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How to use this text

After couple years of teaching the course C5320 Theoretical Concepts of NMR, I have decided to
convert my handwritten notes to an electronic format. My students soon asked me to share my notes
with them. I have agreed, warning them that the text was not supposed to serve as a textbook. Its
purpose was not to explain NMR to students, but to keep the background information in a single
file for the teacher. More recently, I have added introductions summarizing content of individual
lectures. You recognize them by a larger font and less technical details. But my original notes
are still there, labeled Supporting Information. They represent a very heterogeneous collections of
derivations, lists, technical issues, without much explanation. Intentionally, I have not tried to safe
space and included details usually omitted in textbooks. I have also found useful to incorporate
discussion from the original literature instead of providing reference to old articles. Feel free to use
it as a source of information but do not expect educational approach.

I would like to stress that the course expects a regular attendance of lectures and of the related
practical exercises. Fortunately, there are also excellent textbooks explaining NMR. Our course does
not follow any of them specifically, but I strongly recommend to check them especially if you find my
lectures confusing. At the beginning of each Lecture, I refer to the textbooks by a one-letter symbol
defining the book, followed by the number specifying the section. The one-letter symbols followed
by the full citation and a short description are listed below

e K: J. Keeler, Understanding NMR spectroscopy, 2nd. ed., Wiley 2010. Very educational, easy
to read, but physically correct, written for chemists.

e L: M. Levitt: Spin dynamics, 2nd. ed., Wiley 2008. Also very educational, with many pictures,
physically correct, going more to physics than Keeler and including topics not covered by Keeler
or by our course.

e C: J. Cavanagh et al., Protein NMR spectroscopy, 2nd. ed., Academic Press 2006 .Extremely
useful and detailed, but more difficult to read, the only book of the list discussing applications
to large molecules (proteins), but including also rigorous description of physical principles.

e B: K. Brown: Essential mathematics for NMR and MRI spectroscopists, Royal Society of
Chemistry 2017. Detailed description of many mathematical background, providing details
omitted in textbooks, written for chemists without advanced prior knowledge of mathematics.

Finally, T should also clearly describe the content and purpose of the course. It is curiosity-
oriented course, attempting to explain the theory of NMR and to answer the "why” questions. The



2 CONTENTS

course does not teach you how to analyze NMR spectra or set up NMR experiments, but it should
tell you why are the NMR experiments designed as they are. As NMR has roots in physics but
its fruit is mostly picked by chemists, the course must take into account that students of chemistry
and biochemistry are less trained in classical mechanics and electromagnetism than the students of
physics and biophysics. I try to cope with this fact by including the ”zeroth” chapter in this study
text. Its content is not covered by a lecture, but the students should read it individually (ideally
before the course starts) to check how much they understand the basics and to fill the gaps. The
"zeroth” chapter also contains a homework that should guide the students.
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Classical Introduction






Before we start:
Classical electromagnetism

Literature: Classical electromagnetism is discussed in L2 and B11, with the mathematical back-
ground covered by B4.

0.1 Electric field, electric charge, electric dipole

—

Objects having a property known as the electric charge (Q)) experience forces (F') described as the
electric field. Since the force depends on both charge and field, a quantity £ = F'/Q) known as the
electric intensity has been introduced:

F=QE. (1)

Field lines are often used to visualize the fields: direction of the line shows the direction of E ,
density of the lines describes the size of E (|E|). A homogeneous static electric field is described by
straight parallel field lines.

Two point electric charges of the same size and opposite sign (+Q and —(@)) separated by a distance
2r constitute an electric dipole. Electric dipoles in a homogeneous static electric field experience a
moment of force, or torque T:

F=2"x F=27"x QE =2QF x E = ji, x E, (2)
where [i, is the electric dipole moment.

—

T=[leXF (3)

is another possible definition of E. As derived in Section m potential energy of an electric
dipole is

g:_ﬁe'E“ (4)

0.2 Magnetic field and magnetic dipole

There is no "magnetic charge”, but magnetic moments exist:

5



T = jim X B, (5)
where [i,, is the magnetic dipole moment (because this course is about magnetic resonance, we

will write simply ;). This is the definition of the magnetic induction B as a quantity describing

magnetic field. As a consequence, potential energy of a magnetic dipole can be derived as described
by Eq. 27] for the electric dipole.
Potential energy of a magnetic moment /i is

£=—ji-B. (6)

The magnetic induction B is related to the force acting on a charged object, but in a different
way than the electric intensity E (cf. Eq. . The magnetic force depends not only on the electric
charge @ but also on the speed of the charge ¥/ (i.e., on the electric current)

F=Q(7x B). (7)

Therefore, the torque 7 cannot be described by an equation similar to Eq.[2] Instead,

F=Fx F=QrFx (7xB). (8)

Due to the fundamental difference between Eqgs. [2] and [§] it is more difficult to describe relation
between the magnetic force, magnetic moment and energy. We experience it in Sections |0.6.2] and

191

0.3 Source of the electric field

The source of the electric field is the electric charge. The charge (i) feels (a surrounding) field and
(ii) makes (its own) field. Charge at rest is a source of a static electric field. Parallel plates with
homogeneous distribution of charges (a capacitor) are a source of a homogeneous static electric field.

Force between charges is described by the Coulomb’s law. The force between two charges is given
by

7 1 Qe 7

T drey 1?2 7]

: (9)

where €y = 8.854187817 x 1072 F m~! is the vacuum electric permittivity.
Consequently, the electric intensity generated by a point charge is

- 1 Q7
F=———. 10
dmeg 12 |r| (10)
The electric intensity generated by a charge density p is
[ / avl’ (11)
 dreg r2|r|

|4



0.4. ORIGIN OF THE MAGNETIC FIELD 7

Coulomb’s law implies that electric fields lines of a resting charge
1. are going out of the charge (diverge), i.e., the static electric field has a source (the charge)
2. are not curved (do not have curl or rotation), i.e., the static electric field does not circulate

This can been written mathematically in the form of Mazwell equations{]

div E =2, (12)
€0
rot £ = 0. (13)

aEz + 8Ey + 8Ez

where div E is a scalar equal to and rot E is a vector with the z , Y, Z components

equal to da% — 8;}, dab;“ — 03%7 % — dai”, respectlvely. These expressions can be written in a much
more compact form, if we introduce a vector operator V = < 8‘1 gy , az> Using this formalism, the
Maxwell equations have the form
V- E="L, (14)
€0
V x E =0. (15)

0.4 Origin of the magnetic field

Electric charge at rest does not generate a magnetic field, but a moving charge does. The magnetic
force is a relativistic effect (consequence of the contraction of distances in the direction of the motion,
described by Lorentz transformation).ﬂ Magnetic field of a moving point charge is moving with the
charge. Constant electric current generates a stationary magnetic field. Constant electric current in
an ideal solenoid generates a homogeneous stationary magnetic field inside the solenoid.

Magnetic induction generated by a current density ; (Biot-Savart law):

L 1 i 7 i 7
B = dV & x — dV & x — 16
47T€()C2/ 72 % |7 47T/ 7‘2 7| (16)
v

\%4

Biot-Savart law implies that magnetic field lines of a constant current in a straight wire

1. do not diverge, i.e., the static magnetic field does not have a source

IThe first equation is often written using electmc induction D as div D = p. If electric properties are described in
terms of individual charges in vacuum, D = €yE. If behavior of charges bound in molecules is described in terms of
polarization P of the material, D= eoE + P.

2A charge close to a very long straight wire which is uniformly charged experiences an electrical force ', in the
direction perpendicular to the wire. If the charges in the wire move with a velocity vy and the charge close to the wire
moves along the wire with a velocity vy, the perpendicular force changes to F'| (1 — #251), were c is the speed of light
in vacuum. The modifying factor is clearly relativistic (B11.5).




2. make closed loops around the wire (have curl or rotation), i.e., the magnetic field circulates
around the wire

This can been written mathematically in the form of Mazwell equations :E|

V-B=0, (17)

A simple example of a moving charge is a circular loop with an electric current. As derived
in Section [0.6.2] magnetic moment of a current loop is proportional the angular momentum of the
circulating charge.

Magnetic dipolar moment /i is proportional to the angular momentum L
f="L, (19)

where ~ is known as the magnetogyric ratio.

The classical theory does not explain why particles like electrons or nuclei have their own magnetic
moments, even when they do not move in circles (because the classical theory does not explain why
such particles have their own angular momenta). However, if we take the nuclear magnetic moment
as a fact (or if we obtain it using a better theory), the classical results are useful. It can be shown
that the magnetic moment is always proportional to the angular momentumﬁ but the proportionality
constant is not always ()/2m; it is difficult to obtain for nuclei.

Analysis of the current loop in a static homogeneous external magnetic field, presented in Sec-
tion [0.6.2} shows that if the direction of the magnetic moment /i of the loop differs from the direction
of B a torque trying to align i with B. However, the magnetic dipole does not adopt the energet-
1ca11y most favored orientation (with the same direction of [ as B) but rotates around B without
changing the angle between i and B. This motion on a cone is known as Precession.

This is not a result of quantum mechanics, but a classical consequence of the relation between
the magnetic moment and angular momentum of the current loop. The spinning top also precess
in the Earth’s gravitational field and riding a bicycle is based on the same effectﬂ The precession
frequency can be derived easily for the classical current loop in a magnetic field (see Section [0.6.3)):

Angular frequency of the precession of a magnetic dipolar moment i in a magnetic field B is

(D = —"‘/é. (20)

3The second equation is often written using magnetic intensity f[ as ﬁ x H = j If magnetism is described as
behavior of individual charges and magnetlc moments in vacuum, H = B /po. If properties of a magnetic materials
are described in terms of its magnetization M then H = B/HO — M.

4A consequence of the rotational symmetry of space described mathematically by the Wigner-Eckart theorem.

5If you sit on a bike which does not move forward, gravity soon pulls you down to the ground. But if the bike has
a certain speed and you lean to one side, you do not fall down, you just turn a corner. A qualitative discussion of
precession using the spinning top and riding a bicycle is presented in L2.4-1.2.5.
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0.5 Electrodynamics and magnetodynamics

Similarly to the electric charge, the magnetic dipole (i) feels the surrounding magnetic field and (ii)
generates its own magnetic field. The magnetic field generated by a precessing magnetic dipole is

not stationary, it varies. To describe variable fields, the Maxwell equations describing rotation must
be modified

- dB
VxE=—— 21
1 dE .
B=—-— 3 22
V x 2 T HoJ (22)

Note that electric and magnetic fields are coupled in the dynamic equations. Not only electric
currents current, but also temporal variation of E induces circulation of B , and circulation of E is
possible if B varies. This has many important consequences: it explains electromagnetic waves in
vacuum and has numerous fundamental applications in electrical engineering, including those used
in NMR spectroscopy.

Eq. 21 shows us hovv the frequency of the precession motion can be measured A magnetic dipole
in a magnetic field B, generates a magnetic field B’ with the component || By constant and the
component L BO rotating around BO. If we place a loop of wire next to the precessing dipole, with
the axis of the loop perpendicular to the axis of precession, the rotating component of B’ induces
circulation of E which creates a measurable oscillating electromotive force (voltage) in the loop (see

Section [0.6.4)).

_ o 2|plS
A 713

As a consequence, an oscillating electric current flows in the loop (L2.8).

w sin(wt). (23)

HOMEWORK

First check that you understand Section|0.6.1. Then, derive how is the magnetic moment of a current
loop related to the angular momentum (Section [0.6.2)) and what defines the precession frequency of
a magnetic moment of a current loop in a homogeneous magnetic field (Section [0.6.3)).

6The second equation can be written as VxH= % + 5
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Figure 1: Potential energy of an electric dipole in a homogeneous electric field described by the intensity E. The reference position of
the dipole (0) is shown in Panel A, the actual position of the dipole (1) is shown in Panel B. Individual charges and forces are shown in
panels A and B, the dipolar moment fi. and the torque 7 (its direction —z is depicted using the symbol ®) are shown in Panel C. Note
that the direction of fi. follows the convention used in physics, the convention used in chemistry is opposite.

0.6 SUPPORTING INFORMATION

0.6.1 Potential energy of an electric dipole

Potential energyﬂ of the electric dipole can be calculated easily as a sum of potential energies of the individual charges. Potential energy
is defined as the work done by the field moving the charge from a position (1) to a reference position (0). If we choose a coordinate system
as defined in Figure [I] then the force acts only in the z/-direction (F,, = |F| = Q|E| for the positive charge and F,, = —|F| = —Q|E|
for the negative charge). Therefore, it is sufficient to follow only how the z’-coordinates of the charges change because changes of other
coordinates do not change the energy. The natural choice of the reference position is that the 2’ coordinates are the same for both charges,
z4,0 = z—,0. Changing the 2’ coordinate of the positive charge from z4 o to z4 1 = z4 0 + 2 results in a work

QIE|(2+,0 — 24,1) = —Q|E|z. (24)
Changing the z’ coordinate of the negative charge from z_ o to z— 1 = z_ o — z results in a work
—QIE|(z-0 — 2-1) = —Q|E|=. (25)
Adding the works
& = —2Q|E|z = —2Q|E|rcos = —ji. - E, (26)

where 6 is the angle between E and He-
Equivalently, the potential energy can be defined as the work done by the torque 7 on fi. (Figure ) when rotating it from the
reference orientation to the orientation described by the angle 6 (between E and fie). The reference angle for z4 o = z_ o is m/2, therefore,

-

0
/T\dG/ /|ue\|E|sm0 d0' = —|jie||E| cos 0 = —jie - E. (27)

0.6.2 Current loop as a magnetic dipole

Now we derive what is the magnetic dipole of a circular loop with an electric current. The magnetic moment is defined by the torque 7 it
experiences in a magnetic field B (Eq.

—

#=jix B, (28)

"Do not get confused: £ (scalar) is the energy and E (vector) is electric intensity.
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Therefore, we can calculate the magnetic moment of a current loop if we place it in a magnetic field B. Let us first define the geometry
of our setup. Let the axis z is the normal of the loop and let B is in the zz plane (= By = 0). The vector product in Eq. then simplifies
to

Te = NyBZ7 (29)
Ty = pzBz — pa Bz, (30)
Ty = —yBz. (31)

Note that we assume that the electric current in the loop and the magnetic field are independent. The current is not induced by B
but has another (unspecified) origin, and B is not a result of the current, but is introduced from outside.

As the second step, we describe the electric current in the loop. The electric current is a motion of the electric charge. We describe
the current as a charge @ homogeneously distributed in a ring (loop) of a mass m which rotates with a circumferential speed v. Then, each
element of the loop of a infinitesimally small length dl = rdy contains the same fraction of the mass dm and of the charge d@, moving
with the velocity ¥. The direction of the vector ¥ is tangent to the loop and the amount of the charge per the length element is Q/27r.
The motion of the charge element d@ can be described, as any circular motion, by the angular momentum

dL = 7 x df = dm/(7 x ), (32)

where 7 is the vector defining the position of the charge element dQ (Figure ) In our geometry, 7 is radial and therefore always
perpendicular to ¢. Since both 7 and ¥ are in the xy plane, dL must have the same direction as the normal of the plane. Therefore, the
z and y components of dL are equal to zero and the z component is constant and identical for all elements (note that ¥ and 7 of different
elements differ, but ¥ X ¥ is constant, oriented along the normal of the z axis and with the size equal to rv for all elements). It is therefore

easy to integrate dL and calculate L of the loop

Ly =0, (33)

Ly =0, (34)

L, = rv/ dm = mrv. (35)
loop

As the third step, we examine forces acting on dQ. The force acting on a moving charge in a magnetic field (the Lorentz force) is
equal to

F=Q(E+7%x B), (36)
but we are now only interested in the magnetic component F= QT x é) The force acting on a single charge element dQ is
e Qo a QL
dF =dQ(¥ x B) = —dl(v x B) = — (U x B)de. (37)
2mr 2m
The key step in our derivation is the definition of the torque
F=7Fx F=Qrx (#xB), (38)

which connects our analysis of the circular motion with the definition of i (Eq. . The torque acting on a charge element is (Figure )

_Q

T om

—

47 = 7 x dF = Ly (7 x B)dy 5 B)— B (7 9) | dp = (7. Byode. (39)
27 —— 27

=0

where a useful vector identity @ x (b x &) = (
torque has the same direction as the velocity ¥ (

.
a
v
~
frame, vy = —vsingp, vy =vcosp, v, =0, and 7- B

-&)b — (- b)Z helped us to simplify the equation because 7 L 7. Eq.[39|tells us that the
is the only vector on the right-hand side because 7- B is a scalar). In our coordinate
=1rgBy+ryBy+r.B, =ryBy = Byrcose (7+ B is reduced to 1Bz in our coordinate

frame because By = 0 and r, = 0). Therefore, we can calculate the components of the overall torque 7 as (Figure )

2 27
Te = _Qrv By /SinSOCOS pdep = — o Bs /Sin(zﬂ")d@ =0, (40)
2 4
0 0

27 27

Ty = Qrv By /Cos2 pdep = %ng /(1 + cos(2¢))dep = Qry Ba, (41)
o2 4

0 0

= 0. (42)
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Figure 2: Current loop as a magnetic dipole. The loop of radius r and length 277, charge @Q and mass m is shown in cyan. A magnetic
induction B of an external field is shown in magenta. The coordinates are chosen such that the loop is placed in the zy plane and B in
the zz. An element of charge dQ (moving with the velocity ¢), mass dm and length dl = rd¢p is shown in blue. The angular momentum
of the blue element is dL = # x #dm (Panel A). The total angular momentum is L = 7 x om (Panel B). The force dF = & x BdQ and the
torque d7 = 7 X dF acting on the blue element are depicted as the green and red arrows in Panel B. The torque acting on the whole loop
and the magnetic moment experiencing the torque in the field B are shown as the red and cyan arrows in Panel C.

Comparison with Eqs. 29H3T] immediately shows that

pty =0, (44)
Hz = Q;"U (45)

and comparison with Eqgs. @-@ reveals that the magnetic dipole moment of the current loop is closely related to the angular
momentum L = ¥ X m:

Q5

o (46)

0.6.3 Precession

Angular momentum of a particle moving in a circle is defined as L=mifx7v (Eq. , where 7 defines position of the particle and m and
¥ are the mass and the velocity of the particle, respectively (Figure ) The change of L is described by the time derivative of L.

dL d(7 x ) i di .

—:mizm—t><'D’+mf’><—t:m(v><z7)+f'><m&'. (47)

0

According the second Newton’s law, md is equal to the force acting on the particle (changing [_:)

dr .
— =Fxmi=Fx F=7, (48)
dt

where F is the force and 7 is the corresponding torque. The change of the angular momentum of a current loop due to an external
force can be calculated in the same manner (Figure|3). For an infinitesimal element of the loop,

d(dL)
dt

In_a homogeneous magnetic field, the force acting on all elements is the same and integration of the individual elements is as easy as
in Eq. , resulting in Eq. , where the force F' and the torque 7 now act on the angular momentum of the whole loop. Because i = vL
(Eq. i and 7= g x B (Eq. , the the magnetic moment of a current loop in a homogeneous magnetic field changes as

=7xddm=7x dF = dr. (49)
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dii o _ .
d—’::'yFXF:'y‘?:'yﬁxB:f'yBXﬁ. (50)

Rotation of any vector, including [ can be described using the angular frequency & (its magnitude is the speed of the rotation in
radians per second and its direction is the axis of the rotation):

dii

— =4 X . 51

o i (51)

Comparison with Eq. immediately shows that & = f'yé.

0.6.4 Electromotive force (voltage)

We can use a simple example to analyze the induced voltage quantitatively. This voltage (the electromotive force) is an integral of the
electric intensity along the detector loop. Stokes’ theorem (see B9) allows us to calculate such integral from Eq.

g 9B 5 OB

yé Fdl=—- | —dS=S5— -7, (52)
L s Ot ot

where S is the area of the loop and 7i is the normal vector to the loop. If the distance r of the magnetic moment from the detector

is much larger than the size of the loop, the magnetic induction of a field which is generated by a magnetic moment [ rotating in a plane
perpendicular to the detector loop and which crosses the loop (let us call it Bg) i

10 24z
By = — . 53
T ar o3 (53)

As [I rotates with the angular frequency w, pz = |u| cos(wt), and

OBy  po 2

a5 = _E:ﬂ"“'w sin(wt). (54)
Therefore, the oscillating induced voltage is
- 2|l S
56 Bal= £ |M| w sin(wt). (55)
T 47 3

8We describe the field generated by a magnetic moment in more detail later in Section when we analyze mutual interactions of
magnetic moments of nuclei.
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Figure 3: Classical description of precession of a current loop in a homogeneous magnetic field. Angular momentum L of a charged
particle of the mass m moving in a circular loop (shown in cyan in Panel A) randomly oriented in space is given by the vector product

B
m
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m

€
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of the actual position vector of the particle ¥ and the actual particle’s velocity ¥ ([_: = m# X 7). Note that size and direction of L is the
same for all positions of the particle along the circle (for all possible vectors 7). The angular momentum L of a current loop of the same
mass and the magnetic moment [ (cyan arrow), proportional to L are shown in Panel B. The proportionality constant is v (Eq. . In a
presence of a vertical static magnetic field B (magenta arrow in Panel C), the loop experiences a torque 7 = i X B (Eq. , shown as the
red arrow in Panel C. This torque (red arrow moved to the tip of the cyan arrow in Panel D) acts on [, which precesses about B. Two
snapshots of the precessing fi (with the loop) are shown in Panels E and F. The tip of the cyan arrow representing /i rotates about B (the
blue circle) with the angular frequency & = —yB.



Lecture 1
Nuclear magnetic resonance

Literature: A general introduction can be found in L.2.6 and L2.7. A nice and detailed discussion,
emphasizing the importance of relaxation, is in Széantay et al.: Anthropic awareness, Elsevier 2015,
Section 2.4. A useful review of relevant statistical concepts is presented in B6. Chemical shift is
introduced by Levitt in 1.3.7 and discussed in detail in L9.1 (using a quantum approach, but the
classical treatment can be obtained simply by using energy &; instead of H ; and magnetic moment
fijr instead of v,;1;; in Eqs. 9.11-9.14). A nice discussion of the offset effects (and more) can be
found in K4.

1.1 Nuclear magnetic moments in chemical substances

The aim of this course is to describe physical principles of the most frequent version of NMR spec-
troscopy, NMR analysis of chemical compounds dissolved in suitable solvents. We start by a descrip-
tion based on classical electrodynamics and postpone discussions based on quantum mechanics to
Lecture 4. The classical theory does not explain why some nuclei in such solutions have a magnetic
moment, but it describes macroscopic effects of the nuclear magnetic moments in bulk samples (i.e.,
in macroscopic systems composed of billions of billions of molecules). It should be emphasized that
classical (non-quantum) physics provides much more relevant description of the macroscopic samples
than quantum mechanics of individual particles (electrons or nuclei).

Some nuclei (e.g. 'H) have permanent microscopic magnetic moments, but the macroscopic
magnetic moment of non-ferromagnetic chemical substances is induced only in the magnetic field.
This is the effect of symmetry. Outside a magnet, all orientations of the microscopic magnetic
moments /i have the same energy and are equally probable. Therefore, the bulk magnetlc moment
is zero and the bulk magnetization M (magnetic moment per unit volume) is zero (Fig. |1

1.2 Polarization

In a static homogeneous magnetic field Eo, the orientations of ji are no longer equally probable: the
orientation of ji along By is energetically most favored and the opposite orientation is least favored.
The symmetry is broken in the direction of By, this direction is used to define the z axis of a coor-
dinate system we work in. However, the state with all magnetic moments in the energetically most

15
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Figure 1.1: Distribution of magnetic moments in the absence of a magnetic field. Left, a schematic representation
of an NMR sample. Dots represent molecules, arrows represent magnetic moments (only one magnetic moment per
molecule is shown for the sake of simplicity, like e.g. in compressed *C!¢0,). Right, the molecules are superimposed
to make the distribution of magnetic moments visible.

favorable orientation is not most probable. Orienting all magnetic moments along the magnetic field
represents only one microstate. In contrast, there exist a large number of microstates with somewhat
higher energy. The correct balance between energy and probability is described by the Boltzmann
distribution law, which can be derived from purely statistical arguments. Thermodynamics thus
helps us to describe the polarization along z quantitatively.ﬂ Calculation of the average magnetic
moment, presented in Sections [1.5.1H1.5.2] shows that the bulk magnetization of the NMR sample
containing nuclei with /i:

2
B
M=o age—o o= B

e (11)

where A is the number of magnetic moments per unit volume.

In summary, magnetic moments are polarized in the static homogeneous magnetic fields. In
addition, all magnetic moments preces with the frequency & = —fyéo, but the precession cannot
be observed at the macroscopic level because the bulk magnetization is parallel with the axis of
precession (Fig. [1.2)).

!Thermodynamics also tells us that the energy of the whole (isolated) system must be conserved. Decreased energy
of magnetic moments is compensated by increased rotational kinetic energy of molecules of the sample, coupled with
the magnetic moments via magnetic fields of the tumbling molecules, as discussed in the next chapter.

2Precession is described in background Section W
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Figure 1.2: Distribution of magnetic moments in a homogeneous magnetic field By. The cyan arrow represents the
bulk magnetization.

1.3 Coherence

In order to observe precession, we need to break the axial symmetry and introduce a coherent motion
of magnetic moments. This is achieved by applying another magnetic field B perpendicular to By and
oscillating with the frequency close to (ideally equal to) v|By|/27. In NMR, sources of the oscillatory
field are radio WavesE| Figure shows why a static perpendicular magnetic field cannot be used,
whereas the desired effect of an oscillating perpendicular magnetic field is depicted in Figure (1.4}

If the radio waves are applied exactly for the time needed to rotate the magnetization by 90 °, they
create a state with M perpendicular to By. The magnetization vector (left panel in Fig. describes
a new distribution of magnetic moments (right panel in Fig. . Such magnetization vector then
rotates with the precession frequency, also known as the Larmor frequency. The described rotation
corresponds to a coherent motion of nuclear magnetic moments polarized in the direction of M and
generates measurable electromotive force in the detector coil (see Section [0.6.4). As the rotation of
the magnetization creates the measurable signal in NMR spectroscopy, it is important to describe it
mathematically. Several mathematical approaches to rotation are presented in Sections [1.5.3H1.5.5|
We even use rotation to explain effects of linear oscillations. When describing the effect of radio
waves, the oscillating magnetic field of the waves is often approximated by a rotating magnetic field.
Such treatment is presented in detail in Section [1.5.6] Later, after introducing quantum-mechanical
description of nuclear magnetic moments, we show that rotating magnetic fields represent a good

3In the context of the NMR spectroscopy, it is important that the field oscillates in time, not that it travels in
space as a wave.



18

By

Figure 1.3: Distribution of magnetic moments in the presence of an external homogeneous magnetic field By (vertical
purple arrow) is such that the bulk magnetization of nuclei (shown in cyan) is oriented along By (left). Application
of another static magnetic field él rotates the magnetization away from the original vertical orientation down in
a clockwise direction (middle). However, the magnetization also precesses about éo. After a half-turn precession
(right), the clockwise rotation by the additional magnetic field B returns the magnetization towards its original
vertical direction. Therefore, a static field cannot be used to turn the magnetization from the vertical direction to a
perpendicular orientation.

approximation of radio waves oscillating in one dimension, if the magnetic induction of the radio

waves is much lower than |By| (Sections |5.7.14H5.7.18]).

1.4 Chemical shift

The description of the motions of the bulk nuclear magnetization presented in the previous section is
simple but boring. What makes NMR, useful for chemists and biologists is the fact that the precession
frequency of the magnetic moment of the observed nucleus is influenced by magnetic fields associated
with motions of nearby electrons. In order to understand this effect, we need to describe the magnetic
fields of moving electrons.

If a moving electron enters a homogeneous magnetic field, it experiences a Lorentz force and moves
in a circle in a plane perpendicular to the field (cyclotron motion). Such an electron represents an
electric current in a circular loop, and is a source of a magnetic field induced by the homogeneous
magnetic field. The homogeneous magnetic field By in NMR spectrometers induces a similar motion
of electrons in atoms, which generates microscopic magnetic fields (Figure )

The observed nucleus feels the external magnetic field By slightly modified by the microscopic
fields of electrons. If the electron distribution is spherically symmetric, with the observed nucleus in
the center (e.g. electrons in the 1s orbital of the hydrogen atom), the induced field of the electrons
decreases the effective magnetic field felt by the nucleus in the center. Since the induced field of
electrons B, is proportional to the inducing external field EO, the effective field can be described as

B = By+ B, = (1+6)B,. (1.2)

The constant ¢ is known as chemical shift and does not depend on the orientation of the molecule
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Figure 1.4: Effect of the radio waves on the bulk magnetization (left) and distribution of magnetic moments after
application of the radio-wave pulse (right). The thin purple line shows oscillation of the magnetic induction vector of
the radio waves, the cyan trace shows evolution of the magnetization during irradiation. If the perpendicular magnetic
field oscillates with a frequency equal to the precession frequency of magnetization, it rotates the magnetization
clockwise when it is tilted to the right, but counter-clockwise when the magnetization is tilted to the left. Therefore,
the magnetization is more and more tilted down from the original vertical direction. The total duration of the
irradiation by the radio wave was chosen so that the magnetization is rotated to the plane perpendicular to éo (cyan

arrow). Note that the ratio | Bo|/|Bradio| is much higher in a real experiment.
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Figure 1.5: A, Classical description of interaction of an observed magnetic moment with the orbital magnetic moment
of an electron of the same atom. The observed nucleus and the electron are shown in cyan and red, respectively. The
thick purple arrow represents go, the thin purple induction lines represent the magnetic field of the electron (the small
purple arrows indicate its direction). The electron in ]§0 moves in a circle shown in red, direction of the motion is
shown as the red arrow. The field of the orbital magnetic moment of the electron in the same atom decreases the total
field in the place of the observed nucleus (the small purple arrow in the place of the cyan nucleus is pointing down).
B, Interaction of an observed magnetic moment with the orbital magnetic moment of an electron of the another atom
(its nucleus is shown in gray). In the shown orientation of the molecule, the field of the orbital magnetic moment of
the electron in the other atom increases the total field in the place of the observed nucleus (the small purple arrow
close the cyan nucleus is pointing up). C, As the molecule rotates, the cyan nucleus moves to a position where the
field of the orbital magnetic moment of the electron in the other atom starts to decrease the total field (the induction
lines reverse their direction in the place of the cyan nucleus).

in such a Caseﬂ The precession frequency of the nucleus is equa]ﬂ to wo = —y(1+ 9)By.

