Sacharidy a lipidy Glykobioinformatika a lipidoinformatika C2131 Úvod do bioinformatiky, jaro 2023 Lenka Malinovská Cukry 4.7.5 carbohydrate (saccharide) Monosaccharides, oligosaccharides and polysaccharides, as well as substances derived from monosaccha rides by reduction of the carbonyl group (alditols), by oxidation, including the oxidation of one or more terminal groups to carboxylic acids, or by replacement of one or more hydroxy groups by a hydrogen atom, an amino group, a thiol group, or by similar heteroatomic groups, This term also includes derivatives of these compounds, Note: The term carbohydrate was applied originally to monosaccharides, in recognition of the fact that their empirical composition can be expressed as CJHp)n. However, the term is now used generically in a wider sense. 4.7.35 monosaccharide Polyhydroxy aldehyde H-ICHOH^-CHO or polyhydroxy ketone H-[CH0H]n-CO-[CH0H]m-H, with at least three or more carbon atoms, respectively. Note 1: The generic term monosaccharide (as opposed to oligosaccharide or polysaccharide) denotes a single unit without glycosidic connection to other such units. Note 2: Most monosaccharides exist as cyclic hemiacetals or hemiketals. Examples: Aldoses, dialdoses, aldoketoses, ketoses, diketoses, as well as deoxy sugars and amino sugars, and their derivatives, provided that the compound has a (potential) carbonyl group. 4.7.37 oligosaccharide Compound in which monosaccharide units are joined by glycosidic linkages. Note: Oligosaccharides are called disaccharides, trisaccharides, tetrasaccharides, pentasaccharides, etc, according to their number of units, 4.7.38 polysaccharide Biomacramolecule consisting of a large number of monosaccharide (glycose) residues joined to each other by glycosidic linkages. See glycan Carbohydrate (saccharide) - cukr, sacharid - obecný termín pro celou skupinu látek Glykan - složitější cukr, oligosacharid nebo polysacharid, volný nebo vázaný V oboru chemie potravin jsou výrazem cukry označovány pouze monosacharidy a oligosacharidy. Dle legislativy jsou jako cukry označovány monosacharidy a disacharidy. V"^ n jměme ■ jzivové hodnoty B/100g 8/60g* %m 1 energetická hodnota Tuky ■ z toho nasycené Sacharidy ■ z toho cukr Bílkoviny Sůl 1485 kJ/ 352 kcal 6,4 g 1,9 g 59,1g 18.5i 9,2 g 10,0 g 0,08 g 1138 kJ/ 270 kca 5,8 g 2,2g 41,5 g 17,1 f 5,5 g 10,2g 0,20 g 14 8 II id 20 3 jfäň Priemerná — riikoň hodnota »/100g e/606« \R|] Energia 1485 kJ/ 352 kcal 6,4 g 1138 kJ/ 270 kcal POZOR! POUŽITI JEDNOTLIVÝCH TERMÍNŮ SE TEDY UŠÍ DLE VĚDNÍHO OBORU! Terminology of bioanalytical methods (IUPAC Recommendations 2018) https://doi.org/10.1515/pai 2016 1120 Received November 21, 2016; accepted February 1, 201S Cukry 4.7.5 carbohydrate (saccharide) Monosaccharides, oligosaccharides and polysaccharides, as well as substances derived from monosaccha rides by reduction of the carbonyl group (alditols), by oxidation, including the oxidation of one or more terminal groups to carboxylic acids, or by replacement of one or more hydroxy groups by a hydrogen atom, an amino group, a thiol group, or by similar heteroatomic groups, This term also includes derivatives of these compounds, Note: The term carbohydrate was applied originally to monosaccharides, in recognition of the fact that their empirical composition can be expressed as CJHp)n. However, the term is now used generically in a wider sense. 4.7.35 monosaccharide Polyhydroxy aldehyde rHCHOH^-CHO or polyhydroxy ketone H-[CH0H]rl-CO-[CH0H]m-H, with at least three or more carbon atoms, respectively. Note 1: The generic term monosaccharide (as opposed to oligosaccharide or polysaccharide) denotes a single unit without glycosidic connection to other such units. Note 2: Most monosaccharides exist as cyclic hemiacetals or hemiketals. Examples: Aldoses, dialdoses, aldoketoses, ketoses, diketoses, as well as deoxy sugars and amino sugars, and their derivatives, provided that the compound has a (potential) carbonyl group. 4.7.37 oligosaccharide Compound in which monosaccharide units are joined by glycosidic linkages. Note: Oligosaccharides are called disaccharides, trisaccharides, tetrasaccharides, pentasaccharides, etc, according to their number of units, 4.7.38 polysaccharide Biomacramolecule consisting of a large number of monosaccharide (glycose) residues joined to each other by glycosidic linkages. See glycan Carbohydrate (saccharide) - cukr, sacharid - obecný termín pro celou skupinu látek Glykan - složitější cukr, oligosacharid nebo polysacharid, volný nebo vázaný HLAVNI ŽIVIN • Bílkoviny • Lipidy (tuky) • Sacharidy - množstvím ve stravě (55-60% celkového energetického příjmu) představují její základní složku - poskytují organizmu energii ^ jiný biologicky význam je nepatrný^ www.vyzi va spol.cz Terminology of bioanalytical methods (IUPAC Recommendations 2018) https://doi.org/10.1515/pai 2016 1120 Received November 21, 2016; accepted February 1, 201S Funkce cukrů Funkce cukrů Výskyt cukrů v buňce Jádro - součást nukleových kyselin (ribosa, deoxyribosa) • Glykom - soubor všech sacharidů Cytosol - volné monosacharidy produkovaných organismem Endoplasmatické retikulum, Golgiho aparát - glykosylované proteiny (buňk°u>tkání) v daném čase za daných podmínek. Buněčná stěna - vázané oligo a polysacharidy Glykokalyx-glykoproteiny, glykolipidy ^^L^^^^^ Lipid Cukry *~UKry LUKryV 1 Protein Buňka ^ Výskyt cukrů v buňce • Kovalentně vázané cukry (monosacharidy, * Protože se nacházejí na povrchu buněk a oligosacharidy) se nacházejí na povrchu všech buněk. makromolekul, mohou se cukry uplatňovat v komunikaci a interakcích mezi buňkami a • Jsou součástí mnoha makromolekul. molekulami. • Mohou se v buňce nacházet i samostatně. Glykolipidy Glykoproteiny Cukry —^UKry LUKryV 1 Lipid Protein o3iY H'V'W ^1 Buňka ^ Výskyt cukrů v buňce Interakce buňka-buňka Interakce buňka-molekula Interakce buňka-patogen * Protože se nacházejí na povrchu buněk a makromolekul, mohou se cukry uplatňovat v komunikaci a interakcích mezi buňkami a molekulami. Patogen Molekula Buňka Buňka nformační potencia biomolekul Informační potenciál je určen množstvím „slov" (isomerů), které je možné sestavit z jednotlivých „písmen" (monomerů). Nukleotidy a aminokyseliny vytvářejí lineární polymery, spojované stále stejným způsobem (fosfodiesterová vazba, peptidová vazba). K dokonalému popisu obsažené informace stačí pouze jednoduchá sekvence (sled) monomerů: ATGCTGGTGATTGTGGATGCCGTTACCCTGCTGAGCGCCTATCCGGAAGCCAGCCGTGATC CGGCCGCCCCGACCGTGATTGATGGTCGCCACCTGTATGTTGTTAGCCCGGGCGATGCCGC MLVIVDAVTLLSAYPEASRDPAAPTVIDGRHLYWSPGDA Informační potenciál cukrů Pro přesný popis oligo(poly)sacharidu je kromě sekvence nutné znát i typ glykosidické vazby (anomerii) a velikost kruhu. D-glukosa + D-glukosa: ctl-2 al-3 al-4 al-6 al-1'a pi-2 pi-3 pi-4 P1-6 kojibiosa nigerosa maltosa isomaltosa trehalosa soforosa laminaribiosa cellobiosa gentibiosa Informační potenciál cukrů Glykosidické vazby může tvořit i více nezjedná OH skupina, vzniká rozvětvený oligosacharid. Klasickým příkladem rozvětvených oligosacharidů jsou antigény ABO krevních skupin. Cukry mohou být dále modifikovány redukcí, oxidací nebo vazbou dalších funkčních skupin. JcOOH^ NHAc Evolutionary aspects of ABO blood group in humans Massimo Franchini *, Carlo Bonfanti Department cf Hematology and Trajisjusjorr Medicine, Azienaa Qspedaliao Carte Porna, Maiitova, Italy ABSTRACT The antigens of the ABO blood group system (A, B and H determinants] are complex carbohydrate molecules expressed on red blood cells and on a variety of other cell lines and. tissues. Growing evidence is accumulating that ABO antigens, beyond their key role in transfusion medicine, may interplay with the pathogenesis of many human disorders, including infectious, cardiovascular and neoplastic diseases, hi this narrative review, after succinct description of the current knowledge on the association between ABO blood groups and the most severe diseases, we aim to elucidate the particularly intriguing issue of the possible role of ABO system in successful aging_ In particular, focus will be placed on studies evaluating the ABO phenotype in centenarians, the best human model of longevity. <£> 2015 Elsevier B.V. All rights reserved. Cukernv