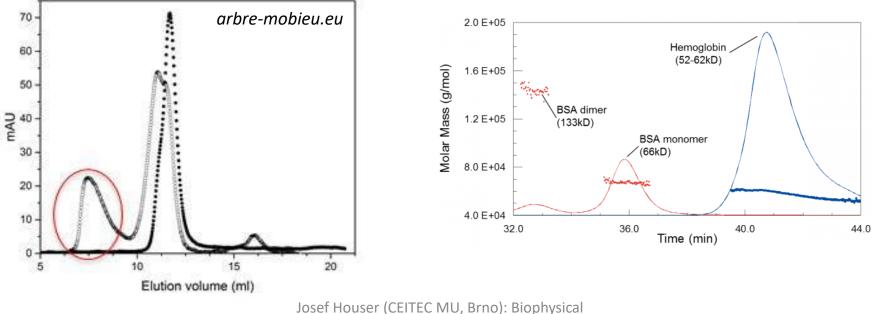

techniques for HTS 2020

Light scattering

- Dynamic light scattering

 size of particles
- Static light scattering

 mass of particles


arbre-mobieu.eu

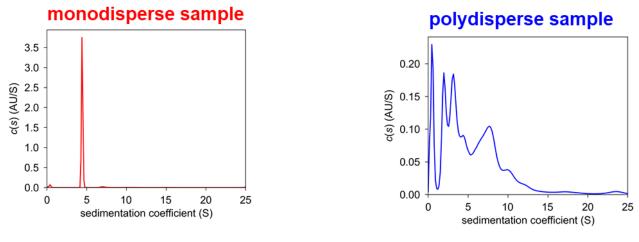
6.10

fature:

Size exclusion chromatography

- Separation of particles based on "size"
- Interaction with matrix possible (!)
- Frequently coupled to multiple detectors (UV, MALS, RI, viscosity)

techniques for HTS 2020


Field flow fractionation

• Separation of particles in solution by external force field

Analytical ultracentrifuge

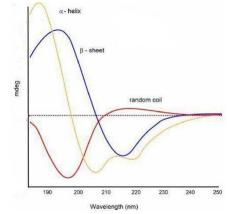
- Separation of particles in centrifugal field by hydrodynamic properties
- Two modes:
 - Sedimentation equilibrium mass determination
 - Sedimentation velocity size distribution
- Sensitive to oligomers and aggregates

Stability – Folding Is the molecule folded and "happy"

Sample stability

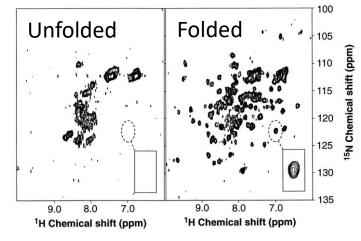
Tendency to retain state (structure) with change of conditions

- Temperature stability
- Chemical stability
 - pH
 - ionic strength
 - oxidizing agents
 - additives
- Long-term stability storage


Buffer choice is important ! Buffer

optimization

Batch-to-batch quality check


Folding – direct evidence of 2D structure

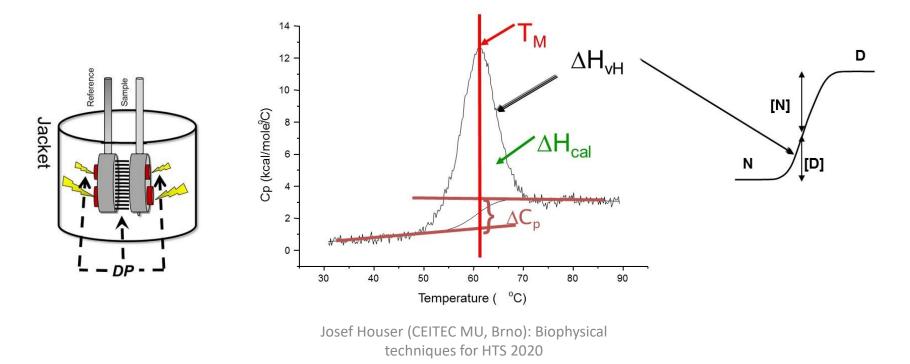
- Circular dichroism (CD)
 - Difference in absorption of left and right circularly polarized light by chiral compounds
 - Specific shape of spectra for 2D structural elements

Dodero 2011

- Nuclear magnetic resonance (NMR)
 - Behavior of atom nuclei in magnetic field
 - Presence of defined structure results in distinguished peaks in spectrum