Most molecules consist of multiple atoms and electron distribution is therefore not spherically
symmetric around the observed nucleus. As a consequence, the effective field depends on the orienta-
tion of the whole molecule defining mutual positions of atoms and orientation of molecular orbitals.
The currents induced in orbitals of other atoms may decrease or increase (shield or deshield) the
effective magnetic field felt by the observed nucleus (Figure ,C). Therefore, the effective field
fluctuates as a result of rotational diffusion of the molecule and of internal motions changing mutual
positions of atoms. The induced field of electrons is still proportional to the inducing external field
E’O, but the proportionality constants are different for each combination of components of B, and
Eo in the coordination frame used. Therefore, we need sixﬁ constants d;; to describe the effect of
electrons:

Be,x = 51‘90B0,x + 5:1:yBO,y + 5IZBO,Z (13)
Be,y = 5y:vBO,$ + 5yyB0,y + 5yzBO,z
Be,z = 5szO,x + 5zyBO,y + (szzBO,z (15)

4Instead of §, a constant with the opposite sign defining the chemical shielding is sometimes used.

5The value of § in Eq. describes how much the frequency of nuclei deviates from a hypothetical frequency of
free nuclei. Such a hypothetical frequency is difficult to measure. In practice, frequencies of nuclei in certain, readily
accessible chemical compounds are used instead of the frequencies of free nuclei as the reference values of 4, as is
described in Section

SThere are nine constants in Eqgs. but dzy = Oya, 0zz = 0., and dy, = 0,y
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Figure 1.6: Visualization of the chemical shift tensor (black). Distance of each point at the plotted surface from
its center is proportional to the magnetic induction B. in the given direction. The chemical shift tensor can be
decomposed to its isotropic (blue), axial (red), and rhombic (green) contributions. The dark and light colors indicate
positive and negative values.

Eqgs. can be written in more compact forms

Be,x 511 5my 6:17z BO,a:
Bey | = | 0ya Oyy 0y | - | Boy (1.6)
Be,z 521& 5zy 522 BO,Z
or
B. =6 B, (1.7)

where ¢ is the chemical shift tensor.

It is always possible to find a coordinate system X, Y, Z known as the principal frame, where ¢ is
represented by a diagonal matrix. In such a system, we need only three constants (principal values of
the chemical shift tensor): dxx, dyy,dzz. However, three more parameters must be specified: three
Euler angles (written as o, 1, and y in this text) defining orientation of the coordinate system X,Y, Z
in the laboratory coordinate system z,y, z. Note that dxx,dyy, dzz are true constants because they
do not change as the molecule tumbles in solution (but they may change due to internal motions
or chemical changes of the molecule). The orientation is completely described by the Euler angles.
Graphical representation of the chemical shift tensor is shown in Figure [I.0], the algebraic description
is presented in Section We derive a not very simple equation describing how electrons modify
the external magnetic field:

3 sin v cos v cos
+ 0.8y | 3sinv cosdsing

. 0
B.=6B,|0
1 3cos? —1
)
)

—(2cos? x — 1) sin 9 cos ) cos ¢ + 2sin x cos y sin ¥ sin ¢
+ 6. By | —(2cos? x — 1) sind cos 19 sinp — 2 sm x cos xsindcosyp |, (1.8)
+(2cos? x — 1) sin?
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where 9;, 0,, and 6, are constants describing sizes of the isotropic, axially symmetric and asymmet-
ric (rhombic) components of the chemical shift tensor, respectively, and ¥, ¢, x are the aforementioned
Euler angles.

Do we really need such a level of complexity? The answer is "yes and no”. The blue (isotropic)
term in Eq. does not depend on the orientation. The average values of the red and green
terms in Eq. for all possible orientations are equal to zero (Section . It has the following
consequence. When we analyze only the average value of the precession frequency, it is sufficient
to consider only the isotropic component. The description of the effect of electrons then simplifies
to Eq. [[.2, where § now represents 6; of Eq. [I.§f When we analyze also the effect of stochastic
motions changing orientations of individual molecules, the other terms become important as well.
The correct quantitative analysis then requires full Eq. but the basic principles can be discussed
without using the rhombic component. Therefore, we will use the axially symmetric approximation
of Eq. when we discuss effects of molecular motions in Section [2.5.1]

Practical consequences of the existence of the chemical shift, their formal description and related
conventions used in the NMR literature are discussed in Section [I.5.8] In addition, Section [I.5.8
presents simplified equations of motion describing evolution of magnetization in terms of classical
physics and in the absence of relaxation. Solution of these equations is described in Section for
a simple case of magnetization rotating in the absence of the radio waves, and in Section for
a general case of magnetization rotating in the presence of the radio waves. We can summarize the
results of the analysis of the effect of the chemical shift as follows

e In the absence of the radio waves, the chemical shift distinguishes precession frequency of
individual nuclei. In isotropic liquids (solutions of studied compounds in common solvents,

investigated most frequently), the precession frequency is given by &y = —7(1 + 5)50, where
0 = ¢; is the isotropic chemical shift, reflecting electron distribution around the nucleus in the
molecule.

e In the rotating coordinate system, the precession is described by the frequency offset Q=
o — Grot = Wo — (—Wradio) = Wo + Wradio, Where the frequency of the rotation of the coordinate
frame o is set to the frequency —daqgi, defined in Section m (definition of the sign is
a bit tricky, but the magnitude |wyaqio| is simply frequency of the radio wave applied in the
experiment. )

e During application of the radio wave, the chemical shift makes impossible to fulfill the resonance
condition wy = —Wragio (or = 0) for all nuclei. Only the nucleus with {2 = 0 experiences
exactly the desired effect of the radio wave pulse, e.g. rotation exactly by 90° exactly around
axis corresponding to direction x in the rotating coordinate system. All other nuclei are affected
somewhat differently, the deviations are known as offset effects. On one hand, the offset effects
make the result of applying radio waves imperfect for nuclei with Q2 £ 0. On the other hand, the
chemical shift (offset effects) allow us to influence different nuclei by magnetic waves selectively,

as described in Section [.5.11]

Note that now (when we take into account the chemical environment of the nucleus) we describe
precession of magnetic moments about By in isotropic liquids by three different frequencies:
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e the actual precession frequency (resonance frequency, chemically shifted Larmor frequency) wy.
Its magnitude is in the radio frequency range (typically 10 MHz—1 GHz), its value is wy =
—(1+6)Bo.

e chemical shift 6 = ¢; is a relative value expressed in units of ppm. In principle, it should
be equal to —(wo + vBy)/vBo. In practice, it is reported relative to a reference signal from a
standard compound (wp —wo ref) /wWo ref- The chemical shift is the value reported in the literature
as a property of the given compound. It is given by the molecular structure, is influenced by
chemical and physical conditions (temperature, ionic strength, pH) but does not depend on the
experimental setup (on By or frequency of radio waves used in the experiment).

e frequency offset Q = wo — (—Wradio)- 1ts magnitude is in the audio frequency range. Frequency
offset is given by the choice of the frequency of the radio waves used in the experiment. Its
value is important for the experimental setup but not comparable with frequency offsets at
other spectrometers. Therefore, it is usually not reported in the literature.

HOMEWORK

Derive the bulk magnetization of an NMR sample (Section [1.5.2)) and solve the equations describing
evolution of the magnetization in By (Section [1.5.9)
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1.5 SUPPORTING INFORMATION

1.5.1 Calculating averages

An average value of some quantity f is calculated as

M=
Se

~
Il
-

M=

T
= fh+fot+--+fn =10
f= N =N = . (1.9)

M=z

<.
Il
—

If f is a function of a variable t (e.g., time) and we measure f for regularly spaced values of ¢ (e.g. in regular time steps At), we can
calculate the average of f in the interval between tg and ty = to + NAt as

N N
5 k) 3 f(t)
ft) =" —f—="F%— (1.10)
ng !

The same result is obtained if we multiply both the numerator and denominator by At:

N
2. f(t)At

ft) = 7]:1]\, . (1.11)
At
=1

J

Shortening At — 0 tells us that we can calculate an average value of a continuous function f(t) by integration:

tN tn
[ fmdt [ f)dt
1) = tOtN = t; — (1.12)
T ar N —to

This recipe can be easily extended to functions of more variables. For example, the average value of f(z,y) for zo < z < xx and
Yo <y <yn is

TN YN TN YN
/ yf f(z,y)dady / yf f(z,y)dzdy
y) = 2% = 2o % . 1.13
f(m y) sz nydmdy (IN _ IO)(yN _ yo) ( )
o Yo

The geometric interpretation is presented in Figure . The average value is equal to the volume below the surface defined by f(z,y)
(pink in Figure ) above the rectangle (xy —x0) X (yn —yo), divided by the volume of the box of dimensions (zxy —zo) X (yn —yo) X 1.
The latter volume is numerically equal to the area of the rectangle (xn — zo) X (yn — yo). The former volume is a sum of volumes of many
rectangular prisms. Each prism has the same base of the area dz - dy (shown in yellow in Figure [1.7]A) and a different height (shown in
magenta) equal to f(z,y).

In NMR spectroscopy, we often calculate average for various orientations in space. The orientation can be described by a vector 7 of
unit length (|7] = 1) pointing in the given direction. The end points of vectors defining all possible orientations form a surface of a sphere
of the radius r = 1 (Figure ) The orientation-dependent quantity f can be described as a function of two angles, of inclination ¥
and azimuth ¢. The average value of f(1, ) is calculated as an integral of the values of f ”above” the surface of the sphere, divided by
the area of the surface. The integral ”above” the surface of the sphere is a sum of integrals ”above” narrow bands on the surface of the
sphere. Each band (an example is shown in green in Figure [1.7]B) can be decomposed into small rectangles. One rectangle is shown in
yellow in Figure . One side of the rectangle (red in Figure[1.7B) corresponds to the width of the green band. Its length is given by the
arch between the vectors 7(¥, ¢) (green in Figure ) and 7(9 — dv, ¢) (red in Figure ). The length of the arch is rd¥. The other
side of the rectangle (blue in Figure [1.7B) corresponds to the arch between the projections of the vectors #(d, ¢) (green in Figure )
and 7(9, ¢ + dp) (blue in Figure ) to the horizontal plane. The length of the blue arch is r sin?dy. Therefore, the area of the yellow
rectangle is 72 sin ¥dddyp, or simply sin ¥d¥dy because 7 = 1.

The integration is equivalent to summation of volume elements similar to the magenta prisms in Figure[L.7]A. One of them is depicted
in Figure [[.7]C. The integral can be written as

V=7 =27 27

T
F (9, ) sinvdddp = /dip/sinﬂdﬁf(ﬁ, ©®) (1.14)
9=0 ©=0 0 0
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A

rdv 7
rsin vde

N

dy

dx

Figure 1.7: Integration in calculating averages. Integration of f(z,y) (A), integration of f(¢,¢) (B), and the volume element
F(9, 9)r? sin¥dddep (C). Details are described in the text.

and the average is

27 T 27 T 27 T
[dp [sin0dvf(9,¢) [ de [sindddf(de) [ di [ sinddof(d,p)
0 0 0 0 0 0

f@0,0) = —5—= = 1 = o ; (1.15)
J de [ sinddd Jde [ du
0 0 0o 1

where we used the substitution

u = cost¥ = du = d—udﬁ = deosd
do do

d¥ = — sin ¥dd (1.16)

1.5.2 Polarization and bulk magnetization

The average value of the z-component of fI is calculated according to Section [1.5.1] The distribution of [ is axially symmetric. Therefore,
712 does not depend on ¢ and we can integrate over ¢ and over ¥ separately in Eq.

s s

1
[ Paesinvas = 1 [ Pa@lulcosvsinvas, (117
0 0

27 ™ P
[ de (f PeA(9)p2(Vsin ﬁ)dﬂ) 2 [ PA(9) . (9) sin 9d0
—eq _ \O 0 0 1
# 4 A 2
where 9 is the inclination (angle between [ and axis z) and P°4(1) is the probability of i to be tilted by the angle 9. If the magnetic

dipoles are in a thermodynamic equilibrium, the angular distribution of the [ orientation is given by the Boltzmann law: Probability of a
system to be in the state with the energy &£; at the temperature T' is given by

£

_ &
e FBT
eq _
Pit= (1.18)
_ Ek
where Z is sum of the e *BT terms of all possible states.
_EW) _EW)
. e FBT . e FBT
a(9) — _ _
Peagg) = 2 = P9) = ——en , (1.19)
(f d¢> Je FBT ginv/dy’ 1 [e” *BT siny/dy’
0 0 0
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where T is the thermodynamic temperature, kg = 1.38064852x 10723 m? kgs~2 K~! is the Boltzmann constant, and & = —|u|| Bo| cos ¢
is the magnetic potential energy of the dipole. The distribution is axially symmetric, all values of the azimuth ¢ are equally possible.
Using the substitutions

d dcosd
u=cos? = du= odd =~V 4y = —sin 9dd (1.20)
dd dv
and
B
w = HIBol (1.21)
kgT
_£M)
e kT eUw eUw euw 2w
€1 _— _— — — — — e
P q(’&) - T _EMW) - —1 - 1 - 1 [eu’w]l - W — g—w e =P q(u) (122)
%fe kBT gin¢/dvy’ % [ —e'wdw % [ ew'wdu/ 2w -1
0 1 -1
Knowing the distribution, the average z-component of i can be calculated
ks 1 1
—eq 1 eq . 1 eq ‘,LL‘”LU uw
pl=5 PeY(9) || cos ¥ sin¥dd = 5 |puP® (u)du = o ow | ue du. (1.23)
0 -1 —1

The integration can be performed per parts (per partes), with the result

1 _
] (1 w ) ) (e“’—i—e w 1) ( 1)
=" (= —1) - = —w—1)) = - )= th(w) — — ),
1 eW —e”W we (w ) we (-—w ) Il eW —e~ W w Il { coth(w) w
(1.24)

where we recognized that the ratio of exponential terms is the function hyperbolic cotangent (coth(w)). The function coth(w) can be
expanded as a Taylor series

_ |u|w 1
eq __ Wi . puw .
= e |2 (uvw — 1)

1 w w3 2wb w w3 2uwb
th(w)mw ~ 4+ LW L2 e (Yo 2 ), 1.25
coth(w) ~ 4 2 = 5+ 015 Bz |“|<3 5 o1 ) (1.25)

At the room temperature, |u||Bo| < kT even in the strongest NMR magnets. Therefore, w is a very small number and its high
powers in the Taylor series can be neglected. In summary, the angular distribution can be approximated by

_ 1 |u|?|Bo|
eq _ 1.26
He 3 kgT (1.26)
while
el = ﬁzq =0. (1.27)

1.5.3 Changing Cartesian coordinate frame

Different Cartesian coordinate systems are optimal for description of different issues related to NMR spectroscopy. It is therefore useful
to be able to change the coordinate system when needed. In this section, we limit the changes of coordinate systems to their rotation in
space.

We start by a two-dimensional case (Figure . Let us suppose we know that a vector @ has components az,ay in an ”original”
coordinate system zy, and we wish to express components of @ in a ”primed” coordinate system z’y’. First, we have to specify relationship
between the coordinate systems. This relation is a rotation in the xy plane. We get the ”primed” coordinate frame (shown in red in
Figure if we rotate the ”original” system (shown in blue in Figure by an angle ¢. Note that we now treat the original (blue)
coordinate frame as a geometric object and actively rotate it to a new (red) orientation in the plane.

In order to describe how is the vector @ represented in two rotated coordinate systems, we change the point of view. Now we are
interested in how the vector @ is seen from different coordinate frames. If we express as as |a|cospq and aj, as |a|sin@a, and agy/ as
|a| cos ¢!, and a;, as |a|sin ¢/, we see that ¢}, = pq —¢ (Figure . The coordinates of @ in the ”primed” coordinate system (Figure[1.8B)
are the same as coordinates of @ rotated "backwards” (by angle —¢) in the original system (Figure ) This manipulation of @ is known
as passive rotation. Note that the angles describing the active rotation (of the coordinate frames) and the passive rotation (of @) differ in
the sign. The passive rotation can written down as a set of equations relating the coordinates of @ in two different frames

a,r = |a|cospl, = |alcos(pa — @) = |al(cos pq cos ¢ + sin @q sin @) = ag cos ¢ + ay sin p (1.28)

a, = la|sin @l = |a|sin(ga — @) = |a|(sin @q cos @ — cos pq sin p) = —ag sin ¢ + ay cos P, (1.29)
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Figure 1.8: Changing two-dimensional coordinate frame. A, vector @ (black) in two coordinate frames, shown in blue and red. The
red coordinate system is obtained by rotating the blue frame by the angle ¢. B, the same picture oriented so that the axes of the red
coordinate frame are horizontal and vertical. C, Rotation of the vector @ by the angle —¢ results in a vector @, which is oriented in the
blue coordinate frame exactly like @ is oriented in the red coordinate frame (cf. Panel B).

or in a matrix form

az\ cosy  sing az
(ay/)_(_sincp cosgo) (ay)' (1.30)

In order to convert coordinates of @ in the ”primed” system to the coordinates of @ in the ”original” frame, we have to rotate by +¢.

Changing sign of ¢ results in
az\ _ (cosp —singp Ayt (1.31)
ay )~ \sing cos ¢ ay ) :

The obtained relations can be easily extended to two three-dimensional coordinate frames xyz and z’y’z related by rotation about
the common axis z

Qg cosp sinp O ag ag cosp —singp 0 Qg
ay | = | —singp cosp 0 ay ay | = | sing cosp 0 Ay (1.32)
a,r 0 0 1 ay ay 0 0 1 a,r
rotation by —¢ rotation by +¢
Similar expressions can be derived for coordinated systems related by rotation about the x and y axes, respectively:
Qg 1 0 0 [ [ 1 0 0 Qg
ay | =10 cosVy sinVy ay ay | =10 cost¥r —sinds ayr (1.33)
a,r 0 —sindY, cosV, a a 0 sind, cos ¥y a,r
rotation by —94 rotation by 494
and
Gyt costy 0 —sindy ag ag cos¥y 0 sindy ()
ay | = . 0 1 0 ay ay | = . 0 1 0 ay | . (1.34)
ay sind, 0 cos Uy a a —sindy, 0 cosvy ay
rotation by —d, rotation by +19,

We can now proceed to three-dimensional coordinate frames. Again, we start by specifying their mutual relation. In order to describe
a general relation of coordinated systems xyz and z’y’2’, three subsequent active rotations of the frame zyz are needed. The choice of the
actual rotations is somewhat arbitrary. Note that if a mutual orientation of two coordinate frame is described by rotations about different
axes, or by rotations about the same axes but in a different order, the numerical values of the rotation angles differ. Several conventions are
used in different fields of science and for different purposes, none of them is a general recommended standard. Nevertheless, all conventions
allow us to relate the coordinate frames unambiguously. In this course, we use the following rotations (Figure ):



28

1. Rotate about the z axis of the original coordinate frame to move the y axis to the z’y’ plane. We calEl the angle of this rotation
x and label a vector defining the new direction of the y axis as 7. Note that the direction of 7 is the intersection of the planes xy
and z'y’.

2. Rotate about 7 to move the axis z to the direction of 2. We call the angle of this rotation 9.

3. Rotate about 2’ to move 7 to the direction of y’. We call the angle of this rotation ¢.

Written in the matrix form, the active rotation converting the ”original” frame zyz to the "primed” frame z’y’z’ is expressed as

cosp —sinp O cos?¥ 0 sind cosy —sinxy O
sin ¢ cose O 0o 1 0 sin x cosy 0| =
0 0 1 —sind 0 cos? 0 0 1
cospcoscosy —sinpsiny —cospcosdsiny —singpcosy cosesind
sinpcos¥cosxy + cospsiny —singcos¥siny + cospcosy singsind | . (1.35)
—sind cos x sin ¥ sin x cos v

The passive rotations describing how @ is seen from different coordinate frames, are performed in the reverse manner:

Qg cosxy siny O cosy 0 —sind cosp sinp 0 az
ay | = —sinx cosx O 0 1 0 —singp cosp O ay (1.36)
ayr 0 0o 1 sind O cos 0 0 1 az
az cosp —sing O cosv 0 sind cosx —siny O Qg
ay | = [ sing cosp 0 0 1 0 sin x cosy O ay (1.37)
az 0 0 1 —sind 0 cos? 0 0 1 a,r
Expressing the product of the three rotation matrices,
[ cos x cos ¥ cos p — sin x sin ¢ cos X cos ¥ sin ¢ + sin x cos ¢ —cos xsin?d ag
a, | = | —sinxcosdcosp —cosxsing  —sinxcosdsinp + cosx cosp sin x sin 9 ay (1.38)
a,r sin 1 cos ¢ sin ¥ sin ¢ cos ¥ a;
ag cospcosdcosy —sinpsiny —cospcost¥siny —singpcosy  cospsind al,
ay | = | sinpcos¥cosx+cospsiny —sinpcost¥siny + cospcosy singsind a; . (1.39)
az — sind cos x sin 9 sin x cos ¥ a’,

In the language of linear algebra, the matrix of the trigonometric functions of ¢, 9, x is a transformation matriz. If we label the
elements of the transformation matrices Ry, for the transformation from the ”original” to the ”primed” coordinate frame and Ry, for
the inverse transformation, the change of the coordinate frame (transformation) can be described in terms of the components of the vector
a as

k' = Z Ryri (=, =0, —x)ax ak = Z Ry (9, @) ag:. (1.40)
k o

The elements Ry (—p, =9, —x) and Ry (x,?, p) obviously constitute inverse matrices. Using the standard notation, we can label
them8| R—! and R, respectively. The rotation can be then written shortly as

a =R'a @ = Ra'. (1.41)

The change of the coordinate system can be written in a similar fashion for a tensor Ty (Figure ,C). We derive the relation in
two steps. In the first step, we combine the rows of the matrix representing T into row vectors T'J

Tow Toy Tz T
Tye Tyy Ty= | = | T, | - (1.42)
zx zy Tzz fz

Formally, the vectors T'J are components of a column vector that transforms according to Eq. m

"Our angles @, ¥, x represent Fuler angles, usually labeled «, B, and ~. As the Greek letters o, 8, and v are traditionally used for
different purposes in NMR spectroscopy, we use other letters in our course.

8Tn our course, we use the "hat” as a symbol for both matrices and operators. In many cases, matrices represent
operators (multiplying a vector by the rotation matrix is one of possible ways of describing the operation of rotating
the vector in space). However, matrices and operators are different objects in mathematics and physics. Hopefully
using the same symbols for both matrices and operators does not confuse the reader.
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Ty = ZRjj'(*%*ﬁ,*X)fj (1.43)
J

In the second step, we describe transformation of each vector T’j/. As ﬁ/ are row vectors, they are multiplied from right by the
transformation matrix

Racx’ Rzy' sz’
(Tj/z Tj/y Tj/z) Ryz/ Ryy/ Ryz/ = (lel/ Tj’y’ Tj/z/ ) , (1.44)

2at Ryt Rz

or

Tjre = Tjrp R (=, =0, —X). (1.45)
k

Note that if T;/ were written as column vectors, the transformation would be

R,y Ryry Ryrg Tj’z Tj’z’
Ry’y Ry'y Ry’y Tj’y = Tj’y’ . (1.46)
R, , R,, R, Tj’z T]-/z/

The transformation matrices in Eqgs. and are related by transposition (changing rows to columns and columns to rows),
exactly like the transformation matrices in Egs. and Therefore, transformation of T}, can be also described as

Tj/k’ = ZRk/k(QO, 19, X)Tj’k- (147)
k

Combining the first and second step of the derivation, we can describe transformation of a tensor T}, as

Tjrmr = Y Rjrj (=0, =0, =X) R (=, =0, =) Tjr = > Rjrj (=0, =9, =X) Riris (6, 9, ) T (1.48)
ik J ok
and
Tiy = Z Z R (%9, 0) Rk (X, 0, ) Tjrpr = Z Z Rjjr (%9, @) Rirr (—p, =0, —x)Tjr s (1.49)
iR 7w
or shortly as
T'=R™'TR T =RIT"R™. (1.50)

1.5.4 Rotation described by Wigner matrices

It is also possible to employ complex numbers to describe the rotation in space. The three-dimensional vectors in the real Cartesian
coordinate system are first converted to spherical coordinates

az = |a|sindq cos pq, (1.51)
ay = |a|sinYq sin @q, (1.52)
a, = |a|cos V. (1.53)

Then we use the Euler formula e¥? = cos ¢ + isin ¢ to express a vector @ in a different basis. Namely we decompose @ not into its
three Cartesian components, but to the z component plus the linear combinations az =+ iay:

a, — ia COS g — isin g

sindg _;
e 1¢a’

Yy .

a1 = —— = |a|sin?d = la 1.54
7 |al a 7 lal 73 (1.54)

ag = az = |a| cos Vg, (1.55)
ay1 = o +1ay iay = |a|sin ¥q COS pa F 18N pa = \a|sm19a etita, (1.56)

V2 V2 V2
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Figure 1.9: Changing three-dimensional coordinate frame. A, the red coordinate system is obtained by rotating the blue frame (i)
about the axis z until the blue axis y coincides with 7@ (angle of this rotation is x), (ii) about @ by ¢ (this determines the new direction of
axis z, labeled 2’ and shown in red), and (iii) about 2’ by ¢ (this determines the new direction of axis y, labeled ¥’ and shown in red). B,
a graphical representation of a tensor (green) in the discussed coordinate frames. The tensor, formally corresponding to a chemical shift
tensor with §; = 0 and da = dr, is visualized as described in Figure m Dark and light green correspond to positive and negative values.
C, graphical represeantation of the same tensor rotated (i) by —¢ about 2/, (ii) by —9 about 7, and (iii) by —x about z. The rotated
tensor has the same orientation in the blue coordinate system as the original tensor had in the red coordinate frame.

JE

With the proper normalization (to keep @*@ in the new basis equal to a? = a2 + ag +a2), @ can be written as a row Vectoﬂ

E:(az;%ay a _azji;y):(a_l a0 aj1). (1.57)

Then, rotation of @ about z is described by a transformation matrix (applied from right to row vectors, cf. Eq|l.44)) which is diagonal:

e %00 R S (N
d=(a-1 a0 ay1)=(a-1(0) ao(0) ay1(0)) [0 10 = (a-1(0) ao(0) a11(0)) 0 el0e . (1.58)
0 0e¥ 0 0 e'lv

So far, we have described only rotation about one axis (z). The discussion can be extended to a general rotation is space, relating
two different coordinate systems. As described in Section@, a Cartesian coordinate system can be transformed to another one by three
successive rotations. Two of them are rotations about the z axis (about the "new” 2z’ axis by the angle —¢ and about the ”original” z axis
by the angle —x and ). Such rotations are, according to Eq. described by the functions e'*? and eik,x, where k and k' are —1, 0, and
+1. The middle rotation about the y axis is more difficult to describe. It is defined by a matrix with components traditionally labeled by

dl . (9).

%(1-‘1—(}0819) 2 siny %(1—00519)

) V2
dl (9 = —% sin ¥ cos ¥ % sin 9 . (1.59)
%(1—00319) —%sinﬂ %(l—kcosﬂ)

The complete matrix, traditionally denoted 9 L has the following form

e? 00 %(1 + cos 9) % sind %(1 — cos ) eX 00
PN, 9,x)=[0 10 ‘ —%Sinﬂ cos ¥ %sinﬁ 0 10
0 0e™¥ %(1 — cos¥) —% sin 9 %(1 + cos¥) 0 0e™™x
%ei‘PeiX(l + cos 9) ei‘/’% sin ¥ %ei“"e_ix(l — cos¥)
= —%eix sin cos ¥ %e*ix sin ¥ . (1.60)
%e_i"’eix(l — cos ) —e‘“’”% sin %e_we_ix(l + cos9)

IWe present @ as a row vector here because it is a convention to use row vectors (and the corresponding representations of tensors)
when describing rotation in the manner discussed in Section @
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This matrix describes active rotation of an object in space by the angles (p, 9, x) or passive rotation by the angles (—¢, =%, —x)
describing how @ is seen from different coordinate frames (cf. Section [1.5.3). Transformation of a coordinate frame can be therefore
described as

%ei‘peix('l + cos 9) ei‘P% sin ¥ %ewe’iXQ — cos¥)
@ =(ap=—1 ar—o ap=y1)=(Gk=—1 Gk=0 Ak=t1) —'\%e‘x sin 'cosﬁ '%e.*‘x sin
%e_welx(l — cos ) —e_l‘f’% sin %e_“"e_‘x(l + cos )
(1.61)
or simplyﬂ
1
a = Y D (9, X)ak. (1.62)

k=—-1

Rotation of tensors discussed in Section [1.5.3] can be also described in a similar manner as presented above for vectors. The tensors
of our interest can be expressed in the following basis

1
TO,O = _7(Trz + Tyy + Tzz) (163)

V3

1
Ty,-1 = _i(Tzz —Tow —i(Tyz — T=y)) (1.64)
1
Tio = iﬁ(sz —Tyz) (1.65)
1
T1,+1 = _E(sz - sz + i(Tyz - sz)) (1-66)
1 .
T2,72 = +5(Ta‘r - Tyy - 1(Tmy - Tyz)) (167)
1
T2,71 = +5(TTZ + 1o — i(Tyz + sz)) (168)
1
To0 = —%(sz + Tyy — 2T%2) (1.69)
1
T2,+1 = *E(Tzz 4+ Tor + i(Tyz + sz)) (170)
1 .
To 42 = +5(Tzz = Tyy + i(Tey — Tyz)) (1.71)

The first subscript defines rank of the component and also the transformation matrix. The zero-rank component Ty o is a scalar
and does not change under rotation. Therefore, its_transformation ”matrix” is simply 2° = 1. An example is the atomic orbital 1s.
The first-rank components T} j transform as vector and their rotation is described by our familiar matrix 1728 Examples of first-rank
tensors are the functions describing angular dependence of atomic orbitals 2p. The matrix describing transformation of the second-rank
components T5 . is

e 0 00 0 e2x0 00 0
0 €900 O 0 X000 0
22,0, x)=]0 0 10 0 Z2Wwl|lo o0 10 o0 , (1.72)
0 0 0eivo 0 0 0e X0
0 0 00 e 2 0 0 00 e 2ix

where

10Here we keep notation introduced in Section to describe a passive rotation corresponding to the transformation from an ”original”
coordinate system to a new, "primed” frame. The elements of the transformation matrix are typically marked with indices m/m (summing
over m') in the literature.

L11f the Cartesian components of the tensor T are products of Cartesian components of vectors @ and b (Tzy = azby etc.), then

Ty, = %ck, where ¢ are elements of ¢ = a x b in the basis defined by Eq.
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i(l + cos¥)? % sin¥(1 4 cos ) \/gsin2 9 %sin #(1 — cos ) i(l — cos )2
—% sin¥(1 4 cos ) %(2cos19 —1)(1 + cos¥) \/gsmﬁcosﬁ %(ZCOS'L? +1)(1 —cos?) 5 Lsin (1 — cos®)

d?(9) = \/%SiHQ’ﬁ —\/;smﬁcosﬁ 5(3(:052 —-1) \/gsinﬂcosﬂ \/gsm ) . (1.73)
%sinﬁ(l — cos ) %(2c0519 +1)(1 — cos®) —\/gsinﬁcosﬁ %(200519 —1)(1 + cos¥) %sinﬁ(l + cos %)

i(lfcosﬁ)2 7%sin19(1fcosﬂ) \/gsin219 7%sin19(1+cos19) i(l + cos )2

Examples of second-rank tensors are the functions describing angular dependence of the atomic orbitals 3d.
In summary, components of tensors transform as

o
Ty = Z 710 (0.9 0Ty = Z e (D)X (1.74)

and the elements of the transformation matrices are listed in Table Description of rotation described in this section was introduced
in 1927 by Wigner and the transformation matrices are usually called Wigner matrices.