köd" w Kc Evolutionary aspects of ABO blood group in humans Massimo Frarichini *, Carlo Bonfanti Department cf Hematology and Trajisjusjort Medicine, Azienda Qspcdaliaa Caric Poina, Maiitova, Italy ABSTRACT Tlie antigens of the ABO blood group system (A, B and H determinants] are complex carbohydrate molecules expressed on red blood cells and on a variety of other cell lines and tissues. Growing evidence is accumulating that ABO antigens, beyond their key role in transfusion medicine, may interplay with the pathogenesis of many human disorders, including infectious, cardiovascular and neoplastic diseases, hi this narrative review, after succinct description of the current knowledge on the association between ABO blood groups and the most severe diseases, we aim to elucidate the particularly intriguing issue of the possible role of ABO system in successful aging_ In particular, focus will be placed on studies evaluating the ABO pbenotype in centenarians, the best human model of longevity. <£> 2015 Elsevier B.V. All rights reserved. Cukernv köd" w Kc Krevní skupina 0 Tkáňové a krevní skupiny ABO ch2oh o 0<"wv Lipid GIcNAc Evolutionary aspects of ABO blood group in humans Massimo Franchini *, Carlo Bonfanti Department cf Hematology and Trajisjusiorr Medicine, Azienda Qspedaliao Curie Porna, Maiiinva, Italy ABSTRACT The antigens of the ABO blood group system (A, B and H determinants] are complex carbohydrate molecules expressed on red blood cells and on a variety of other cell lines and. tissues. Growing evidence is accumulating that ABO antigens, beyond their key role in transfusion medicine, may interplay with the pathogenesis of many human disorders, including infectious, cardiovascular and neoplastic diseases, hi this narrative review, after succinct description of the current knowledge on the association between ABO blood groups and the most severe diseases, we aim to elucidate the particularly intriguing issue of the possible role of ABO system in successful aging_ In particular, focus will be placed on studies evaluating the ABO phenotype in centenarians, the best human model of longevity. <£> 2015 Elsevier B.V. All rights reserved. Cukernv kod" w Kc OH CH2OH Gal CH2OH O Krevní skupina Tkáňové a krevní skupiny ABO Evolutionary aspects of ABO blood group in humans Massimo Franchini *, Carlo Bonfanti Department cf Hematology and Trajisjusjiirr Medicine, Azienaa Qspedaliao Carte Porna, Maiitova, Italy ABSTRACT The antigens of the ABO blood group system (A, B and H determinants] are complex carbohydrate molecules expressed on red blood cells and oo a variety of other eel] lines and. tissues. Growing evidence is accumulating that ABO antigens, beyond their key role in transfusion medicine, may interplay with the pathogenesis of many human disorders, including infectious, cardiovascular and neoplastic diseases, hi this narrative review, after succinct description of the current knowledge on ihe association between ABO blood groups and the most severe diseases, we aim to elucidate the particularly intriguing issue of the possible role of ABO system in successful aging_ In particular, focus will be placed on studies evaluating the ABO pbenotype in centenarians, the best human model of longevity. ® 2015 Elsevier B.V. All rights reserved. Cukernv köd" w Kc 0H CH2OH GalNAc LA^O OHcHoOH Gal HO- CH2OH O NAcI O Krevní skupina A Tkáňové a krevní skupiny ABO v Lectins Ctení „cukerného kódu" — Protilátky Lektiny - proteiny, které specificky a reverzibilně vážou mono- a oligosacharidy. Nejsou produkty imunitní odpovědi. Lektiny plní rozpoznávacia adhezivnífunkci v mnoha různých biologických procesech. Vyskytují se v zástupcích všech taxonů (rostliny, zvířata, houby, bakterie, viry). Hemaglutinin viru chřipky Virus chřipky A obsahuje povrchový glykoprotein, hemaglutinin (HA). Tento protein je lektin, který rozpoznává hostitelské buňky a řídí adhezi a vstup viru do buněk. New insights into influenza A specificity: an evolution of paradigms Ye Ji, Yohanna JB White, Jodi A Hadden1, Oliver C Grant and Robert J Woods Lektin Glykoproteiny a glykolipidy Hemaglutinin viru chřipky Virus chřipky A obsahuje povrchový glykoprotein, hemaglutinin (HA). Tento protein je lektin, který rozpoznává hostitelské buňky a řídí adhezi a vstup viru do buněk. New insights into influenza A specificity: an evolution of paradigms Ye Ji, Yohanna JB White, Jodi A Hadden1, Oliver C Grant and Robert J Woods Lektin Glykoproteiny a glykolipidy Ricin Ricin je toxin produkovaný rostlinou Ricinus communis (skočec obecný, Ricin obyčajný). Často využíván jako okrasná rostlina. Ricin se vyskytuje nejvíce v semenech. Pro otrávení jsou celá semena nevhodná, je nutné je pořádně rozžvýkat. Ribosome-inactivating proteins (RIPs) - proteiny inaktivující ribosomy Ricin, abrin, volkensin Adheze Glykoproteiny a glykolipidy Toxicita Buňka Ricin Tajné služby zadržely otrávený dopis pro Obamu. Obsahoval jed ricin 17. dubna 2013 18:06, aktualizováno 21:07 f) Q Q Americké tajné služby zajistily v úterý dopis adresovaný prezidentu Baráčku Obamovi, který obsahoval podezřelou látku. Dopis byl zachycen v objektu, který leží mimo komplex Bílého domu. Podle prvních testů federální policie obsahoval jedovatý ricin. Americkému senátorovi poslali dopis s ricinem Dopis zaslaný republikánskému senátorovi za stát Mississippi Rogeru Wickerovi obsahoval ricin. Potvrdil to předběžný test. jsou ale ještě potřeba další zkoumání. List se podařilo zachytit ještě v oddělení, které pro zákonodárce poštu zpracovává. O nálezu informoval šéf policie v Capitolu Kim Dine s tím. že případ převzal Federální úřad pro vyšetřování (FBI). Newyorskému starostovi poslali dopis s ricinem Dopisy adresované newyorskému starostovi Michaelu Bloombergovi a organizaci podporující omezení prodeje zbraní, obsahovaly jedovatí' ricin, uvedly úřady po testech. Jeden z bezpečnostních pracovníků, který přišel s dopisem do styku, vykazuje drobné příznaky kontaktu s ricinem. CBJštníko^>/ražda bulharského s p i s o va t e I e(Mar kova) ^-------**/oro jméno je neustále 7.9.2008 s námi... Londýn - Do dějin případ vstoupil jako „deštníková vražda" a dodnes není objasněn. Neznámý pachatel vpravil 7. září 1973 v Londýně pomocí speciálně upraveného deštníku jed do těla bulharského spisovatele a disidenta Georgiho Markova, který za čtyři dny zemřel. Podezření padlo na bulharskou komunistickou tajnou službu a kdysi obávanou sovětskou tajnou policii KGB. Podle některých spekulacísi zabití Markova, kterýv Londýně pracoval v bulharské sekci rozhlasové stanice BBC, objednal osobně vůdce bulharských komunistů Todor Žívkov, protože Markov, kdysi prominentní spisovatel a později ostrý kritik poměrů v Bulharsku, toho příliš mnoho věděl o životě bulharských vládců. Zajímavostí je, že 2ivkov slavil právě 7. září 1978 sedmašedesátiny. https://ct24.ceskatelevize.cz/archiv/1442570-destnikova-vrazda-bulharskeho-spisovatele-markova Glykoproteiny a glykolipidy Buňka Ricin není jed, ale projímadlo. Zemanovy výroky vyvolaly kritiku 3 6. května 2020 1S23 ^jfo^f Prezident Miloš Zeman vyvolal značnou kritiku mezi politiky, když v úterý popřel přítomnost ruského agenta v Praze a zkritizoval dvě zpravodajské služby. Řadu lidí popudil i tím, že ricin označil za projímadlo. Tajní Agent s ricinem pobouřil diplomacii. Radikální kroky nejsou třeba, říká Babiš © 28 dubna 2020 15:51, aktualizováno 20:51 Rusko popřelo informace týdeníku Respekt, že do Prahy dorazil agent tamních tajných služeb s jedem ricinem, kterého bezpečnostní úřady vyhodnotily jako riziko pro politiky Ondřeje Koláře a Zdeňka Hřiba. Rusko zprávu časopisu označilo za novinářskou „kachnu", to však česká diplomacie považuje za snahu o narušování svobody tisku. Senát žádá vládu, aby ohledně chování Ruska zakročila, podle premiéra Babiše ale nejsou potřeba radikální kroky. Newvorskómu starostovi |x>s|j|i il« •l>is s rk'iiH*m „Snad jeden z nejznámějších léčebných použití ricinového oleje je jako přírodní projímadlo. Je klasifikován jako stimulační projímadlo, což znamená, že zvyšuje pohyb svalů, které vytlačují materiál skrz střeva, a pomáhá tak vyčistit střeva. Stimulační laxativa působí rychle a běžně se užívají ke zmírnění dočasné zácpy." To si pan prezident plete