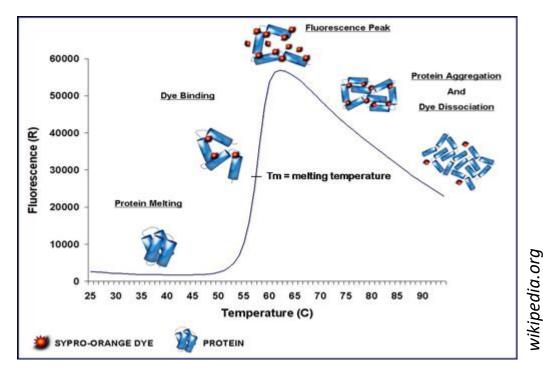
Balbach 1996

Temperature

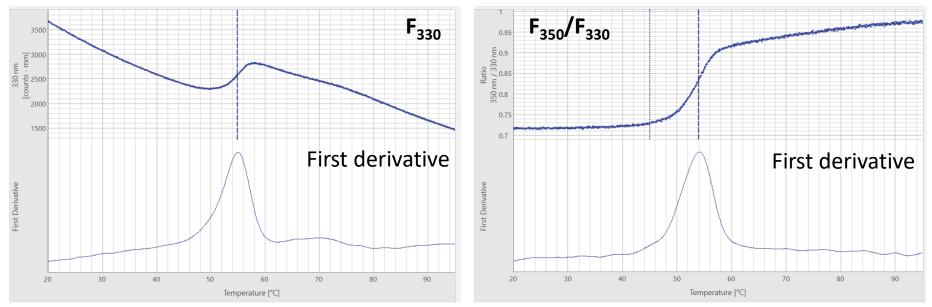

• Affects stability and interaction parameters

$$K_{A} = e^{\frac{RT}{\Delta G_{0}}}$$

- Typical temperatures: -80 °C, -20 °C, 4 °C, 20 °C, 25 °C, 37 °C
- Room temperature (RT) vaguely defined mostly 20 – 25 °C, but varies from 15 – 30 °C usually means that temperature was not set (!)

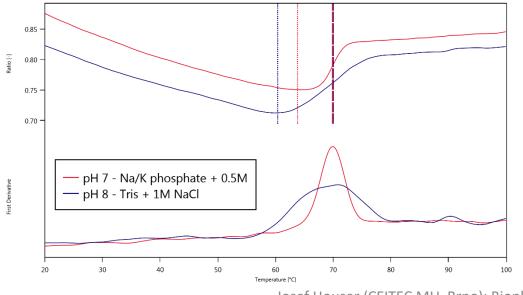

Differential scanning calorimetry (DSC)

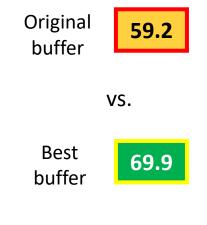
- Measures changes in heat over a range of temperatures
- Direct assignment of protein T_m, ΔH_{cal} , ΔH_{vH} , $\Delta C_p complex$ information


Thermal shift assay (TSA)

- Fluorescent dye binds dominantly to unfolded state.
- Fluorescence increase upon binding
- Measured in RT-PCR machine

Differential scanning fluorimetry (nanoDSF)

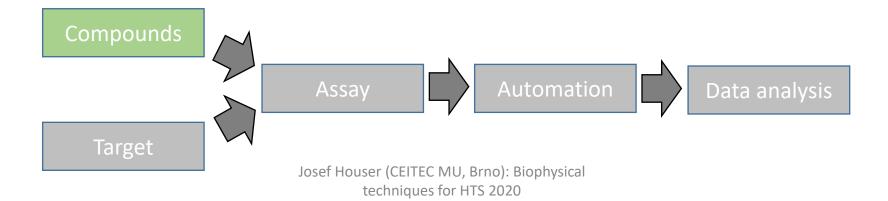

- Observation of changes of intrinsic Trp fluorescence (absolute or wavelength shift).
- Caused by change of microenvironment around Trp residues upon unfolding.
- No dye added minimal interference



Buffer optimization – nano DSF test

	1	2	3	4	5	6	7	8	9	10	11	12
Α	59.2°C	-	43.6°C	37.7°C	55.0°C	61.3°C	59.8°C	62.1°C	55.5°C	59.0°C	33.4°C	33.2°C
В	36.5°C	42.1°C	48.3°C	52.2°C	55.0°C	58.5°C	66.2°C	66.4°C	58.7°C	59.4°C	63.1°C	63.3°C
С	57.2°C	59.2°C	62.7°C	62.1°C	67.0°C	68.1°C	69.9°C	66.5°C	60.2°C	61.8°C	66.5°C	70.0°C
D	60.6°C	58.5°C	69.4°C	63.4°C	46.2°C	55.2°C	58.2°C	54.5°C	59.2°C	59.5°C	-	59.2°C

Buffer screen C7 + C12 condition



> 10°C difference !!!

Sample storage

- Depends on sample stability
- Freezing (phase transition) may decrease protein stability in solution avoid repeated freeze-thaw cycles !
- Fridge: 4 °C
- Freezer: 20 °C, 80 °C (cryo-protectants added – glycerol, ethylene glycol, saccharose, trehalose)
- Lyophilization = Freeze-drying: water sublimation

"Bullets" (ligands, compound library)

Drugs and biomacromolecules

Drug can be anything that **interacts** with biological molecule Note: If it does not, it can be still drug – Placebo effect

Molecule type:

Protein

Nucleic acid

Peptide

Polysaccharide

Small organic molecule

Organo-metallic compound

Inorganic molecule

Solvent

Drug example:

Antibodies

siRNA

Antimicrobial peptides

Hyaluronic acid

Paracetamol

Cisplatin

Lithium carbonate

Ethanol (antidote)