1.5.5 Rotation in spinor representation

Rotations described in Section can be also analyzed in a manner that is particularly useful in NMR spectroscopy. We again start
with vectors written in spherical coordinates and convert them to two-dimensional complex vectors, called spinors

(aa) _ la| cos %e‘iﬁ%ﬂ (1.75)
ap |a| sin ﬁa et ) '

We can easily check that the complex numbers an and ag unambiguously define the Cartesian coordinates az, ay,a-

Ve Vq Iq 9 etiva 4 e=iva
aaaj + agay, = |a|sin - cos e ~i®a 4 |a|sin — 08 ; etiva —|q| sinﬁa+ = |a|sin ¥, cos pq = ag, (1.76)
[ 9 [ ) etiva _ g=iPa
i(anal —a a*) a|sin — cos — e~ ¥a _ |g|sin — cos —eTi¥e | = —i|a|sin¥y—————— = |a|sin Yq sin @a = ay, 1.77
(aeas ~ agaz) =i (Jalsin % cos %% — fa]sin 2% cos e af sina & al in Vo singa = ay,  (177)
5 Va 9 Ya
aaay —agap = |al cos? o || sin? 5 = = |a|cos Ve = a, (1.78)
and
9 9
aaay +agaj = |al cos? ?a + |a| sin? 7(1 = lal. (1.79)
Rotation of a spinor by an angle —¢, /2 about an axis 7 corresponds to the rotation of the real 3D vector about an angle —93,.
Rotations of spinors are described by 2 X 2 matrices
an —B
1.80
( ﬁn a;; ) ’ ( )
where
an = cosVYpn /2 —in; sintn /2, (1.81)
Bn = —i(ng + iny) sin ¥y, /2. (1.82)

For rotations about the z, y, and z axes,

an,\ _ (ag =B an ) _ 10 Yo /01 . Vs aa\ _ cos Yz —isin %z G
(5= () ()= (D=5 (D) 5) ()= ((mE ") (). 0w
al, oy —BF Qo 10 9 (0 -1\ . ¢ ao cos 2 _gin Y Qo
()= () ()= (G =3 () ) () = (o ") () wow
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Table 1.1: Elements of Wigner matrices describing rotation of vectors and tensors.

) . . L .
j k kK eTike dj . (9) e ik'x D] (2,9, %)
0 0 0 1 1 1 PR =1
1 -1 =1 eti® %(1 + cos V) etix 911,—1 = %ei<‘P+X)(1 + cos )
1 -1 0 e*?‘P %sinﬂcosﬂ 1 - 911,0 = %sinﬁcc-)sﬁ
1 -1 +1 et %(1 — cos V) e*.‘X Dy 41 = %e‘(‘PfX)e“P(l — cos )
1 0o -1 1 % sin ¥ cos ¥ etix 9&71 = —%elx sin ¥ cos ¥
1 0 0 1 cos ¥ 1 9&0 = cos ¥
1 —i g1 — L o—ixgg

1 0 +1 1 ‘ ﬁsmﬂcosﬂ e .IX Do+1 = 12e- sin ¥ cos 1
1 +1 -1 e’f‘P %1(1 — cos V) etix @%1771 = 561‘(‘PfX)(1 — cos V)

—ip o ; I B P
1 +1 0 e A ﬁsmﬁcosﬁ 1 A D10 = ) 3¢ sin ¥ cos ¥
1 41 41 e7'% %(1 + cos V) e X @_IH 11 = ie_l(“"*'X)(l + cos )
2 -2 -2 et %(1 + cos¥9)? et2ix Do o= %621<¢+X)(1 + cos 9)?
2 -2 -1 et2ie % sin (1 + cos ¥) etix 932’71 = %ei(Q‘P*X) sin (1 + cos )
2 =2 0 et2ie % sin? ¥ 1 932,0 = %em“’ sin? ¥
2 -2 41 et % sin¥(1 — cos V) e ix D911 = %ei@"”_X) sin¥(1 — cos V)
2 -2 42 et %(1 — cos )2 e~ 2ix 932&2 = Le2i(e=2) (1 — cos9)?
2 -1 —2 eti¢ —% sin¥(1 + cos ¥) et2ix .@31’72 = —%ei("’*%‘) sin9(1 + cos 9)
2 -1 -1 et %(2 cos? — 1)(1 +cos®) etix @31171 = %ei(‘PJrX)(Q cost¥ — 1)(1 + cos®)
2 -1 0 eti® \/gsinﬂcosﬂ 1 931’0 = \/gei‘/’ sin 9 cos ¥
2 —1 41 eﬁw 2(2cosd + 1)(1 — cos ¥) e*i% P2, 44 = %ew—x)(z cos® + 1)(1 — cos¥)
2 -1 42 eti¥ % sin¥(1 — cos V) e~ 2ix .@31’_'_2 = %el(‘f’_%d sin¥(1 — cos V)
2 0 -2 1 NEE o+2ix R, = \[ieXxsin?0
2 0o -1 1 f\/gsinﬁcosﬁ etix @3’_1 = ,\/geix sin 1 cos ¥
2 0 0 1 1(3cos?9 — 1) 1 P8y = 3(3cos?9 —1)
2 0 +1 1 \/gsinﬁcosﬁ e~ix _0]3’_‘_1 = \/ge_ix sin 9 cos ¥
2 0o +2 1 \/gsin2 9 e 2ix @§’+2 = \/ge*QiX sin2 9
2 41 -2 eie —% sin¥(1 — cos ) et2ix 911772 = —Lle=i2¢=2) sin9(1 — cos )
2 41 -1 el %(2 cos? 4 1)(1 —cos®)  etix .@_QH’_I = %e_i(‘P_X)(Q cos? + 1)(1 — cos )
2 +1 0 e”i® —\/gsinﬁcosﬁ 1 Qil,o = —\/ge*i“’ sin? cos ¥
2 +1  +1 e_?‘P %(2 cos? — 1)(1 + cos? e_b.< @3_17+1 = %e—?(¢+x)(2 cos?¥ — 1)(1 + cos )
2 41 42 e % sin¥(1 4 cos V) e 2ix 911’+2 = %e"@‘P*X) sind¥(1 + cos )
2 42 -2 e_Q?W (1= cosv)? efQiX Dig o= ie_zi(f"_ﬂ(l —cos9)?
2 42 -1 e —% sind(1 — cos¥) etix 912’71 = —%671(2*"*” sind(1 — cosv)
2 +2 0 e 2% \/gsin2 v 1 @-2%2,0 = \/ge_%‘?’ sin? ¢
2 42 +1 e %Y —Llsing(1+cos?) e ix P25 41 = —5e 1220 sinY(1 4 cos )
2 +2 42 e72¢ %(1 + cos )2 e~ 2ix D30 = ie_zi(‘P“'X)(l + cos¥)?
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Figure 1.10: Rotation of the magnetization to direction perpendicular to Bo, shown in the laboratory and rotating coordinate frame
in the left and right panel, respectively. The thin purple line shows oscillation of the magnetic induction vector of the radio waves, the
cyan trace shows evolution of the magnetization during irradiation.

S0
ap,\ _ [az —B% aa ) 10 9. .1 0\ . 9 an) _[e'2 0 o
(a%)_'(ﬁz 02)(06)__((01)(DS2_1(0—1)$ni2)(aﬁ)_'< 0 é“%‘)(“ﬁ)' (1.85)

The rotation of a 3D real vector by the Euler angles —¢, —9, —x (Eq.[1.35) thus corresponds to the following rotation of the spinor

. . .o+ L po—
(ag) -~ e”i3 0 (cos% —sin%) 7150 (aa) [ cos geﬂ‘%X —singe+1¢2x (aa) (1.86)
alﬁ 0 efi3 sing cosg 0o et% ag sin ge—iL;X cos ge-&-iL;X ag )’ ;
When we proceed to the quantum mechanical description of NMR, we again meet spinors and 2 X 2 matrices describing their rotations
(Pauli matrices). However, what we describe here is rotation of completely classical objects, just expressed using pairs of complex numbers.

1.5.6 Rotating coordinate frame

Mathematically, the described radio field can be decomposed into two components Br-;:dio and Br_adio rotating with the same angular
frequency but in opposite directions (@radio and —@radio, respectively). The component rotating in the same direction as the precessing
= B in this text) tilts the magnetization vector M from the z direction, the other component can be neglected

magnetic dipoles (éradio
as long as |B1| < |Bp|. This process represents a double rotation, the first rotation is precession around the direction of Eo, the second
rotation around B; is known as nutation. Although this mathematical decomposition is only formal and does not reflect the physical
reality, it is frequently used to facilitate the analysis of the effect of radio waves on magnetization. The description can be simplified (the
effect of the precession removed), if we use Bi to define the z axis of our coordinate frame. As B; rotates about éo with an angular
frequency Wyadio, we work in a coordinate frame rotating with a frequency Wrot = —@radio (rotating frame). In order to define the direction
of z in the rotating frame, we must also define the phase ¢rot.
The components of the field B rotating with the angular frequency —@;aqio are in the laboratory frame

Bl,m = IBI| Cos(fwradiot + Qbradio) = IBI| cos(wrott + ¢radi0)v (1'87)
Byy = |Bl| Sin(_wradiot + ¢radio) = |Bl| Sin(wrott + ¢radio)a (1'88)
Bi.=0 (1.89)

and in the rotating frame
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Bi,z = |Bi|cos(¢rot), (1.90)
Bi,y = |Bi]sin(¢rot), (1.91)
Bi, =0. (1.92)

Consequently, the rotation of magnetization is given by the angular frequency vector

. R 0 _’Y|B1| COS(_wradiot + ¢rot) _’Y|B1| COS(_Wradiot + ¢rot)
G =& +d1 =—y(Bo + B1) = 0 + | —v|Bi]sin(—wradiot + ¢rot) | = | —7v|B1|sin(—wradiot + ¢rot) (1.93)
—|Bo| 0 —|Bol

in the laboratory frame, and by
—7|B1] cos(¢rot)

G=a& =—yB1 = | —|B1|sin(¢rot) (1.94)
0
in the coordinate frame rotating with the angular frequency &rot = —@radio = @o-

What are the components of Bj in the rotating frame for different choices of ¢rot?
If ¢rot = 0, cos(0) =1, sin(0) = 0, and

Bi,x = |B1l, (1.95)
By, =0, (1.96)
Bi. = 0. (1.97)
If ¢rot = 5, cos(5) =0, sin(3) = 1, and
Bi,z =0, (1.98)
By = |Bi], (1.99)
Bi. =0. (1.100)
If ¢rot = m, cos(m) = —1, sin(7) = 0, and
Bio = —|Bi], (1.101)
By =0, (1.102)
Bl,z - 07 (1103)
and so on.
The typical convention is to choose ¢rot = 7 for nuclei with v > 0 and ¢rot = 0 for nuclei with v < 0. Then, the nutation frequency
is &1 = +vyB1 = +|y|B1 (opposite convention to the precession frequency!) for nuclei with v > 0 and &1 = —yB1 = +|v|B1 (the same

convention as the precession frequency) for nuclei with v < 0.

1.5.7 Chemical shift tensor

The chemical shift tensor in its principal frame can be also written as a sum of three simple matrices, each multiplied by one characteristic
constant:

dxx O 0 100 -1 00 1 00
0 dyy 0 |=a(010])+6.[ 0-10]+6[0-10], (1.104)
0 0 dzz 001 0 02 0 00
where
1 1
5 = gTr{é} = §(5XX +0yy +6zz2) (1.105)

is the isotropic component of the chemical shift tensor,
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1 1
da = §A5 =5 (20zz — (0xx +dvv)) (1.106)

is the azial component of the chemical shift tensor (As is the chemical shift anisotropy), and

b= Sms8s = 5 (xx — dvy) (1.107)
is the rhombic component of the chemical shift tensor (ns is the asymmetry of the chemical shift tensor).

The chemical shift tensor written in its principle frame is relatively simple, but we need its description in the laboratory coordinate
frame. Changing the coordinate systems represents a rotation in a three-dimensional space, as described in Section Equations
describing such a simple operation are relatively complicated. On the other hand, the equations simplify if By defines the z axis of the
coordinate frame (i.e., By,, = Bg and By,; = Bo,y = 0):

. 0 3sin ¥ cos Y cos —(2cos? x — 1)sin¥ cos ¥ cos ¢ + 2sin x cos x sin ¥ sin ¢
Be=6Bo | 0| +8aBo | 3sindcosd¥sing | +6,By | —(2cos? x — 1) sin® cos¥sin e — 2sinx cos xsindcosp | . (1.108)
1 3cos? — 1 +(2cos? x — 1)sin? ¥

The first, isotropic contribution does not change upon rotation (it is a scalar). The second, axial contribution, is insensitive to the

rotation about the symmetry axis Z, described by x. Rotation of the chemical shift anisotropy tensor from its principal frame to the
laboratory frame can be also described by orientation of Z in the laboratory frame:

-1 00 322 —1 32,7y 3Z.Z.
Sa| 0-10|—6a| 322, 3221 32,2, |, (1.109)
0 02 3222, 3ZyZ, 3Z%2 -1

where Z; = sin cos ¢, Z; = sin¥sine, and Z, = cos?.

1.5.8 Offset effects

The presence of electrons makes NMR a great method for chemical analysis. The measured precession frequency depends not only on the
type of nucleus (e.g. 'H) but also on the electronic environment: frequencies of protons in different chemical moieties differ and can be used
to identify chemical groups in organic molecules. But how do the electrons influence the physical description of the nuclear magnetization?

The effect of the isotropic component of the chemical shift on the precession frequency is simply introducing a small correction constant
1 + 6 modifying ~:

o = —’yéo —  Wg = —’y(]. + (5)30 (1.110)

The trouble is that the correction is different for each proton (or carbon etc.) in the molecule. Therefore, the frequency of the radio
waves can match wg = —y(1 4 §)|Bo| only for one proton in the molecule. For example, if the radio wave resonate with the frequency of
the methyl proton in ethanol, it cannot resonate with the frequency of the proton in the OH or CHz group. In the rotating coordinate
frame, only magnetization of the methyl protons rotates about &1 = (1 + 6methylél = 'yBl. Magnetizations of other protons rotate about
other axes (Figure[1.11)). Such rotations can be described by effective angular frequencies

Ger = @1 + &, (1.111)

where

—

Q= UUO - Ujrot = ‘30 - (_Gradio) = ‘DO + "jradio (1-112)

is the angular frequency offset. As any vector in a 3D space, Weg is characterized by three parameters: magnitude weg, inclination ¥,
and azimuth ¢.
The magnitude of the effective frequency is

it =\ T (1.113)

tand = L. (1.114)
Q

The inclination can be calculated from

The azimuth is given by the phase of By (¢ = prot in a single-pulse experiment).

As a result of the chemical shift, only the magnetization of the nucleus with @ = 0 (methyl protons in our case) rotates along the
”meridian” in the rotating coordinate system (Figure left). Magnetizations of other protons move in other circles (Figure right).
Therefore, if the radio transmitter is switched off when the methyl magnetization is pointing horizontally (and starts to rotate around the
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Figure 1.11: Evolution of the magnetization vectors with precession frequency exactly matching the used radio frequency (left) and
slightly off-resonance (right). The evolution is shown in a coordinate frame rotating with @rot = —&radio-

?equator” with the precession frequency of methyl protons), vectors of magnetizations of other protons point in different directions, and
start to precess on cones with different inclinations and with different initial phases. Such effects, known as the offset effects, influence the
measured signal

The discussed motion of the magnetization vector M during irradiation is described by the following equations

dM,

dt”” = —QM, + w1 sin pM,, (1.115)
dM,

dt” = 4+QM, — w cos oM., (1.116)
dM

dtz = —wi1 sin My + w1 cos oMy, (1.117)

where ¢ is the azimuth of Weg. The equation can be written in a compact form as

= = B x M. (1.118)

1.5.9 Evolution of magnetization in éo

Egs. [1.115 are easy to solve in the absence of By (i.e., after turning off the radio waves):

dM;
= QM 1.119
1 y ( )
dM.
Y = QM, (1.120)
dt
M
df (1.121)
dt

The trick is to multiply the second equation by i and add it to the first equation or subtract it from the first equation.

12The result is the same as if apparent effective fields of the magnitude Beg = 1/ B2 + (€2/7)? were applied in the direction in the

directions of Weg. The apparent effective field Begr is often used to describe the offset effects.
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w = Q(—My + iM,) = +iQ(M, + iM,) (1.122)
M, —iM,
W = Q(~My — iMy) = —iQ(M, — iM,). (1.123)

Each differential equation can be solved easily using the standard procedure. The results are

My +iM, = Cyeti® (1.124)
My —iMy, = C_e i, (1.125)

where the integration constants Cy = M (0) +iMy(0) = y/M2(0) + M2(0)e'?° and C_ = M. (0) —iMy(0) = /M2(0) + M2(0)e~ %0

are given by the initial phase ¢g of M in the coordinate system (in our case, t = 0 is defined by switching off the radio waves):

Mg +iMy = /MZ2(0) + Mg(o)e+i(m+¢>o) =4/ M2(0) + M2(0)(cos(Qt + ¢o) + i(sin(Qt + o)) (1.126)
My —iMy = /M2(0) + M2(0)e(¥F90) = /M12(0) + M2(0)(cos(Qt + do) — i(sin(Qt + ¢o)), (1.127)

My = /MZ2(0) + M2(0) cos(Qt + o) (1.128)
M, = \/M2(0) + M2(0) sin(Qt + ¢o), (1.129)

where setting t = 0 shows that

_singg _ My(0)
tan ¢g = cosdy  Ma(0)’ (1.130)

In order to obtain ¢o and y/M2(0) 4+ MZ(0), we must first solve Egs. [1.115 The solution, presented in Section[1.5.10} is

M. (0) = Mo(1 — cos(wegTp)) sind cos I, (1.131)
My (0) = Mo sin(weg7p) sind, (1.132)
M (0) = Mo(cos® ¥ + cos(wegTp) sin’ ), (1.133)

where My is the magnitude of the bulk magnetization in the thermodynamic equilibrium, 7 is duration of irradiation by the radio
waves, and tan 9 = w; /Q.

1.5.10 Evolution of magnetization in g@ + B

On one hand, Egs. [LTI5HI.117] are substantially more difficult to solve than Eqs. [LII9HL.121] On the other hand, both sets of equations
(Egs. |1.115 1.117| and Egs. |1.119H1.121)) describe the same physical process, rotation about a given axis: Weg in Eqs. and €3
Egs. [LIT9HI.121] This suggests that Egs. [LII5HI.117] can be solved easily in a coordinate system with the z axis defined by the direction
of Deg-

The procedure is straightforward. First, the direction of the vector Med is expressed in a coordinate system with the axis z given by
Wefr, using Eq. m (or Eq. . The angles ¢ and 9 in Eq. correspond to the azimuth ¢ and inclination 9 of Weg, respectively, the
value x is arbitrary because we do not need to specify the x axis of the new laboratory frame. Setting x = 0,

MZ? 100 cosy 0 —sind cosp sinp O 0
M%? =(o10 0 1 0 —sing cosp 0 o |. (1.134)
M} 001 sind 0 cos ¥ 0 0 1 My

Second, the evolution of M®d is described as a rotation about 2’ by an angle weg7p. Using Eq. [1.32]

M COSWefTp  —SiDwegtp O M;?
My | = | sinwegmp COSWegTp O M%? . (1.135)
M, 0 0 1 MZ,q
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Figure 1.12: Evolution of the magnetization vectors with precession frequency exactly matching the used radio frequency (left) and
with a frequency offset Q (right), for wi = Q/\/ﬁ If w1 rotates magnetization of the former nucleus by 90 °, then weg = /1 + 152 = 4Q
rotates magnetization of the latter nucleus by 4 x 90° = 360 °, i.e., by the full circle. The evolution is shown in a coordinate frame rotating
with Wrot = —Wradio- In both cases, magnetization rotates about the thick purple arrow with the angular frequency proportional to the
length of the arrow.

Third, the components of the magnetization vector at the end of the pulse are expressed in the original coordinate system (i.e., in the
rotating frame)

My cosp —singp 0 cos?¥ 0 sind 100 M
My | = | sing cosp 0 0 1 0 010 My | . (1.136)
M, 0 0 1 —sind 0 cos? 001 M,

The whole procedure can be written in a single equation as

M cosp —sing 0 cost? 0 sind COSWefTp — SiNWegTp O cost 0 —sind cosp sing 0 0

My | = | sing cosp 0 01 0 Sin weg Tp cos WegTp 0O 01 0 —sing cosp 0 0

M. 0 01 —sintY 0 cos?d 0 01 sind 0 cos? 0 01 My

(1.137)
For example, for ¢ = ¢rot =0

M, Mo (1 — cos(wegTp)) sin 9 cos 9
My | = | Mosin(wegTp) sind . (1.138)
M, Mo (cos? 9 + cos(wegTp ) sin? 9)

1.5.11 Selective pulses

As discussed in Section[1.5.8] magnetization of various nuclei after applying a 90° pulse to the equilibrium distribution of magnetic moments
depends on their frequency offsets Q2. Therefore, M, M, and M, in Eq. are in general functions of ? (hidden in Weg = &1 + ﬁ) In
other words, the same radio-wave pulse will rotate magnetization of different nuclei differently, depending on their 2. For a certain ratio
of B1 to —/~, the magnetization makes a full circle and returns to the original direction along Byo. It is therefore possible to chose such
value of w1 =~ 'yEl so that magnetization of one nucleus (with precession frequency resonating with the radio wave frequency) is flipped by
90° (Figure or 180° (Figure , while magnetization of another nucleus (offset by Q) is practically unaffected, being returned to
the original direction.

The described selective manipulation of magnetic moments of different nuclei is rather limited. We can choose only which nucleus is
rotated (e.g. by 90°) and which nucleus is not affected. Magnetization of other nuclei will end up in some direction M given by the value
of Q of the given nucleus. Such dependence of M on € is known as ezcitation profile (or magnetization profile in general, for other pulses
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Figure 1.13: Evolution of the magnetization vectors with precession frequency exactly matching the used radio frequency (left) and
with a frequency offset Q (right), for wy = Q/4/3. If w; rotates magnetization of the former nucleus by 180°, then weg = /1 + 3Q = 2Q
rotates magnetization of the latter nucleus by 2 x 180° = 360°, i.e., by the full circle. The evolution is shown in a coordinate frame
rotating with &rot = —Wradio- In both cases, magnetization rotates about the thick purple arrow with the angular frequency proportional
to the length of the arrow.

and other initial directions of M ). For a single pulse, the excitation profile is an explicitly defined mathematical function with only one
variable parameter Bj.

Variability of the selective manipulations can be increased by applying consecutively more pulses with different Bi. Then, the
excitation profile (dependence of M on Q) depends on the actual By values of all pulses. Pulses that selectively influence relatively broad
ranges of frequencies are useful in advanced NMR experiments, selective excitation of a narrow frequency range is critically important in
magnetic resonance imaging (see Section. There are several algorithms to design a series of pulses that provides a desired excitation
profile. Here we comment only one of them. It is a classical approach (Shinnar-Le Roux algorithm), described by Pauly et al. in IEEE
Transactions on Medical Imaging, 10 (1991) 53-65.

Magnetic moments are irradiated by a series of short radio-wave pulses. Duration of each e is At and Bj varies. The pulses rotate
hl.f)

M from the initial orientation (e.g. M©°?). The rotation is expressed as described in Section |1.5.5in terms of spinors and 2 x 2 matrices.

During the j-th pulse, the magnetization rotates by Q2At about the z axis and by —w;,; = vB1,; about the direction of B‘l,j in the xy
plane. The former rotation can be described as
e_iQQAt 0 z% 0
. = . 1.139
< 0 etifst > ( 0 22 ) ( )

According to Eqgs]1.80H1.82] rotation about El,j is described by the matrix

oan. i —B* .
I ﬁfyﬂ (1.140)

anj an,j

with the coefficients
At i i At i At
Qn,j = wl’; - irlz’]l sin wl’; = cos wl’; =Gy, (1.141)
Wi,j
; ; At : AN
By = —i (w“’] i ) sin 21220 = ooy gin TLI20 g (1.142)
lwi il lw gl 2 2

In analogy to Eq.[1.86} rotation by each pulse is given by

aj =B\ (Cj =S\ (22 0
G E-G D0 N)
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We can define the parameters o, 3; by noticing that ag = 1 and o = 0 (i.e., no rotation in the initial state) and by calculating the

recursion
5)=(5 ) =978 (5 .2) G == (2 (52)
(5)-(5 @) =(572)(5.5) G2)-2(5 ) @.5) (52) a4

Absorbing 29/2 into the parameters,

ajz2 ) _ (O‘j *53“) _ (Cj —5?) (1 0 ) e (Cj _Sf) (1 0 ) o125 (1.145)
Bjz? Bi o Si CiJ\0=" )\ i3t Si Ci)\0=" )\ g_yz8 ) '

Labeling ajzj/2 =A; and szj/z = Bj, we can write
Ao (1
(2)-() a0

A C
(#)-(%)
As _ CyC — S;Sﬁzil
( 82) - (SQCl — 0251271 ’ (1'148)

(Ag) _ (630201 — (035551 + S§8201)271 — S;Czslzfz)

B S3C2C1 — (S35581 — C385C1)2—1 — C3CaSy 22 (1.149)

and so on. If we define the amplitudes and phases of B of all pulses, defining the parameters C;, S;, we can express all A;, B; and
calculate the final dependence of the magnetization on € (hidden in z).

Pauly et al. describe design of a selective pulse, which is the opposite task: to calculate amplitudes and phases of By of all pulses
from a set of polynomials Aj;, B; that define the desired excitation profile (dependence of the magnetization on Q)E As the first step, the
recursion equation

(Cj —S}kz_i) Aj-az ) _ (Aj) (1.150)
Sj CjZ7 ijlz% Bj
(Eq. is inverted by multiplying both sides from left by the inversion matrix
Cj S; Cj —S]’.*z_l .Aj_l _ Aj—l _ Cj S]* .Aj _ Cj.Aj +S;Bj .A]‘ ] (1.151)
—sz C]-z Sj Cj271 Bj,1 Bj,1 —sz Cjz Bj —SjZ.AJ‘ + CjZBj Bj
This matrix equation represents a set of two equations. The bottom one
Bj_l = CjZBj - SjZ.Aj (1.152)
B]-_lz_l :CjB]' —Sj.Aj (1.153)

provides a further clue. All polynomials start by constant terms, and continue with terms with z—1, 2=2. However, the left-hand side
of Eq. is multiplied by z~! and thus does not have any constant term, it starts with the terms with z—!. Therefore, the right-hand
side, C;jB; — S;.A;, must not have any constant term either. If we label the constant terms a; for A; and b; for B;, the requirement of no
constant term can be written as

b S;  —ie%isin(wi jAt/2) i %5 sin(yBy;At/2
Cpby— Sja; =0 = b i B sin(wi,; At/2) _ eT sin(yBi,; At/ ) (1.154)
aj Cj cos(wi,;jAt/2) cos(vB1,;At/2)

Solving this equation yields expressions defining amplitude and phase of B for each j. Examples of excitation profiles of several pulses
are shown in Table [L2

b;

By, =
aj

arctan

(1.155)

YAt

. —ibj/a;
= —— T 1.156
¢ tan(yB1,;At/2) ( )

13Ideally, the pulse should rotate magnetization by 90 © for €2 in a small interval of offsets and have no effect outside this interval. Pauly
et al. discuss how a polynomial approximation of the desired excitation profile can be found. Here, we just note that our polynomials
consist of periodic functions and any shape can be approximated by a sufficient number of such periodic functions.
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Table 1.2: Dependence of excitation efficiency on frequency offsets for various amplitude modulations of radio wave pulses. The pulses
are shown as histograms in the second column. The lengths and amplitudes (relative |B1| values) are plotted in the real ratios, blue and
red correspond to the phase of 0° and 180°, respectively. The efficiency of excitation is plotted in blue, ranging from zero (M., = Me®9,
My = My = /M2 + M2 = 0, magnetization vector in the z direction, no excitation) to one (M, = 0, /M2 + M2 = M®9, magnetization
vector in the zy plane). The deviations of the  and y components of the magnetization vector from the desired —y direction are plotted
in red (in radians). The range of the frequency offsets is —30kHz to +30kHz. The lengths and amplitude of the hard rectangular pulse
correspond to 10 us and |w1| = 25 kHz. The lengths (64.5 us) and amplitude (Jw1| = 9.675 kHz) of the selective rectangular pulse are chosen
so that the frequency offset of 15 kHz is equal to v/15|w1|. The Q5 and EBURP2 pulses consist of 1000 rectangular pulses 0.3 us long. (the
total length is 300 us). The amplitudes of the Q5 and EBURP2 pulses were set so that the pulses rotate the magnetization by 90° when
applied on resonance. NMR-Sim (Pavel Kessler, Bruker Biospin) was used to calculate the effects of shaped pulses.

Pulse name Amplitude modulation (variation of |Bi|) offset-dependent effect

rectangular (hard)

— 2

rectangular (selective) N
2n

/ /Y A

o Y YW W :

EBURP2 [ AAA

o
o




Lecture 2
Relaxation

Literature: A nice introduction is in K9.1 and K9.3, more details can be found in L19 and L20.1-
L20.3.

2.1 Relaxation due to chemical shift anisotropy

The Boltzmann law allowed us to describe the state of the system in the thermal equilibrium, but it
does not tell us how is the equilibrium reached. The processes leading to the equilibrium states are
known as relaxation. Relaxation takes places e.g. when the sample is placed into a magnetic field
inside the spectrometer or after excitation of the sample by radio wave pulses.

Spontaneous emission is completely inefficient (because energies of nuclear magnetic moments
in available magnetic fields are very small). Relaxation in NMR is due to interactions with local
fluctuating magnetic fields in the molecule. One sourcd!] of fluctuating fields is the anisotropy of
chemical shift, described by the axial and rhombic components of the chemical shift tensor. The
chemical shift tensor is given by the distribution of electrons in a molecule. Therefore, its orientation
in a coordinate frame attached to the molecule is fixed. As collisions with other molecules change
orientation of the observed molecule, the isotropic component of the chemical shift tensor does not
change because it is spherically symmetric (cf. Figure . However, contributions to the local fields
described by the axial and rhombic components fluctuate even if the constants d, and 6, do not
change because the axial and rhombic parts of the chemical shift depend on the orientation of the
molecule (Figure [2.1)).