s ricinovým olejem. Ricinový olej se vyrábí z těch stejných semen R. communis, která obsahují ricin. Ricinu se ale do olejové fáze moc nechce a olej je navíc ohříván, takže ricin (protein) je bezpečně denaturován. Ricin by pochopitelně skutečně fungoval jako projímadlo...taky je to emetikum a snižuje krevní tlak. Někdy až na nulu. Glykoproteiny a glykolipidy Buňka 88 Chem Soc Rev RSC Publishing Published OnlineFirst January 29, 2016; DOI: 10.1158/1535-7163.MCT-15-0633 REVIEW ARTICLE View Article Online Large Molecule Therapeutics Multivalent glycoconjugates as anti-pathogenic agents! Anna Bernardi.3 Jesus Jimenez Barbero,b Alessandro Casnati.c Cristina De Castrů,d Tamis Darbre* Franck Fieschi* Jukka Finne,9 Horst Funken.h Karl-Erich Jaeger,h Martina Lahmann,'Thisbe K. Lindhorst,-1 Marco Marradi,1 Paul Messner,' Antonio Molinaro,d Paul V. Murphy.1" Cristina Nativi,n Stefan Oscarso-n.0 Sdedad Penades.1 Francesco Peri.p Roland J. Pieters.q Olivier Renaudet/ Jean Louis Reymond* Barbara Richichi,n Javier Rojo.' Francesco 5ansone,c Christina 5 chaffer,1 W. Bruce Turnbull/Trinidad VelascoTorrijos,u Sebastien Vidal,v Stephane Vincent,'"* Tom Wennekes* Han Zu i I hof"* a nd Anne Irnberty^ Molecular Cancer Therapeutics Gastric Adenocarcinomas Express the Glycosphingolipid Gb3/CD77: Targeting of Gastric Cancer Cells with Shiga Toxin B-Subunit Philipp Emanuel Geyer1, Matthias Maak1, Ulrich Nitsche', Markus Perl', Alexander Novotny1, Julia Slotta-Huspenina2. Estelle Dransart3-4 5, Anne Holtorf', Ludger Johannes34-5, and Klaus-Peter Janssen1 „DRUG-TARGETING" Jak jsou glykoproteiny kódovány v genomu? Glykom - soubor všech sacharidů produkovaných organismem (buňkou, tkání) v daném čase za daných podmínek. Glykosylace buněk-závisí na typu buněk, (zdravotním) stavu buněk, věku, prostředí. Glykosylace buněk (povrchové sacharidy) -využívá se pro komunikaci, interakce, specifické rozpoznávání mezi buňkami, popřípadě mezi buňkami a molekulami. Glykan Protein o- ATGTTGGTACGCTGACT GCCGTACGTAGCTTCGT GAC GT C GAT C GTAGCT G Gen Jak jsou glykoproteiny kódovány v genomu Enzymy = glykosyltransferasy, syntéza aktivovaných cukrů Nutná účast transportních proteinů! Enzym Gen Gen Enzym Gen -► Enzym Struktura glykanů je v genomu kódována nepřímo Gen -► Enzym Protein b ATGTTGGTACGCTGACT GCCGTACGTAGCTTCGT GAC GT C GAT C GTAGCT G Gen Glykosylace CDG (congenital disorders of glycosylation) - dědičné poruchy glykosylace. Glykosylace proteinů je složitý proces (syntéza aktivovaných cukrů, glykosyltransferasy, modifikace glykanů, glykosidasy), různých poruch glykosylace jsou tedy desítky. _603585_ CONGENITAL DISORDER OF GLYCOSYLATION, TYPE lir; CDG2F Alternative titles: symbols CDG lit"; CDGHf ▼ Clinical Features Willig et al. (2001) reported a 4-month-oId boy who presented with a spontaneous massive bleed in the posterior chamber of the right eve along with cutaneous hemorrhages. Laboratorv studies showed marked thrombocytopenia and neutropenia. The patient experienced multiple episodes of bleeding over the next 30 months, including severe pulmonary hemorrhage. He also had multiple recurrent bacterial infections. Bone marrow transplantation was performed at age 34 months, but the patient died of complications at age 37 months.© - -------- Macrothrombocytopenia with abnormal demarcation membranes in megakaryocytes and neutropenia with a complete lack of sialyl-Lewis-X antigen in leukocytes--a new syndrome? Willig TB, Breton-Gorius J, Elbim C Mignotte V, Kaplan C. Mollicone R. Pasquier C, Filipe A, Mielot F, Cartron JP, Gougerot-Pocidalo MA. Debili N, Guichard J. Dommergues JP. Mohandas N, Tchernia G. Blood. 2001 Feb l;97(3):826-8. doi: 10.l182/blood.v97.3.826. PMID: 11157507 Free article. https://omim.org YEARS MIM Human Genetics Knowledge /or the World * 606672 GLYCOPROTEIN lb, PLATELET, ALPHA POLYPEPTIDE; GP1BA GPIb. ALPHA SĽBĽXTT PLATELET GLYCOPROTELX lb, ALPHA POLYPEPTIDE CD42B Vi ent infecuÄs, Willig ▼ Biochemical Features Bv detailed laboratorv analysis of a patient with thrombocytopenia and recurrent infecti^s, Willig et al. (2001) found markedly decreased amounts of platelet membrane GP lb {see GPlBA, 606672) and undetectable sialvl-Lewis-X on the surface of neutrophils, suggesting a defect in the posttranslational modification of glycoproteins. Martinez-Duncker et al. (2005) noted that the plasma of the patient reported by Willig et al. (2001) showed a normal sialylation pattern of transferrin (TF; 190000) and other major serum glycoproteins. The phenotvpe was due to the lack of sialvl-Lewis-X, which has considerable roles in cell-to-cell interactions, such as infections and megakarvocvtic immaturity, that were defective in this patient. O t Molecular Genetics In a patient originally described by Willig et al. (2001), Martinez-Duncker et al. (2005) identified compound heterozygosity for 2 mutations in the SLC35A1 gene (605634.0001; 605634.0002). Martinez-Duncker et al. (2005) referred to this disorder as CDG type Hf. O ■ 605634 SOLUTE CARRIER FAMILY 35 (CMP-SIALIC ACID TRANSPORTER), MEMBER 1; SLC35A1 The SLC35A1 gene encodes a CMP-sialic acid transporter located within the membrane of the Golgi apparatus. The transporter moves nucleotide sugars across the membrane for use in glycosylation reactions that take place within the Golgi department (Eckhardt et al., 1996). O Dědičnost krevních skupin Tři varianty (alely) jednoho genu pro glykosyltransferasu (lokus ABO na 9. chromozomu) Dědičnost krevních skupin OH CH2OH GalNAc A /V-acetylgalaktosaminyltransferasa Tři varianty (alely) jednoho genu pro glykosyltransferasu (lokus ABO na 9. chromozomu) Dědičnost krevních skupin CH2OH Gal B Galaktosyltransferasa Tři varianty (alely) jednoho genu pro glykosyltransferasu (lokus ABO na 9. chromozomu) íTtjrŕimrjjpfllíJJChil 9TJ Dědičnost krevních skupin Genomics iiiul Ľpigenniniťs tif t h c humaii glyťoinc VI atk i Zok3ot - Míl iv Novo kntt t ■ Ivon i n«c«hdl ■ Zkrácená (nefunkční) varianta genu, způsobeno delecí jednoho nukleotidu a následným posunutím čtecího rámce OHchLOH Goi CH2OH ' O 0 1 Tři varianty (alely) jednoho genu pro glykosyltransferasu (lokus ABO na 9. chromozomu) A-h-íract Ttc inajorhy aí all prnlcins, sjt gfye esylstod and Sfyeans, havt numcrous, iniportaintsinKtiíral, funjtionsl and regulátory m\a. in varí mis, physinlogi.31 pnutiics. Whilc ibiKtuK of tht pnlypcptidc [MľtoEaglyeoprotcin iidttLiol by tht uquenec of nuclcotidcs in the c cm i [Minii n£ r/hw, itnKtuji of a glycan part ntaultj fioni dynamic ÍJitaactiojki betu1« n hundrcds, c í ;fi¥i ťheir [wonHn produas and ji . ii .i iiuiLul filiiľi. Thf ^ ■."> iti | >.. -.i □-.. i: -..r li j i;I;..viiiij aradicd to an individual protein, or to a ■jom.rdtx mixturc of : ii -.lil.jli.ni.il i::.l ĺ--Li:'L'.-id i i i ..Li-. i.Li. j. |iu vay variablcbctwctji i ndividual j. Tli is ^arBhflity-itťnis &orii jiumcjDus tmuiiiijiL u.ei:eik )-.■!;, iii-..i |;l.i--rn ■- i-j rl-j-.i i 1:1; i i: disjíííi íji 1hí iomriti bi..-■ i d. ci. ;>.iil v.i; .■■'lI-.-.mi. I ■ i j alií f mm the i mali tkvi wiúiťhc cnvirainicnt Envirennicnt (ľan afféiä jlyean biray-iitlicaii at the Icvcl o f äiihitratŕ avůilď>i lity, rcgulatiůn of enzyme activity anďor hormonů! signals, burt aliii through jgenoem ir, i.niji. u.ľijj[Í-..i.-. Bp^enOiDiS providcsa melte u laj fciiB how the cnvrronment ■.ji. líiv-lih. |il:ci:-.-i;. pc of an individua L The epigoictic information (DNA ntthylation partem and hiitone code) ti tipthľially vul.iK.iB.blc to environmcntal erféti; in the ca rty intrautainc snd nm-riatal devdopment and many commcTi I ho-oieci d tveasrtů ttkc i «51 ab díry tt lhal tmu TIk evidence^ itmwirig the link hetween cpigcnctics and g ryoraylation are a ee umu latine:. Reccrit pTojjrcsi in high-thruu^i rjut gfycomiei jHnomicí. and cpicřňoniKS, enabled fná cpidcmidoíical and Ěcnomo-widt asax: iaťon itudies of ťlH glyecnie, whcJiarc prese nud in fhis, mini-rcvicw. Keywoids niyecsylaiion GLycome Gaiomc-wLle .i-■ .-.í.id.-i -11..:;. ■ F-.piu jr.jii.^ -i>:t-:-:i:i ii-..i:iii-j 1:1 Cknidis of procťbi Elytosyla.rJi>n K verv atnipJĚi A.uľordiii5loflK ecntiaJ do^mact mole cul ar biolog, fiweton ■. .ijh.-I. pí-. 1 jii: i - .LjuiniiiiL Ir. i k -in.