Paracetamol

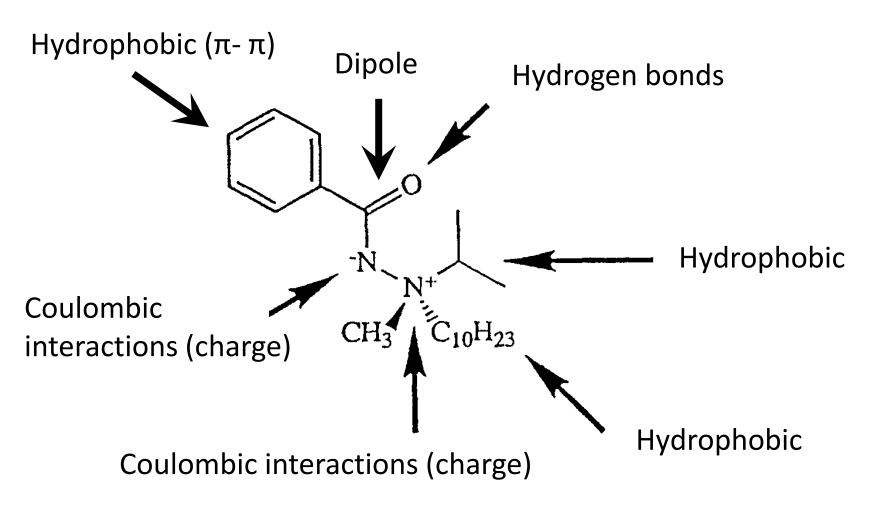
Drugs and biomacromolecules

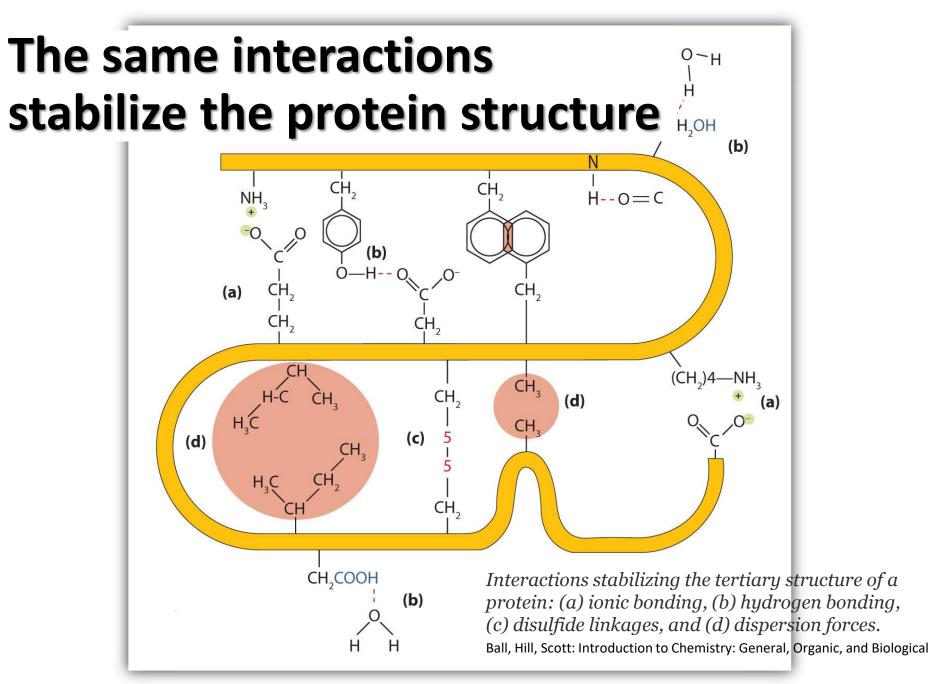
Tested molecules have their own properties and limitations Size: big (proteins, nucleic acids, nanoparticles) small (inorganic and organic molecules) **Solubility**: hydrophobicity (organic compounds) pH-dependency (proteins, metallic compounds) **Temperature stability**: proteins **Purity** of synthesis: polysaccharides, organic molecules

Homogeneity: aggregation (proteins), clustering

Types of interaction

Nuclear physics

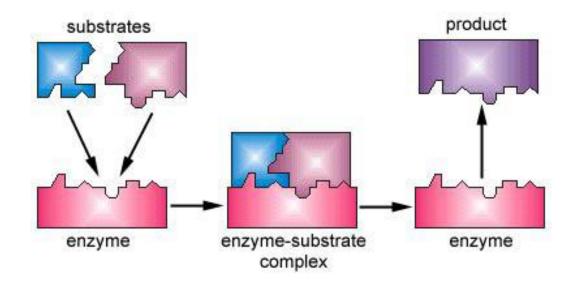

interaction of subatomic particles (nuclear fusion, radioactivity) 10⁶ kJ/mol


• Chemistry (electron ionization) formation of bonds 150-1000 kJ/mol

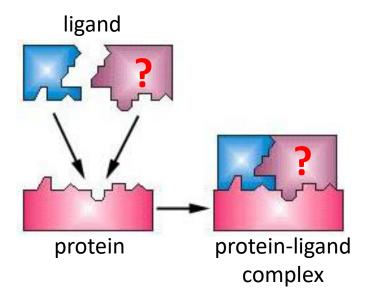
Biochemistry-biology

spectrum of weak interactions (e.g. H-bond 8-30 kJ/mol) coulombic (salt bridge), dipoles, H-bond, hydrophobic

Mostly more than one effect is present



Why to study the interactions


- Understanding of biological processes
 - Does it bind?
 - How strong is the interaction?
 - Is the interaction influenced by temperature/additives?
- Analyzing the nature of intermolecular interaction
 - What type of interaction is present (hydrophobic, H-bonds, salt bridges)?
- Application of the knowledge in science/medicine
 - Disease pattern discovery
 - Drug development
 - Biotechnology

Interaction vs. chemical reaction

Enzyme (Ribozyme)

Interaction vs. chemical reaction

Antibody – Antigen Receptor – Ligand Transporter – Ligand Lectin – Carbohydrate Transcription factor – Nucleic acid