Here, we introduce the basic idea by analyzing the effects of fluctuating magnetic fields in a
classical manner. Obviously, it is not possible to describe exactly random motions of each magnetic
moment. However, it is possible to describe statistically the effect of random fluctuations of magnetic
fields on the bulk magnetization. For the simplest model of molecules (rigid spherical particles in an
isotropic solvent), the final equation is surprisingly simple. However, the derivation is very tedious.
Therefore, we limit our analysis to the axially symmetric chemical shift tensor, and divide it to two
steps.

IThere are stronger sources of fluctuating fields in real molecules, but we limit our discussion to the chemical shift
anisotropy in this lecture. We extend our analysis to other sources later, when we introduce quantum mechanical
description of NMR.

43



44

/7

%«%{\\m\
\
Gl

Figure 2.1: Visualization of reorientation of the anisotropic contribution to the chemical shift tensor as a result of
tumbling (rotational diffusion) of the molecule. Positive and negative values are plotted in blue and red, respectively.

2.2 Adiabatic contribution to relaxation

We start by the analysis of adiabatic contributions to relaxation. In physics, the term adiabatic is
used for processes that do not change energy of the studied system.

In order to distinguish fluctuations that result in adiabatic and nonadiabatic contributions to
relaxation, we recall how magnetic moments move in the strong external magnetic field g@, defining
the z axis of our coordinate system. We have learnt in the previous lecture that By causes rotation of
magnetic moments about the z axis. Therefore, it does not change distribution of the z-components
of magnetic moments (components parallel to éo). The energy of magnetic moments is given by
—i- By = — 1, By, i.e., it depends only on the component of the magnetic moment parallel to By.

Now we consider effects of additional fields. In this lecture, we analyze only effects of very small
fields of moving electrons, introduced in the previous lecture and labeled B.. We have learnt that
horizontal fields, like B, , and B, , have no overall effect on orientations of magnetic moments, unless
their oscillate with the precession frequency of the magnetic moments. As the molecules change
their orientations, components B, , and B, , fluctuate. However, the rate of fluctuations is in general
different from the precession frequency because there is no reason why the molecular collisions causing
the fluctuations should rotate our molecule with the same rate as the precession of magnetic moments
in our magnet. Only very rarely and for a short time, the rate of molecular rotation may coincide
with the precession frequency by accident.

In addition to B., and B,,, molecular collisions also change B, .. The vertical field B, . adds
to Eo, changing the precession frequency —vB,, but not influencing p,. The fluctuations of B, .
are stochastic because the molecular collisions are random. Therefore, the average of the fluctuating
field B. . is zero and the average vertical field remains EO.

We can conclude that (i) fluctuations of B., does not change the energy & = —pu. B, because
they do not change p, or the overall B,, (ii) Be, and B., do not have any effect except for rare
moments when the rate of molecular rotation coincides with the precession frequency. Most of the
time, magnetic moments do not exchange energy with the environment and the process is adiabatic.
We analyze such permanent adiabatic influence of B, . in this section and complete the description
by including the momentary contributions of B, , and B, , in Section .
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As the vertical field rotates the magnetic moments about the z axis, it changes p, and p,.
Therefore, stochastic fluctuations of the vertical magnetic field By + B, . randomize distribution of
the x and y components. In other words, the adiabatic contributions to relaxation destroy coherence
of the x and y components of magnetic moments (distributed as shown in the right panel of Figure
that was created by the radio wave pulse at the beginning of the NMR experiment.

How are the vertical fluctuations of the magnetic field related to the molecular motions? As the
molecules rotate and the anisotropic components chemical shift tensors rotate with them (Figure ,
the vertical magnetic fields (By + B ) ﬂuctuateﬂ These fluctuations are random and independent
for different molecules because individual molecules in solution tumble randomly (due to collisions
with other molecules) and independently. Therefore, the frequency of precession of magnetic mo-
ments in individual molecules, given by By + B, ., also fluctuates (randomly and independently for
each molecule). As a consequence, the magnetic moments in individual molecules do not precess
completely coherently (with the same frequency) and their distribution shown in Figure is slowly
randomized. The cyan arrow in Figure , representing the bulk magnetization M of the given
distribution of magnetic moments, shrinks but stays in the zy plane, as long as only adiabatic re-
laxation (fluctuations along g{]) are considered. Note that we observe two processes: rotation of the
cyan arrow (M ) in the xy plane with the (average) precession frequency, and shrinking of the cyan
arrow due to the adiabatic relaxation.

In order to describe the adiabatic relaxation quantitatively, we express the precession frequency
w, in terms of the components of the chemical shift tensor and angles’] describing its orientation in
the laboratory coordinate frame, depending on the orientation of the given molecule in the sample

(Bq[L3):

w. = —=Y(Bo+ B.z) = =vBo(1 + 6;) — yBoda(3 cos® 9 — 1). (2.1)

The analysis presented in Section m shows that the coherence disappears (the cyan arrow
shrinks) with a rate constant (called R, in this text) proportional to the time integral of the time
correlation function, i.e., of a mathematical function describing how quickly an ensemble of molecules
(and consequently the chemical shift tensor attached to it) looses memory of its original orientation

(Eq. 2.43).

= (vByba / (3cos?2¥(0) — 1)(3 cos? ¥(t) — 1)dt, (2.2)
0

where the horizontal bar indicates an average value for all molecules in the sample and 9(0)
describes orientation of the chemical shift tensor at ¢ = 0. Note that statistics play the key role
here: the whole analysis relies on the fact that although the product (3 cos® ¥(0) — 1)(3 cos? 9(t) — 1)
changes randomly and differently for each molecule (and therefore cannot be described), the value of
the time correlation function (3 cos?9(0) — 1)(3 cos? ¥(t) — 1) is defined statistically. If the structure
of the molecule does not change (rigid body rotational diffusion), which is the case we analyze, the

2As the molecule rotates, Be , and B, of course fluctuates too. However, fluctuating B, , and B, , have only the
non-adiabatic effect, discussed in Section.
3We need only one angle, 9, for our analysis of adiabatic contribution to relaxation.
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analytical form of (3 cos?9(0) — 1)(3cos?¥(t) — 1) can be derived. The simplest analytical form of
the time correlation function is derived from the rotational diffusion equation in Section 2.5.4] The
derivation shows that the time correlation function for spherically symmetric rotational diffusion is
a single-exponential function:

3 1 3 1 1 1 ro
(5 cos?9(0) — 5) (5 cos? J(t) — 5) = ge_t/TCdt = ge_GD " (2.3)
where 7. is the rotational correlation time and D™ is the rotational diffusion coefficient, given

by the Stokes’ law

rot __ kB T

— 8an(T)r3’ (24)

where 7 is the radius of the spherical particle, T" is the temperature, and 7(7") is the dynamic
viscosity of the solvent, strongly dependent on the temperaturef_f]

Analytical solutions are also available (but more difficult to derive) for axially symmetric and
asymmetric rotational diffusion, with the time correlation function in a form of three- and five-
exponential functions, respectively.

For the spherically symmetric rotational diffusion, the rate constant of the loss of coherence can
be calculated easily:

r 4 1
Ry ’YBO 2/ Hredt = (7305 )2 7o =3 WBO(SB‘)QW' (2.6)
0

2.3 Including non-adiabatic contribution to relaxation

A much more complex analysis of the non- adiabatic contributions to relaxation, consequences of mag-
netic fields fluctuations perpendicular to BO, is outlined in Section |2 - Fluctuations perpendicular
to Bg are also results of molecular tumbling, but now we are interested in how B, , and B, , fluctuate
due to the reorientation of the chemical shift tensor. B, and B,, have the same direction as the
magnetic field of the radio waves used to rotate the magnetization form the equilibrium orientation
(in the z direction) to the xy plane. Accidentally, the molecule may tumble for a short time with a
rate close to the precession frequency of the magnetic moments. The resulting perpendicular fluctu-
ations then act on the magnetic moments in a similar manner as the radio waves, i.e. rotate them
about a horizontal axis. This of course changes the distribution of the z components of the magnetic
moments and changes their energy in By (exchanges the potential magnetic energy of the magnetic
moments with the kinetic rotational energy of molecules). However, there is a fundamental difference

4Dynamic viscosity of water can be approximated by
n(T) = no x 107/, (2.5)

where 79 = 2.414 x 10 5kgm~ts™!, T, = 247.8K, and T} = 140K (Al-Shemmeri, T., 2012. Engineering Fluid
Mechanics. Ventus Publishing ApS. pp. 1718.).
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between the fluctuations and the radio waves. The radio waves coherently rotate magnetic moments
in all molecules, but the fluctuating fields are different in the individual molecules. And because the
fluctuations are random, they randomly change distribution of magnetic moments until it returns
to the equilibrium distribution. This is what happens after a sample is placed in the magnetic field
of the spectrometer, and this is also what starts to happen immediately after the magnetization is
tilted from the z direction by the radio waves.

The analysis in Section [2.5.5 provides values of two relaxation rates, (i) of the longitudinal relax-
ation rate Ry describing how fast the z component of the bulk magnetization returns to its equilibrium
value, and (ii) of the transverse relaxation rate Ry describing how fast the x and y components of the
bulk magnetization decay to zero. Note that the longitudinal and transverse relaxation are different
processes. The return of M, to its equilibrium value is identical with the process of restoring the
equilibrium distribution of magnetic moments. However, the transverse relaxation has two sources,
the non-adiabatic return to the equilibrium distribution of magnetic moments (with the orientation
along By being slightly preferred) and the adiabatic loss of coherence. For large molecules, the loss
of coherence is much faster than the return to the equilibrium distribution, which makes Ry > R;.

Quantitatively,

Ry = 3(vByd,)? <%J(w0) + %J(—w@) ~ 3 (7By0a)” J(wp), (2.7)

where

T(wo) = 7 GCOSQ(Q(O)) _ %) (gcos2(9(t)) _ %) cos(wot)dt. (2.8)

—00

The function J(w) is known as the spectral density function.
Note that

e The definition of Ry, describing solely the non-adiabatic effects of fluctuations perpendicular to
é(] includes the same time correlation function as the definition of Ry, describing the adiabatic
effects of fluctuations parallel to éo. This is possible in isotropic solutions, where no orientation
of the molecule is preferred. Then the distribution of the orientation of the molecules in the z
or y direction should be the same as in the z direction and the same time correlation function
can be used. Do not get confused! The molecules may be oriented isotropically even if their
tumbling is anisotropic. The anisotropic tumbling (rotational diffusion) is a result of a non-
spherical shape of the molecule, whereas anisotropic orientation is a result of an external force
preferring certain orientation of the molecules. The magnetic field represents such a force, but
this force is very small for diamagnetic molecules and can be often neglected when describing
orientations of the molecules[]

e The definition of R;, unlike that of Ry, includes also the value of the (average) precession fre-
quency wy. This reflects the fact that the fluctuations perpendicular to By rotate the magnetic

®Note, however, that the magnetic field cannot be neglected when describing the return of the magnetization to
the equilibrium, as discussed in Section W
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moments about a horizontal axis only if their rate matches the precession frequency (resonance
condition).

e The term in the integral defining Ry, lacking the cosine function of wy, can be also written as a
value of the spectral function at the zero frequency (zero in the argument converts the cosine
function to unity).

Similarly, R, is given by

Ry =2 (1808 J(0) + 5 (v Bod)? J (). (2.9)

Note that
e The first term is the adiabatic contribution destroying the coherence.

e The second term is the non-adiabatic contribution, equal to %Rl. The factor of % reflects the
fact that fluctuations in a certain direction influence only components of magnetic moment
vectors perpendicular to that direction. E.g., fluctuations along the z axis influence only u,,
but not p,. Therefore, a fluctuation in the x direction that causes some longitudinal relaxation
(described by R;) by altering ., is only half as effective at causing transverse relaxation
described by R, (only g, is altered, not p,).

The longitudinal relaxation rate Ry, describing the return of M, to the equilibrium due to the
chemical shift anisotropy in randomly reorienting molecules, and the transverse relazation rate
R5, describing the decay of magnetization in the xy plane, are given by

3

R, = 1b2<](w0): (21())
1 3
Ry = S6(0) + S0 (wn). (2.11)

where b = —2vBy0,.
The relaxation rates R; and R, can be included in the equations describing evolution of the bulk
magnetization, presented in Section [2.5.6

2.4 Internal motions, structural changes

So far, we analyzed only the rigid body motions of molecules, assuming that the structures of
molecules are rigid. What happens if the structure of the molecule changes? Let us first assume
that the structural changes are random internal motions which change orientation of the chemical
shift tensor relative to the orientation of the whole molecule, but do not affect the size or shape of
the tensor. Then, Ry can be derived in the same manner as in the absence of molecular motions
(Eq. can be still used) and Ry is still given by Eq. 2.2} but the correlation function is not mono-
exponential even if the rotational diffusion of the molecule is spherically symmetric. The internal
motions contribute to the dynamics together with the rotational diffusion, and in a way that is very
difficult to describe exactly. Yet, useful qualitative conclusions can be made.
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e If the internal motions are much faster than rotational diffusion, correlation between 3 cos? 9(0)—
1 and 3cos®9(t) — 1 is lost much faster. The faster the correlation decays, the lower is the
result of integration. The internal motions faster than rotational diffusion always decrease the
value of Ry (make relaxation slower). Amplitude and rate of the fast internal motions can be
estimated using approximative approaches.

e If the internal motions are much slower than rotational diffusion, the rate of the decay of
the correlation function is given by the faster contribution, i.e., by the rotational diffusion.
The internal motions much slower than rotational diffusion do not change the value of Ry
significantly. Amplitude and rate of the fast internal motions cannot be measured if the motions
do not change size or shape of the diffusion tensor.

If the structural changes alter size and /or shape of the chemical shift tensorﬁ parameters ¢; and 9,
vary and cannot be treated as constants. E.g., the parameter §; is not absorbed into the constant (av-
erage) precession frequency (removed by introducing the rotating coordinate frame in Section [2.5.1)

and 0;(0)d;(¢) contributes to Ry even if it decays much slower than (3 cos?9(0) — 1)(3cos?9(t) — 1).

e Internal motions or chemical processes changing size and/or shape of the chemical shift tensor
may have a dramatic effect on relaxation even if their frequency is much slower than the
rotational diffusion of the molecule. If the molecule is present in two inter-converting states
(e.g. in two conformations or in a protonated and deprotonated state), the strongest effect is
observed if the differences between the chemical shift tensors of the states are large and if the
frequency of switching between the states is similar to the difference in vByd; of the states.
Such processes are known as chemical or conformational exchange and increase the value of R
and consequently Rs.

HOMEWORK

Derive the rate constant Ry (Section [2.5.1]).

SExamples of such changes are internal motions changing torsion angles and therefore distribution of electrons, or
chemical changes (e.g. dissociation of protons) with similar effects.
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2.5 SUPPORTING INFORMATION

2.5.1 Loss of coherence

Motion of a magnetic moment in a magnetic filed is described classically as (cf. Eq. [L.118))

— =W X i=—B X[, 2.12
7 A=-—Bx[i (2.12)
or for individual components:
dpg
=w —w s 2.13
dt yHz zHy ( )
dpy
- - —w , 2.14
ET: z Mz x [z ( )
dp
—_— = w —w . 2.15
di =ty yHx ( )

Solving a set of three equations is not so easy. Therefore, we start with a simplified case. Remember what we learnt when we tried
to rotate the magnetization away from the z direction by magnetic fields perpendicular to éo, i.e., by fields with B; and By components.
Only B, and By fields rotating with the frequency equal to the precession frequency of individual magnetic moments (Larmor frequency)
have the desired effect. Let us start our analysis by assuming that the molecular motions are much slower than the Larmor frequency.
Under such circumstances, the effects of Be » and Be y can be neglected and the equations of motion simplify to

d

:x = —wzpy = vBzpy (2.16)
t

d

Py _ wzplz = —VBzpx (2.17)

dt

d

= _p (2.18)

dt

Eqgs. are very similar to Eqgs. [1.119H1.121} so we try the same approach and calculate

dpt _ d(pe +ipy)

i ” = iwz (o + ipy) = =iy Bz (ke +ipy) = —iyBzpu™ (2.19)

According to Eq.
B, = By 4 Be,» = Bo(1+ 8 + 8a(3cos? 9 — 1) + 6;(2cos? x — 1) sin? 9). (2.20)

For the sake of simplicity, we assume that the chemical shift tensor is axially symmetric (6 = 0). Then, w, can be written as

ws = —7(Bo + Be,2) = —vBo(1 + 6) — 7Boda(3cos? ¥ — 1) = wo + b6, (2.21)
where
wo = —yBo(1 + 6) (2.22)
b = —2vBo6ba (2.23)
29 —1
ol — 73“’52 . (2.24)

This looks fine, but there is a catch here: Eq. m cannot be solved as easily as we solved @-@ because w, is not constant but
fluctuates in time. The value of w, is not only changing, it is changing differently for each molecule in the sample and it is changing in
a random, unpredictable way! Can we solve the equation of motion at all? The answer is ”yes and no”. The equation of motion cannot
be solved for an individual magnetic moment. However, we can take advantage of statistics and solve the equation of motion for the total
magnetization M7T, given by the statistical ensemble of magnetic moments.

We start by assuming that for a very short time At, shorter than the time scale of molecular motions, the orientation of the molecule
does not change and Ol remains constant. We try to describe the evolution of T in such small time steps, assuming

Apt dpt

~ A Iyt 2.2
A7 a i(wo +b0"Mp (2.25)
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Figure 2.2: Evolution of magnetic moments due to longitudinal (parallel with Bo) fluctuations of magnetic fields. The symbols ua'
and “Z are connected by 2F possible pathways composed of black and green segments. Each black segment represents multiplication by
one, each green segment represents multiplication by ib@g At, where j ranges from 1 to k. The product of binomials in Eq. is a sum
of 2% terms. In order to obtain one term of the series, we walk along the corresponding pathway and multiply all black and green numbers
written above the individual steps. The pathway composed of the black segments only gives the result of multiplication equal to one, the
pathways containing just one green segment give results of multiplication proportional to At, the pathways containing two green segments
give results of multiplication proportional to (At)2, etc. In order to get the complete product in Eq.[2.32] we must walk through all possible
pathways (all possible combinations of the segments) and sum all results of the multiplication.

If the initial value of p¥ is N(J)r and if the values of wp, b, O during the first time step are wo,1, b1, @Q, respectively, the value of ut
after the first time step is

,uj' = ,ua' + A,ui" = ,ug' +i(wo,1 + b1®¥)At,u3' =[1+i(wo,1 + b16!)At}ya'. (2.26)
After the second step,
ph =pt +and = +i(wos + b20)Atut = [1 +i(wo 2 + b2O A1 +i(wo 1 + 510 At (2.27)
After k steps,
=1 +i(wok + bkON AL +i(wo k-1 +bs—10) AL [1 +i(wo,2 + b2OD) AL][1 + i(wo,1 + b10)) ALl . (2.28)

If the structure of the molecule does not change, the electron distribution is constant and the size and shape of the chemical shift tensor
described by & and 8, does not change in time. Then, wg and b are constant and the only time-dependent parameter is ©!l, fluctuating as
the orientation of the molecule (described by ) changes. The parameter wg = —vyBo(1 + ;) represents a constant frequency of coherent
rotation under such circumstances. The coherent rotation can be removed if we describe the evolution of ut in a coordinate frame rotating
with the frequency wg. The transformation of uT to the rotating frame is given by
)

(B )rot = pe™ w0t (2.29)

We also need to express the derivative of (11 )rot, which is done easily by applying the chain rule:

d(u+)rot _ d(,u""e_i“’ot) _ dﬂ+ o—iwot

—iwguteTiwot, 2.30
dt dt dt rop e (2:30)
Substituting dut /dt from Eq. [2.25| results in
d(pHrot . N+ o—iwot s+ —iwot _ ol +a—iwot _ ol +
TR i(wo +00"MpuTe iwouTe =ibepuTe =100" (™ )rot - (2.31)

When compared with Eq. [2.25] we see that wo disappeared, which simplifies Eq. to

(1 )roe = [1+ bOJ AG[L +ib0) _ Af]-- - [1 +bOI AL + 0] AL (1 )ror. (2.32)

The process of calculating the product of brackets in Eq. [2:32]is shown schematically in Figure 2:2] The final product is
(1)ror = L+ ibALO) 40l | +... ey —p2arz@l©el  +...+el+eh+el @l ,+ .. +el+ely+...+olel)
_ibSAt3(~ )+ '}(.U'E)F)rot- (2.33)

We can now return to the question how random fluctuations change ut.
We first write the (u)rot value at the k — 1 steps

(i ror = L+ ibAt@O] |+ 4 0l)y—p2az@l_©] ,+ - +elt+el)+. ..4olel) —iPArd(..)+ - Jud)w. (2.34)
and express the difference between pt after k and k — 1 steps:

A rot = (1 ot — (i ror = [ibAO! —p2A20l (@] |+ 4 0l) —itPAB () + - (1 rot- (2.35)
We divide both sides by At
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A k—1
% = [vol —p2atef©] |+ +0l) ~WPAR(.) 4] (o = |00} 1701 ST 0L AL WPAR() 4 | (o
j=1
(2.36)
and return from At to dt (neglecting terms with dt?,d¢3, ..., much smaller than dt). Instead of evaluating (7)ot after k time steps,

we evaluate it at time ¢, and instead of summing Ol after k — j time steps, we integrate Ol for ¢ — t; ranging from i to zero, where #
is constant and t; is variable. Therefore, the superscripts k and j no longer represent the actual values of the integer counters k and j, but
they are merely distinguishing two measurements of time (from zero to tx and from zero to t;).

ty
%= b0/l (1) — v / oll(t)el (t — t;)dt; | (1 )rot- (2.37)
0

We see that calculating how fluctuations of B, affect an individual magnetic moment in time ¢, requires knowledge of the orientations
of the molecule during the whole evolution (@” (tk —t;)). However, we are not interested in the evolution of a single magnetic moment, but
in the evolution of the total magnetization MT. The total magnetization is given by the sum of all magnetic moments (magnetic moments
in all molecules). Therefore, we must average orientations of all molecules in the sample. In other words, we should describe Ol in Eq.
using two indices, k and m, where k describes the time step and m the orientation of the given molecule. Calculation of the evolution
of M7 then should include summation of Gl’m for all £ and m in Eq. or integration over the angles describing orientations of the
molecule in addition to the time integration in Eq.[2.37] As the magnetic moments move almost independently of the molecular motions,
we can average Oll and pt separately. In the case of the axially symmetric chemical shift tensor, the orientations of molecules are given by
orientations of the symmetry axes Z of the chemical shift tensors of the observed nuclei in the molecules, described by the angles ¢ and 9.
In order to simplify averaging the orientations, we assume that all orientations are equally probable. This is a very dangerous assumption.
It does not introduce any error in this section, but leads to wrong results when we analyze the effects of fluctuations of magnetic fields
perpendicular to ég!

As the angle 9(t) is hidden in the function ©ll() = (3 cos¥? — 1)/2 in our equation, the ensemble averaging can be written a

27 T tk 2 T
M+t 1 1
%:k))rot = |- /dgp/@“ (tk)sin#}dﬁ—bQ/dtjr /dcp/@” (600 (tic — ;) sin9d0 | (M )zt (2.38)
vy vy
0 0 0 0 0

where ¢ = ¢(tx) and ¥ = I(ty).
In order to avoid writing too many integration signs, we mark the averaging simply by a horizontal bar above the averaged function:

tx
% =[Ol (1) — b?/@u 00T (0 — )ty | (M )ror. (2.30)
0

The average values of Z2 = cos? 9, of Z2 = cos? psin? 9, and of Zf = sin? ¢sin? ¥ must be the same because none of the directions
x,y, z is preferred:

72 =7} =172 (2.40)
Therefore,
BT 722 =372 (241
and
224722422 =1= 22+ Z2+ Z2=1=3Z2 — 1= (3cos?0 — 1) =20l =0 = 6l = 0. (2.42)

It explains why we did not neglect already the b2dt term — we would obtain zero on the right-hand side in the rotating coordinate
frame (this level of simplification would neglect the effects of fluctuations and describe just the coherent motions).
We have derived that the equation describing the loss of coherence (resulting in a loss of transverse magnetization) is

+ b
% - bz/@n(tk)en (tx — )dt; | (M )rot, (2.43)
0

"Two integrals in the following equation represent calculation of an average of a function depending on the orientation. Geometrically,
it is summation of the values of the function for individual surface elements (defined by inclination ¥ and azimuth ¢) of a sphere with the
radius r = 1, divided by the complete surface of the sphere 47 (see Section[1.5.1)). Note that the current orientation of each molecule at ¢y
is described by ¥(t)) and ¢(ty), the values 9(¢;) hidden in the function ©/I(#;) describe only history of each molecule. They are somehow
related to ¥(tx) and ¢p(tx) and therefore treated as an unknown function of ¥(tx) and ¢(tx) during the integration.
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where the value of Ol ()OIl (t — ¢;) is clearly defined statistically (by the averaging described above). Values of ©ll ()OIl (t, — t;)
can be determined easily for two limit cases:

o t;=0: Ift; =0, Ol ()0l () —t5) = (Ol (t))2, i.e., Oll(ty) and Ol (¢ —t;) are completely correlated.

The average value of ©ll(t,)2 is

27 ™ 1
1 1 1
oll(t)? = 1(3005219 —-1)2 = Tom /dgp/dﬁ(sinﬁ)(ScosQﬂ —1)2= 3 /(3u2 —1)%du
0 0

9ub — 10u> + 5u
40

du = [ }il S (2.44)

5

1
_/9u476u2+1
B 8
-1

e t; — co: If the changes of orientation (molecular motions) are random, the correlation between Oll(t) and @l (t; — ¢;) is lost

for very long t; and they can be averaged separately: Ol ()OIl (t — ;) = Ol(t) - Oll (£ — ;). But we know that average
0l (t) = 3cos2 ¥ — 1 = 0. Therefore, Ol (t;)Ol (t) — t;) = 0 for t; — oo.

If the motions are really stochastic, it does not matter when we start to measure time. Therefore, we can start counting time from ¢y,
i.e., set t, = 0, and integrate from —ty to zero:

tie 0
/ Ol (100 (tx — 1))dt; = / ol (el (—t)ds. (2.45)
0 “tye

Furthemore, orientations at ¢ = t) are correlated with those at ¢t = 0 exactly like orientations at ¢ = —ty if the molecule moves really

randomly (the fluctations are stationary). As a consequence, the integration from —ty to zero can be replaced by integrating from zero to
+tk:

0 tx
/ ol (el (—g)dt; = / a1 (0)el()dt;. (2.46)

e 0

Finally, extending the upper integration limit from ty to infinity does not change the integral significantly if ¢, was already long
enough to reduce Ol ()01 (¢, — t;) almost to zero. Therefore, we can describe the loss of coherence for any sufficiently long tx as

oo
d(M~+ 0
% = [»? / olel®dt| (M*)ror, (2.47)
0
which resembles a first-order chemical kinetics with the rate constant

Ro = bQ/GH(O)@”(t)dt. (2.48)
0

In order to calculate the value of the rate constant Ry, we must be able to evaluate the averaged term ©I/(0)©ll(¢), known as the
time correlation function. As mentioned above, statistics play the key role here. Although the product ol (0)9H (t) changes randomly and
individually, the value of the time correlation function is defined statistically.

2.5.2 Stochastic molecular motions: diffusion

Diffusion can be viewed as a result of collisions of the observed molecule with other molecules. Collisions change position of the molecule
is space (cause tramslation) and orientation of the molecule (cause rotation). Rotational diffusion is important for NMR relaxation.
Translational diffusion influences NMR experiments only if the magnetic filed is inhomogeneous. Translational diffusion can be described
as a random walk in a three-dimensional space, rotational diffusion can be described as a random walk on a surface of a sphere. Although
we are primarily interested in relaxation and we do not discuss magnetic field inhomogeneity at this moment, we start our discussion with
the random walk in a three-dimensional space because the random walk on a surface of a sphere is just a special case of the general walk
in three directions. In the following section (Section , we continue with the analysis of the simplest example of the random walk
on a spherical surface, i.e., of the isotropic rotational diffusion. The analysis shows that the isotropic rotational diffusion is described by
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a simple exponential time dependence (Eq. . This relation will serve as a starting point for derivation of the key component of the
theory of NMR relaxation, of the time correlation function, described in Section [2.5.4]

We start with several definitions. Let us assume that the position of our molecule is described by coordinates x, vy, z and its orientation
is described by angles ¢, 9, x.

e Probability that the molecule is inside a cubic box of a volume AV = AzAyAz centered around z,y, z is

x

+
P(z,y,2,t, Az, Ay, Az) = / / p(x,y, z,t)dzdydz,
’ Ay

A
Sy et 42
Az
2

s

where p(z,y, z,t) is probability density at x,y, z, corresponding to local concentration in a macroscopic picture. If the box is small
enough so that p(z,y, z,t) does not change significantly inside the box, the equation with the triple integral can be simplified to

P(z,y,2t, Az, Ay, Az) = p(z,y, 2,t)AV.

e Probability that the molecule crosses one wall of the box centered around z, y, z and jumps into the box centered around z+ Az, y, z
during a time interval dt is proportional to the area of the wall between boxes centered around z,y, z and around = + Ax,y, z. This
area is equal to AyAz = AV/Ax and the probability of jumping from the box centered around z,y, z to the box centered around
r + Az, y, z can be written as

Pz - x4+ Az;z,y,2,t, Az, Ay, Az, At) = Py pt Ax AyAz = Oy A AV/ Az,

where @, 54 A, is the fluz from the box centered around z,y, z to the box centered around = 4+ Az,y,z (per unit area). The
corresponding probability density is

plz = z+ Azx;z,y, 2,t,At) = P(x — = + Az 2, y, 2, t, Az, Ay, Az, At) AV = ®y_py ng /A,

The probability of jumping to the box centered around z + Az, vy, z is also proportional to the probability that the molecule is
inside the box centered around z,y, z (equal to p(z,y, z,t)AV if the box is small enough). If the probability of escaping the box is
the same in all directions,

p(x ﬁ x + Ax;x7y7z7t7 At) = Sp(x7y7z7t)7

ply = y+ Ayiz,y, 2,8, At) = £p(x, y, 2, 1),

p(z = z+ Azyx,y, 2,1, At) = Ep(x, y, 2, 1),
where & is a proportionality constant describing frequency of crossing a wall of a box (per unit volume and including the physical
description of the collisions).

e The net flur in the x direction is given by

2@ — _Dtr@

Dy = (Dz—>z+Az - (I’1+Az—>z = gAZ‘(p(Iayv zvt) - p('r + AI7 Y, th)) = _SAIAP = _é(AI) 9z 8;[7

where DY = £(Ax)? is the translational diffusion coefficient.
e The net flux in all directions is - .
& = —DVp,
which is the first Fick’s law.

e The continuity equation
p) -
/ Pav + # $ds =0
ot
Vv S

states that any time change of probability that the molecule is in a volume V' is due to the total flux through a surface S enclosing
the volume V' (molecules are not created or annihilated). Using the divergence theorem,

op = dp

= o o dp
0=—"—+4+V.-&=—-"L4+V.(-D"V = £ =D%"v2,
o+ o+ ( p) ot P

which is the second Fick’s law.

e If the diffusion is not isotropic, the diffusion coefficient is replaced by a diffusion tensor. If we define a coordinate frame so that the

diffusion tensor is represented by a diagonal matrix with elements D, DZZ, DY, the second Fick’s law has the following form:

op o O 9p o O Op w O Op ( . o 0 t 82)
“F _ r Y YF r Y YF ptrt 2 ZF _ r Y Dt = Dt =2 .
ot = gz or T Py ay T U5z 02 we g2 T Puwga T V=53 )P
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2.5.3 Isotropic rotational diffusion

Isotropic rotational diffusion can be viewed as random motions of a vector describing orientation of the molecule. Such motions are
equivalent to a random wandering of a point particle on a surface of a sphere with a unit diameter. In order to describe such a random
walk on a spherical surface, it is convenient to express the second Fick’s law in spherical coordinates

op Drot o (5. ,0 ) e} ( . o ) 0 ( 1 9 ))
2= = O— ) + — (sin9— ) + — =Z) ) »p. 2.49
ot  rZsind (81" (T Sy + a0 """ o9 + Op \sind Oy P ( )
Since r is constant and equal to unity,
dp D™ [0 e} o 1 9
L 2 (sing— ) + — Z)) e 2.50
ot sin ¢ (819 (Sm 819) + ¢ (sinﬁ 8g0>>p ( )
Using the substitution v = cos¥ (and Ou = — sin ¥99),
ap " 5, 02 o 1 0?2 )
— = D™ 1-— _— 22— 4+ —— — . 2.51
ot (( “ )3u2 Y + 1 — u2 dp2 P (2.51)

Let us now try if time and space coordinates can be separated, i.e. if p can be expressed as a product p(9, ¢, t) = f(9,¥)g(t).
dg 0?2 o 1 9?2
Z=gD™ ((1-u?) = —2u—+ ——— | f. 2.52
! a7 (( )8u2 Ou 1 —u? dp? ! ( )
Dividing both sides of the equation by D™tp = D%t fg,
L10g _1( 2@ , 0 1 &), (2.53)
- == —u)—= — 2u— — ) f .
Dot g ot f Ou? Ou 1 —u? dp?
If the separation of time and space coordinates is possible, i.e., if Eq. is true for any t and any ¥, ¢ independently, both sides of
the equation must be equal to the same constant (called A bellow).