-, u.ij . ^ l.n. I: i- .i-jflu-i: by the niKlcotdc sc^ucjkc in Oh rtir>ondi ň£ gene. Hnwcvcr, in the of ghycan moictici cf glycopictcije, tlwjr arr irvoal addili.'.iL.il Li;, ji- Anii|>kxi1y betwoen gcars and fltt finál jfyoän ätructurc. The frnal itnidurt pí cech gryvan ii tiiorfcír not cnccdcd di nccliy in tne genomr Blood Groups „j Red Cell Antigens ABO genotype in the offspring ABO alleles inherited from the mother A AB A ABO alleles inherited from the father B AB B B A B O Dědičnost krevních skupin ohch,oh Gal o H antigen deficiency is known as the "Bombay phenotype" (h hr also known as Oh) and is found in L of 10=000 individuals in India and 1 in a million people in Europe. There is no ill effect with being H deficient but if a blood transfusion is ever needed, people with this blood type can receive blood only from other donors who are also H deficient. (A transfusion of "normal" group 0 blood can trigger a severe transfusion reaction.) CH2OH O Bombajský fenotyp. Jedinci nejsou schopni vytvářet ani základní H antigén (defektní fukosyltransferasa). Vytvářejí se protilátky anti A, anti B i anti 0. Působí problémy při transfuzích a testech paternity. Vhodné jako zápletka do seriálů. http://www.ncbi.nlm.nih.gov/books/NBK2261/ Blood Groups mi Red Cíli Antigens Dědičnost krevních skupin In the show "General Hospital", the father of Monica's child was in doubt. Monica had blood type A (genotype AO) and her child had blood type 0 [genotype 00). Because the child must inherit an 0 allele from the father, the father could have the genotype AO, BO, or 00. In other words, the child's father could have blood group A or B or 0, which rules out Monica's husband Alan [type AB) and implicates Rick (type 0). Predicted ABO Genotypes Alan Monica Rick -0"-r-0 AB AO AO or BO AO or BO http://www.ncbi.nlm.nih.gov/books/NBK2261/ Monika má krevní skupinu A. Alan má krevní skupinu AB. Dítě má 0. Podvedla Monika Alana s Rickem??? Blood Groups mi Red Cíli Antigens Dědičnost krevních skupin However, Alan is the father! This is possible because both he and Monica are carriers of incomplete H deficiency (H/h}_ Their h/h child is unable to produce any ABO blood group antigens and so despite inheriting the A or B allele from Alan, the child's RBC"s lack the A and B antigens as in blood type 0. Actual ABO and Hh Genotypes Alan Monica Rick -O □ AB Hh AO Hh AO or BO, HH hh http://www.ncbi.nlm.nih.gov/books/NBK2261/ Alan je tatínek! Ale možná je příbuzný s Monikou (vzhledem k vzácnosti alely h)...To by byl vhodný námět pro další díl... „Because both parents must carry this recessive allele to transmit this blood type to their children, the condition mainly occurs in small closed-off communities where there is a good chance of both parents of a child either being of Bombay type, or being heterozygous for the h allele and so carryingJheBombay characteristic as recessive. Other examples may include noble families, which ar^nbreague to custom rather than local genetic variety." Cukry - zkratky a symboly Základní jednotky složitějších sacharidů jsou monosacharidy. NA/proteiny - základní jednotky (nukleotidy, aminokyseliny) jsou jasně definovány a jejich počet není velký. Monosacharidů je mnoho, proto u glykanů nelze (jednoduše) použít jednopísmenný kód. Problém: vazby, větvení, modifikace Vyvinuto a používáno mnoho způsobů, jak sacharidy znázornit. Na rozdíl od NA/proteinů se u cukrů velmi často využívá grafické znázornění Cukry - zkratky a symboly UNION OF PURE AND APPLIED CHEMISTRY https://www.qmul.ac.uk/sbcs/iupac/2carb/ ß-D-Galp- (ß-D-GlcpN Ac - (l-»2)-a.-D-Maiip- (1-3 T 1 ot-L-Fucp Gal(p 1 -4-)Glc NAc- (p 1 -2)Man(oi 1 - Fuc(ol1-3) GalCp 1 -4)[Fuc(od -3)]GlcNAc(ß 1 -2)Man(al ■ Tři IUPAC způsoby jak pomocí zkratek znázornit oligosacharid. IUPAC {a-D-Galf>NAc-(l -»3)-[ct-L-Fuc/>-(l ->2)]-p-D-Oab?-(L->4)-p-D- GlcpNAc-Cl-^3)-p-D-Gal^(l->4)-p-D-Glcp} LINUCS [][b-D-Glt-p] {[<4+l)][b-D-Galp] {[(3+l)][b-D-GlcpNAc]{[(4+l)][b-D- Galp] {[(2+1 )][a-L-Fucp] {} [(3+1 )][a-D-GalpNAc] {}}}}} LinearCode ANa3 (Fa2) Ab4 GNb3 Ab4 Gb4 (spaces added for clarity) GLVCAM OLN (OfA) ZLB 4Gn 3LB '1GB (with LinearCt-de precedence rules for branching) CFG Oxfurtl GLYCAM/ Oxford \a2 4 LN L—GN ■G <$> D~Gdp O o L D-Gal/?NAc □ ♦ LN D-Glcp • □ G D-Glc/fNAc ■ ■ GN L-F\i3)-[ct-L-Fuc/)-(l->2)]-p-D-aalp-(L->4)-p-D- GlcpNAc-Cl-^3)-p-D-Gal^(l->4)-p-D-Glcp} LINUCS [][b-D-Glcp] {[(4+1 )][b-D-Galp] {[(3+l)][b-D-GlcpNAc]{[(4+l)][b-D- Galp] {[(2+1 )][a-L-Fucp] {} [(3+1 )][a-D-GalpNAc] {}}}}) LlnearCode ANa3 (Fa2) Ab4 GNb3 Ab4 Gb4 (spaces added for clarity) GLVCAM CFG Oxford GLYCAM/ Oxford OLN (Of A) ZLB 4Gn 3LB 4GB (with LinearCorJe precedence rules for branching) \a2 4 LN L—GN ■G D-Gal/ř O O L D-GalpNAc □ ♦ LN D-Glcp • □ G D-GHc/řNAc ■ ■ GN L-Fucp A ❖ ť Oxford-tyf e linkags: ..... ot-linkage — P-linkage 2 Cukry - zkratky a symboly Standardizace symbolů: Symbol Nomenclature for Glycans (SNFG) https://www.ncbi.nlm.nih.gov/glycans/snfg.html Významná část glykobioinformatických nástrojů je zaměřená na grafické znázornění cukrů. Symbol Nomenclature for Glycans (SNFG) Standardization in drawing glycan structures is essential for efficient communication. The tools and methodology illustrated here have become widely accepted by the scientific community. Use of these symbols to represent monosaccharides is now strongly recommended for all manuscripts submitted to major journals and other publications. Citation: • Symbol Nomenclature for Graphical Representation of Glycans, Glycobiology 25: 1323-1324, 2015. Citation link (^(PMID 26543186). • Updates to the Symbol Nomenclature for Glycans guidelines, Glycobiology 29:620-624, 2019. Citation linkte (PMID 31184695). EXAMPLE FROM YEAST Man nan s from 5. cerevisiae (P=phosphoiylJ EXAMPLES FROM SLIME MOLD Blood group antigens: H antigen on Type-1 lactosamine chain R=glycan backbone A antigen B antigen O-linked glycans (GalNAc type) Extended core-1 glycan %er/Thr 6'sulfo-sialyl Lewis-X on core-2 glycan %er/Thr Cukry - zobrazovací nástroje rOj^DrawGlycan-SN FG \ i htt p "y^y^\a/\a/\a/vi rt u a I g lyco m e org/DrawGlycan/ IU PAC-condensed Input ŕglycan or glycopeptide): Mar(a2]Man[a6)[Man[a2]Man{a3)]Man{a6)Gal(a3]Fuc{a6)Man(:a2)Man[aS) [Man[a2)Man(a3)]Man{a6)Gal(a3] Basic options: Display Linkage: Linkage font size: 16 Text font size: 16 Symbol Size: | Medium t | Orientation: | Left Other options (show/hide) Mass Option: None Adduct: None Molecular Weight: 2254.7562 Glykosylace • Glykosylace je významná posttranslační modifikace. • Ovlivňuje strukturu proteinů, jejich aktivitu i funkci (rozpustnost, stabilita, interakce, význam pro imunitní systém). • Glykosylace probíhá u eukaryot i prokaryot. A Repository of Experimentally Characterized Glycoproteins and Protein Glycosyltransferases of Prokaryotes ProGlycProt Second Release ProGlycProt is a manually curated. comprehensive repository of experimentally characterized glycoproteins and glycosyltransferases that are involved in protein glycosylation, in bacteria and archaea, exclusively. The website is a focused effort to provide concise and relevant information derived from rapidly expanding literature on prokaryotic glycoproteins, attached glycans, linkages, their glycosylating enzyme(s), their specificities, mutants, glycosylation linked genes, and genomic context thereof, in a cross-referenced, interactive manner... More»> PidGPID PraG P470 (Putative u n di ara rterized prateinJ Validation Status Characterized Organism Information Organism Name Bi.rkl-ckle'a cenacepac'a K5Č-2 Domain Bacteria tlassifi cation Family: Burkholderiaceae Order: Burkholderiales Class: Betaproteobacteria Division or phylum: "Proteobacteria" Taxonomie ID (NCBI) 985075 Protein Information Protein Name Putative uncharacterized protein LhiProtKB/SwissProtlD B4EB72 NCBI RefSeq WPJWH868B7.1. EM BL CDS CAR53291.1. UniProtKB Sequence !