Enzyme-catalyzed reaction

Enzyme Kinetics with Michaelis-Menten Curve | V, [s], Vmax, and Km Relationships PremedHQ Science Academy • 50K views • 4 years ago If you found this lecture to be helpful, please consider telling your classmates and university's pre-health organization about our

Enzyme Kinetics (Biochemistry): An Exclusive YouTube Session by Dr. Smily Pruthi PrepLadder · Premieres 10/22/20, 1:30 PM **Enzyme Kinetics** Watch an exclusive YouTube session by Dr. Smily Pruthi on the topic - Enzyme Kinetics (Bioche For more exclusively PREMIERE New

SET REMINDER

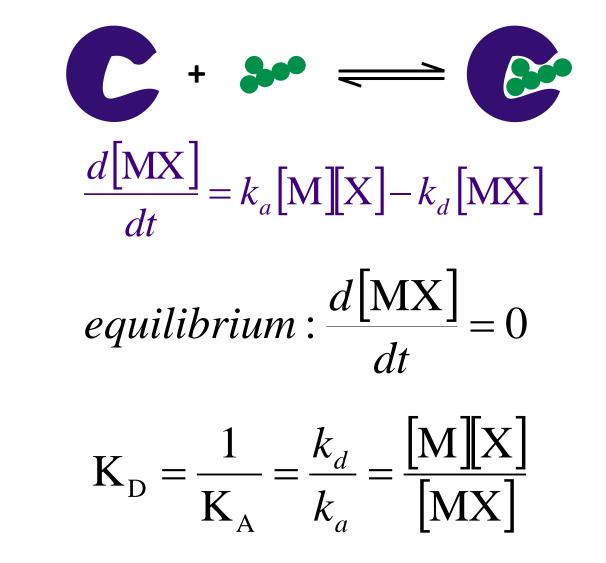
C YouTube

✓ Show more

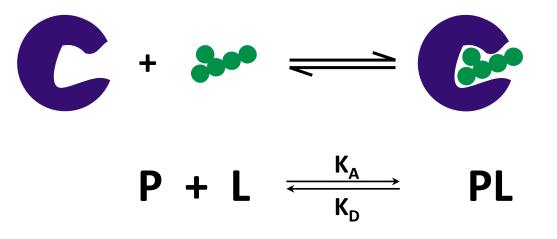
SUBSCRIPTIONS

MORE FROM VOLITURE

YouTube Premium


0 Music

0 Sports


0 Gamino

Θ News

Receptor-ligand interaction – kinetics

Receptor-ligand interaction – thermodynamics

$$\Delta G^{\circ} = -RT \ln K_A = RT \ln K_D$$
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

 $\Delta G < 0$ exergonic $\Delta G > 0$ endergonic $\Delta H < 0$ exothermic $\Delta H > 0$ endothermic

Enthalpy (H)

Changes in the heat

Structure of complex

- •H-bonds
- •Van der Waals

Structure of solvent

• water

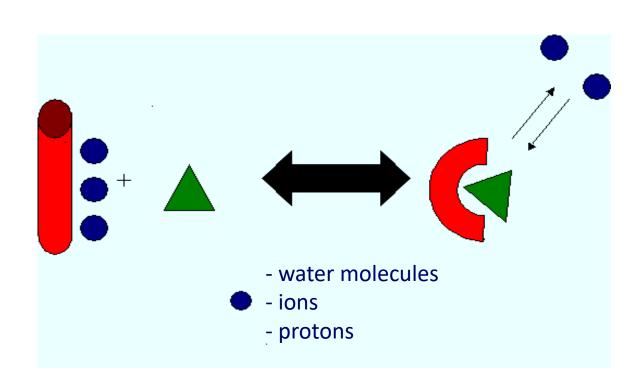
Entropy (S)

Changes in the organization

Independent rotational and translational degrees of freedom

• Complex is more ordered than two free molecules

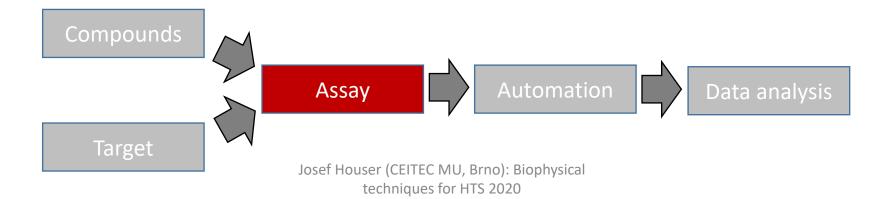
Internal conformational dynamics


• flexible molecules loose the entropy upon binding

Solvent dynamics

• water

Rational drug design – Energetic contributions involved


Entropy

- Hydrophobic interactions
- Water release
- Ion release
- Confromational changes

Enthalpy

- Hydrogen bonds
- Protonation

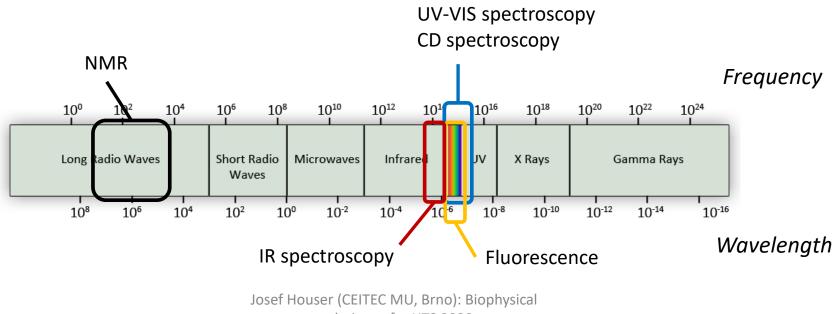
Methods (biophysical)