1 10g

——= = 2.54
Drot g 0t (2:54)

1 9? 1o} 1 9?
—(Q-w?) == —2u— — ) f=x 2.55
f(( u)auZ u8u+1—u28<p2>f ( )

Solution of the first equation is obviously

g(t) = g(0) P, (2.56)

where A is obtained by solving the second equation. We solve a simplified version of the second equation in Section [2.5.4]

2.5.4 Time correlation function

Analysis of the isotropic rotational diffusion in Section allows us to calculate the time correlation function ©11(0)@©!I(¢) for this type
of diffusion (with a spherical symmetry). The ensemble-averaged product of randomly changing (3 cos? 9(t) — 1)/2, evaluated for a time
difference t, can be expressed as

(g cos2 9(0) — %) (g cos2 9(t) — %) (2.57)
27
1

T 27 T
= /dgo(O) /sin ﬁ(O)dﬂ(O)po/dgo(t) /sin Y(t)do(t) (% cos? 9(0) — 5) (g cos? 9(t) — %) G(9(0), p(0)[9(1), ¢(1)), (2.58)
0 0 0 0

where po is the probability density of the original orientation described by 9¥(0) and ¢(0), and G(9(0), ¢(0)|9(t), ¢(¢)) is the conditional
probability density or propagator (also known as the Green’s function) describing what is the chance to find an orientation given by 9(¢), ¢(t)
at time ¢, if the orientation at t = 0 was given by 9¥(0), ¢(0).

If the molecule is present in an isotropic environmenté po plays a role of a normalization constant and can be calculated easily from
the condition that the overall probability of finding the molecule in any orientation is equal to one:

8Note that in the isotropic environment, where all orientations of the molecule are equally probable, the diffusion can be very anisotropic
if the shape of the molecule greatly differs from a sphere.
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27 T

/ de(0) / sin®(0)d¥(0)po =4mwpo =1 = po = ﬁ (2.59)
0 0

Evaluation of G(9(0), p(0)|9(t), ¢(t)) requires to solve the diffusion equation (Eq. [2.55). We again express G as a product of time-
dependent and time-independent functions g(t) P(¥). The function g(¢) is defined by Eq.[2.54] the function P(¥) is a simplified version of
function f (¥, ¢) from Eq. Since our correlation correlation function does not depend on ¢, OP/d¢ = 0, and we can further simplify
Eq. B9 to

(1 —u?) d? 2ud)poap (2.60)
—u*)— — 2u— = .
du? du ’
d2p dP
1—u?)—% —2u— — AP =0. 2.61
A —u) g — 2u- (2.61)
We expand P in a Taylor series
oo
1 d*P(0)
P= k , 2.62
gaw %7k au (2.62)
calculate its first and second derivatives
P &
— = kapuF, (2.63)
du pard
er &
Tz = Z k(k — l)ozkuk*27 (2.64)
v k=0
and substitute them into Eq. [2.6]]
oo oo oo
(1 —u?) Z k(k — 1)agub=2 -2 Z kaju® — X Z apu® =0 (2.65)
k=0 k=0 k=0
oo o0 oo
Z k(k — Dagu®~ Z (k —1)ayu® —2 Z kapu® — A Z apu® = 0. (2.66)
k=0 = k=0 k=0

Note that the first two terms of the first sum are equal to zero (the first term includes multiplication by k = 0 and the second term
includes multiplication by k — 1 = 0 for k = 1). Therefore, we can start summation from k = 2 in the first term

oo
Z k(k — DaguF~2 — Z k(k — 1agu® — 2 Z kaguf — X Z apu® = 0. (2.67)
k=2 k=0
We shift the index in the first sum by two to get the first sum expressed in the same power of u as the other sums
oo
Z(k +2)(k + Dagyou® Z k(k — agu® —2 Z kagu® Z apuf =0 (2.68)
k=0 k=0
oo oo
Z ((k+2)(k + Dagsz — (k(k = 1) + 2k + Nag) v = > ((k+2)(k + Dagyz — (k(k + 1) + Nag) u* = 0. (2.69)
k=0 k=0

must be zero

This equation is true for u # 0 only if the underbraced expression is equal to zero
(k+2)(k+ L)agt2 — (k(k+1) + Aax =0, (2.70)
which gives us a recurrence formula relating axyo and ag:

k(k+1) + A
(k+2)(k+1)

We can use the recurrence formula to express the Taylor series in terms of ag and ay:

Apt2 = ak. (2.71)

(2.72)

0-14+ X\ 0-14+X 2-3+2A 1-24 X 1-24X 344X
P:a0(1+ + 2 + . + u4+..)+a1(u+ + 3 + . + u5+...>:O.

U U
1-2 1-2 3-4 2-3 2-3 4-5
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What is the value of A? Note that ayyo = 0 for each A = —k(k + 1), which terminates one of the series in large parentheses, while the
other series grows to infinity (for u # 0). To keep P finite, the coefficient before the large parentheses in the unterminated series must be
set to zero. It tells us that we can find a possible solution for each even or odd k if a1 = 0 or ag = 0, respectively.

k=0 a1=0 G=Py=1 A=—k(k+1)=0 (2.73)
k=1 a=0 G=P =u=cosd A=—k(k+1)=-2 (2.74)
2-1 29 -1
k=2 a1 =0 G:P2:3“2 :3C°s2 A=—k(k+1)=—6 (2.75)
5ud — 3 5cos® ¥ — 3 cos ¥
k=3 a=0 G=Ps= “2 = : o8 A= —k(k+1)=—12 (2.76)
(2.77)

The value of ag or a1 preceding the terminated series was chosen so that Py(u =1) = Pi(Jd =0) = 1.
Which of the possible solutions is the correct one? It can be shown easily that

1

/ Pe (1) Py (w)du = / Po(9) Py (9)dd) =
—1 0

Oprr 2.78
o 10kK (2.78)

where 8,y = 1if k = k' and 0, = 0if k # K/, i.e., the integral is equal to zero for each k # k' (P, are orthogonal). As we are going to
use G = g(t)P (V) to calculate a correlation function for functions having the same form as the solutions for k = 2 and as the calculation of
the correlation function includes the same integration as in Eq. m it is clear that the only solution which gives us a non-zero correlation
function is that for £ = 2, i.e. P>. Our function G is therefore given by

3cos?Y —1 e—6Dr°°t

G =go 5 (2.79)
Still, we need to evaluate the factor gg. This value must be chosen so that we fulfill the following conditions:
27 ™
/d«p sin9dvG =1 (2.80)
) 0
and
G(t =0) =69 —9(0)), (2.81)
where §(9 — 9(0)) is a so-called Dirac delta function, defined as
o0
[ #@)6@ — 20) = fla0) (2.82)
— 00

The second condition says that ¥ must have its original value for ¢ = 0. This is fulfilled for go proportional to (3 cos?9(0) — 1)/2:

3cos2¥(0) — 1
go = co Seos”9(0) 1 . (2.83)
2
We can re-write our original definition of the correlation function with the evaluated G function and in a somewhat simplified form
omitting integration over ¢ and ¢(0)):
g g ¥ ®

1 1
(g cos2 9(0) — %) (g cos2 9(t) — %) _ / duopoco / du (3u(2)4— 1)2 (31/,24, 1)2 6D (2.84)
~1 ~1
where pg can be evaluated from the normalization condition
1
1= /dUOPO =2po = po = % (2.85)

—1

and
co from
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1 1 1 1
3u2 —13u2—1 3u2 —1)2 9ud — 6u2 + 1 9ud —10ud + bug 1t 2
/duo /co “ 7u §(u—wup)du = /duocoi( uo =1 = /duoco o — Oup + =co ‘o o+ Buo = —cp, (2.86)
2 2 4 4 20 ., 5
-1

—1

showing that c¢o = 5/2.
Finally, the correlation function can be calculated

1
1 1 (3ug —1)2 2-1)2 ro 22 ro 1 ro
(§ cos2 9(0) — ,) (§C052 9(t) — ,) 5 /duo “0 ) /du(3u )° —eprote _ 522 _gproty _ 1 _gproty. (2.87)
2 2 2 2 4 4 455 5
—1

—1

We have derived that the time correlation function for spherically symmetric rotational diffusion is a single-exponential function.

2.5.5 Return to equilibrium

After introducing the correlation function, we can repeat the analysis using the same simplifications (rigid molecule, isotropic liquid), but
taking the transverse (perpendicular) field fluctuations into account.

dug

di = Wylz — Wzly (2.88)
d
% = Wiy — Wgllz (2.89)
d
:: = Wally — Wylle (2.90)
Expressing w; as bO~ cos ¢ and Wy as b0~ sin ¢, where
b= —2vByda (2.91)
3
et = 3 sin ¥ cos 1, (2.92)
gives
dpa 1 Il
el = (bO~ sin)p, — (wo + O )y (2.93)
dpy I L
o - (wo + 60" e — (bO~ cos p) = (2.94)
d
Sl: = (bO~ cos ©)pry — (0O sin )z, (2.95)
Introducing ut = pz +iuy and u= = pg — ipy results in
du™t ;
% = —ibOL e, + i(wo + bOI) T (2.96)
du— )
% = ibOLe %, —i(wo + 60U~ (2.97)
d i . ;
:tz = %b@l (e_w;ﬁ' — e“",u,_) , (2.98)
In a coordinate frame rotating with wo,
d(pt ;
% = —ib0Lei(®=w0t) 1. 1 b0l (1 )ror (2.99)
A ot _ e Le-ite—w0t)y, — bl (u~ 2.100
T—l e Mz — 1 (M )rot ( )

dpz _ 1,00 (—ilp—wot) (+ i(p—wot) (,—
o= 5ot (e (1 )rot — @ (H ot ) (2.101)
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Figure 2.3: Evolution of magnetic moments due to longitudinal (parallel) and transverse (perpendicular) fluctuations of magnetic fields.
The meaning of the diagram is the same as in Fig. but additional segments (red and blue) interconnect ,u,j, By and p j, substantially
increasing the number of possible pathways. The pathway composed of the black segments only gives the result of multiplication equal to

one, the pathways containing just one segment of a different color give results of multiplication proportional to At, the pathways containing
two segments of a color different than black give results of multiplication proportional to (At)?, etc.

Note that now the transformation to the rotating frame did not remove wg completely, it survived in the exponential terms.
Again, the set of differential equations cannot be solved because ©ll, ©1, and o fluctuate in time, but we can analyze the evolution
in time steps short enough to keep ol, ©L, and ¢ constant.

ph =pd +Apf = [1+i(wo + b0 Atud — ibOF Atel(e1—w0t1) (2.102)
py = pg + Ay = [1—i(wo + b0 Atlug + ibOF At~ (P1-w0t1) (2.103)
Hz,1 = Hz,0 + ANz,l = Mz,0 — %bG%Ateii(WIiwotl)ug + %bef—Ateuwliwotl)Moﬁ- (2-104)

The put, u—, and z,0 are now coupled which makes the step-by-step analysis much more complicated. Instead of writing the equations,
we just draw a picture (Figure [2.3)) similar to Fig. Derivation of the values of relaxation rates follows the procedure described for
the parallel fluctuations (Egs. 2.38]). As the number of possible pathways in Fig. is very high, already the list of the terms
proportional to At and At? is very long. Fortunately, we are not interested in evolution of magnetic moments in individual molecules,
described in Fig. [2.3] The values of @Q, @f, 1, etc. are different for each molecule and we are interested in what we get after averaging
results of multiplications for all molecules (all possible orientations). In order to avoid writing the long expressions for magnetic moments
of individual molecules, we skip steps corresponding to Eqgs. [2.32H2.37] and jump directly to the calculation of the evolution of total
magnetization (corresponding to Eq. [2.38)).
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Let us start with the terms proportional to At, which give us the imaginary term proportional to b when calculating dM ™ /dt (and
dM~ /dt, dM,/dt). We have already seen that the average of Ol (the green segment) is zero. The terms containing ©+ (red and blue
segments) contain the exponential expression with the phase including . If the azimuth ¢ is randomﬂ the "red” and ”blue” terms average
to zero.

Let us now turn to the terms proportional to At?, which give us the time integral multiplied by b2 when calculating dM* /dt (and
dM~/dt, dM,/dt). The pathways containing two red segments or two blue segments correspond to At? terms with a random phase in
the exponent (random sums of ¢; — wot;). When averaged for all orientations, such phases tend to zero. The At? terms do not average
to zero only in two cases: (i) if the pathway contains two green segments (effect of longitudinal fluctuations described above) or (ii) if the
pathway contains a combination of one red and one blue segment. The former case is obvious, but the latter one is more subtle.

We can distinguish two combinations of one red and one blue segment:

1 . . 1 .
EbQAtQQkiel(wk—wotk)@jie—l(wj—wotj) - ibzAt2@é~@;~el(‘Pk_¢j_Wo(tk_tj» (2.105)
with —wo(tx — t;) in the exponent) an
ith ;) in th d
1 : . 1 .
§b2At2@kle—l(¢k—wotk)@jlel(wj —wotj) — §b2At2@ki@jlel(—sok+«ﬁj+wo(tk—tj)) (2.106)

(with +wo(tx — t;) in the exponent). As discussed in Section [2.5.1] we can replace t; by zero and t; by ¢ because the molecular
motions are random:

%bQAtQ(_)J-(0)@1-(t)ei(*(v’(t)*wm))erot)) (2.107)
(with 4wot in the exponent) and
%b2m29¢(O)QL(t)ei<+<«p<o>—w<t>>—wot)) (2.108)

(with —wot in the exponent).
In both cases, the phase is not randomly distributed for different orientations only if ¢(0) — (%) is similar to wot. The average value

of ©1(0)2 is 3/10:

w0l ©
| —
c,o":w

|
o 8,
AR
‘ -
L

I
w0l ©

27 ™ 27 1
9 9 9
O1(t)2 = “cos2 ¥sin? 9 = —/c1<,o/ch9(sinS19cos2 9) = —/d@/du(qﬁ —ut) =
4 167 167
0 0 0 —1

for any t.

The M, component of magnetization is given by the average of the p. components at ¢;. In order to get to u, » through paths giving
terms proportional to At?, we must start at p.,0 and pass one blue segment and one red segment in Figure Egs. and
mathematically describe that orientations of magnetic moments are redistributed if the molecular motions (described by the azimuth ¢)
accidently resonate for a short time with the frequencies wot and —wpt. Then the magnetic energy of the magnetic moments is exchanged
with the rotational kinetic energy of the molecules. This energy exchange must be taken into account when we average magnetic moments
of individual molecules to calculate M. Let us call the total rotational energy of molecules 86‘“. The exchange of the magnetic energy &,
of a magnetic moment [ with a small amount of rotational energy of molecules AE™! can be described as

EFOV 5 E500 4 AETN 4 £, (2.110)

The molecular motions have much more degrees of freedom (both directions of rotational axes and rates of rotation vary) than the
magnetic moments (size is fixed, only orientation changes). We can therefore assume that the exchange perturbs distribution of the
magnetic moments, but the rotating molecules stay very close to the termodynamic equilibrium. At the equilibrium, the probability to
find a molecule with the rotational kinetic energy £5°% + AE™! is proportional (Boltzmann law) to

—Aagrot Agrot
o FET a1 — . (2.111)
kT
The conservation of energy requires
ESOt + AgTot +S‘L — géot7 (2.112)
showing that AE™' = —&,. Consequently, the population of molecules with the given rotational energy is proportional to 1 —

AE™Y kT = 1+ E,/kpT. According to Eq.[1.19} the probability of finding a magnetic moment in the orientation described by a given
u = cos¥y is

9Note that this is true even in the presence of BO and in molecules aligned along the direction of BQ, for example in liquid crystals
oriented by the magnetic field.
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P(u) = v — eV x v
ew —e~ W l—-w—-14w

(1 + uw) = %(1+uw). (2.113)

Consequently, £, /kgT = —uw = 1 — 2P®4(u) and the probability to find a molecule with the rotational kinetic energy £E°% + ALt
is proportional to
Agrot 5
1-— =14 2
kgT kT

=2 — 2P (u) = 2(1 — P*(u)), (2.114)

where the factor of two can be absorbed in the normalization constant.

We have derived that the averaged values of p1. are weighted by 1— P®4(u). How does it affect the calculation of M.? In the expression
ez — P°4(u)pz, o in the first term is not weighted by anything and its average (multiplied by the number of magnetic moments per unit
volume) is equal to M.. The average value of the second term has been already calculated in Eqs. It represents the equilibrium
value of the magnetization, M©9. Therefore, averaging of p, results in M, — M9, usually abbreviated as AM,.

Using the same arguments as in Section

dAM,
dt

1,7 : , 1,7 : :
o / (00T (e e eiwntdy + 2 / 6L (0)0 L (1)elr® 2O otds | AM, (2.115)
0 0

The relaxation rate R; for M, known as longitudinal relazation rate in the literature, is the real par@ of the expression in the
parentheses

oo} o o]
Ry = b?R /@l(o)eL(t)e—i(so(t>—sv<0>>eiw0tdt+/eL(o)eL(t)ei(w)—w(O))e—iwotdt . (2.116)
0 0

If the fluctuations are random and their statistical properties do not change in time, they are stationary: the current orientation of the
molecule is correlated with the orientation in the past in the same manner as it is correlated with the orientation in the future. Therefore,

%) %) 0
/ GJ-(O)G)J-(t)e*i@P(t)*‘P(O))ei“’Otdt:% / BL(0)6 L (t)e (PP eiwotdr + / 6L(0)0L (1)e 1rM 20 giwotqy (2.117)
0 0 —00

:% / BL(0)0L (1)e— PO w0t . (2.118)
oo [ 0
/ el(o)@L(t)eiw@)—wo»e—iwwdt:% / 6L(0)0L ()ei(# (D20 e~ iwotqy 4 / 6L(0)0L ()P M2~ wotqy (2.119)
0 0 —0o0

:% / BL(0)0L (1)e 20D ot g, (2.120)

In isotropic solutions, the motions of molecules are very little affected by magnetic fields. Therefore, the choice of the z axes is
arbitrary form the point of the view of the molecule (not of the magnetic moment!). Therefore, the terms with @1 can be replaced by

those with ©ll, multiplied by 3/2 to match the difference between ©l(0)2 = 1/5 and ©-+(0)2 = 3/10:

%/eL(0)®L(t)e¥i<w<t>w<0))eiiwofdt=% / el(0)el(t)etiwotqs. (2.121)

Real parts of the integrals in Eq. [2.121] are known as spectral density functions J(w). Note that the real part of the integral in the
right-hand side of Eq. [2.121]is

IOSolving Eq. |2.115| gives

AM, = AMZ(O)e_(Rl‘H“’/)t = AMZ(O)e_thei“’lt = AM;(0)e~ 1t (cosw't +isinw't)

where R; and w’ are the real and imaginary parts, respectively, of the expression in the parentheses in Eq.[2.115] Whereas R; describes
the decay rate of AM,, w’ (much smaller than wp), known as the dynamic frequency shift, describes an oscillation of AM,, and is usually
included into the value of wq.
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R % /@II(o)@H(t)eiiwofdt :2 / 61(0)61(1) cos(wot)d. (2.122)
because
et1? = cosz tisinz. (2.123)

Also note that the integral in Eq. in Section [2.5.1] can be also included in the definition of the spectral density function if we
replace wg by zero:

e’} (o'} 0 oo
/ @”(O)@”(t)dt:% / ol()el(®)dt + / ol (0ol (bt =% / @”(O)GH(t)cos(O)dt:%J(O). (2.124)
0 0 —o0 —o0

2.5.6 Bloch equations

The effects of relaxation can be included in the equations describing evolution of the bulk magnetization (Egs. [L.115H1.117)). The obtained
set of equations, known as Bloch equations, provides a general macroscopic description of NMR for proton and similar nuclei.

dM,

dt”” = —RoM, — QM + w1 sin oM, (2.125)
dM.
Tt-” = +QM; — RoMy — wq cos oM, (2.126)
dM

dtz = —w;y sin pMy + wy cos My — R1 (M, — MZ9). (2.127)

(2.128)



Lecture 3
Signal acquisition and processing

Literature: Function of an NMR spectrometer is nicely described in L4, K13, or C3.1. More details
are provided in B23. Experimental setup is discussed in C3.8.2. Signal averaging is described in L5.2,
quadrature detection in L5.7 and LA.5, K13.6, and C3.2.3, Fourier transformation is introduced in
K5.1-K5.3.1 and L5.8.1.-L.5.8.3, and treated more thoroughly in B8 and C3.3.1. Phase correction
is described nicely in K5.3.2-K5.3.4 and discussed also in C3.3.2.3 and 1.5.8.4-1.5.8.5, zero filling is
discussed in C3.3.2.1 and K5.5, and apodization is explained in K5.4 and C3.3.2.2.

3.1 NMR experiment

It is not our aim to discuss practical issues of NMR spectroscopy. However, it is useful to have at
least a basic idea how NMR signal is acquired and processed before discussing theory of magnetic
resonance.

The real NMR experiment closely resembles FM radio broadcast. The mega-hertz radio frequency
Wradio Plays the role of the carrier frequency, and is frequency-modulated by the offset, which usually
falls in the range of kilo-hertz audio frequencies. In a similar fashion, the carrier frequency of the FM
broadcast is modulated by the audio frequency of the transmitted signal (voice, music). Like when
listening to the radio, we need to know the carrier frequency to tune the receiver, but its value is
not interesting. The interesting information about the chemical environment is hidden in the audio-
frequency offset. But recall that the numerical value of 2 is arbitrary as it depends on the actual
choice of the carrier frequency. What can be interpreted unambiguously, is the constant , given just
by the electron density. As discussed in Section the absolute value of § is extremely difficult to
obtain because the reference 6 = 0 represents nuclei with no electrons — definitely not a sample we
are used to produce in our labs. Therefore, more accessible references (precession frequencies wyes of
stable chemical compounds) are used instead of the vacuum frequency. The value of ¢ is then defined
as (W — Wyer) /wrer and usually presented in the units of ppm (see Section .

Setting up the NMR experiment is not a simple task. It includes several steps, listed in Sec-

tion 3.10.1]
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3.2 NMR signal acquisition

Most often, the NMR signal is acquired in a manner called quadrature detection. The procedure
is described in Section [3.10.2] here we only describe its result. Magnetic field of the rotating mag-
netization induces electromotive voltage in the detector coil. This electric signal, oscillating and
decaying due to the relaxation, is known as the free induction decay (FID). The voltage induced in
the detector coil is split into two channels. The high-frequency (radio) component of the signal (os-
cillating with carrier frequency —wiaqio) is filtered out (demodulation). The resulting signal contains
only the low-frequency (audio) component (superposition of oscillations with frequency offsets €2,
of individual nuclei) but with a different phase in each channel. The phase difference between the
channels is 77/2, or 90°. It is convenient to treat the signals in the individual channels (labeled a(t)
and b(t) in this text) as a real and imaginary component of a single complex number, denoted y(t)
in this text. If we ignore relaxation, the complex signal can be described as

J

y(t) = a(t) +1b(t) = Z (A, cos(2;t) + 1A, sin(82;t)) = Z Ajelt, (3.1)

The output of the quadrature receiver is converted to a digital form (analog-digital conversion).
Therefore, the information obtained from an NMR experiment is a set of complex numbers describing
the signal intensities at the time points t € {0, At, 2At,--- (N — 1)At}.

The NMR signal induced by precession of the magnetization vector is very weak, comparable
to the noise, generated mostly by random motions of electrons in the receiver coil. Therefore, the
NMR experiments are usually repeated several times, adding the signal together. If the experiment
is repeated in the same manner n-times, the evolution of the magnetization vector is identical in all
repetitions (magnetization is evolving coherently), and the sum of the signals from the individual
measurements, called transients, is simply ny(t). However, the absolute size of the signal is not
important, what really matters is the signal-to-noise ratio. Therefore, it is also important how noise
accumulates when adding signals of separate measurements. The analysis presented in Section
shows that the signal-to-noise ratio is proportional to the square root of the number of summed
transients.

3.3 Fourier transformation

The effect of electrons (chemical shift) makes NMR signal much more interesting but also much
more complicated. Oscillation of the voltage induced in the receiver coil is not described by a cosine
function, but represents a superposition (sum) of several cosine curves (phase-shifted and dumped).
It is practically impossible to get the frequencies of the individual cosine functions just by looking at
the recorded interferograms. Fortunately, the signal acquired as a function of time can be converted
into a frequency dependence using a straightforward mathematical procedure, known as Fourier
transformation.

It might be useful to present the basic idea of the Fourier transformation in a pictorial form before
we describe details of Fourier transformation by mathematical equations. The oscillating red dots
in Figure represent an NMR signal defined by one frequency v. Let us assume that the signal
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Figure 3.1: The basic idea of Fourier transformation.

oscillates as a cosine function but we do not know the frequency. We generate a testing set of cosine
functions of different known frequencies f; (blue curves in Figure and we multiply each blue
testing function by the red signal. The resulting product is plotted as magenta dots in Figure [3.1}
Then we sum the values of the magenta points for each testing frequency getting one number (the
sum) for each blue function. Finally, we plot these numbers (the sums) as the function of the testing
frequency. How does the plot looks like? If the testing frequency differs from v, the magenta dots
oscillate around zero and their sum is close to zero (slightly positive or negative, depending on
how many points were summed). But if we are lucky and the testing frequency matches v (f3 in
Figure , the result is always positive (we always multiply two positive numbers or two negative
numbers). The sum is then also positive, the larger the more points are summed. Therefore, the sum
for the matching frequency is much higher than the other sums, making a positive peak in the final
green plot (the dependence on f;). The final plot represents a frequency spectrum and the position of
the peak immediately identifies the value of the unknown frequency. If the NMR signal is composed
of two frequencies, the red dots oscillate in a wild interference patterns, not allowing to get the
frequency simply by measuring the period of the oscillation. However, the individual components (if
they are sufficiently different) just make several peaks in the final green plot and their frequencies
can be easily obtained by reading the positions of the peaks.

Let us now try to describe the Fourier transformation in a bit more mathematical manner (a more
detailed discussion is presented in Section . If a continuous signal y(t) were recorded using
quadrature detection, i.e., stored as complex numbers, it would be appropriate to apply continuous
complex Fourier transformation, defined as
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Signal in channel 1: R{y(¢)}
Signal in channel 2: S{y(¢)}

2R, 1/R,

R{Y (w)}
9
S

Y(w) = / y(t)e “idt. (3.2)

Important properties of continuous complex Fourier transformation are summarized in Sec-
tion

Although the actual NMR signal is not recorded and processed in a continuous manner, the ide-
alized continuous Fourier transformation helps to understand the fundamental relation between the
shapes of FID and frequency spectra and reveals important features of signal processing. Therefore,
we discuss the continuous Fourier transformation before we proceed to the discrete analysis.

An "ideal signal” (see Figure has the form y(t) = 0 for t < 0 and y(t) = Ae F2tel™ for ¢ > 0,
where A can be a complex number (complex amplitude), including the real amplitude |A| and the
initial phase ¢g:

A = |Alei. (3.3)
As derived in Section [3.10.5]

Fourier transform of the ”ideal” signal is

o0

Y(w) = / Ae e Wt = A

0

RQ . Q—w
4
Bro-or “Era-wy (3:4)

If ¢g = 0, the blue term, known as the absorption line is a real function (R{Y (w)}) having a shape
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Signal in channel 1: R{y(¢)}
Signal in channel 2: S{y(¢)}
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Figure 3.3: Signal (top) and frequency spectrum (bottom) with three precession frequencies.

of the Lorentz curve (see Figure . The shape of the absorption line is givenﬂ by the relaxation
rate Ry:

e Peak height oc 1/Rs (Y = Yiax at w = Q = YV = Y(Q) = A/Ry)
e Linewidth at the half-height = 2Ry (Y = Yax/2 at Q —w = £Ry)

The red term, the dispersion line, is purely imaginary (3{Y (w)}) if ¢o = 0. Such shape is less
convenient in real spectra containing several lines because the broad wings of the dispersion line
distort the shape of the neighbouring lines (see Figure .