-tr|B4EB72|B4EB72_BURCJ Putative exported protein OS=Burkholderia cenocepacia (strain ATCC BAA-245 IDSM 16553 / LMG 16656 / NCTC 13227 /J2315 / CF5610) GN=BCAL2973 PE=+ SV=1 MKS LVQAV WAAALVA PWS FAQS GSTIT RAQVRAE LVQ LQQAGYNSA RGEDPHYPEAIQ AATARIAEQQRSALAQAQGADVSGYGAQAQGASASGSRAMGVRPASAEEMKSLVRGS Sequence length 117 AA Subcellular Location Outer membrane Glycosylation Status Glycosylation Type 0- (Ser/Thr) linked Experimentally Validated Glycosite^s) in Full Length Protein S106 Glycosite(s) Annotated Protein Sequence itr|B4EB72|B4EB72_BURCJ Putative exported protein OS=Burkholderia cenocepacia (strain ATCC BAA-245 / DSM 16553 / LMG 16656 / NCTC 13227 / J2315 / CF561Q) GN=BCAL2973 PE^t SV=1 MKS LVQAV WAAALVA PWS FAQS GSTIT RAQVRAE LVQ LQQAGYNSA RGEDPHYPEAIQ AATAR1AEQQ RSALAQAQGA DVSGYGAQAQGASASGS RA M GVRPAs- (10s)A E E M KS LYRG S Sequence Around Glycosite5 [21 AA) GSRAM G VR PASA E E M KS LYRG Technique(s) used for Glycosylation Detection ZIC-HILIC,immunoblotting,tryptic digestion, and MS/MS analysis Technique(s) used for Glycosylated Residue(s) Detection MS/MS analysis Glycan Information Glycan Annotation Tnsaccharide HexNAc-HexNAc-Hex. BCSDB ID 1205 S GlyTouCan G71937MV PrSGlycProt http://www.proglycprot.org/ Protein Glycosylation in Prokaryotes Glykosylace TRĚfilDSin Microbiology Vůl. 11 No.l2 December 20tí • Glykosylace je významná posttranslační modifikace. • Ovlivňuje strukturu proteinů, jejich aktivitu i funkci (rozpustnost, stabilita, interakce, význam pro imunitní systém). • Glykosylace probíhá u eukaryot i prokaryot. A Repository of Experimentally Characterized Glycoproteins and Protein Glycosyltransferases of Prokaryotes ProGlycProt Second Release ProGlycProt is a manually curated. comprehensive repository of experimentally characterized glycoproteins and glycosyltransferases that are involved in protein glycosylation, in bacteria and archaea, exclusively. The website is a focused effort to provide concise and relevant information derived from rapidly expanding literature on prokaryotic glycoproteins, attached glycans, linkages, their glycosylating enzymefs], their specificities, mutants, glycosylation linked genes, and genomic context thereof, in a cross-referenced, interactive manner... More»> Sweet new world: glycoproteins in bacterial pathogens M. Alexander Schmidt1, Lee W. Riley2 and Inga Benz1 11nstitut für InfektioIogls, Zentrum far Molekularbiologie der Entzündung [ZMEE), Von-Esmarch-Str. 56, D-43149 Münster, Germany ^Division of Infectious Diseases and Immunity. School of Public Health, University of California, 140 Warren Hall, Berkeley, CA 94720, USA In eukaryotes, the combinatorial potential of carbohydrates is used for the modulation of protein function. However, despite the wealth of cell wall and surface-associated carbohydrates and glyco conjugates, the accepted dogma has been that prokaryotes are not able to glycosylate proteins. This has now changed and protein glycosylation in prokaryotes is an accepted fact I intriguing ly, in tiram-negative bacteria most glycoproteins are associated with virulence factors of medically significant pathogens. Also, important steps in pathogenesis have been linked to the glycan substitution of surface proteins, indicating that the glycosylation of bacterial proteins might serve specific functions in infection and pathogenesis and interfere with inflammatory immune responses. Therefore, the carbohydrate modifications and glycosylation pathways of bacterial proteins will become new targets for therapeutic and prophylactic measures. Here we discuss recent findings on the structure, genetics and function of glycoproteins of medically important bacteria and potential applications of bacterial glycosylation systems for the generation of novel glycoconjugates, PrSGIycProt http://www.proglycprot.org/ Protein Glycosylation in Prokaryotes Predikce glykosylace • Glykosylace je významná posttranslační modifikace. • Ovlivňuje strukturu proteinů, jejich aktivitu i funkci (rozpustnost, stabilita, interakce, význam pro imunitní systém). • Glykosylace probíhá u eukaryot i prokaryot. NetOGIyc -4.0 O-GalNAc (mucin type) glycosylate sites in mammalian proteins The NetOglyc server produces neural network predictions of mucin type GalNAc O-glycosylation sites in mammalian proteins. NetCGIyc-1.0 C-mannosylation sites in mammalian proteins The NetCGIyc 1.0 produces neural network predictions of C-mannosylation sites in mammalian proteins. DictyOGIyc-1.1 0-(alpha)-GlcNAc glycosylation sites (trained on Dictyostelium discoideum proteins) The DictyOGIyc server produces neural network predictions for GlcNAc O-glycosylation sites in Dictyostelium discoideum proteins NetNGIyc -1.0 N-linked glycosylation sites in human proteins The NetNglyc server predicts N-Glycosylation sites in human proteins using artificial neural networks that examine the sequence contextx£sn-Xaa-Ser/Thr^ sequons MINI REVIEW https://services.healthtech.dtu.dk/ Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds Predikce glykosylace • Predikce glykosylace: A/-glykosylace x O-glykosylace HO' HO- (a) --OH J^^O NH[ H ] CO CH} NH3 COCH2—CH I coo- (b) CO0" A/-glykosylace asparaginu O-glykosylace hydroxylové skupiny serinu nebo threoninu Glycoproteins Tony Merry, University of Manchester, Manchester, UK Sviatlana AstraUtSOVa, Grodno State Medical University, Grodno, Belarus Based in part on the previous vers ion of this Encydo pedia of Life Sciences (ELS) article, "Glycoproteins"by "Jerry D Butters". Glykosylace chrání proteiny před proteolýzou, ovlivňuje strukturu a interakce proteinů, uplatňuje se v interakcích imunitního systému. Predikce glykosylace • Predikce glykosylace: A/-glykosylace x O-glykosylace HO' HO- (a) --OH J^^O NH[ H ] CO CH} NH3 COCH2—CH I coo- (b) COO" A/-glykosylace asparaginu Asn-X-Ser(Thr), X nesmí být Pro Asn-X-C- nekanonický motiv Záleží i na sousedních aminokyselinách, charakteru aminokyseliny „X" konformaci místa. O-glykosylace hydroxylové skupiny serinu nebo threoninu Nemají jasně definovaný motiv Identification of novel N-glycosylation sites at non-canonical protein consensus motifs Mark S. Lowe n thai . Kiersta S. Davis Trina Formolo Lisa E. Ki I pat rick, and Karen W. Phinney Analýza glykanů Charakterizace glykanů: hmotnostní spektroskopie (MS), vysokoúčinná kapalinová chromatografie (HPLC), nukleární magnetická rezonance (NMR). Biological sample Velká část softwarových nastrojuje zaměřena na zpracování a interpretaci experimentálních dat, analýza glykanů je bez využití bioinformatiky velmi obtížná (prakticky nemožná)... Separation'Enrichrnent Intact Glycoproteins Glycopcptidc enrichment after protease digestion Intaet tilycopeptides Doglycosylation MS analysis WET-LAB DRY-LAB 2-OEgel LC/MS Multi LC 2-DE image analysis LC/MS image analysis WET-LAB MS and/or MS/MS MS/MS DRY-LAB Search database Identification 8c Update characterisation annotation Q I Database "Ü Deglycosylated peptides 3ioinfbrmatics analysis 1 MS analvsis Released ulycans S MSai alysis Protein I Peptide identification Glycan structure identification and attachment site assignment Separation Bioinformatics Mass Spectrometry Bioinformatics Feng Li1-2, Olga V. Glinskii'-3 and Vladislav V. Glinsky'-2 Proteorrtics 2013, IÍ.341-354 DOMO.1002/prnic,201200149 Cukry - 3D struktura Co nás zajímá - struktury glykoproteinů, struktury sacharidů v komplexu s proteiny (lektiny, enzymy, protilátky). RTG krystalografie. Problém: velká flexibilita sacharidů (ve struktuře je viditelná jen část glykanu). Problém: Kvalita 3D struktur sacharidů v PDB může být nízká... Určení struktury komplexních sacharidů je obecně problém. NMR - tradiční metoda pro určení struktury oligosacharidů (práce v roztoku), problémy s přiřazením signálů a vyhodnocením dat (malé rozdíly mezi jednotlivými jádry). Molekulové modelování sacharidů je často nezbytnou součástí interpretace experimentálních dat. Cukry - 3D struktura • Co nás zajímá - struktury glykoproteinů, struktury sacharidů v komplexu s proteiny (lektiny, enzymy, protilátky). • Určení struktury komplexních sacharidů je obecně problém. Molekulové modelování sacharidů je často nezbytnou součástí interpretace experimentálních dat. It should be noted that under physiological conditions oligosaccharides are freque/jfl^-highly flpyiblo, and si .single static structure is an incomplete model. For this reason, the user is encouraged to employCf^jecular dynamics simula^onpto develop a more complete understanding of the spatial and dynamic propers or Lliiiir JsyMuri.