Two informational levels of methods

Qualitative

Semi-quantitative

Quantitative


Experimental techniques to measure interactions

- Optical
 - Spectroscopy (UV, NMR, CD, IR, Raman,...)
 - Fluorescence (direct, FA, FRET, TRIC,...)
 - Biosensors (SPR, BLI,...)
- Mobility-based
 - Mass spectrometry, chromatography, electrophoresis, equilibrium dialysis, FFF, MST, AUC, FIDA,...

Calorimetrical

- Isothermal (ITC)
- Scanning (DSC)
- Stability-based
 - DSF, DSC, CD,...
- Structure-based
 - X-ray, Cryo-EM
- Electrochemical
 - Amperometry, potentiometry, conductometry, polarography,...

Optical methods

techniques for HTS 2020

Ultraviolet-visible spectroscopy (UV-VIS)

- Changes in light absorption upon ligand binding
- Detectable regions:
 - Peptide bond (220 nm)
 - Aromatic amino acids (230-300 nm)
 - Metal ions, prosthetic groups (visible region)

DOI: <u>10.1039/C5RA13575C</u> (Paper) <u>RSC Adv.</u>, 2015, **5**, 81533-81545

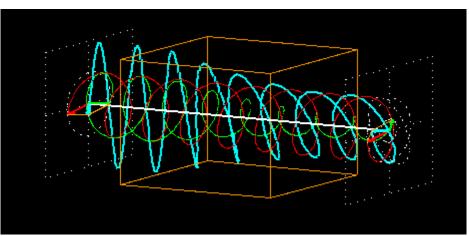
Spectroscopic exploration of drug-protein interaction: a study highlighting the dependence of the magnetic field effect on inter-radical separation distance formed during photoinduced electron transfer

Brotati Chakraborty**, Piyali Mitrab and Samita Basu*b

> J Pharm Sci. 2012 Sep;101(9):3051-61. doi: 10.1002/jps.23188. Epub 2012 May 11.

An application of ultraviolet spectroscopy to study interactions in proteins solutions at high concentrations

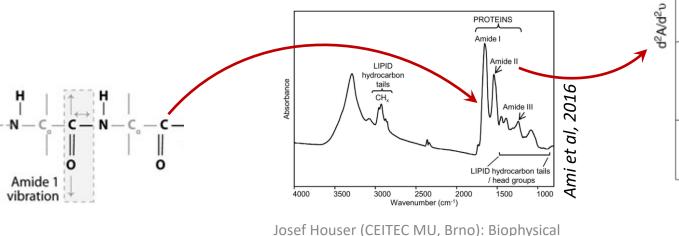
Santosh V Thakkar ¹, Kevin M Allegre, Sangeeta B Joshi, David B Volkin, C Russell Middaugh


Affiliations + expand PMID: 22581726 DOI: 10.1002/jps.23188

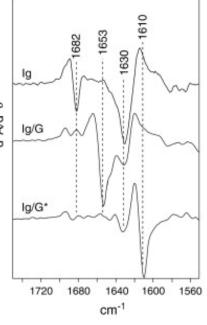
Circular dichroism spectroscopy (CD)

- **Circular dichroism** difference in absorption of left and right circularly polarized light by chiral compounds
- Binding can cause or affect CD of interacting partners
- Protein or NA may change 2D structure upon ligand binding

Circular
dichroism
$$CD = \Delta A = A_L - A_R$$
 $\Delta \varepsilon = \varepsilon_L - \varepsilon_R = \frac{A_L - A_R}{c l}$ 3298. $\Delta \varepsilon = [\theta]$ Molar
elipticity

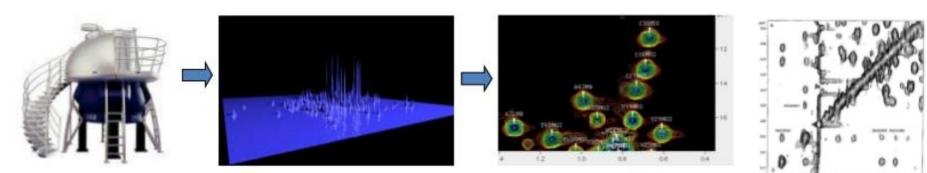


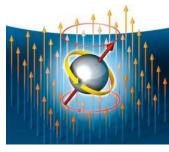
Josef Houser (CEITEC MU, Brno): Biophysical techniques for HTS 2020


cddemo.szialab.org

Fourier-transformed infrared spectroscopy (FTIR)

- Absorption of infrared light by various types of bonds (for protein C=O)
- Sensitive to protein secondary structure
- Applicable for **large interacting partners** (protein-protein, protein-membrane)
 - Usually require one protein to be isotopically labeled
 - On-surface variant: AFT-FTIR (attenuated total reflection FTIR) suitable for large particles


techniques for HTS 2020


Li et al, 2009

Nuclear magnetic resonance (NMR) spectroscopy

- Based on interaction of atom nuclei with external magnetic field
- Ligand binding is detected as change in resonant frequency (chemical shift)
- Proteins are usually isotopically labeled (13C, 15N)
- Suitable especially for smaller molecules (< 50 kDa)