Figure documents that Fourier transformation allows us to immediately determine several
precession frequencies in spectra even if the signal in the time domain (FID) is very difficult to
interpret, and that the real (absorption) part of the complex spectrum is much better for such
purpose.

Figures and [3.5[document the advantage of recording the signal with the quadrature detection,
as a complex number. If we take only the signal from the first channel, oscillating as the cosine
function if ¢y = 0 and stored as the real part if the quadrature detection is used (Figure , and
perform the Fourier transformation, we get a spectrum with two peaks with the frequency offsets
Q) and —€2. Such a spectrum does not tell us if the actual Larmor frequency is wy = wyagio — 2 or
Wo = Wradio + §2. If we use the signal from the second channel only, oscillating as the sine function
if 9 = 0 (Figure , a spectrum with two peaks is obtained again, the only difference is that the

'In practice, it is also affected by inhomogeneities of the static magnetic field, increasing the apparent value of Rj.
This effect is known as inhomogeneous broadening.
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Signal in channel 1: R{y(¢)}
Signal in channel 2: S{y(¢)}
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Figure 3.4: A signal detected in the first ("real”) channel (top) and its Fourier transform (bottom).

peaks have opposite phases (i.e., their phases differ by 180°). But if we combine both signals, the
false peaks at —() disappear because they have opposite signs and cancel each other in the sum of
the spectra.

The discussed transformation of a continuous signal is extremely useful for understanding the
relation between evolution of the magnetization vector and shape of the peaks observed in the
frequency spectra. But in reality, the signal is finite (fmax < 00) and discrete (At > 0):

te{ 0, At, 2At, ---, (N—-1)At }
y&) el v, v, Y2 o Yn—1 }

As a consequence, the frequency spectrum is also discrete (Aw > 0) and finite (has a defined

spectral width NAw):

we{ 0, Aw, 2Aw, ---, (N-1Aw }

Y(w) S { %7 }/17 }/27 ) YN*l }
The seemingly marginal difference between ideal and real (finite and discrete) signal has several

practical consequences, discussed in Sections and [3.6]

3.4 Consequence of finite signal acquisition

In reality, the acquisition of signal stops at a finite time ¢,,.x:

tmax

. . 1— —Rotmax ni(2—w)tmax
Y(w) — /Ae(lﬂRg)telwtdt:A € €

R2 —I(Q —w)

(3.5)
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Signal in channel 1: R{y(¢)}
Signal in channel 2: S{y(¢)}

R{Y (w)}
2 —
3{y

Figure 3.5: A signal detected in the second (”imaginary”) channel (top) and its Fourier transform (bottom).

It has some undesirable consequences:
Leakage: Part of the signal is lost, peak height Y (Q) < A/R,.
Truncation artifacts: For Ry — 0,

tmax
: 1 — el(=w)tmax sin(2 — w)t 1 —cos(2 —w)t
Y = I(Q—w)tdt — _ max . max
(w) /Ae A S0 — ) A a0 +iA O w

(3.6)

0

If the acquisition is stopped before the signal relaxes completely, artifacts (baseline oscillation)
appear. In the limit of no relaxation, the real part of the Fourier-transformed signal does not have a
pure absorption shape (Lorentz curve), but has a shape of the sin(€2 — w)tmax/((2 — w)tmax) function
(sinc function) multiplied by Afmax.

Loss of causality: The finite nature of the acquired signal has also a subtle effect known as the
loss of causality. The phenomenon is discussed in detail Section [3.10.7) and a simple way of avoiding
its undesired consequences is described in Section

3.5 Discrete Fourier transformation

As mentioned in Sections and , the digitized acquired signal is finite (tya. < 00) and discrete
(At > 0):
te{ 0, At, 2At -, (N=1)At }
yt)e{ vo, vi, Y2 o, Yn-—1 }
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Signal in channel 1: R{y(¢)}

Signal in channel 2: S{y(¢)}
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Figure 3.6: Effect of finite acqusition in the limit Ry — 0.

Therefore, discrete Fourier transformation is typically applied, producing digital spectra with the
spectral width limited to NAw

we{ 0, Aw, 2Aw, -y (N—=1Aw }
Yw)e{ Yo, Y1, Yo, .-+, Yn-1 }
or, expressing w as 27 f (in Hertz)
fE{ 0, Afa 2Af7 ) (N_l)Af }
Yw)e{ Yo, Y1, Yy, -, Yn_1 }

As shown in Section [3.10.8] the values of At, Af and N are not independent in the discrete
Fourier transformation, but they are restricted by the relation

AfAt=1/N. (3.7)
The consequences of the requirement AfAt = 1/N are:
e spectral width NAf = 1/At, it is defined by the choice of the time increment
e digital resolution Af = 1/NAt, it is defined by the choice of the maximum acquisition time

Possible definitions of the discrete Fourier transform with a correct normalization (so that A fAt =
1/N) are

N-1 | N
2T L 127 L5
Y, = E yje Nk Yi= N E Yyl vk (3.8)
=0 k=0

or
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1 o 1 .
Yi=—= Yy ¥ == ) Vel (3.9)

3.6 Consequence of discrete signal acquisition

As derived in Section [3.10.9] the discrete "ideal” NMR signal

Y = Ao~ R2idt QAL _ g —RajAti2mvjAt (3.10)
has the Fourier transform
N—1 .
. . X o 1— —RoNAt ir(N—2k)
Yi= Y Ae esdte2madte iR AL = ANt~ S (3.11)
§=0 14 (1 — RQAt)e_l%F

Since the signal is discrete, the spectral width is limited: At > 0 = NAf = 1/At < oo. The
consequences of the discrete sampling are, as derived in Section [3.10.9}

Aliasing: A peak of the real frequency v + NAf (outside the spectral width) appears at the
apparent frequency v in the spectrum (Nyquist theorem: frequencies v and v + 1/At cannot be
distinguished).

Offset: Peak height of the continuous Fourier transform Y (f) = A/ Ry and offset of the continuous
Fourier transform Y (+o00) = 0. Peak height of the discrete Fourier transform

1 — efRQNAt

Ry At

for NAt — oo, but offset of the discrete Fourier transform is non-zero. For a sufficiently long
acquisition time (compared to the relaxation rate, i.e., NAt > 1/R,), the offset is equal to half of
the intensity of the signal at the first time point y(0). The aliasing and the offset are depicted in

Figure [3.7]

Y% = AAt — A/RQ (3.12)

3.7 Zero filling

Routinely, a sequence of Ny zeros is appended to the recorded signal, mimicking data obtained at
time points NAt to (N + Nz — 1)At:

te {0, At 2AL -, (N — 1)At}

y(t) € {yo: Y1, Y2, -, YN-1 } (313)
I
te{ 0, At,2At, - (N —1)At, NAL, (N +1)At, -+, (N + Nz — 1)At } (3.14)
y(t) € {y()a Y1, Y2, -, YN-1, 07 07 S 0 } .

This may look like a completely artificial procedure, but there are several practical reasons to do
it.
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Signal in channel 1: R{y(¢)}
Signal in channel 2: S{y(¢)}
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Figure 3.7: Aliasing and offset. If the signal is acquired in discrete time intervals (dots in the top plots), the signals
with frequencies different by an integer multiple of 27/At, shown by solid (£21) and dotted (€Q2) lines, cannot be
distinguished. Both signals give a peak with the same frequency in the spectrum. This frequency is equal to £; and

to Qo — 27/ At, where 27 /At is the width of the spectrum. The discrete nature of the signal also results in a non-zero
offset.
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1. The very fast computational algorithm of calculating Fourier transform, known as Cooley—
Tukey FFT, requires the number of time points to be an integer power of 2. If the number of
collected time points N is not a power of 2, Ny zeros are added to the data prior to Fourier
transformation so that N + Nz is an integer power of 2.

2. In order to obtain a spectrum with the full content of information by discrete Fourier trans-
formation, the collected data must be extended by a factor of 2 by zero-filling. This operation
reintroduces causality, as it was briefly mentioned in Section [3.4] and is discussed in detail in
Section [3.10.7L The important consequence is that the full information content of N exper-
imental complex points (i.e., N points of the real part and N points of the imaginary part,
together 2N bits of information) is encoded in the spectrum (i.e., in the real part of the Fourier
transform, which now consists of 2N frequency points because we artificially increased the
maximum time from (N — 1)At to (2N — 1)At and therefore narrowed the frequency sampling
step Af from 1/NAt to 1/2NAt).

3. The digital resolution Af, given by 1/(NAt), can be improved (narrowed) to 1/((N+Nz)At) by
zero-filling. In this manner, the visual appearance of spectra can be improved by interpolation
between data points. Note, however, that adding more than N zeros does not improve the
informational content of the spectrum. Although the digital resolution is improved, the real
resolution is the same, zero-filling does not help to resolve frequencies that differ less than

1/(NA?)!

3.8 Phase correction

So-far, we ignored the effect of the initial phase ¢y and analyzed Fourier transforms of NMR signals
consisting of a collection of (damped) cosine functions, with zero initial phase. In reality, the signal
has a non-zero phase, difficult to predict

y(t) = Ae Relt+io)gifttto) — | gl Ra(ttt0)gi(Qt+to) +e0) (3.15)

The phase has a dramatic impact on the result of the Fourier transformation. Real and imaginary
parts are mixtures of absorption and dispersion functions. If we plot the real part as a spectrum, it
looks really ugly for a non-zero phase.

For a single frequency, the phase correction is possible (multiplication by the function e~ (o+%0)
where ¢y and ¢q are found empirically):

’./4|67R2 (t+t0)ei(ﬂ(t+t0)+¢)o)efi(Qt0+¢)0) — |A’e*R2 (t+t0)eiQt. (3 16)

In practice, phase corrections are applied also to signal with more frequencies, as described in
Section[3.10.10] The signal is multiplied by a function e~ '?0+919) where 1)y and ¥; are zero-order and
first-order phase corrections, respectively. We try to find ¥y and 1J; giving the best-looking spectra.
The procedure is a trial-and-error process, but modern computers allow us to vary 9y and ¥; and
repeat the Fourier transformation iteratively in a very short time. Note that phase correction is always
necessary, but only approximative corrections are possible for a signal with multiple frequencies!
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Signal in channel 1: R{y(¢)}
Signal in channel 2: S{y(¢)}

R{Y (w)}
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|

Figure 3.8: A signal with the initial phase of 60 ° (top) provides distorted spectra (bottom), unless a phase correction
is applied.

3.9 Apodization

The NMR signal is very often multiplied by a so-called window function prior to Fourier transfor-
mationﬂ This process is known as apodization. The goal is to

1. tmprove sensitivity. Due to the relaxation, signal of data acquired at later time points is lower,
but the noise is the same. Therefore, the late time points decrease the signal-to-noise ratio.
The sensitivity can be improved by discarding or attenuating the late time points.

2. improve resolution. As the resolution is given by 1/(NAt), resolution is improved if the signal
is multiplied by a window function that amplifies the late data points.

3. suppress truncation artifacts. We have seen that oscillations of the baseline appear if the data
acquisition stops before the signal relaxes to zero (i.e., to the noise level). The desired effect of
relaxation can be mimicked by a window function that smoothly converges to zero at NAt.

Obviously, the three listed goals are in conflict, and only a compromise can been reached. There
is no "best apodization”. The choice of the optimal window function depends on the actual needs.

The simplest window function is a rectangle: multiplying the signal by a rectangular function
equal to 1 for jAt < mAt and to 0 for jJAt > mAt represents discarding data recorded for times

2The mathematical expression describing the Fourier-transformed product of two functions, signal and window in
our case, is given by the convolution theorem, presented in Section [3.10.6
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longer than mA¢t. It is a very useful way of improving signal-to-noise ratio if the signal relaxed before
mAt. Otherwise, it produces severe truncation artifacts.

The highest signal-to-noise ratio is provided by a matched filter window function. The matched
filter has the shape of the envelope of the signal. The matched filter for our ideal signal is e f274¢,
The price paid for the signal-to-noise improvement is a lower resolution: Multiplying e~ f2tel?A! by
e~ T2t obviously doubles the linewidth, given by the decay rate, which is now 2R.

The best balance between resolution and truncation artifacts for an allowed extra line broadening
A is obtained with the Dolph—Chebyshev window, defined in Section [3.10.11} which is, however, not
used in practice due to its very complex form. Instead, sine-bell windows sin” (%T_d’ 7+ ¢) are used
routinely, usually with the phase ¢ = 7/2 (i.e., cosine function) and with the power p =1 or p = 2.

HOMEWORK

Describe how finite nature of the NMR signal results in leakage and truncation artifacts (Section .
Derive the equation describing the discrete Fourier transformation of an ideal NMR signal describe
the consequences of the discrete nature of the NMR signal (Section [3.10.9)).
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3.10 SUPPORTING INFORMATION

3.10.1 Setting up NMR experiment

e Temperature control and calibration. Temperature affects molecular motions and chemical shifts, it should be controlled carefully to
obtain reproducible spectra and to analyze them quantitatively. The sample temperature is controlled by a flow of pre-heated/cooled
air or nitrogen gas. The exact temperature inside the sample is not so easy to measure. Usually, spectra of compounds with known
temperature dependence of chemical shifts are recorded (e.g. methanol). The temperature is obtained by comparing a difference
of two well defined chemical shifts (of methyl and hydroxyl protons in the case of methanol) with its values reported for various
temperatures. Purity of the standard samples is a critical issue.

o Field-frequency lock. The external magnetic field should be stationary. It is achieved by a feedback system known as field-frequency
lock. A deuterated compound (usually heavy water or other deuterated solvent) is added to the sample and the deuterium frequency
is measured continually and kept constant by adjusting electric current in an auxiliary electromagnet. The lock parameters for the
particular deuterium compound used are selected and the deuterium spectrometer is switched on before the measurement.

e Shimming. The external magnetic field should be also homogeneous. The inhomogeneities caused e.g. by the presence of the
sample are compensated by adjusting electric current in a set of correction coils called shims. This is usually at least partially
automated.

e Tuning. Each radio-frequency circuit in the probe consists of a receiver coil and two adjustable capacitors. The capacitors should be
adjusted for each sample. The tuning capacitor of the capacitance Ct and the coil of the inductance L make an LC circuit, acting
as a resonator. Adjusting the value of C'r defines the resonant frequency, which should be equal to the precession frequency of the
measured nucleus wp. If we neglect the second capacitor, the resonant frequency is w = 1/4/LCt. The second, matching capacitor
of the capacitance Cy is used to adjust the impedance of the resonator. The radio waves do not travel from the transmitter to
the coil through air but through co-axial cables. In order to have minimum of the wave reflected back to the transmitter, the
impedance of the resonator (coil circuit) Zc, given by

4 1 B 1
c= 1 1 = 1 ;
Znm + ZT+ZL+R iwCy + w4 R

iw

iw CT

should match the input impedance Zj,. In order to tune the circuit, Ct and C\ must be adjusted simultaneously to get (i)
Ze = Zip and (il) w = wo.

e C(Calibration of pulse duration. The magnitude of B cannot be set directly. Therefore, the duration of irradiation rotating M by
360° at the given strength of radio waves is searched for empirically. This duration is equal to 27 /w; and can be used to calculate

w1 or |§1| =wi/y. As |§1\ is proportional to the square root of power P, durations of pulses of radio waves of other strengths need
not be calibrated, but can be recalculated. Power is measured in the units of Watt, but the relative power is usually expressed on
a logarithmic scale in decibells (dB). One Bell represents a ten-fold attenuation of power

P
logy Fj = attenuation/B.

Consequently,
P:
10logq FQ = attenuation/dB,
1

and

| Bi2 |B13 Py .
20log g —=— = 10log;y == = 10log,; —5 = attenuation/dB. (3.17)
|B1h |B1} Py

3.10.2 Quadrature detection and demodulation

Precession of the magnetization vector in the sample induces an electromotive force (voltage) oscillating with the same frequency wq in the
coil of the NMR probe.

The signal generated in the coil and amplified in the preamplifier is split into two channels, labeled a and b here. The signal in each
channel is mixed with a reference wave supplied by the radio-frequency synthesizer. The reference waves have the same frequency —wyadio
in both channels, but their phases are shifted by 90°. Let us assume that the signal oscillates as a cosine function cos(wot) and that
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the reference wave in the first channel is a cosine wave cos(—wradiot) and that the reference wave in the second channel is a sine wave
sin(—wradiot). Mathematically, splitting the signal and mixing it with the reference wave can be described as

1

cos(wot) — { P

2

cos(wot) = cos(wot) cos(—wradiot) channel a

cos(wot) — 5 cos(wot) sin(—wradiot) channel b (3.18)

Basic trigonometric identities show that the result of mixing in the first channel is a sum of a high-frequency cosine wave cos((wo —
Wradio)t) and a low-frequency cosine wave cos((wo + wradio)t) = cos(€2t), while the result of mixing in the second channel is a difference of
the corresponding sine waves:

1 1 1
3 cos(wot) cos(—wradiot) = 1 cos((wo — Wradio)t) + 1 cos((wo + Wradio)t), (3.19)

1 . 1. 1.
5 cos(wot) sin(—wradiot) = 1 sin((wo — Wradio)t) — 1 sin((wo + Wradio)t)- (3.20)

The high-frequency waves are filtered out by a low-pass filter, resulting in signals oscillating with a low frequency wo + wragio = 2.
The procedure, similar to the demodulation in an ordinary radio receiver, thus produces audio signals in both channels

1 1 _ . 1
cos(wot) — 2 cos(wot) — %cos(wot) c<.)s( Wradiot) — c?s(Qt) channel a (3.21)
5 cos(wot) — 5 cos(wot) sin(—wradiot) — 7 sin(Qt) channel b
The signal also has some amplitude, therefore, we replace the factor of 1/4 by an amplitude A and write
a = Acos(0t) b= Asin(Qt). (3.22)

The described manipulation is called quadrature detection and the unit performing it is called the receiver. The outputs of the receiver
are converted to digital data (series of numbers describing values of the signal at discrete, equally spaced time points). It is convenient to
treat the outputs of the individual channels as a real and imaginary component of a single complex number, but physically they are stored
just as series of two numbers in the computer.

A very useful trick is to play with the order of the stored numbers. The four basic options are

data storing option: a, b conventionally labeled: T
b7_a )

—a,—b —x

—-b, a )

The given storage option is described as the receiver phase in the literature. It is not an accident that the same symbols are used for
the phase of the radio wave transmitted during the pulse and for the receiver phase. Choosing the right storage option (setting the receiver
phase) allows us to remove the effect of changing the pulse phase. For example, a signal recorded immediately after an ideal 90° pulse of

phase z (by definition) oscillates as a = Asin(Qt),b = —Acos(2t) (the magnetization starts to rotate from the —y direction). If we run
the same experiment but with the y phase of the first pulse, the signal oscillates as a = A cos(Qt), b = Asin(Q2t). However, if we use the
option y to store the data, the record is the same as in the previous experiment: b = Asin(Qt), —a = —Acos(Qt). We see that the same

signal is obtained if the receiver phase matches the transmitter phase.

3.10.3 Noise accumulation

Here we analyze accumulation of the noise in repeated signal acquisition. The related physics is discussed later in Section The noise
Unoise (t) is random and so its averagd3| (Unoise(t)) = 0. The size of the noise is typically defined by the root-mean-square r/(Unoise(t)2)
Sum of the noise from n independent experiments is

\/< (Unoise,l(t) + Unoise,2(t) + e+ Unoise,n(t))2>~ (3'23)

All terms like (2Unoise,1(t)Unoise,2(t)) are equal to zero because the random motions of electrons in the individual experiments are not
correlated (are independent). Therefore, calculation of the square in Eq. simplifies to

\/< (Unoise,l(t) + Unoise,Z(t) +--+ Unoise,n(t))2> = \/(Unoise,l(t)2> + <Unoise,2(t)2> + -+ <Unoise,n(t)2>~ (324)

We can also assume that the root-mean-square is the same in all experiments, and write it as \/(Unoise(t)2). The sum of the noise
can be then calculated as

n<Unoise(t)2> = \/ﬁ <Unoise(t)2>- (3'25)

3To avoid writing the integrals defining averaging, we indicate the time average by the angled brackets.
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‘We can now calculate the signal-to-noise ratio as

nUmeasured (t) - n Umeasured (t) . 3.26
\/ﬁ <Unoise (t)2> \/7 (Unoise(t)2> ( )

3.10.4 Mathematical description of Fourier transformation

We start with a special case of a signal which can be described by a sum of cosine functions with frequencies that are integer multiples
of some small frequency increment Aw. All such cosine functions must have the same value at time ¢ and ¢t + 27/Aw: the whole signal is
periodic with the period 27/Aw. If we record such a signal using quadrature detection, we obtain

y(t) = Y Ageit = > Ajeliavt (3.27)

Jj=—00 J=—00

The mentioned periodicity allows us to determine Ay by calculating the integrals

™
w

D‘w

2

t)e Wrtdt = ; W—k)Awtqy — =7 3.28
y(t)e Z Aj [ e Ao (3.28)

j=—o0

o

(All integrated functions are periodic and their integrals are therefore equal to zero with the exception of the case when k = j, which
is a constant function).
The same result is obtained for any integration limits which differ by 27/Aw, e.g.

+E - +& )
/ y(te Wridt = >~ A; / eiU*’thdt:A—ZAk (3.29)
- j=—o0 -

We can now continue in two different directions. We can describe the signal as it is actually measured, not as a continuous function of
time, but as a discrete series of points sampled in time increments At. Then, the integral in Eq. is replaced by summation of a finite
number of measured signal points:

N-1
Vi =) yje RAWIAIAL, (3.30)
=0

where Y, = %Ak. As the time and frequency are treated in the same manner, we can also define the inverse operation
N-1

yj =y YieFAwIAT Ay, (3.31)
k=0
This way of the signal analysis, discussed in more details in Section @ handles the signal as it is measured in reality. It is also

instructive to follow the other direction and to increase the period 27/Aw by decreasing Aw. The series of wy becomes a continuous
variable w and 7/Aw — oo if Aw — 0. The sum in Eq. is replaced by the integral

(oo}
1 .
y(t) = — / Y (w)e*tdw (3.32)
2
— 00
and the integral in Eq. @ becomes
oo
Y(w) = / y(t)e wtde. (3.33)
—o0

If we apply Eq. to a function y(t) and Eq. to the obtained result, we should get back the function y(t). Such a double
transformation can be written as

17 17 7 T 17
y(t) = — / Y (w)e“tdw = — / e“tdw / y(t/)e_i“’tldt’: /y(t')dt/— / (=t gy, (3.34)
2 27 27,
— 00 — 00

—o0 —o0 —o0

This requires the second integral to be equal to 27 for t/ =t and to zero for ¢’ # t. Therefore, the integral can be used to define the
delta function
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o'}

1 " ’
St—t) = o / W=t gy, (3.35)
™ .
An alternative definition including a factor of 1/v/27 in A;
S Aj gt S Aj ijAwt
t) = elvit = — 2wt 3.36
W= ¥ o= 3 A (3.36)
1 T —iwt
Y(w) = or y(t)e dt, (3.37)
1 (oo}
y(t) = Wor / Y (w)el“tdw. (3.38)

is equally acceptable.

3.10.5 Fourier transformation of an ideal NMR signal

Let us assume that an ideal NMR signal has the form Ae({(2~«)=FR2)t It Fourier transformation can be calculated easily as

A 1 R2+i(§27w)

Y (w) = / y(t)e Wt = /Ae(i(ﬂ_“)_RQ)tdt = — A _pReti@-w) (3.39)
—o0 0

(Q—w)—Ry ~Ra—i(Q—w) Ba+i(Q-w) ~ RZ+(2—w)?

3.10.6 Properties of continuous Fourier transformation

The continuous Fourier transformation has several important properties:

o0 oo
” 1
e Parseval’s theorem [ |y(t)[?dt = 5= [ |V (w)]*dw
— 0o — 00
A conservation law, documents that the signal energy (information content) is preserved by the Fourier transformation.

oo
o Linearity [ (y(t)+ 2z(t))e ' “idt = Y (w) + Z(w)
— o0
It documents that a sum of periodic functions (difficult to be distinguished in the time domain) can be converted to a sum of
resonance peaks (easily distinguishable in the frequency domain if the resonance frequencies differ).

e Convolution _70 (y(t) - z(t))e wtdt = _T Y(w)Z(w — w')dw’

It provides mathematical description of apodization (Section |3.9)

oo . .
o Time shift [ y(t—to)e 'widt =Y (w)e w0
— 00

It shows that time delays result in frequency-dependent phase shifts in the frequency domain (Section [3.8])

o0
e Frequency modulation [ y(t)ewole™*idt =Y (w — wo)
— 00
It shows that the apparent frequencies can be shifted after acquisition.

oo o0
o Causality [ y(t)e™widt= [ y(t)e”iwidt
—oo 0

It says that no signal is present before the radio-wave pulse (this is why we can start integration at t = 0 or t = —o0, y(t) = 0 for

t < 0). This provides an extra piece of information allowing us to reconstruct the imaginary part of the signal from the real one

and vice versa (Figure and Section [3.10.7).
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3.10.7 Causality and reconstruction of imaginary signal

The consequence of causality mentioned at the end of Section m is rather subtle. As mentioned above, the NMR signal is recorded in
two channels, as a real and imaginary part of a complex number. It is because Fourier transformation of a cosine (or sine) function gives
a symmetric (or antisymmetric) spectrum with two frequency peaks and thus does not allow us to distinguish frequencies higher than the
carrier frequency from those lower than the carrier frequency. Once we have the transformed complex signal in the frequency domain, we
can ask whether we need both its parts (real and imaginary). It looks like we do because the inverse Fourier transformation of just the real
(imaginary) part produces a symmetric (antisymmetric) picture in the time domain (the second row in Figure . But the causality tells
us that this is not a problem because we know that there is no signal left from the zero time — the symmetry does not bother us because we
know that we can reconstruct the time signal simply by discarding the left half of the inverse Fourier image (the third row in Figure .
The time signal reconstructed from the real part of the frequency spectrum only can be then Fourier transformed to provide the missing
imaginary part of the frequency spectrum. The time signal can be reconstructed from the imaginary part of the frequency spectrum in the
same manner (although this is not done typically). This discussion shows that the real and imaginary parts of the frequency spectrum are
not independent but carry the same information.

However, it should be emphasized that the causality principle does not apply to the NMR signal as it is acquired. In reality, the signal
is finite, i.e., it is acquisition is stopped at tmax < oo. Therefore, our generalization to Eq. @ does not correspond to the reality: when
the Fourier transformation of really acquired signal is performed, the upper limit of integration is not infinity but ¢max. The transformation
is mathematically equivalent to Eq. with tmax = 27/Aw = 1/Af. Therefore, the signal can be classified as pem’odi(El with the period
tmax = 2m/Aw = 1/Af. The real and imaginary parts of the integral are independent series of real and imaginary components of the
coefficients Ay in Eq. which contradicts the causality principle (the real and imaginary parts of a causal signal are dependent, as
discussed above).

In order to introduce causality, zero filling has to be applied to the acquired signal, as described in Section ‘We take the signal as
a function y(t) defined in the range 0 < t < tmax. We extend y(t) to a function y%F (t) defined in a range —tmax < t < tmax by setting

0 for —tmax <t <0
0= { s (3.40)

y(t) for 0 <t < tmax

The extended function y%¥ (¢) fulfills the requirement of causality (there is no signal before applying the radio-wave pulse at ¢ = 0).
As a consequence, the R{YZF (¢)} and S{Y%F ()} are not independent, and each of them carries the full information. In practice, y%F (t)
is constructed in a slightly different manner (see Section [3.7)):

(3.41)

ZF(t) _ y(t) for 0 S t S tmax
Y 0 for tmax <t < 2tmax

Both variants (zeros before ¢ = and zeros after tmax) are mathematically equivalent because y(¢) defined in the range 0 < ¢ < tmax
has the periodic nature. Increasing 2tmax in Eq.[3.41|to a higher number does not have any effect on the information content of R{Y%F (¢)}
and S{Y2F (¢)}.

3.10.8 Spectral width, resolution, and sampling

We may try to define the discrete Fourier transform as

N-1 N-1
Y, = Z yje—ikijAtAt _ Z yje—i27rAfAtijt’ (3.42)
j=0 Jj=0
N-—-1 ) ) N-1 ) i ]
v = Z YkelkAw]AtAt _ Z YkeQﬂAjAtk]Af. (343)
k=0 k=0

However, there is a catch here. It turns out that At and Af are not independent, but closely related. The transformation can be
written in a matrix form as

Yo Foo Fo Fo,2 . FoN—1 Yo
Y Fi Fia Fi o PN Y1
Ya _| Feo Fon  Fop  ...FanN-— v2 | Ag (3.44)
Yn-_1 Fy_10 Fn-11 FN-12 ... FN-1,N-1 YN-—1
I3

where the elements of the matrix F' are Fip = e~ i2nAfALk-j

4Note that the signal is really acquired in a periodic manner in practice. The experiment is repeated several times in order to accumulate
data and improve the signal-to-noise ratio. The repeated experiments start from some steady state, not from equilibrium because we do
not let the relaxation to act for an infinite time.
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Figure 3.9: Causality of NMR signal. If we take a frequency spectrum, discard its imaginary part (the first row), and perform the
inverse Fourier transformation, we do not get the original signal (starting at ¢ = 0), but a set of symmetric (real part) and antisymmetric
(imaginary part) functions predicting non-zero signal before ¢t = 0 (the second row). However, we can apply our knowledge that no signal
was present before ¢ = 0 and multiply the left half of the predicted signal by zero. This recovers the actual signal (the third row). Fourier
transformation of this signal provides both real and imaginary parts of the spectrum, as shown in Figure@
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Let us now try to transform Y} back to the time domain:

-1 -1 -1 -1
" Fog  Foi Fog o Foyo Yo
Y1 F1,q F111 F1,21 '-'F111v—1 Yy
Y2 = Foo  Fon Fop e Fy N Y2 Af, (3.45)
_ 1 1 1 1 Yn_
YN-1 Fylio0FnZig FnZie o FyZinoa N-1
p—1

1 1 1 1
Yo Foo  Fon  Fop o Fynoa Foo Foa  Fop ...Fon-1 Yo
7l optl prl Fl '
Y1 L0 Li 1.2 LN Fip IS Fi 0 PN Y1
Y2 = Fyq Fyy Fys e Fy N 20 Fa Fa2 - Fo N Y2 AfAL. (3.46)
_ N . Fn_10 Fno11 Fno12 - Fx_1.n— .
YN-1 Fylyo Fylog Fyloo - Fylinos N-1,0 FN—1,1 FnN_12 N-1,N—1 YN-1

In order to get the original signal, the product of the transformation matrices, FF~1F multiplied by AfAt, must be a unit matrix:

1 -1 1 1
Fo,(i FO,ll Fo,zl "'Fo,11\1—1 Foo Fo1 Fo2 ... Fon—1 100...0
FL({ F1711 F1’21 ~~~F17]1\/,1 Fi iy Fi A 010...0
Fyy Fyy Fy, PN Fro Fy 1 Iy 0 Py N AfAL = 001...0 ] (3.47)
1 -1 -1 1 Fro10 Fxo11 Fx 19 - Fn_1n_ 000...1
Fylyo Fyloy Fylos o Fylin s N-1,0 FN-11 FN-12 N-1,N—1

According to the matrix multiplication rule, the jl-element of the product F-1Fis given by

N-1 )
Z 67127rAfAt(]kfkl)At. (348)
k=0

Clearly, the exponential terms in the sums representing the diagonal elements (j = ) are equal to e I2TASAL(GE—kD AL = &0 = 1.
Therefore, the diagonal elements (sums of N terms e = 1) are equal to N. Obviously, we need to set NAfAt = 1 to get the elements of

the product F-1F equal to one. . .
What about the off-diagonal elements? For NAfAt = 1, the elements of F'~1F are equal to
No1oo
> e W UTDRAL, (3.49)
k=0
The complex numbers in the sum can be visualized as points in the Gauss plane (plane of complex numbers) with the phase of
2mwk(l — 7)/N. Let us assume that N is an integer power of two (N = 2", a typical choice in discrete Fourier transform). Then all numbers
in the series are symmetrically distributed in the Gauss plane. As a consequence, their sum is equal to zero (they cancel each other). We
can therefore conclude that setting NA fAt = 1 ensures that the product F~1F is a unit matrix.

