A UNIFIED SYNTHETIC APPROACH TO POROUS HYBRID SINGLE-SITE METALLOSILICATES

<u>Martin Kejik</u>¹, Zdenek Moravec¹, Lucie Simonikova¹, Ales Styskalik¹, Craig Barnes², Jiri Pinkas¹

¹ Masaryk University, Department of Chemistry, CZ-61137 Brno, Czech Republic; ² University of Tennessee, Department of Chemistry, Knoxville, TN 37996-1600, USA; corresponding author: jpinkas@chemi.muni.cz

ABSTRACT:

A generalized low-temperature non-hydrolytic sol-gel strategy to produce uniformly dispersed metallosilicate sites in highly porous hybrid silicate matrices is reported (Figure 1). The materials can be used either directly as catalysts or as well-defined model systems in the research and development of heterogeneous catalysis. In the procedure, the readily available^{1,2} spherosilicate molecular building block (Me₃Sn)₈Si₈O₂₀ is cross-linked in two steps by irreversible condensation reactions with highvalence d- and p-block chlorides and alkyl-metals in toluene or THF to form statistically connected rigid amorphous networks. Initially, a limited amount of the metal site precursor (e.g., pyridine-AlCl₃,³ Et₃N-AIMe₃, [Me₄N⁺][AICl₄⁻],³ ZnEt₂, SbCl₃, Ph₃SbCl₂, PCl₃, TiCl₄,² VOCl₃,^{1,4}) is introduced to an excess of the building block to achieve full condensation and uniformity. A minimum site separation of ≈1 nm is ensured by the bulky building block. In the second step, a limited amount of a ditopic hybrid linker -CIMe₂SiCH₂CH₂SiMe₂CI or CIMe₂Si(C₆H₄)₂SiMe₂CI - is added to produce extensively cross-linked gels while maximizing the probability of full condensation. The byproducts of the condensations (Me₃SnCl or Me₃SnR) are inert and volatile and they do not interfere with subsequent steps. Removal of all volatiles under vacuum affords pure xerogels. Since a kinetically-driven approach and mild conditions are used, a variety of complex sites can be produced, incorporating organic ligands and sensitive moleties (pyridine-Al(OSi \equiv)₃, Sb(OSi \equiv)₃, Ph₃Sb(OSi \equiv)₂). The prepared xerogels were characterized by IR and MAS NMR spectroscopies, N₂ gas adsorption, gravimetry, STEM/EDS, ICP-OES, and TG/DSC. The fundamental limits of the system and the interplay of parameters, such as site loading, linker flexibility, stoichiometry, and solvent effects, were explored and correlated with structure, condensation, and porosity. Observed precursor reactivity was supported by quantum chemistry DFT calculations on model compounds.

The financial support by GACR Junior 20-03636Y is appreciated. CIISB research infrastructure project LM2018127 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements at the Josef Dadok National NMR Centre.

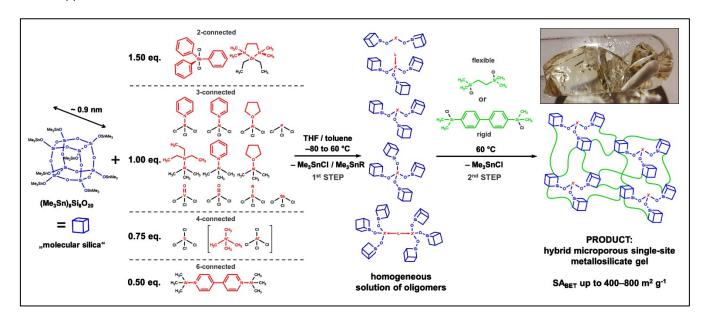


Figure 1: Generalized reaction scheme

References

- Ghosh NN, Clark JC, Eldridge GT, Barnes CE (2004) Chem. Commun.: 856–857
 Clark JC, Barnes CE (2007) Chem. Mater. 19: 3212–3218
 Styskalik A, Abbott JG, Orick MC, Debecker DP, Barnes CE (2019) Catalysis Today 334: 131–139
 Lee M-Y, Jiao J, Mayes R, Hagaman E, Barnes CE (2011) Catalysis Today 160: 153–164