Nuclear magnetic resonance (NMR) spectroscopy

Advantages

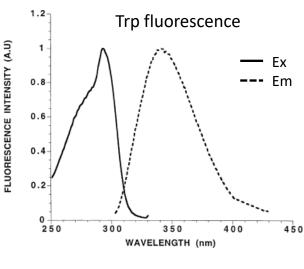
- Sensitive to weak interactions
- Large range of affinities and kinetics
- Detailed view on the process ("atomic resolution")

Disadvantages

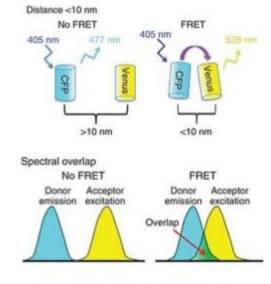
- Concentrated labeled sample needed
- Time consuming (no high throughput)
- Expensive instrumentation (up to 10 mil €)

ceitec.eu

Fluorescence techniques

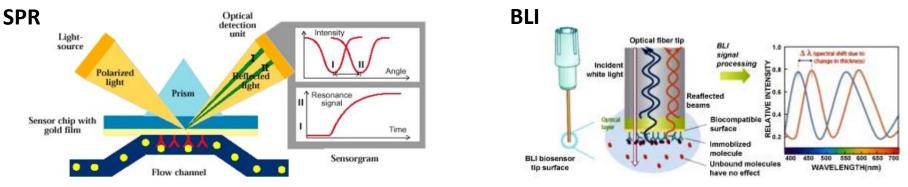

Fluorophores

- Intrinsic Trp, Tyr, (Phe), GFP,...
- Attached dyes FITC, Alexa, DyLight,...


• Features (Techniques)

- Fluorescence intensity
- Wavelength shift excitation, emission
- Fluorescence anisotropy (polarization)
- Fluorescence transfer FRET
- Time resolved fluorescence

More details in the previous lecture by Valentina Adami


Brancaleon et al. 1999

From: Broussard et al. 2013; nature protocols

Optical biosensors

- Various principles:
 - Surface plasmon resonance (SPR)
 - Bio-layer interferometry (BLI)
- Detection of molecular interaction on a chip **surface**
- Require immobilization of one interacting partner
- Affinity, kinetics, inhibition

Wallner et al, 2013

Mobility-based methods

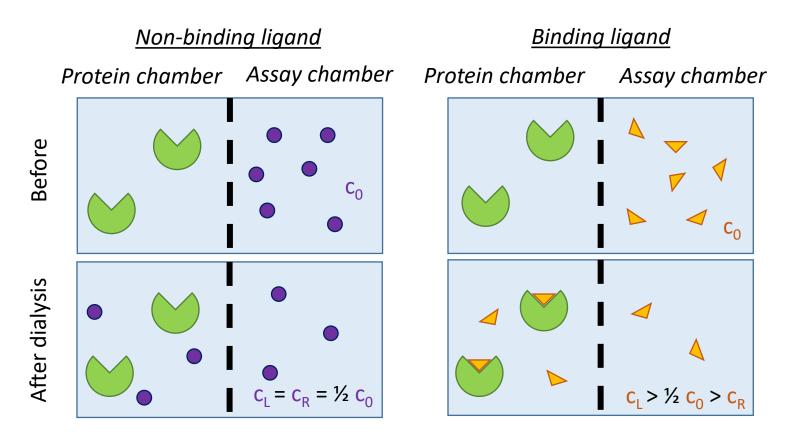
Mass spectrometry (MS)

- Protein complexes can be analyzed by ESI-MS
- Experiment provides directly stoichiometry of binding
- Other information can be obtained: relative affinity, interacting region, structural changes
- Hydrogen-deuterium exchange (HDX-MS) sometimes applied

Review > Methods Mol Biol. 2006;316:179-97. doi: 10.1385/1-59259-964-8:179.