---- All builders at GLYCAM-Web generate molecular structure files that can be used in visualization programs or as input for simulations. For the builders that generate 3D structures from a primary sequence (e.g., GiyCAMt^ DManpbl-SDGIcpNAcbl-OH), we offer the interfaces listed below for setting the primary sequence. http://glycam.org/ Glykobioinformatika - databáze Databáze obsahující informace o proteinech (sacharidy jsou součást glykoproteinů, lektiny). Vlastní databáze sacharidů (struktury). Databáze enzymů a drah účastnících se syntéz a odbourávání glykanů (sacharidů). Informace o interakcích protein-sacharid „Glykocentra" - sdružené databáze, vlastní specializované databáze, analytické nástroje „Glykocentra" http://glyco3dxermav.cnrsir/home.php Disac3-DB GAG-DB GLYC03D 2.0 Glyko struktury BioOligo-DB Polysac3-DB NMR oligo EPS-DB CBMcarb-DB U ní lectin mAbscarb-DB Polys-Glycan Builder O Monosac-DB © Other tools „Glykocentra" Cermav UNIVERSITĚ DE GENĚVE Unified exploration platform for manually curated and predicted lectins Unil_ectin3D Curated and classified lectin 3D structures PropLec Predicted p-propeller lectins LectomeXplore Predicted lectins in all available species from all kingdoms MycoLec Predicted lectins in fungal genomes TrefLec Predicted p-trefoil lectins ALGEA BUILDER BACTERIA BUILDER GAG BUILDER N-0 LINKED BUILDER PLANT BUILDER Glyco3D is a portal of databases covering the three-dimensional features of monosaccharides, di saccharides, oligosaccharides (Conformations and NMR spectra), polysaccharides, glycosyltransferases, lectins, monoclonal antibodies against carbohydrates, and glycosaminoglycan-binding proteins. These databases have been developed with non-proprietary software and they are opened freely to the scientific community. Each individual database stands by itself as it covers a particular field of structural glycosciences. http://glyco3d.cermav.cnrs.fr/home.php Glyco3D LYSAG?DB Identifikace a izolace nových lektinů GATAGCGTAATGATCGGCTGGCTGCCGCATTTCATGCTGGTTTCCCAACGAAAAT; TACÄGGTGGTCGCGCCCGCCGCCAGCACATCGCTGCGCCAATAATGATCTTTCÄGI GGTGGCGGCATCACGCACTTCCAGTTCGATCGGGGCAACAATGCCGGCATCTTTC: AGCGCGGTTTCGCGCAGATGCAGCTGATCACCCGGGCTCAGACCGGTAAACAGACl CATACAGGTGGCGACCATCAATCACGGTCGGGGCGGCCGGATCACGGCTGGCTTCi Genomy edrpikfstegatsqsykqfieaľrerľrgglihd ipvlpdpttlqernryitvelsnsdtesievgidv tnaywaypagtqsyfľrdapssasdylftgtdqh slpfygtygdlerwahqsrqqiplglqalthgisf frs ggndneekartlivtiqmvaeaarfryisnrv Bioinformatika Známé lektiny Y Nové lektiny Levné Online databáze! LectomeXplore - A database of predicted lectins What is LectomeXplore ? LectomeXplore is a module dedicated to the exploralion of predicted lectins for each class from UniLectin3D classification. Translated genomes (proteomes) released in the UniProtKB and RefSeq sequence databases and in the PDB structure database were screened to identify the lectome (complete set of lectins) of the corresponding species. Workflow of lectin domains prediction 109 lectin classes Lectin 3D structures Conserved 2 5 yC ™5 .., Datasets of I nrntein umiarw-M Web Database protein sequences 4 HMMER Protein sequences identified with a lectin domain profiles Y filtering and cleaning LectomeXplore Predicted lectins in all available species from all kingdoms MycoLec Predicted lectins in fungal genomes https://www.unilectin.eu/predict/ https://www.unilectin.eu/mycolec/ Identifikace a izolace nových lektinů Práce s komplexním přírodním vzorkem. Malé množství vzorku (např. klíště), drahý vzorek, špatně dostupný. Nízká koncentrace lektinů. Poškození proteinů izolačním procesem. Pionýrský výzkum, rizikový. Nové lektiny s dosud neznámou strukturou/vlastnostmi! Lectin array Lectin affinity chromatography a i"4; Lectin histochemistry SDS-PAGE & Western Blot with lectins Enzyme-linked lectin assay (ELLA) Biological activity Mitogenic Anticancer Necrotic Antibacterial Antiviral XT # Hp @ Antifungal Antihelmintic ^ Nové lektiny ^ Nové unikátní lektiny — Extrakce proteinů Detekce lektinové aktivity Purifikace lektinů GlycoPedia „Glyko drbna" https://www.glycopedia.eu/ Glyko stránky news e-chapters resources search Starch : Structure and Morphology Serge Perez - Anne Imberty Library of Bio-active Monosaccharides. 1D,. Serge Perez 18 mars 2022 Acholetin : A newly discovered Poly 1-3 p-D GlcNAc bacterial polysaccharide Using genomic data and activity-based screening, the researchers identified a glycoside phosphorylase enzyme Acholetin •sphorylase 11 mars 2022 Glycomimetics against Multi-Drug Resistant Pathogens The collection of glycopedia virtual chapters has been extended with a new contribution Multi-drug resistant NMAc NHAc Acholetin fevrier 2022 new Recent Advances in Electron Microscopy of Carbohydrate Nanoparticles Carbohydrate nanoparticles, both naturally denved and synthetic ones, have attracted scientific and ÍPolydLp«nj«y janvier 2022 Chitin and Chitosan in the Bioeconomy Chitin is the second most abundant natural polymer in the world after cellulose, mainly derived from the food.. 20 décembre 2021 news Modernized uniform representation of carbohydrate molecules in the Protein Data Bank Carbohydrate molecules present in more than 14,000 Protein Data Bank (PDB) structures have recently been... Lipidy Lipidy jsou heterogenní skupina biomolekul nerozputných ve vodě a rozpustných v organických rozpouštědlech. Jsou to deriváty vyšších mono karboxylových kyselin a alifatických či alicyklických hydroxi/derivátů nebo aminoderivátů. Patří do ní následující látky: 1. Tuky a oleje facylqlyceroly) 2. Glycerolipidy (glycerofosfolipidy, plasmalogeny, kardiolipin) 3. Sfinqolipidy 14. Steroidy (cholesterol, žlučové kyseliny, steroidní hormony") 5. Izoprenoidy (ubichinon. plastochinon, dolichol) 6. Vitaminy rozpustné v tucích 7. Deriváty mastných kyselin (jeukotrieny, prostaqlandiny, prostacykliny, trpmbpxany) Lipidy hrají v organismu roli jako zásobní látky, strukturální složky membrán, hormony a vitaminy. 4.8.16 Lipids Small, biologically active molecules of variable structure, commonly defined by their solubility in non-polar solvents. Hydrophobic or amphipathic small molecules that may originate, entirely or in part, by the car banion-based condensations of thioesters (fatty acyls, give ero lipids, glycerophospholipids, sphingolipids, saccharolipids, and polyketides) and/or by carbocation-based condensations of isoprene units (prenol lipids and sterol lipids). Terminology of bioanalytical methods (IUPAC Recommendations 2018) https://doi.0rg/10.1515/pac-20i6-i:i20 Received November 21, 2016; accepted February 1, 2018 Základní pojmy z biochemie, V. Mikeš, Katedra biochemie PřF Masarykovy Univerzity v Brně, 2. doplněné vydání 2001 Lipidy a lipidomika * Zásobní látky (zdroj energie), mechanická ochrana, tepelná izolace, hormony, složky membrán, vitaminy Lipidomika Lipidomika je vědní obor, který se zabývá studiem biochemických drah lipidů v biologických systémech. Slovo lipidom označuje veškeré lipidy v buňce, tkáni nebo organismu v daném čase a je podmnožinou metabolomu Lipidomika je relativně mladý obor; který se rozvíjí v souvislosti s rychlými pokroky v lékařství, analytické chemii a informačních technologiích. Lipidy hrají velmi důležité role při vzniku a průběhu mnoha metabolických chorob jako je například obezita, ateroskleróza. cévní mozková příhoda, hypertenze nebo diabetes. V lipidomickém výzkumu se pracuje s velkými soubory dat, které kvantitativně popisují změny v obsahu a složení jednotlivých druhů lipidů. Analýza lipidomu znamená identifikaci a kvantifikaci tisíců molekulárních druhů lipidů, zkoumá se struktura a interakce s dalšími sloučeninami, jejich dynamika a změny, které nastanou v průběhu vzniku choroby Informace získané z těchto studií hrají důležitou roli při objasňování vzniku a průběhu nemocí na molekulární úrovni. ls Lípídomícká sekce České společnosti pro oiocnemii a molekulární biologii http://lipidomics.uochb.cas.cz/lipidomika.html Lipidy Lipidy jsou strukturně různorodé chemické sloučeniny, které plní řadu klíčových biologických funkcí, například jako stavební složky buněčných membrán, zdroje a zásobárny energie, nebo jako signální molekuly. Lipidy mohou být obecně definovány jako hydrofobní nebo amphipatické molekuly, které alespoň částečně vznikají kondenzací thioesterů (mastné kyseliny, polyketidy, atd.) nebo isoprenových jednotek (prenoly, steroly, atd.). Lipidy se obecně dělí na "jednoduché" a "složené" lipidy přičemž jednoduchými lipidy rozumíme ty, které při hydrolýze poskytují nanejvýš dva typy produktů, kdežto složená lipidy dávají při hodrolýze tri nebo více produktů. Lipidomics: a global approach to lipid analysis in biological systems Andrew D. Watson1 Department of Medicine. Division uf Carclií]Logy. David Cefftn -.School of Medicine, University of California at Ltis Angeles. Los Anjpdes, CA 90095 1. How to preserve and extract lipids? 