3.10.9 Discrete ideal signal

In order to compare the discrete and continuous Fourier transformation quantitatively, we directly replace d¢t by At and integration by
summation in Eq. The ideal NMR signal converted to the digital form has the Fourier transform

N-1
s o om s
Y = Z Ae~ R2iAti2mviAto—i55 ki Ay (3.50)
i=0

The summation formulﬂ

5The summation formula can be derived easily. Write the sum

N-1
4t 24 42N = Z 27
Jj=0
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N

— (3.51)

N-1

) 1—=z
E 2l =
=0

helps us to evaluate the sum. For the sake of simplicity, let us assume that the carrier frequency is chosen so that the peak is in the
middle of the spectrum

1 1
v=-NAf=—. 3.52
2 f 2At ( )
Then, z and zV in the summation formula are

5 — o~ RoAt 2m(5—F) _ —RaAt jim —i2nf _ —(1- RgAt)e*i%%, (3.53)

—_——

1-RpAt —1
ZN — efRQNAteiTr(N72k). (354)

Note that we replaced e~ F2A% by the Taylor series in Eq. and neglected terms higher than linear in Ra2At because At is usually
much shorter than 1/Rs. Therefore,

1 — e~ Ra2NAtin(N—2k)

Yj, = AAt (3.55)

1+ (1— RoAt)e 27N

The consequences of the discrete nature of the signal are:

Aliasing: If we add a value of NAf to the frequency which was originally in the middle of the frequency spectrum (%NAf = ﬁ),
i.e. add N to k = N/2 in Eq. the last exponent in the sum in Eq. changes from imj to i37j, i.e. by one period (27), and the
transformed signal (the spectrum) does not change. In general, a peak of the real frequency v+ NAf (outside the spectral width) appears
at the apparent frequency v in the spectrum (Nyquist theorem: frequencies v and v + 1/At cannot be distinguished).

Offset: Peak height of the continuous Fourier transform Y (f) = A/R2 and offset of the continuous Fourier transform Y (+oco0) = 0.
Peak height of the discrete Fourier transform.

1— e—RzNAt

YN = AAL — A/R: 3.56
% Ro At / 2 ( )
for NAt — oo, but offset of the discrete Fourier transform
1 7efR2NAteiN7r 1 1
Yo=AAt——F——— — —AALt = —yoAt 3.57
0 2 — RoAt 2 2¥0 (3.57)

for NAt — oo and At — 0. The offset of discrete Fourier transform is non-zero, equal to half of the intensity of the signal at the first
time point y(0) if the signal was acquired sufficiently long to relax completely (NAt > 1/R»).

3.10.10 Zero- and first-order phase corrections

Let us assume that the acquired signal was created by a set of rotating magnetization vectors that differ in 2 and that started to rotate
at some unspecified time —tg (i.e., before the acquisition started at ¢ = 0) with the same unspecified phase ¢¢. For the sake of simplicity,
we assume that all magnetization vectors relax exponentially with the same rate constant R2. Each such magnetization vector produces a
signal
Yn(t) = | Ap e B2(t410) ol (Qn (t4t0)+0) (3.58)
We multiply the whole signal, i.e., each yn(t), by the correction function e~i(Wot1w)

yn (t)e "1 (Potd1w) — ‘_An|e—R2(t+t0)ei(ﬂn(i+t0)+¢0)e—i(190+191w) = | Ay e~ F2(ttto) i(@n(ttto)+éo—do—V1w) (3.59)

The Fourier transform of such modified signal is

and multiply it by (1 — 2):
N—-1
(I=2)( 42" 422+ 42V =20 — 2t 2t =22 22 N N N =1 N = (1-2) D A
j=0

Divide the last equation on the previous line by (1 — z) to obtain the summation formula.
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o0 oo
|An| / o~ R2(t+10) oi(Qn (t+10)+do—do—V1w) g—iwt g4 — |An| / e~ R2(t+10) oi(2n (t+10) +do—do—V1w—wt) 44 (3.60)

— 00 — o0

This expression does not change if we multiply it by 1 = ellwto—wto)

oo oo
|An| / e~ 12 (t410) gl(2n (t4t0) Hdo—Fo—drw—wh) gy — | 4,,| / e~ R2(t+t0) o1(Q2n (t+t0)+d0—P0 —F1wtwto—w(t+to)) g¢. (3.61)
7'00 — 00

Note that changing the variable from ¢ to ¢ + ¢o does not change the Fourier transform (the integral) because dt = d(¢ + to) and the
integration limits are —oo and oo in both cases

(oo} oo
[An] / e—Rz(H—io)ei(Qn(t+t0)+¢o—190—191w+wt0—w(t+io))d(t+t0) - |_An|ei(o’>ufﬂo+w(fofﬁl)) / e_R2(t+t0)ei(Qn(t+t0)e_w(t+t0)>d(t +to).

— 00 =1 — o0

if po=10 and tog=v1 Y (w)

(3.62)
As we can see, the effects of the initial phase and time shift are removed by multiplying the signal with e=1(90+?1%) if we succeed to
find the first-order phase correction %9 = ¢g and the second-order phase correction 91 = tg.

3.10.11 Dolph—Chebyshev window

The Dolph—Chebyshev window function is defined as

1 Nzl cos (2(N — 1) arccos cos(mk/N)

Z cos(rr)\At/2)) eizﬁwkﬁ"
VN k=0 cosh (Z(N — 1)arccosh

n (3.63)
cos(mAAL/2) )
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Lecture 4
Review of quantum mechanics

Literature: This chapter starts with a brief review of the quantum mechanics. Textbooks covering
this topic represent the best source of information. Brown presents in B9 a useful review of the
classical mechanics, usually missing in the quantum mechanics textbooks (assuming that students
learnt the classical mechanics earlier, which is true in the case of students of physics, but not so often
in the case of chemistry or biology students), and reviews the quantum mechanics in B13, B15, and
B16. B1-B5 provides overview of the relevant mathematical tools. NMR books also provide some
introduction. Keeler reviews the quantum mechanics in a very understandable fashion, using the
concept of the spin from the very beginning (K3.2 and K6). Levitt proceeds more like us (L6-7). A
condensed summary is presented in C2.1 (short, rigorous, but not a good start for a novice).

4.1 Wave function and state of the system

This course should not provide explanation of principles of the quantum mechanics, it should build
on an already acquired knowledge. Nevertheless, we briefly review basics of the quantum mechanics
in this lecture because in the following lectures, we use the quantum mechanical approach to describe
NMR.

The quantum mechanics was introduced because the Newton mechanics did not described exper-
iments correctly. Yet, knowledge of the classical mechanics is very helpful in discussions of various
ideas and approaches of the quantum mechanics. Those who did not have chance to study the Hamil-
tonian and Lagrangian mechanics in other courses may find a short summary of issues related to our
topic (NMR) in Sections [£.9.1H4.9.3|

The quantum mechanics is postulated, not derived. It can be only tested experimentally. The
basic differences between the Newton and quantum mechanics are listed below.

e Newton mechanics: coordinates x,y, z and moments p of all particles describe all properties of
the current state and all future states

e Quantum mechanics: wave function ¥ describes all properties of the current state and all future
states

’ We postulate that the state of the system is completely described by a wave function.

87
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The two-slit (Young) experiment may serve as an example of motivation to use the quantum
mechanics to describe experimental results. The experiment (presumably known to the reader)
asks the question whether the studied microscopic objects (e.g. electrons) are particles or waves.
The answer is ”Particles, but with probabilities combined like waves”E The wave function used to
describe the studied object can be interpreted as a (complex) probability amplitude ¥ = Ce'®. The

(real) probability density is then p = U*¥ = |¥|?> = |C|? and the probability of finding single particle
LLL
in volume L* is [ [ [ W*Wdaxdydz. We see that calculating a probability includes a calculation of

000
square of the complex probability amplitude. Definitions of square values of different mathematical

objects and the notation used in quantum mechanics are listed in Section [£.9.4 In particular, the
quantum-mechanical notation includes a convention to write

L L L
|U) =¥, (U] = v~ (VW) E///\Il*llfdxdydz. (4.1)
00 0

The wave function of a free particle moving in direction = (coordinate frame can be always chosen
so that z is the direction of motion of a free particle) can be written as

U — CeiZW(ff%) — CYe%(pI*Et)7 (42)

where h = 27h is the Planck’s constant, p = mo is the momentum (along ), and £ is the (kinetic)
energy. Note that ¥ corresponds to a monochromatic wave with period equal to h/E, wavelength
equal to h/p, and a complex amplitude C' (it may contain a phase factor el?).

4.2 Superposition and localization in space

Note that a monochromatic wave function describes exactly what is p of the particle (Figure ,B),
but does not say anything about the position of the particle because p = U*W¥ = |C| is the same
for any z (the distribution of the probability is constant from x = —oo to x = oo, Figure ).
A wave function describing a particle (more) localized in space can be obtained by superposition of
monochromatic waves (Figure [£.2).

U(x,t) = ¢y Aen P80 o) AenPre—Eat) 4 (4.3)
wl wz
We postulate that if possible states of our system are described by the wave functions v, s, . . .|

their linear combination also describes a possible state of the system.

Note that monochromatic waves are orthogonal and can be normalized (Section |4.9.5]).

'Quantum field theory provides more elegant description of fundamental ”particles” than presented in this text.
However, the relations presented in this text can be recovered from the quantum field approach.
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Figure 4.1: Free particle described by a monochromatic wave function W. The real and imaginary parts of the wave
function are plotted in Panels A and B, respectively, the probability density p = U*V is plotted in Panel C. Note
that the wavelength and consequently the value of the momentum p is sharply defined (A,B), but the position of the
particle is completely undefined (C).
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Figure 4.2: Free particle described by a superposition of ten monochromatic wave functions of the same amplitude.
The real and imaginary parts of the monochromatic wave functions (thin lines) and of the final wave function ¥
(normalized to have the same amplitude as the monochromatic wave functions, thick line) are plotted in Panels A and
B, respectively, the probability density p = U*W is plotted in Panel C. Note that the position of the particle starts
to be defined by the maximum of p = ¥*W, but the wavelength and consequently the value of the momentum p is no
longer well defined (A,B).
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4.3 Operators and possible results of measurement

We postulated that the wave function contains a complete information about the system, but how
can we extract this information from the wave function?
We postulate that any measurable property is represented by an Hermitian operator (acting on
the wave function) and that result of a measurement must be one of eigenvalues of the operator.

The term eigenvalue and a related term eigenfunction are explained and an example is given in
Section An operator A is called Hermitian if

(U|AT) = (AT|T) = (U|A|D). (4.4)

In this text, we usually write operators with ”hats”, like A. Writing AU means ”take function ¥
and modify it as described by A7, Tt is not a multiplication: AU #+ A0, A is not a number but an
instruction what to do with W!

A recipe to calculate possible results of a measurement is:

1. Identify the operator representing what you measure (fl)

2. Find all eigenfunctions [¢1), [t)2), ... of the operator and use them as an orthonormal basis’|
for W: |\I/> = Cl|'¢1> + 02|77Z)2> + ...

3. Calculate individual eigenvalues A; as

(5[ Ads) = (sl Ay - 1) = A; {Us115) = A;. (4.5)
=1
The first equation in follows from the definition of eigenfunctions. A; is just a number and
can be factored out of the brackets (representing integration or summation) as described by the
second equation. The number A; is the eigenvalue of A for |1;). The last equation in reflects
orthonormality of |1);). If A is Hermitian, the same result must be obtained by calculating

(Apjlapy) = (A3 -bjlby) = A3 (slapy) = A3, (4.6)
=1

i.e. Aj; must be equal to its complex conjugate A}. This is true only for real numbers. As a
result of measurement is always a real number, the eigenvalues must be real numbers. This is why
operators representing a measurable quantity must be Hermitian.

4.4 Expected result of measurement

Eq. tells us what are the possible results of a measurement, but it does not say which value is
actually measured. We can only calculate probabilities of getting individual eigenvalues and predict
the expected result of the measurement.

2The term ”orthonormal basis” is described in Section m



92

We postulate that the expected result of measuring a quantity A represented by an operator A
in a state of the system described by a wave function W is

(A) = (V[A]D). (4.7)

There are three ways how to do the calculation described by Eq. [4.7}

1. Express W, calculate its complex conjugate W* = (|, calculate AV = |A\IJ), and in the manner

of Eq.

(A) = (U|A|W) = (T|(AT)) = / U (x,.. AU (z,.. )dx. ... (4.8)

— 00

Three dots in Eq. tell us that for anything else than a single free particle (with zero spin)
we integrate over all degrees of freedom, not just over x.

2. Find eigenfunctions vy, s, ... of A and write ¥ as their linear combination ¥ = 1 +coto+t- - -

(use the eigenfunctions as an orthonormal basis for ¥). Due to the orthonormality of the basis

functions, the result of Eq. is (A) = cje1 A1+ Aa+- -+, where Ay, Ay, ... are eigenvalues
of A. We see that (A) is a weighted average of eigenvalues A; with the weights equal to the
squares of the coefficients (cfc; = |¢;]?). The same result is obtained if we calculate

<A):(cfc§--~) 0 Az 0‘2 . (4.9)

We see that we can replace (i) operators by two-dimensional diagonal matrices, with eigenvalues
forming the diagonal, and (ii) wave functions by one-dimensional matrices (known as the state

vectors) composed of the coefficients ¢;. Eq. shows calculation of the expected results of

the measurement of A using the matriz representation of the operators and the wave functions.

The matrix representation is a big simplification because it allows us to calculate (A) without

knowing how the operator A and its eigenfunctions look like! We just need the eigenvalues and
coefficients ¢;. This simplification is possible because the right coefficients are defined by the

right choice of the basis.

3. Write WU as a linear combination of basis functions ¢, 15, ... (not necessarily eigenfunctions of

A)

\I/:C,ﬂb;‘i‘c,ﬂ/)é"i_”' (4.10)

Build a two-dimensional matrix P’ from the products of the coefficients ey
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€1 GGy -

Ik Ik

P = | &y ] (4.11)

Multiply the matrix P’ by a matri A representing the operator A in the basis 7, ¢7,....
The sum of the diagonal elements (called trace) of the resulting matrix P’A’ is equa to the
expected value (A)

(A) = Tr{P'A'}. (4.12)

Why should we use such a bizarre way of calculating the expected value of A when it can be
calculated easily from Eq. The answer is that Eq. is more general. We can use the
same basis for operators with different sets of eigenfunctions.

For the sake of completeness, we should point out that the quantum mechanics must also somehow
describe result of a measurement that has been already done and that gave us one value of A. We
need an operator that identifies the wave function describing the state corresponding to the measured
value A,,. Such operator is called the projection operator B, and its form is derived in Section .

We postulate that if A,, is the result of measuring A in the state described by |¥), then the

state immediately after the measurement is described by P,,|V)/1/(V|P,,|V), where P, is the
projection operator associated with A,,.

3How can we get a matrix representation of an operator with eigenfunctions different from the basis? The complete
set of N functions defines an abstract N-dimensional space (N = oo for free particles!). The wave function ¥ is
represented by a vector in this space built from coefficients ¢}, c5, ..., as described by Eq. and a change of the
basis is described as a rotation in this space. The same rotation describes how the matrix representing the operator
A changes upon changing the basis. Note that the matrix is not diagonal if the basis functions are not eigenfunctions
of A.

4The trace of the product P’ A’ is equal to

li /
Ay Al - A
/ /
Ix )k A A e cC
(e s ---) 21 422 2 |,
but it must be also equal to
/% Ix
A AT - a
% Ix
(cr 5 --) Agy Agy -+ 2

because A is Hermitian. This shows that the diagonal elements of matrices representing Hermitian operators must be
real numbers A’ = A%, and the off-diagonal elements must be such complex numbers that A% = Aj ..
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4.5 Operators of position and momentum, commutators

We need to find operators in order to describe measurable quantities. Let us start with the most
fundamental quantities, the position of a particle z and the momentum p = muv, that completely
describe studied systems in the Newton mechanics. Their operators are defined in terms of their
mutual relation. Therefore, we first discuss a general relation of two operators. If we apply two
operators subsequently to the same wave function, the order of the operators sometimes does not
matter

ABf = BAf = ABf— BAf=0. (4.13)
However, sometimes the order of the operators makes a difference
ABf + BAf = ABf— BAf #0. (4.14)

The difference of the operators can be viewed as a new operator (AB — BA) known as the
commutator and written as

ABf — BAf = (AB— BA)f = [A, B]f. (4.15)

A non-zero commutator tells us that the quantities represented by A and B are not independent
and cannot be measured exactly at the same time.

We postulate that the operators of the position and of the momentum obey the relations

[P, i) = ihdz [P, 7] = [Pj, k] = 0. (4.16)

Note that we only postulate relations between the operators. Various choices of expressing the
operators are possible and correct as long as Eq. holds. A frequently used choice is described
below.

The wave function ¥ (x,t) defined by Eq. is a function of the position of the particle, not
of the momentum (it is a sum of contributions of all possible momenta). If we define the basis
as a set of functions ¢; = W(x;,t) for all possible positions z;, the operator of the position is
simply multiplication by the value of the coordinate describing the given position (see Section .
Operators of the positions in the y and z directions are defined in the same manner.

(4.17)

Il
Il
Q>
Il
[\

In Section [4.9.6] an operator of the momentum of a particle moving in the z direction is obtained
by calculating 0V /0z (Eq. [4.87)). If a particle moves in a general direction, operators of components

of the momentum vector are derived in the same manner.
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by = —ih%, (4.18)
by = —iha%, (4.19)
b, = —ih% (4.20)

It is shown in Section that such a choice is compatible with the postulate described by
Eq.[4.16] Note that the commutator relations described in Section follow from the way how we
defined ¥ in Eq. 1.3l However, we can also use Eq. as the fundamental definition and Eq.
as its consequence. This is how we postulate the definition of the position and momentum operators
here.

4.6 Operator of energy and equation of motion

The arguments presented in Section show that the eigenvalues of the total (kinetic and poten-
tial) energy of a free particle can be obtained by calculating 0V /0t. If the particles experience forces
that depend only on the coordinates (and can be calculated as gradients of the potential energy),
the sum of the kinetic and potential energy is equal to the Hamiltonian H in the classical mechanics
(Section . The same term is used for the corresponding quantum mechanical operator, labeled
H.

The association of the Hamiltonian (energy operator) with the time derivative makes the Hamil-
tonian essential for the analysis of the dynamics of systems in the quantum mechanics:

We postulate that evolution of a system in time is given by the Hamiltonian:

ov .
in" — AW, 121
o (4.21)

Note that our first postulate (the wave function completely describes the system, including its
future) requires that the wave equation contains only the first time derivative (not e.g. the second
time derivative). The explanation is provided in Section

Eq. can be also written for the matrix representations of ¥ and H. If the eigenfunctions of
H are used as a basis (¥ = c1(t)Y1 + co(t)pa + - - - ), the time-independent eigenfunctions 1; can be
factored out from OW /0t (left-hand side) and ¥ (right-hand side), and canceled, giving

d (&1 810 C1

iha |l =]0&: - c |, (4.22)

which is simply a set of independent differential equations

d—t' = —igcj' = ¢ = aje_ifj ) (423)



96

where the (possibly complex) integration constant a; is given by the value of ¢; at ¢t = 0.

Note that the coefficients ¢; evolve, but the products cjc; = la;|* do not change in time. Each
product cjc; describes the probability that the system is in the state with the energy equal to the
eigenvalue &;, described by an eigenfunction ;.

e States corresponding to the eigenfunctions of the Hamiltonian are stationary (do not vary in
time).
e Only stationary states can be described by the energy level diagram.

Since our goal is the quantum description of NMR, it is useful to see how is the evolution of a
wave function influenced by the magnetic fields. Therefore, we list the equations of motions for wave
functions describing a free particle, a particle in an electric field, and a particle in an electric and
magnetic field. All three variants are known as the Schriodinger equation.

e Free particle. As shown in Section [4.9.10, a wave function describing a free particle evolves as

LoV h? [ 0? 0? 0?
H

e Charged particle in an electric field. Electric forces depend only on the position of the charge
in the electrical field. Therefore, the electric potential energy can be described as QV(x,y, 2),
where @ is the electric charge and V (z,y, z) is an electrostatic potential. As follows from the
classical mechanics (Section [£.9.1)), and is also shown in Section the effect of an electric
field is accounted for simply by adding the electric potential energy Eyot(x,y, 2) = QV(x,y, 2)
to the Hamiltonian

L OV R [ 0* 0? 0?

H

o Charged particle in an electromagnetic field. The real challenge is to describe the effect of
the magnetic field on the evolution in time. The problem is that the magnetic force does not
depend solely on the position in the field, but also on the wvelocity of the charge (Eq. 4.53)).
This case is analyzed in detail in Section [£.9.2] showing that the effect of the magnetic field can
be described by the vector potential, a vector quantity that can be used to define the magnetic

induction B = V x A = (8—?; — 04y 04, DA, Ody %gf). As shown in Section [4.9.2| the

vector potential modifies the momentum p'— p'— fo and the resulting wave equation is

ov 1 ) 2 0 ? 9 ’
ih = <% ((ih% + QAw) + (iha—y + QAy) + <ih£ + QAZ) ) + QV(w,y,Z)> v

(&

! (4.26)
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4.7 Operator of angular momentum

In order to understand NMR experiments, we also need to describe the rotation in space. The
fundamental quantity related to the rotation is the angular momentum. In a search for its operator,
we start from what we know, from the position and momentum operators. We use the classical
physics and just replace the values of the coordinates and of the momentum components by their
operators.

The classical definition of the vector of the angular momentum L is

-

L=#xp (4.27)

The vector product represents the following set of equations:

Lx =TyPz — 72Dy, (428)
Ly =T2Px — TPz, (429)
L, =1r.py — TyPs- (4.30)
Going to the operators
Ly = Fyp, — 7P iy 4 el (4.31)
T ypz zpy ya ay? .
R 0
Ly =7.py — TaD2 17126— + 1hw§, (4.32)
. o 0
L, =7.py — Typs = 1h:va— + 1hy%, (4.33)
LP=L2+ L2+ L2 (4.34)
As shown in Section 4.9.12l
(L, L,) = ihL., (4.35)
(L, L.] = ihL,, (4.36)
(L., L) = ihL,, (4.37)
but
[ﬁZ, f/x] = [f/Q,ﬁy] = [[:2, f/Z] =0. (4.38)
Note that

e Two components of the angular momentum cannot be measured exactly at the same time.
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e Eqgs. [4.35H4.38| can be used as a definition of the angular momentum operators if the position
and momentum operators are not available’

The relationship between the angular momentum and the rotation is discussed in Sections[4.9.13]
Eigenvalues and eigenfunctions of the commuting operators L? and L, are derived in Sections |4.9.14

and [4.9.15] respectively.

4.8 Operator of orbital magnetic moment

Knowing the operator of the angular momentum, we can easily define the operators of the orbital
magnetic moment.

A moving charged particle can be viewed as an electric current. The classical definition of the
magnetic moment of a charged particle travelling in a circular path (orbit) is (Section

L Q. . Q Qz_ =
=—(rxv)=—({Txp)=—L=~L 4.39
fi= Sx D) = oo (7 x i) = o= L=, (439
where () is the charge of the particle, m is the mass of the particle, ¥ is the velocity of the particle,
and v is known as the magnetogyric ratio ( constcmt)ﬁ

Therefore, we can write the operators

flz = '7[:1 ﬂy = fYIA/y fir = ’V[A/z ﬂz = '72[:2' (440)

Finally, we can define the operator of the energy (Hamiltonian) of a magnetic moment in a

magnetic field. Classically, the energy of a magnetic moment /i in a magnetic field of the induction

Bis & = —i - B. Accordingly, the Hamiltonian of the interactions of an orbital magnetic moment
with a magnetic field is

H = —Byfi, — Byjty — B.ji. = — (szx + B,L, + Bzzz) = _% (Bxﬁx + B,L, + Bziz> . (4.41)

In contrast to the operators of the orbital angular momentum and of the magnetic moment, the
derivation of the intrinsic angular momentum, known as the spin, and of the associated magnetic
moment, requires a more fundamental (and much more demanding) approach. We discuss such
approach in the next Lecture.

HOMEWORK

As a preparation for the next lecture, derive the Dirac equation (Section , and check if you
understand why the 4 matrices in Dirac equation (Eq. [5.2)) can have the required properties, whereas
numbers cannot (Section [5.7.4]).

5Egs. are sometimes written in a condensed form as [L;, L] = ihejp Ly and [L?, L;] = 0, where j,k,1 €
{z,y, 2} and €5 = 1 for jkl = xyz or any even permutation of x,y, z in €,,, (even number of exchanges of subscripts
Z,Y,2 IN €gys, €.8. €y.5 is obtained by two exchanges: first # <> y and subsequently « <> z), €, = —1 for any odd
permutation of z,y, z in €., €, = 0 for two or three identical subscripts (e.g. €zyy)-

6The term gyromagnetic ratio is also used.
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4.9 SUPPORTING INFORMATION

4.9.1 Classical mechanics: Newton, Lagrange, Hamilton

Newton’s laws describe mechanics using forces. In the presence of a force F, motion of a particle of a mass m is described by the second
Newton’s law
. dg
F=ma=L.
dt
As an alternative, the Newton mechanics can be reformulated in terms of energies. The total kinetic energy of a body consisting of
N particles is

(4.42)

N
Exin = sm > Tg - T (4.43)
k=1

N =

and depends only on the velocities of the particles U, not on their positions 7x. The total kinetic energy can be related to the
accelerations as follows

OEki 1
M2 =~ (20k0) = MUk = it (4.44)
Qv 2
d dpr;  d O&kin
_4d _ doe _ d 98an. 4.45
mag = (mug) T & oony (4.45)

where k is the particle number and [ is the direction (z, y, or z). In the presence of forces that depend only on the coordinates (z, y,
or z) and can be calculated as gradients of potential energy, the formulation of the second Newton’s law is straightforward
d; d 0& (o}t
Pri _ d Okin _ OCpot _ Fi. (4.46)
dt dt vy, Orgy
Since our E;, depends only on velocities and not on position in space, and Epot depends only on position in space and not on velocities,
Exin and Epot can be combined into one variable called Lagrangian L:

0= % _ Fkl _ iagkin _ agpot _ ga(gkin — gpot) _ a(gkin 7gpot) _ i% _ oL )
dt dt Ovy org, dt v org; dt v Org;
A set of Eq. for all values of k and | (3N combinations) describes well a set of N free particles, which has 3N degrees of freedom.
If the mutual positions of particles are constrained by C constrains (e.g. atoms in a molecule), the number of degrees of freedom is lower
(3N — C) and the number of equations can be reduced. It is therefore desirable to replace the 3N values of rg; by 3N — C values of
generalized coordinates qj. Each value of ry; is then a combination of g; values, and

(4.47)

3N-C

or
drg = Z dgj, (4.48)
=1 9g;
and (if the constraints do not depend on time)
3IN-C 3N-C
dry Ory dg; orgy .
Vg = = — = qj, (4.49)
dt j:zl qu dt ; 8(]]'
where the dot represents time derivative. The equation of motion can be thus rewritten as
d ocC oL
— === (4.50)
dt qu 9q;

We obtained Eq. @starting from the second Newton’s law. However, mechanics can be also built in the opposite direction, starting
from the following statement. Equation of motion describing a physical process that starts at time t1 and ends at time ta must be such
that the integral ~/;5t12 Ldt is stationary, in other words, that the variation of the integral is zero. This statement is known as the least action
principle and, using calculus of variation (as nicely described in The Feynman Lectures on Physics, Vol. 2, Chapter 19), Eq. can be
derived from itEI There is, however, no general rule how to express the Lagrangian as an explicit function of generalized coordinates and
velocities. Finding the Lagrangian may be a demanding task, requiring experience and physical intuition.

"Richard Feynman showed that quantum mechanics can be reformulated by using

. to
o Ji 2 £/hat

as a probability amplitude (path integral approach).
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Lagrangian can be converted to yet another energy-related function, known as Hamiltonian. Lagrangian and Hamiltonian are related
by the Legendre transformation (see Section [4.9.3)).

H(gs,ps) + L(g5,45) = Y _(ps - 45, (4.51)
J
where
oL
= — 4.52
bj EXS ( )
For our set of /N unconstrained particles exposed to forces that do not depend on the particle velocities, q; = 75 and p; = % is the
J

linear momentum of the k-th particle in the direction [ (cf. Eq. and the Hamiltonian is simply the sum of total kinetic and potential
energy (H = Exin + Epot). In general, p; is called the canonical momentum.

The introduction of Lagrangian and Hamiltonian approaches may seem to be an unnecessarily complication of the description of
classical mechanics. However, Hamiltonians and Lagrangians become essential when we search for quantum mechanical description of
particles observed in magnetic resonance experiments because Hamiltonian describes evolution of quantum states in time

4.9.2 Lagrangian and Hamiltonian including magnetism

Derivation of the Hamiltonian (classical or quantum) for magnetic particles in magnetic fields is much more demanding because the magnetic
force depends on the velocity of moving charged particles. Therefore, velocity enters the Lagrangian not only through the kinetic energy
and the canonical momentum is no longer identical with the linear momentum. We start our analysis by searching for a classical Lagrangian
describing motion of a charged particle in a magnetic field, and then convert it to the Hamiltonian using Legendre transformation.