Protein interactions probed with mass spectrometry

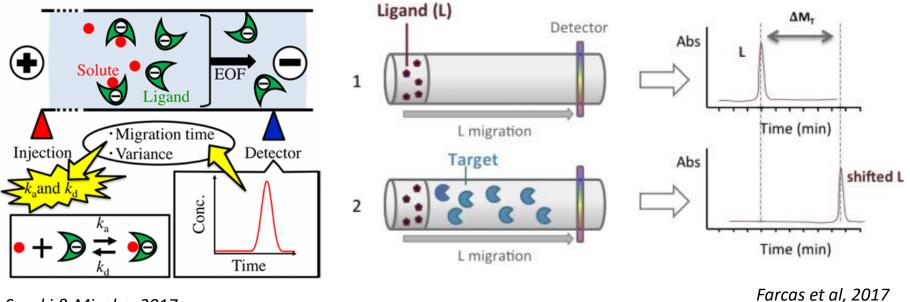
Suma Kaveti ¹, John R Engen


Affiliations + expand PMID: 16671405 DOI: 10.1385/1-59259-964-8:179

B A D C B C D C A A A B D C C MS analysis P P PB PD m/z

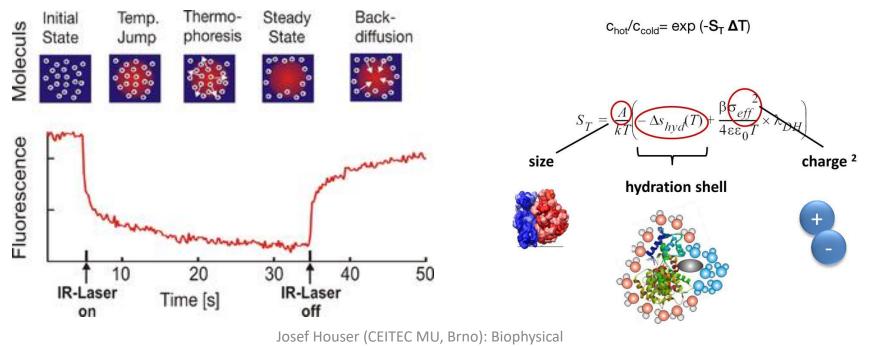
Affinity to ligands: A > C > B >>D

Equilibrium dialysis


- Analysis of change in concentration after dialysis through **semi-permeable membrane**
- Set of experiments leads to affinity and stoichiometry

Thermo scientific

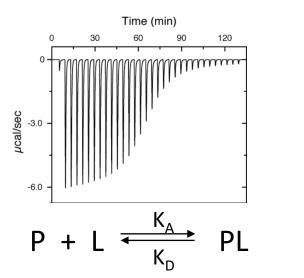
Affinity capillary electrophoresis (ACE)

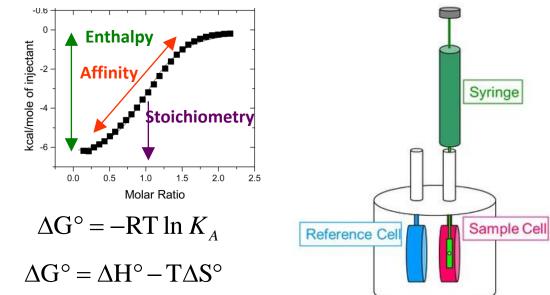

- Electrophoresis in capillary
- Several variants: zone CE, gel CE, isotachophoresis,...
- Change in mobility of target or ligand upon formation of complex

Suzuki & Miyabe, 2017

Micro-scale thermophoresis (MST)

- Motion of molecules in microscopic temperature gradient
- Sensitive to hydration, charge, size detection of ligand binding
- Detection via fluorescence (intrinsic or attached dye)

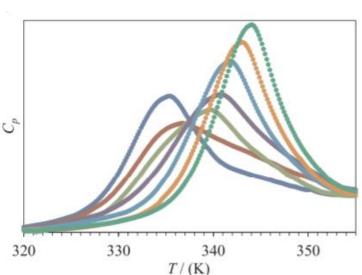


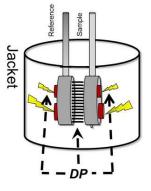

techniques for HTS 2020

Calorimetrical methods

Isothermal titration calorimetry (ITC)

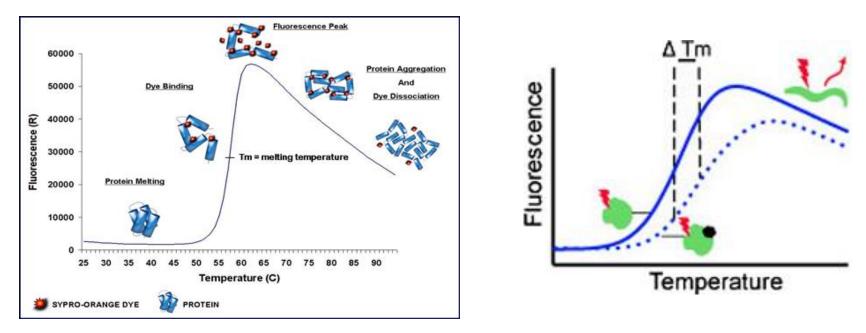
- All processes (including protein-ligand interaction) are associated with heat absorption or release
- ITC detects heat change caused by ligand binding
- Measurement in solution, no labeling
- Determines: affinity (K_D/K_A) , thermodynamics $(\Delta H, \Delta G, \Delta S)$, stoichiometry (n)




Stability-based methods

Differential scanning calorimetry (DSC)

- Measures changes in heat over a range of temperatures
- Interaction with ligand stabilize (mostly) the protein –> higher protein T_m
- Stabilization is given by ligand binding energy can be quantified



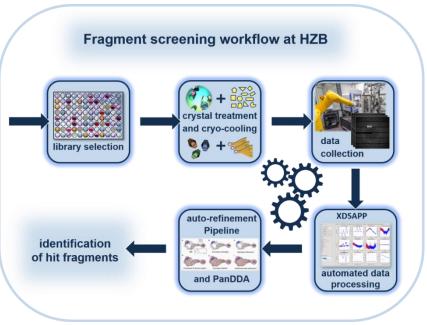
Thermal shift assay (TSA)

- An increase in the **melting temperature** of the target protein in the presence of a test ligand is indicative of a promising ligand–protein interaction.
- High-throughput possibility

