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Motions In proteins & suitable NMR experiments
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Motions in proteins & relaxations

Motion of molecule (overall rotation, internal motions) alternate effects of local interactions
Fluctuation of the magnetic field can cause a return of a spin state to equilibrium = relaxatior
Example: Dipole-dipole interaction and molecular rotation
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Measurement of relaxation
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pPsS-ns motions
Experiments

most common - backbone dynamics -°N enriched sample

, i
R, longitudinal relaxation rate < ‘i
R, transverse relaxation rate (effect of slow motions) ‘g %\
gl M
R; and R, - measurement of relaxation series B I\‘Lf\{\
- exponential decay (peak intensities/volumes) 0 }\%“}““'

0 50 100 150 200
SSNOE - steady state Nuclear Overhauser Effect

. . relaxation time / ms
- measurement 2 spectra: reference and with saturation

(cross-correlated cross-relaxation rates ...)



Experiments
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pPs-ns motions

Interpretation - basic methods

Spectral density mapping Model-Free approach
- fast - includes fits
- robust

- straightforward

- data acquired at single field

- interpretation not obvious

Reduced spectral density mapping

- most common

- requires only Ry, R5, sSSNOE
(assumptions introduced - justified
for backbone *N in proteins)

Model-dependent interpretation ...

- assumption of independency

of different motions
- applicable only to folded proteins
- clear interpretation



pPs-ns motions
Interpretation - spectral density mapping
- spectral density function J(w) - description of probability of finding motion at frequency w
- relaxation rates are linear combination of discrete values J(w) at specific frequencies
- spectral desnsity mapping: linear combination of relaxation rates to extract J(w) values
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pPsS-ns motions

Interpretation - Spectral density mapping
- data clustering
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J(wy) / ns rad

Interpretation
- qualitative evaluation
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pPsS-ns motions
Interpretation - Model Free

- Assumption of statistically independent motional modes = assumption on the form
of the spectral density function, but not the type of motion

- Typically - slow overall tumbling of protein in solution + fast internal motion

- Extended Model-free - several internal independent motions

- Fitted parameters: R
Each motion is characterized by its timescale and order parameter S?
S? measures restrains of the motional mode: S? = 0 unrestrained motion
S? = 1 rigidity
(additional parameter - separation of contribution of us-ms motion to R,)

- Global motion - common to all residues in the molecule
- Iterative optimization of global and internal motions



Interpretation -Model Free
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Extension towards ps motions
Residual dipolar coupling - RDC

requirement - several NMR samples in various media, which causes partial protein
orientation with respect to the external magnetic field (+ spin labeling is required, i.e. >N
for study of protein backbone motions)

partial orientation media: philamentous phade, bicelles, DNA, ...
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HSs-ms motions

- possibility to study low populated states of proteins (few percent)
- important relation between timescale of exchange and difference between the chemical
shifts of interexchanging states - effect on NMR spectrum:

Case 1: no exchange (two peaks detected, no broadening)

kex= 0
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HSs-ms motions

- possibility to study low populated states of proteins (few percent)
- important relation between timescale of exchange and difference between the chemical
shifts of interexchanging states - effect on NMR spectrum:

Case 2: slow exchange (two peaks detected, broadening)

Kex < |Qa — Q| = Rex(kex,Qa,Qp,pPg)
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HSs-ms motions

- possibility to study low populated states of proteins (few percent)
- important relation between timescale of exchange and difference between the chemical
shifts of interexchanging states - effect on NMR spectrum:

Case 3: fast exchange (single peak detected, broadening)

Kex > |Qa —QB| = Rex(kex,Qa,QB,pPB)
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HSs-ms motions

Relaxation of detected peak depends on:
1) population of states (thermodynamic)
2) exchange rate (kinetics)
3) chemical shifts of exchanging states (structural information), various events
causing change of chemical shift:
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Hs-ms motions

Experiments

- measurement of various relaxation delays (similar to R,)
- modification of rf-irradiation during relaxation delay
- sample °N (*3C,*H) enriched

methods:
CPMG - modification of overall intensity of irradiation composed from separate

refocusing pulses
T,, - modification of intensity (kHz) of continuous irradiation (spin lock) and its

carrier frequency
CEST - very weak continuous irradiation (typically up to 50 Hz), modification

especially its carrier frequency



HSs-ms motions
Experiments

CPMG - decay indicate a dynamics
- fit of data acquired preferentially at multiple magnetic fields
T,, - dynamic indication: difference of rates on-resonance with the observed frequency
- fit of a series of at least two spin lock intensity
CEST - two (multiple) signal intensity decreases detected in the series
- direct reading of chemical shifts of the exchanging states
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us-ms motions
Results

- mapping of dynamical residues
- clustering of residues with same dynamics (population of states and kinetics)
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Invisible states

- determination of chemical shift of excited state (indirect structural information)
- measurement of bond orientation in the excited state by measurement of relaxation

HS-ms motions

dispersion experiments in alignment media
=> possibility to reveal structure of the state whose signals are not visible in

the NMR spectra
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Interactions and very slow kinetics
Real time NMR

- repetition of experiments (1D, 2D) and tracking the changes in spectra
Titration
-mapping changes in spectra of protein (typically ®N-*H HSQC) upon titration with its
ligand, binding partner (drug, inhibitor, cofactor, ...)
- effective confirmation of an interaction
- chemical shift perturbatlon (CSP)- determination of the binding site (if known assignment)
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Interactions and very slow kinetics

Real time NMR

- repetition of experiments (1D, 2D) and tracking the changes in spectra

Titration

-mapping changes in spectra of protein (typically *N-*H HSQC) upon titration with its

ligand, binding partner (drug, inhibitor, cofactor, ...)
- effective confirmation of an interaction
- chemical shift perturbation (CSP)- determination of the binding site (if known aSS|gnment)
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Interactions

Saturation transfer difference (STD) experiment
- popular in pharmaceutical industry - drug design
- determination of binding between a protein and small molecules
- no isotope labeling needed, low protein concentration ~10uM
Two spectra acquired:
- selective irradiation at resonances specific for protein (no ligand signals)
- far off-resonance reference spectra

ligand nonligand

Difference reveals signal of protons of ligand(s)
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Interactions
WaterLOGSY

- determination of binding between a protein and small molecules
- no isotope labeling is needed
- low protein concentration ~10uM

Transfer of strong water signal to protein-ligand signal

Signal detected for small molecules after relesing complex:

Interacting and non-binding molecilas have signals with opposite sign in spectra
- E
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