2. What amount of lipids is present in the sample ? 3. How to fractionate a natural lipid extract? i. What are the components present within each fraction? 5. What amounts of each component are present in the lipid extract? General organizations Companies involved in Scientific Research Sites devoted to sciences and techniques Databases and encyclopedia Browsing on the net Discussion Groups Food and Nutrition journals on-line Scientific journals Scientific Societies and organizations Scientific Libraries Publishers Analýza lipidů http://cyberlipid.gerli.com/ Odkazy CYBERLIPID CENTER 1. This site for cyberlipici studies is an online, non-profit scientific organization whose purpose is to collect, study and diffuse information on all aspects of lipidology. 2. The site seeks to establish contacts between students, teachers, scientists and technicians and expose various models in all fields, forgotten studies of the past, work in progress and hot fields. 3. The site will try to feature an extensive, always upgraded, annotated bibliography devoted to the main presented topics. Lipid suppliers Sites directly involved in fat and lipids Journals devoted to lipids Historie Kalendář 1758 First study by Poulletier de la Salle FP of a lipid (cholesterol) isolated from bile stones. 1779 Discovery by the Swedish scientist Scheele CW of glycerol obtained by heating several oils and fats with lead oxide. 1783 Fourcroy AF introduced alcohol to extract brain lipids. 2023 1 Sth-20th January 2023 - Exceptional 'Journees Chevreul 80 years of SFEL', Paris For information contact: web site 22-23 May 2023 - 3rd International Conference Lipid droplets & Oleosomes, Wageningen, The Netherlands For information contact: web site 2-5July 2023 - 15th International Congress Congres ISSFAL/SFEL, Nantes (France). For information contact: web site 10-12July2023 -4th EpiLipidNETAction Meeting. Toulouse, France. For information : web site 17-20 September 2023 - 19th Euro Fed Lipid Congress & Expo, Poznan (Pologne). For information contact: web site • • • • «3» I LIPID MAPS® Lipidomics Gateway https://www.lipidmaps.org/ Lipid classification, structures and tools4 Eoin Fahy\ Dawn Cotter, Manish Sud, and Shankar Subramaniam University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0411, USA Abstract The study of lipids has developed into a research field of increasing importance as their multiple biological roles in cell bio log}', physio log;- and pathology are becoming better understood. The Lipid Metabolites and Pathways Strategy (LIPID MAPS) consortium is actively invoked in an integrated approach for the detection, quantitation and pathway reconstruction of lipids and related genes and proteins at a systems-biology level. A key component of this approach is a bioinforaiatics infrastructure involving a clearly defined classification of lipids, a state-of-the-art database system for molecular species and experimental data and a suite of user-friendly tools to assist lipidomics researchers. Herein, we discuss a number of recent developments by the LIPID MAPS bioinforaiatics core in pursuit of these objectives. Tins article is pait of a Special Issue entitled Lipodomics and Imaging Mass Spectrometry. Lipidy a lipidomika International Lipid Classification and Nomenclature Committee (2005): Klasifikační systém zahrnující 8 hlavních kategorií, každá je dále členěná (třídy, podtřídy a někdy podpodtřídy) Lipid of the Month April, 2023 Arborinol Lipid Classification System The LIPID MAPS Lipid Classification System is comprised of eight lipid categories, each with its own subclassification hierarchy. All lipids in the LIPID MAPS Structure Database (LMSD) have been classified using this system and have been assigned LIPID MAPS ID's (LMJD) which reflects their position in the classification hierarchy. LMSD can be searched by lipid class, common name, systematic name or synonym, mass, InChlKey or LIPID MAPS ID with the search box in the banner, or alternatively, by LIPID MAPS ID, systematic or common name, mass, formula, category, main class, subclass data, or structure or sub-structure with one of the search interfaces in the LMSD database section, Each LMSD record contains an image of the molecular structure, common and systematic names, links to external databases, Wikipedia pages (where available), other annotations and links to structure viewing tools. In addition to LMSD search interfaces, you can drill down through the classification hierarchy below to the LMSD record for an individual lipid. Lipidy - strukturní databáze Třídění lipidů a informatika lipidů obecně je, ve srovnání s proteiny a nukleovými kyselinami, poměrně nový obor. LIPID MAPS Structure Database (LMSD) The LIPID MAPS® Structure Database (LMSD) is a relational databaseencompassingstructuresand annotations of biologically relevant lipids. As of today, LMSD contain^7433 ij)iique lipid structures, making it the largest pubTicTTpTcTonly database in the world. The LIPID MAPS® Structure Database (LMSD) is a relational database encompassingstructures and annotations of biologically relevant lipids. As oftoday, LMSD contain^7877yiique lipid structures, making it the largest publicTTpTcL-only database in the world. https://www.lipidmaps.org/data/structure/index.php Lipid Category C u rated Computationally-generated All Fatty Acyls [FA] 8676 187S 10554 Glycerolipids [GL] 354 7379 7733 Glycero phospholipids [GP] 1747 8328 10075 Sphingolipids [SPl 1801 3168 4969 Sterol Lipids [ST] 3649 0 3649 Prenol Lipids [PR] 2401 0 2401 Saccharolipids [SL] 51 1294 1345 Polyketides [PK] 7151 0 7151 TOTAL 25830 22047 47877 Structures of lipids in the database come from several sources: (i) LIPID MAPS Consortium's core laboratories and partners; (ii) lipids identified by LIPID MAPS experiments; (iii) biologically relevant lipids manually curated from LIPID BANK, LIPIDAT, Lipid Library, Cyberlipids, ChEBI and other public sources; (iv) novel lipids submitted to peer-reviewed journals; (v) computationally generated structures for appropriate classes. Klasifikace podle LIPID MAPS systému LIPID ID (LM ID) format Přidělení ID Characters Positiou Description LMFAO103 0001 1-2 Database designation L\ffA01030C01 3-4 Two-letter category code LMFA01 030001 5-6 Tmo-disit class code LMFAG1D30001 7-8 Tino-disit subclass code LMFAQ10300D1 9-12 Unique four character identifieditith in a subclass Lipidy - strukturní databáze • Třídění lipidů a informatika lipidů obecně je, ve srovnání s proteiny a nukleovými kyselinami, poměrně nový obor. • LIPID MAPS Structure Database (LMSD) Structure-based search using GGA Ketcher ^ |100% * I Aran Atem H < C N 0 A+ on S A" lí^l P —_ [ ] Cl >-R1 Br Q 1 Generic Giraips LMSD: Structure-based search results Modify Search lilJD Common Name Systematic Mame Formula Mass Main Class Sub Class L M PR0103330002 Gossypol (W s ) 518,1941 lsoprenoids[PR01] LIPID MAPS does not verify the accuracy of this Wikipedia entry C15 isoprenoids (sesquiterpenes) [PR0103] Download results CSV T Gossypol Search type LM ID Name(Common, Systematic, or Syria nym) Include Records per page 50 Sort by Substructure * ■♦All records ■. Curated records only' .■Computationally generated records only |so |lm_id 'I From Wikipedia, the free encyclopedia Not to be confused m'tft Gossypetin. Gossypol is a natural phenol derived from trie cotton plant (genus Gossypium). Gossypol is a phenolic aldehyde that permeates cells and acts as an inhibitor for several dehydrogenase enzymes. It is a yellow pigment. Among other things, it has been tested as a male oral contraceptive in China. In addition to its putative contraceptive properties, gossypol has also long been known to possess antimalarial properties.