Structure based

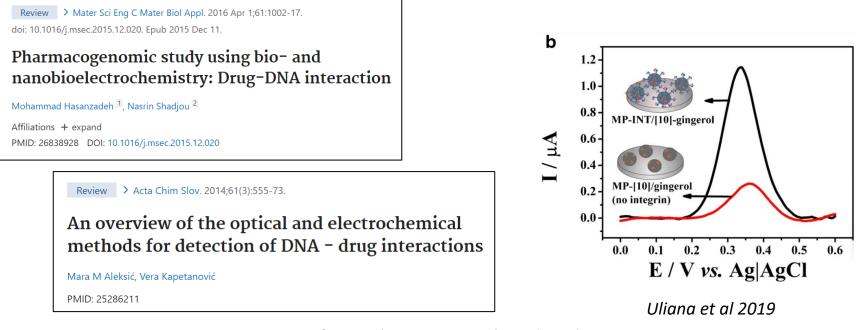
Structure-based techniques

- Atomic-level structure of a complex
- Technically demanding
- Detailed view on the binding



X-ray crystallography

- Currently the only structural technique with high-throughput possibility
- Usually long initial optimization (months)
- Applied for fragment screening


Josef Houser (CEITEC MU, Brno): Biophysical techniques for HTS 2020

www.helmholtz-berlin.de

Other methods

Electrochemical methods

- Individual techniques target different electrochemical features (current, charge potential, conductivity)
- Important for biosensors development

Complex techniques

- Indirect detection of molecular interaction
- Multi-step approaches
- Mainly used for protein-protein interactions
- Examples
 - Yeast two-hybrid
 - Phage display
 - Pull-down assay
 - Co-immunoprecipitation
 - ...

Review > Curr Opin Chem Biol. 1999 Feb;3(1):64-70. doi: 10.1016/s1367-5931(99)80012-x.

Progress and variations in two-hybrid and threehybrid technologies

B L Drees 1

Affiliations + expand PMID: 10021404 DOI: 10.1016/s1367-5931(99)80012-x

Review > Cell Mol Life Sci. 2010 Mar;67(5):749-67. doi: 10.1007/s00018-009-0192-2

Progress in phage display: evolution of the technique and its application

Tomaz Bratkovic ¹

Affiliations + expand PMID: 20196239 DOI: 10.1007/s00018-009-0192-2

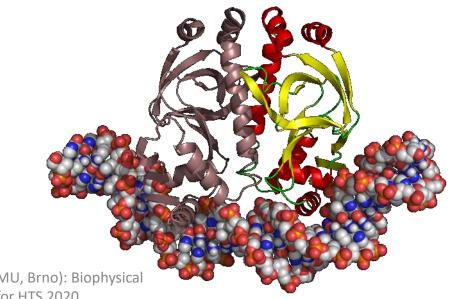
Review > Methods. 2001 Jul;24(3):218-29. doi: 10.1006/meth.2001.1183

The tandem affinity purification (TAP) method: a general procedure of protein complex purification

O Puig ¹, F Caspary, G Rigaut, B Rutz, E Bouveret, E Bragado-Nilsson, M Wilm, B Séraphin

Affiliations + expand PMID: 11403571 DOI: 10.1006/meth.2001.1183

> Methods Mol Biol. 2017;1615:211-219. doi: 10.1007/978-1-4939-7033-9_17.


Protein-Protein Interactions: Co-Immunoprecipitation

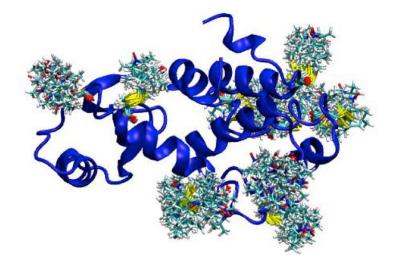
```
Jer-Sheng Lin<sup>1</sup>, Erh-Min Lai<sup>2</sup>
```

Affiliations + expand PMID: 28667615 DOI: 10.1007/978-1-4939-7033-9_17

Protein-Nucleic acid interaction

- DNA-binding proteins constitute 10% of proteincoding genes in eukaryotes
- They interact both in specific (e.g. transcription factor) and non-specific (e.g. histones) way
 = sequence dependent / independent
- Various techniques
 - Similar to protein-ligand
 - Specific

Protein-DNA interaction detection


- Chromatin immunoprecipitation
- DNA electrophoretic mobility shift assay (EMSA)
- DNA pull-down assay
- Reporter assay
- Microplate capture
- DNA footprinting

Selected References for Studying Protein-DNA Interactions:

- 1. Evertts A.G., *et al.* (2010). Modern approaches for investigating epigenetic signaling pathways. *J Appl Physiol.* Jan 28. [Epub ahead of print]
- 2. Georges, A.B., *et al.* (2010). Generic binding sites, deneric DNA-binding domains: Where does specific promoter recognition come from? *FASEB Journal*,**24**: 346-356.
- 3. Griffiths, Anthony J. F., *et al.*, eds (2000). "Genetics and the Organism: Introduction". An Introduction to Genetic Analysis (7th ed.). New York: W. H. Freeman.
- 4. Halford, S.E. and Marko, J. (2004). How do site specific DNA-binding proteins find their target? *Nuc. Acid Research.* **32(10):** 3040-3052.
- 5. Hartl, Daniel L., et al. (1988). Basic Genetics, Boston: Jones and Bartlett Publishers, Inc.
- 6. Kress, C., *et al.* (2010). Epigenetic modifications in 3D: Nuclear organization of the differentiating mammary epithelial cell. *J Mammary Gland Biol Neoplasia*. Feb 10. [Epub ahead of print]

Computational methods

- Molecular docking
- Virtual screening
- Molecular dynamics
- Database search

- ➢ Relatively cheap
- Less accurate
- > Ideally to be combined with experimental approaches

Break