[11 Submit I Reset https://www.lipidmaps.org/ (Bio)informatické nástroje Nástroje pro grafické znázornění lipidů Nástroje pro MS analýzu lipidů Lipid Structure Drawing Tools Mass Spectrometry Tools sn1-Acyl group 20:0 sn2-Acyl group 22:6(4Z,7Z, 10Z, 13Z, 16Z, 19Z) sn3-Acyl group 33:0 Product ion calculation tool foKGIycerolipidsJ/ ion mode) Ion IM+NH4]+ T fn1 20:0 * sn2 22:6(4Z,7Z,10Z,13Z,16Zr19Z) T sni 26:0 1 Submit Reset Submit Reset 1 Commonly occurring product ions for TG(20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/26:0) m/z Ion Description 1092.9893 Precursor ion [M + NH4] + 1075.9527 Precursor ion [M + H]+ 1057.9521 Precursor ion [M+H1+ with loss of H20 763.6599 Neutral loss ofsnl RCOOH + NHS from [M + NH4] + 747.7225 Neutral loss of sn2 RCOOH + NH3 from [M + NH4] + 579.5660 Neutral loss ofsn3 RCOOH + NHS from [M + NH4] + 453.4302 sn3 acyl chain ([ROO +74]+} 435.4196 sn3 acyl chain ([RC = 0 +74]+ with loss of H20) 385.2737 sn2 acyl chain ([ROO +74]+} 379.3934 sn3 acyl chain [[RC=0]+] 369.3363 snl acyl chain ([ROO +74]+} 367.2631 sn2 acyl chain |[RC=0 +74]+ with loss of H20) 361.3829 sn3 acyl chain ([ROO]+ with loss of H20) 351.3257 snl acyl chain |[RC=0 +74]+ with loss of H20) 311.2369 sn2 acyl chain ([ROO]+] 295.2995 snl acyl chain |[RC=0]+] 293.2264 sn2 acyl chain ([RC = 0]+ with loss of H20) 277.2890 snl acyl chain ([RC = 0]+ with loss of H20) I CCjycolipids: AnimaT^ľ^ [fe, Washington, VIA hhizukd Into, fa^Urwmiry^mf □fMrffan^ Jnt^o, japan Glycolipklsareanbohydrateslinkedtolipidteitte^ They are found in animal cells and tissues. Advanced article £ I Arttcfc Contents * kitoodudn * + £yn:"tfl!s_ id Ikg-jdj: di 4 fUKÜOT ■ ■:«J«m*1 4m1A Sfrutrc. DiAfelim aid n 3: ~y 13! >-i -go id: n VI-snty-ST* Introduction GlycolLpids are ubiquitous components of all animaL cell membranes and are particularly abundant at the cell sut-face memhrane. I he majority ofglycolipids belong to Lhe class 'glycosp-hingolipids'{GSLs; aLso called sphingogly-co lipid?), which have a heck hone lipid {termed 'ceramide') consisting of fatty acids and a long-chain aliphatic ammo alcohol, discovered and named hsphingoslne" by JLW Tbudiebum in 1S76. Sphingosine has the structure 1,3-dL-bydroxy-2-amino-octadecene, exhibiting the o-etytbro slereoconuguralion with regard to Lhe asymmetric carbon ] (C ] ),C2andC3 {Figure la). Fatty acids with various chain Lengths are linked to the 2-amino group of spbingosine to form ceramide (Figure lb). Various sugar residues are linked to the Cl primary hydro xyl group of the sphingosine moiety in ceramide to form galactosylceramide {GalCer) [Figure It), gl ucosylceramide (GlcCer) {Figure Id), or a va-r iety o f mo re comp lex o ligosacchar ides, res u iti ng in a wide variety of GSLs. One example of such a structure, hGM3\ which has sialic acid, galactose and glucose, ls shown in Figure 1e. lhe sugar linkage to the t'l hydroxy! group of ceramLde ls always J?, with only a single known exception x-Gal ceramide, which is found in sea anemones. GSLs are also found in plants, including yeast, although the ceramide and carbohydrate structures aredistinctively differen t fro m tbo seo fan imal GSLs. T he ceramideo f plan t GSLs has a sphingosine analogue, termed 'phylosphingo-sineL, which has an additional hydroxy! group at the C'4 position. The carbohydrate moiety of plant GSLs has a novel glycan, termed hpbytoglycosphingolipid\ consisting of phospnoinositol, glucosamine and mannose_ GSLs are rarely found in hactena, except for a novel group of 'sphingo bacteria' that includes Sphingomonasptxtcintoffilis. A fur there lass of glyco lipids, termed 'glyeoglycerolipidsV has been found and characterised. They have ] ,2-diacyL-.ttt-glycerolor 1 alkyl-2-acyl-.hrr-glycerolasabackbonelipid,to which a monosaccharide or relatively short oligosaccharide is linked through the primary hydroxy! group (Figure 2). Only tu ij tUycnjUyeerolipids have heen uWlcharacteriTed as animal tissue components. Their distribution is limited to the nervous system {brain, spinal cord, peripheral nerves) and testis. Jn contrast io animal tissues. tiLyco glycerol ipids are the major component in plants and bacteria. do* Id. W02,1978ÖA 1 5*2 j OOOTj 7',n:i,r\J ' '."in ".■".•in ."iji±,",v:Y ".* vi ' :■ .■r'l.j.'ii" bwt dr tiiraqi* Jfw Xrirtftairfwi'., Fmi lie dir. frirwxr ffinrniamiB/pinz JO rJwrnm Jr.'. Mam jthtrx. J HH>2 mutaine. r 1-1 Obíhej m\2- Multivalent glycocanjugates as anti-pathogen it agents! Anna Bernardi,3 J esus Jim énez Barbero,15 Alessandro Casnati,c Cristina De CastrD,d Tamis Darbre.10 Franck Fieschi* Jukka Finne.9 Horst Funken.h Karl Erich Jaeger.h Martina Lahmann,1 Thisbe K. Lindhorst,-1 Marco Marradi,k Paul Messner,' Antonio Molinaro,d Paul V. Murphy,m Cristina Nativi," Stefan Dscarson,0 Soledsd Penades,11 Francesco Peri,0 Roland J. Pieters.^ Olivier Renaudet.r Jean Louis Reymond,1 Barbara Richichi,n Javier Rojo,1 Francesco Šansone,11 Christina Schaffer,1 W. Bruce Turnbull/ Trinidad VelascoTorrijos,IJ Sébastien Vidal,v Stéphane Vin cent,'* Tom Wen n ekes,* Han Zuilhof* and Anne Imbeny*3 MT ]Ů.]Q£rT/i]Ů7]ÍŮ]2.ÍJ*T.y Genomics iuui cpigcnomics of the human gjycomc \ lacks /.iřliJíř- - "^1 i-I a ■■ Vru iřkiuLT ■ h-mia liiiľIilIí ■ c i'M iJ Uli i. U li ľ New insights into influenza A specificity: an evolution of paradigms Ye Ji, Yohanna JB White, Jodi A Hadden1, Oliver C Grant and Robert J Woods Feng Li'-2, Olga V. Glinskii'-3 and Vladislav V. Glinsky'-2 Proteomics 2013, Í3.341-354 DOI 10.1002/prnic.201200149 Essentials of Glycobiology Technical Note SugarSketcher: Quick and Intuitive Online Glycan Drawing Davide Aloccí i,1r Pavla Suchánková 3r4, Renaud Costa 5, Nicolas Hory s, Julien Mariethoz 'i-Ra d ka Svobodová Var eková ! ■*, Fh LI i p Toukach. * and Pre d éňq ue L i 5 ace k 1 ■ ^' * Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3 Kai Xu*. Kan agalag hatta R. Rajashankar', Yee-Peng Chan', Juha P. Himanen*, Christopher C. Broder', and Dimitar B. Nikolov* •Structural Biology Program. Memorial Sloan- Kettering Cancer Center, 1275 York Avenue. New York. NY 10021; 'Northeastern Collaborative Access 1 Použitá a doporučená literatura Glycoproteins Tony Merry, University of Manchester, Manchester, UK Sviatlana AstrautSOVa, Grodno State Medical University, Grodno, Belarus Based in part on the previous version of this Encyclopedia of Life Sciences (ELS) article, "Glycoproteins"by "Terry DButters". Glycolipids: Animal H ako mori Sen-itiroh> Pauht NnňrmatRexan^^tuteandtínfi^nitynfWaAirigtn^ !m(-Uer Waíŕiínplrjn, U'iA líhiiuka Ineo, Ttikyv Untvasty Stŕirof nľMoIíutw, lt\íyo,iapar\ Gľ/culiprdsaitarbohydralEslinkedto^^ in animal cells and tissues. Advanced article !;-ví!! i-id klidil si 01| j 'i /j; ľ 'i -= w -: ■ "ij ■ :■ j ■■ "--i .■-,>- j Edilnf by Hwiijwchim Cabiut ^ I The Sugar Code Fundamentals of Glycosciences Essentials of Glycobiology Lipid classification, structures and tools* Eoin Fahy*, Dawn Cotter, Manish Sud, and Shankar Subramaniam University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0411, USA MINIREVIEWS Lipoproteins of Bacterial Pathogens v A. Kovacs-Simon, R. W. Titbal], and S. L. Michell" Kazuistika dívky s dědičnou poruchou gly kosy lace MUDr. Martin Magner, Ing. Kateřina Veselá, RNDr. Hana Hansíkcvá, CSc, prof. MUDr. Jiří Zeman, DrSc, MUDr. Tomáš Honzík, Ph.D. Klinika dětského a dorostového lékařství. 1. LF UK a VFN Praha Building and rebuilding N-glycans in protein structure models Identification of novel N-glycosylation sites at non-canonical protein consensus motifs Mark S. Lowenthal". Kiersta S. Davis Trina Forniolo, Lisa E. Kilpatrick. and Karen W. Phinney Bart van Bťusťknm,'1 Mala s ja Wezel/1 Maarlen L. Heltkelman,'* Anaslassis Perrdli1srJ Paul Emsleyb and Robbie P. Joosten** Blood Groups j-..! Red Cell AniijjĽús lmm Lipidomics: a global approach to lipid analysis in biological systems Andrew D. Watson1 DepirLmcnl t>f Medicine, Dlvis-loi: {if CaiiliuLtJgv. D:iAiri CpelTtri] Sclic74>l of Medicine, University of C^lifuniia at Lm Angeles. Ltis Angeles, CA 9O09S Sweet new world: glycoproteins in bacterial pathogens IVl. Alexander Schmidt1, Lee W. Riley2 and Inga Etenz1 I Immunity. School of Public Health. University of California. 140 Warren Hall. Bsitaley