We know that the Lagrangian should give us the Lorentz force

F=Q(E +7x B). (4.53)

We know that a velocity-independent force is a gradient of the corresponding potential energy. For the electric force,

F=VE&,; =QVV, (4.54)

where the electric potential energy £, and the electric potential V' are scalar quantities. Intuitively, we expect the magnetic force to
be also a gradient of some scalar quantity (some sort of magnetic potential energy or magnetic potential). The magnetic force is given by
QU X é, so the magnetic energy should be proportional to the velocity. But the velocity is a vector quantity, not a scalar. We may guess
that the scalar quantity resembling the electric potential may be a scalar product of velocity with another vector. This tells us that the
search for the electromagnetic Lagrangian is a search for a vector that, when included in the Lagrangian, correctly reproduces the Lorentz
force, expressed in terms of E and B in Eq. The information about E and B can be extracted from the following Maxwell equations

ol
Il

v - 0 (4.55)
O, 8B
VXE=——, 4.56
ot ( )

but we have to employ our knowledge of vector algebra to handle the divergence in Eq. and the curl in Eq. . ~
First, note that we look for a scalar product, but Eq. contains a vector product. The useful identity @ x (b x &) = b(a@-¢) — (@-b)C
tells us that it would be nice to replace B with a curl of another vector because it would give us, after inserting in Eq. , the desired

gradient of scalar product:

Tx (VxA) =V(5-A) —(T-V)A). (4.57)

The vector A is a so-called vector potential.
Another identity says that @ - (d@ x b) = 0 for any vectors @ and b because @ X b L d@. As a consequence, we can really replace B by a
curl (rotation) of some vector A because V - (V x A) = 0 as required by Eq. |4.55| The first step thus gives us a new definition of B

—

B=Vx4 (4.58)
which can be inserted into Eq.

=

F=QE+7xB)=Q(E+7x (VxA), (4.59)

and using the aforementioned identity @ x (b x &) = b(@- &) — (@ - b)c,

8The Hamiltonian can be also used to describe time evolution in classical mechanics.
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F=QE+txB)=QE+ix(VxA))=QE+V (& A —(7-V)A). (4.60)

OB o = o 9A o o o (84 o
0=—+VXE=VX—+4+VXE=VX|—+FE]|. 4.61
ot + t ( ot > ( )
Third, we notice that for any vector @ and constant ¢, @ X (c@) = 0 because @ || ca. As a consequence, we can replace (B/Y/at + E)

by a gradient of some scalar V because V x (V(dA/8t + E)) = V x (—=VV) = 0 as required by Eq. The scalar V' is the well-known
electric potential and allows us to express E as w combine

E=—-——-VV. 4.62
5 (4.62)
which can be also inserted into Eq. [£.53]
ﬂ L o oA . I
F=QE+ixB)=Q (-5 -+ V@ 4 - (@ 9)4). (4.63)

Finally, we notice that

%z%—?+%%+%%+%%=%+(ﬁﬁ)ﬁ = %z%fO?-ﬁ)g, (4.64)
which shows that (17- 6) A in Eq. can be can be included into dA‘/dt
F=QE+txB)=Q (%f —VV+ V(@A) - (a.ﬁ)g) =Q (‘f - 6v+6(ﬁ-5)> ) (4.65)
Let us now try to write £ as
L = Exin — Eel + Emagn = %mqﬂ — QV + Emagn, (4.66)

where & is a typical potential energy dependent on position but not on speed, and Emagn can depend on both position and speed.
For this Lagrangian,

%;ﬁ Z%(%Jr(%%f):maer%%. (4.68)
If we use Emagn = QU - A, Eqgs. and with Eq. for ¢ = = give us
mag = —Q <di”” - Z—‘; + 6(12;@)) (4.69)
and a sum with similar y- and z-components is equal to the Lorentz force
mﬁ:F:Q(‘f6v+6(5-x)>:cg(ﬁ+ax§), (4.70)
We have found that our (classical and non-relativistic) Lagrangian has the form
L= %mvg —QV +Q(@- A). (4.71)
According to Eq. the canonical momentum has the following components
Px = % = muy + QA, Dy = S—Ui = muy + QAy Py = 8—Ui =muy + QA:. (4.72)

The Hamiltonian can be obtained as usually as the Legendre transform



102

1 N
> pjvj—£:ﬁ~17—£:ﬁ~17—5mv +QV —Q(@- A). (4.73)
J=z,y,2
In order to express H as a function of p, we express ¥ as (ﬁng)/m
5 (F— QA p— QA)2 F—QA) - A 25 (F—QA) — (F— QA2 —2Q(F—QA)- A
gy P P=Q4) Q)+QV_Q(p QA)-A _2p-(—QA) — (- QA) QP —QA) Qv
m 2m m 2m
2p% —2QF- A —p? +2Q7 A — Q2A2 —2Qf - A + 2Q2 A2 2 _2Qp - A+ Q24?2 57— QA)?
_ 2p*—2Qp P +2Qp 2mQ QP A+2Q°A% | o, P Qp2m+Q tov=" 23) LoV, (4.74)

We use Eq. [I.74] in Section [.7.8| as a starting point of quantum mechanical description of the spin magnetic moment.

4.9.3 Legendre transformation

The Legendre transformation has a simple graphical representation (Figure . If we plot (Figure ) a function of a variable z, e.g.
f(x), slope at a certain value of = £ is equal to s(§) = (8f/0x)¢. A tangent line y(£) touching the plotted f for = £ is described by
the slope s(£) and intercept g(§) as y = g + s(§)z. The value of the intercept for all possible values of £ can be expressed as a function of
the slope g(s) = y(&) — s(£)€ = f(€) — s(£)€ (y and f are equal at z = £ because they touch each other). If we identify = with ¢, f with
L, and —g with H (Figure |4.3B), we get Eq. for a one-dimensional case (j = 1). The inverse Legendre transformation is defined in a
similar manner for the function g(s) and its slope t at s = o (Figure Iz3C), or for —g = H and f = £ (Figure [z3]D).

4.9.4 Calculating square

Recall how ”square” is calculated for various mathematical objects: for a real number ¢ = ce, for a complex number |c|2 = cc*, for vector

¥ composed of N real numbers v1,va, ..., which can be written in a matrix form as a row or column of the numbers vy, va,...,
v1
2 _ o = v
|v] :v~v:v1v1+vgv2+...:§ vjv]-:(vl Vg ) 2, (4.75)
— .

for a vector ¥ composed of N complex numbers ¢; = aj + ib1,c2 = a2 + ibo, ...

~ a1 ay +iby
2 =3 T = cfer +eier 4= cjes = ng )y +it) = (cies ) [ = (aibr aa—iby ) [ 2t
(4.76)
for a (continuous and possibly complex) function
oo
/ Fo(@) f(x)dz (4.77)
— o0

(function can be viewed as a vector of infinite number of infinitely ”dense” elements, summation is therefore replaced by integration).
Paul Dirac introduced the following notation: |v), |f) is a vector v or function f, respectively, and

N
(wlvy = o' 6:2 0, (4.78)

(fIfy = /f (z) f(z)dz. (4.79)
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_Spot
y=—-H+pq

Figure 4.3: Legendre transformation of a general function f(x) (A) and of one-dimensional Lagrangian £ (B), and inverse Legendre
transformation of a general function g(s) of one-dimensional Lagrangian £ and Hamiltonian H (D). The transformation is presented for a
Lagrangian £ and a Hamiltonian H describing forces independent of the velocity.
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4.9.5 Orthogonality and normalization of monochromatic waves

Note that monochromatic waves are orthogonal, i.e., a scalar product of two waves differing in p is equal to zero:

(1 ]eh2) = /wfl/&dx: /A*e—%(mx—glt)Ae%(mw—&t)dx:|A|2e‘g(51—82)t /e‘g(m—pz)xdx:
aper(iet [ oos PP gy japereienn [ 2P, - g (4.80)

unless p1 = p2 (positive and negative parts of sine and cosine functions cancel each other during integration, with the exception of
cos0=1).
Values of A can be also normalized to give the result of Eq. [4.80| equal to 1 if p1 = p2 and &1 = £2. The requirement (1)1]y2) = 0 for
p1 # p2, &1 # E2 and (Y1|h2) = 1 for p1 = p2, &1 = E2 can be written using the delta function (see Section [3.10.4):
(e o)

|AJ2 / e (P1-P2)T gy = 5(p1 — p2), (4.81)

—o0

taken into account the fact that e% (617€2)t =1 for &1 = &. Repeating the analysis presented in Section [3.10.4] (replacing w by p/h,
and t by z) shows that

7 i 1 7 i 7 i
|A|? / e (P1—P2)T g, — — / ek (P1=P2)Tqy — 3 / e (PL=P2)Tqy = §(p1 — po) (4.82)
. V 4T .

(cf. Egs. and [3.37). The procedure can be extended to the three-dimensional case, where all three coordinates of the momentum
vectors pi and p2 must be equal to get non-zero (¢1|12). This can be written as

(1) = h™3 / / / o (P1—P2) Ty — =3 / o (P1e—P2,2)2 g, / e (PLy=P2,))V gy / ex (P1,2—P2,2)7 .,
— 00 7‘()0 7’&) 7(00 7.00 — 00
=6(p1 — P2) = 6(P1,& — P2,z) - 6(P1,y — P2,y) - 0(P1,= — D2,2)- (4.83)

In the language of algebra, the complete set of normalized monochromatic waves constitutes an orthonormal basis for wave functions,
in a similar way as unit vectors 7, J; k are the orthonormal basis for all vectors in the Cartesian coordinate system z,y, z.

Also, ¥ (linear combination of 11,12, ...) can be normalized based on the condition
o
/ U*PUdr =P =1 (4.84)
— 00

(if a particle exists, it must be somewhere). It requires

oo
/ (cier +c5eca + -+ )de = 1. (4.85)

—o0

4.9.6 Eigenfunctions and eigenvalues, operator of momentum

In order to understand what quantum mechanics says about measurable properties of the studied system, let us ask a question: How can
we get the value of a momentum of a free particle described by Eq. What operation should be applied to ¥(z) (a function of z) in
order to get the value of the momentum? Calculation of 0¥ /0z gives us a clue:

o¥ _ Clge%(mx—&t) + 0236%(1)2%—820 b= iplcle%(mw—&t) + iPQCQG%(mx—ﬁzt) 4o (4.86)
Ox Ox Ox h h

It implies that

_ ihaﬁe%(mw*&t) — pw%(pmcﬂ‘?lt)7 ,ihaie%(pzxfgﬁ) — pge%(mrffzt)’ o (4.87)
T z

We see that
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1. Calculation of the partial derivative of any monochromatic wave and multiplying the result by —ik gives us the same wave just
multiplied by a constant. The instruction to calculate the partial derivative and multiply the result by —iA is an example of an
operator. If application of the operator to a function gives the same function, only multiplied by a constant, the function is called
etgenfunction of the operator and the constant is called eigenvalue of the operator.

2. The eigenvalues are well-defined, measurable physical quantities — possible values of the momentum along x.
3. The eigenvalues can be obtained by applying the operator to the eigenfunctions and multiplying the results by the complex

conjugates of the eigenfunctions, e.g.

p1 = e*%(mrfglt) (_ihaie%(mz*&t)) — e*%(lefflt)ple%(mr*&t) =p1 e*%(mszlt)e%(mﬂv*&t) . (4.88)
T

=1

4.9.7 Operator of position

The question we ask now is: What operation should I apply to ¥ (a function of z) in order to get the value of its coordinate? When
—1h0/0zx is used as an operator of momentum (in the x direction), applied to ¥(z), multiplication by the coordinate z is an operator of
the position of the particle (in the x direction). To see how the operator acts, let us write W¥(x,t) as a series of the values ¥(x;,t) for all
possible positions $J-E| Then, the product zW¥(z,t) can be written as

x1cieh P1E1=E1E) | 4 ooy (P221=828) | 4 oo (PBT1—E3E) 4 1 - U(z1)
xocieh P1E2=E1) | 4o oo (P222=828) | 4o oo (P3Z2—E38) 4 z9 - U(z2)
z-¥(z,t) = ZSClGiﬁ(plz37£1t> + x362e%(mz3*52t) + 363636%(;03963*5375) ... | T | 7w U(x3) |- (4.89)

If the position of the particle is e.g. g,

0 0
Cle%(mzz*glt) + c26%(1’2052*5275) + 036%@312*530 4. W(x2)
U(za,t) = 0 = 0 (4.90)
and z - U(z,t) for x = z2 is
. 0 , 0
xo <01eﬁ(P122—51t) + Cze%(mw—fﬁ) + 036%(10312—8315) 4. ) 22 - W(z2)
z2 - VU(w2,t) = 0 = 0 . (4.91)

We see that multiplication of ¥(x2,t) by z2 results in xoW(x2), i.e., ¥(z2) is an eigenfunction of the operator £ = z- and z2 is the
corresponding eigenvalue.

Note that multiplication by p; does not work in the same way! We could multiply ¥(z2) by 2 because ¥(xz2) does not depend on any
other value of the = coordinate. However, ¥(z2) depends on all possible values of p. On the other hand, the partial derivative 0¥ /0z in
Eq@ gave us each monochromatic wave multiplied by its value of p and ensured that the monochromatic waves acted as eigenfunctions.

4.9.8 Commutation relations of the position and momentum operators

It is easy to check that subsequently applied operators related to different coordinates commute. For example

gV = 2y¥ = yz¥ = gz, (4.92)
9?v 9?v
pupy ¥ = —h? = —n? = pypa ¥, 4.93
Paby 0x0y Oyox Pyba ( )
or
9We write the continuous function ¥ (z) as a vector formally containing distinct elements ¥(z1), ¥(z2),.... In a similar fashion, we

write x as a vector containing a series of all values of the coordinate x: x1,xz2,.....
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oV o(z¥
ipy ¥ = —ihw— = —ih ( (@ )) = pyi0. (4.94)
oy oy
However,
ov
TPV = —ihe— (4.95)
ox
but
3 \
po2 = —in2@Y) _ _ipy i 2Y (4.96)
oz oz
We see that

e commutators of operators of a coordinate and the momentum component in the same direction are equal to ik (i.e., multiplication
of ¥ by the factor ih),

e all other position and coordinate operators commute,

in agreement with Eq.

4.9.9 Projection operator

Let us assume that the state of the studied system immediately before measuring a quantity A was described by the wave function |¥),
expressed in the basis of orthogonal eigenfunctions of A as

W) = e1ln) + caliho) + -+ = |eae’®t [1h1) + [cale'®2[gha) + - -- (4.97)

The measurement provided a value A, = cmc), = |cm|2, one of eigenvalues of A. Let us also assume that all eigenvalues are different.
Application of the operator [t ) {(¥m|/|cm|? to |¥) gives

Cmltbm) = ——[cm[€9m [hn) = €97 [g5,0), (4.98)

b (o | 0) = L -
o] o]

1 1
I —— [Ym)(ml(erlr) + -+ emlpm) +--+) =
|em] |em|
where e!®7 |1),,) describes the state immediately after the measurement.

If n different eigenfunctions [¢m,1), [¥m,2), - - [¥Ym,n) have the same eigenvalue |cp |, Eq. is modified to

le [Ym,5 ) (¥m ;] L gibm.
= W 51‘7/11 -+ Z Cm,j |7r/)m,j> \/7| m‘ |cm| Z el¥m.i W’m i Z

Jj=1 Jj=1

|¢m,y> (4.99)

where the final sum (linear combination of eigenfunctions |, ;)) describes the state immediately after the measurement.

The operator P, = Z [%m,;){%m,;| is known as the projection operator, and the normalization constant can be defined using the
=1
relation

lem,y (m g1 | erlpn) + +Zcm,g|wm,3> | = nlem]?. (4.100)

Jj=1 j=1

(WP W) = [ @]+ 4 D ch
j=1
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4.9.10 Schrodinger equation

We obtained the operator of momentum by calculating 0¥ /9dz. What happens if we calculate 0¥ /0t?

ov 0 16) i i i i o
E _Claeh(z)lt 51t)+02aeﬁ(pzz £2t)+ :7%81016ﬁ(p1“b7€1t) 7%8202€ﬁ(p2“b7€2t) . (4.101)
and consequently
0 Lipra—£&qt L —&t L0 1 —Eat L —Eat
ih—eR (Prz—E1t) _ gleh(mz 1 ), 1ha—eh(p21 2t) _ ngh(mw 2 )’ (4.102)
ot t

1. First, we obtain the operator of energy from Eq. [4.102] in analogy to Eq.

2. The second achievement is Eq. [4.101|itself. Energy of free particles is just the kinetic energy (by definition, ”free” particles do not
experience any forces). Therefore, all energies £; in the right-hand side of Eq. [4.101| can be written as

mv2. pZ
Ei=—2>L =2 4.103
j 2 Zm ( )
resulting in
ov i [ p5 ( £t 2
7 2 (B enpiz—£&rt) + (paz—E21) ) 4.104
ot h (2m01e + che + ( )

But an equation with the p]2. terms can be also obtained by calculating

1 9%v 1L 9av 1 (pt i P3
i —- - T 7F _ 7 (p1z—£&1t) L(paw—£at) ) . 4.105
2m Ox2 om 0z 0x K2 ( e + 2m e * ( )

Comparison of Egs. and gives us the equation of motion

o K2 92w
lha =5 (4.106)

If we extend our analysis to particles experiencing a time-independent potential energy Epot(z,y, 2), the energy will be given by

p]

o + Epot (4.107)

& =

where p; is now the absolute value of a momentum vector 5 (we have to consider all three direction z,y, z because particles change
direction of motion in the presence of a potential). The time derivative of ¥ is now

. 2 .
oV _ 1 (P imran | Pr i@ ) _ Lot (MW (4.108)
ot h \ 2m 2m h
and
2 P2 2 2 2 2
P1 (P17—E1t) L(p2r—Eat) ) — h oV oTv  oTv
— 2 Iz = —+ —= |- 4.109
(2mcle + 2m02e + 0x2 + Ox? + Ox? ( )

Substituting Eq. into Eq. gives us the famous Schrodinger equation

8\1/ ( h2 (82 0? 52

7 Eno L 2) ) . 4.110
har ax2+ax2+02)+pt(my)) (4.110)

H

In our case, the Hamiltonian is expressed in terms of the linear momentum p' = m4. This is sufficient to describe action of forces
that depend only on the position in space and can be therefore calculated as the gradients of the potential energy (e.g. electric forces).
However, using the linear momentum does not allow us to describe forces that depend on velocities of the particles (e.g., magnetic forces).
Therefore, the canonical (or generalized) momentum should be used in general. The canonical momentum is defined by the Lagrange
mechanics, reviewed in Section [f.9.1] We return to the description of a particle in a magnetic field in Section [5.7.8
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4.9.11 Limitation of wave equation to first time derivative

Before saying what a wave equation must fulfill in order to describe evolution of a quantum state in time, let us review similar requirements
for the equation of motion in Newton mechanics. In the classical Newton mechanics, the state of the system is fully described by the
coordinates x,y, z and momenta muvg, mvy, mv, of the particles. Therefore, the solution of the equation of motion must depend only on
the starting values of the coordinates and momenta, not on any additional parameter. What does it say about the equation of motion
itself? It can contain only first and second derivatives in time. Why? Because:

e Solutions of equation containing only dz/0t require the knowledge of z(t = 0) = z(0).

For example, solution of

%—&-kmzﬂ (4.111)

is x = 2(0)e*¢, i.e., it depends only on z(0).

e Solutions of equation containing only dz/dt and 92z/9t? require the knowledge of z(0) and 9z/9t(t = 0) = vz (0).

For example, let us look at the wave equation

0%z
vy w?z =0. (4.112)

Note that this equation corresponds to the second Newton’s law, with —mw?z being the force (for the sake of simplicity assumed not

to change in time). The solution is well known, but we can derive it easily because we know how to play with operators:

(

2z o (8 9 aN? a . a .
¥+w x:a(ax)er T = (a) +w w:(a+1w) (&71(4))3::0. (4.113)

Obviously, there are two solutions of the equation

0
ot

N iw) T4 = 0 = T4y = C+ei“’t = C’+ (cos(wt)—l—isin(wt)) (% + iw) x_ =0 = r_ = C,e_i“}t =C_ (Cos(wt)—isin(wt))’
(4.114)
but the solution must be also any linear combination of z and x_ because 0 4+ 0 = 0:
r=Atz; +A_2_ = (A4Cr + A_C_)cos(wt) +1(A+Cy — A_C_)sin(wt) = Cq cos(wt) + Ca sin(wt). (4.115)
—r —
C1 Ca
Consequently, the velocity
0 0 t Osin(wt
Vg = 8;; =C coasiw ) + C2 Slgiw ) = —wC sin(wt) + wCs cos(wt). (4.116)
It is clear that the so-far unknown parameters C'1 and C2 can be obtained by calculating « and v, at t =0
cos(0) =1, sin(0)=0 = z(0)=C1 vz(0) =wC> (4.117)
and that the evolution of z and v; depends only on z(0) and v4(0), as required in Newton mechanics:
vz (0) . :
z(t) = z(0) cos(wt) + ——= sin(wt) vz (t) = v2(0) cos(wt) — w - z(0) sin(wt). (4.118)
w

e Solutions of equations containing higher than second time derivative of « require knowledge of the initial values of higher than first
time derivatives of x.

For example, let us inspect

A (4.119)

Following the same strategy as in Eq.

93z b3} 82 9 o 02 ox 1 3 b3} a A\? 3
— A= (=42 (== -2+ N )= =+ 2) (== —2=2+ -2 42) = (7 ,\) (7 - 7> X2 =
ot3 T (8t+ ) (8t2 ot + )x <8t+ ) (8t2 6t2+4 +4 v 8t+ ot 2 +4 v
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(%+A) (2’2\>2<i‘f,\>2 I:<§+,\) <§tl+2i*/§,\> <§tl_2i\/§/\>z:(], (4.120)

which has three solutions

14+ivBA
zo = Coe M, zy =Cre 2 ¢ z_ =C_ (4.121)
and any of their linear combinations is also a valid solution
14+iv3A 1—-iv3A
= Apzo+ Ayxy +A_z_ = CleiAt + Coe™ 2 ¢ + C3e™ 2 t (4.122)

where C1 = AgCp,Co2 = A1 Cy,C3 = A_C_. In order to determine C1, C2, and C3, we need three initial conditions, not only x(0)
and v, (0), but also the initial acceleration a(0) = 8%2x/9t2. However, the acceleration should not represent an additional degree of freedom.
In Newton mechanics, the acceleration should be completely defined by the initial coordinates and velocities, and by forces that are already
incorporated in the constants in the equation. Therefore, the equation containing the third time derivative is not a Newton’s equation of
motion.

After making sure that we understand the Newton mechanics, we can return to the quantum mechanics. We have postulated that the
wave function ¥ contains the complete information about the studied particle (or system in general). In contrast to the Newton mechanics,
we must require that the wave equation describing the evolution of the system must depend only on ¥ at ¢ = 0. Therefore, our wave
function must contain only first derivative in time. If it contained e.g. also 8?¥/9t?, the evolution in time would depend also on 0¥ /dt
at t = 0, which is against our first postulate.

Another problem of an equation containing second time derivative is related to our interpretation of the wave function. We interpret
Y(z,y,2)*¥(x,y, 2) as a distribution of the probability that the particle’s coordinates are z,y, z. How is this related to the wave equation?
The Schrédinger’s equation Eq. @ and its complex conjugate are

*
ih— = HU i e (4.123)
ot ot

When we multiply the equations by ¥* and ¥, respectively, subtract them, and divide the result by ik, we obtain

\11*8—\1'+\11an = .i(\II*H\Ilfll/H*\I/*)
ot ot ih
VAN 1 N i
oY) _ —(VAY — UH*T). (4.124)
ot ih

If we assume that a free particle does not move (has a zero momentum and therefore zero Hamiltonian), we find that

oY) _y, (4.125)
ot

The result is expected, if the particle does not move, p = U*W¥ does not change in time. But if we repeat the procedure with the
equations containing the second time derivative (i.e., when the operator 40/t is applied twice)

?v 92U+ .
—2=— =HU —h? = H*0*, 4.126
"o ot2 ( )
we get
92w o2+ 1 . .
—U 4T = —(V*HV — WH*T*
a2 TV o h2( )
o ow* o v 1 N .
— (\1/ ) - = (qf—) = —(U*HV — VH*T*)
ot ot ot ot h2
S} ov* ov 1 N .
— (xp — \IJ—) = —(T*HV — VH*T*). (4.127)
ot ot ot h?

If we now assume that a free particle does not move (has a zero momentum and therefore zero Hamiltonian), the conserved quantity
is not ¥*W, but \P% — \Il*%—‘f, containing both ¥ and its time derivative. This contradicts our interpretation of the wave function as a
probability amplitude.
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4.9.12 Commutators of angular momentum operators

The operators of angular momentum components are

. 0 0
Ly = #yps — Fapy = —ihy— + ihz—, (4.128)
0z oy
- A . .0 0
Ly = 72pg — Pep> = —ihz— + ihe—, (4.129)
ox 0z
2 A L .0 .0
L, = 2Py — PyPae = —ihe — +ily—, (4.130)
oy oxr
L?=L02+L+12 (4.131)
Therefore,
(L, Ly] = (Fypz — #2by) (Febe — Fabs) — (FaPa — Fabs)(Fybz — F2by)
= ":yﬁzf'zﬁac - TAZﬁUTAZﬁI' - fyﬁz":xﬁz + TAZﬁUTAwﬁZ - fZﬁft'fyﬁz + TAflfﬁZrAyﬁz + fZﬁfthﬁy - T'Axﬁz":zzay (4132)

The commutation relations postulated in Eq. allow us to exchange some of the operators and write first the operators that
commute

[ﬁzy Ly] = PyPaPePz—T272D2Dy — PalyPzDz + PaPyfePs — PyDaPeDet+TalyDzps + T2P2DaDy — PaPyDlz (4-133)
The red terms cancel each other and using Eq.
[Lz,ﬁy] = (fyﬁz - fZﬁy)(f’zf’z —P2pz) = (7122)(71?1) = ihLZ~ (4.134)

The other commutators can be derived in the same manner.
It is also useful to calculate commutators of the following combinations of operators

Lo +ily=104  Lg—ily=1L_: (4.135)
Ly, L) = [Ly +iLly, Ly —iLly) = [Lo, Lo + [Ly, Lyl + i[Ly, Le] — i[Lz, Ly) = =2i[La, Ly] = —2i(ihL,) = 2hL., (4.136)
(Lo, Ly) = [Ley Ly +ily) = [Ls, Ly) +i[L2, Ly] = ihly + i(=ihly) = hly + ihly = BL4 (4.137)
Lo, L] = [L2, Ly —ily] = [Lz, Ly —i[Ls, Ly] = ihLy — i(—=ikily) = Ly — ihLy = —hL_ (4.138)
(L2, L4) = [L?, Ly +ily) = [L?, Ly) £i[L%, Ly] = 0. (4.139)

4.9.13 Angular momentum and rotation

To see the relation between angular momentum and rotation in space, we first find eigenvalues L, j and eigenfunctions v of L.. As
described in B15.3 (and in textbooks discussing quantum mechanics), the operator L. written in the spherical coordinates (r, ¥, @) is
. 1o}
L, =—ih— (4.140)
O
and we can assume that the part of its eigenfunctions dependent on the coordinate ¢ (azimuth) can be separated: ¥ = Q(r,¥) R ().
Eigenvalues and eigenfunctions of L. are defined by

Latpe = Lz ks, (4.141)
2@ _ L. x(QRy), (4.142)
Jp
—ihQ@ = L. xQRy, (4.143)
de
1
Bl (4.144)
de ’

Lk

R, =€ r ¢ (4.145)
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Note that 1k (¢) and k(¢ + 27k) are equal for any integer k:

Lok Lak o L2k
TR (eh2m) _ iTRte | gi2n (4.146)
N——
=1

L
if Z’k is integer

Therefore,
e value of the z-component of the angular momentum must be an integer multiple of A.

There is a close relation between the angular momentum operators and description of rotation in quantum mechanics. In order to
illustrate the relation, we repeat the analysis that was presented in Section @ for a rotating magnetization vector. Now we analyze
simply rotation of a point in space.

Rotation of a point defined by the position vector 7 about an axis given by the angular frequency vector & can be described as

a7
L oGx, (4.147)
dt
or more explicitly
drs
- ~wary, 4.148
” WyTz — W Ty ( )
dry
Ty _ - , 4.149
" WzTey — WzTz ( )
dr
dtz = WeTy — WyTg. (4.150)
If a coordinate frame is chosen so that & = (0,0, w)
dry
= —wry, 4.151
a Wry ( )
dr
"y o, (4.152)
d
E— (4.153)
dt

We already know (see Section [1.5.9)) that such a set of equation can be solved easily: multiply the second equation by i and add it to
the first equation or subtract it from the first equation.

d .

W = w(—ry +irg) = +Hiw(re +iry), (4.154)

d(ry —1i

% = w(—ry —irg) = —iw(ry — iry), (4.155)
Ty +iry = Cyetivt, (4.156)
Ty —iry = C_e ¢, (4.157)

where the integration constants Cy = r4(0) 4 iry(0) = rel?0 and C_ = r;(0) — iry(0) = re~'?0 are given by the initial phase ¢o of 7
in the coordinate system:

re +iry = reti@t+0) — v (cos(wt + ¢o) + i(sin(wt + ¢o)), (4.158)

e —iry = re”{(“tH20) = p(cos(wt + ¢o) — i(sin(wt + ¢o)). (4.159)

The angle of rotation ¢ is obviously given by wt.

Ty +iry = reTi0et = (7,(0) + iry (0))e 14, (4.160)
Ty — iy = 11?06 = (1,(0) — iry (0))e . (4.161)

Comparison with Eq. 4.145[ documents the relation between L. and rotation:
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e The eigenfunction of ﬁz with the eigenvalue i/z = h describes counterclockwise rotation of a vector about z.

This conclusion of course applies to any vector @. We have used the complex numbers to describe rotation already in Section [1.5.4]
In order to describe a general rotation in space, we have to address also rotation about another axis, e.g. y (see Section [1.5.3)). The

relation between the rotation about the y axis and the operator ﬁy is less obvious because ﬁy has a more complicated form in the spherical
coordinates (cf B15.3)

ﬁy =ih (— cos <p% + cot 6 sin cp%) . (4.162)

The matrix describing the rotation about y is presented in Section [1.5.4]

4.9.14 Eigenvalues of angular momentum operators

In the preceding section, we have found that eigenfunctions of L, describe rotation about z and that eigenvalues of L. are integer multiples
of h. In this section, we complete the description of the eigenvalues of L. and of L2. Determination of eigenvalues of angular momentum
operators is very important for describing electron configuration of atoms (atomic orbitals) and solving issues related to molecular rotation
(e.g. infrared spectroscopy). The motivation to include its discussion here is to explain notation that is also used in some areas of NMR
spectroscopy (NMR of nuclei with spin number higher than 1/2). A reader who is not interested in such issues (that are not directly
discussed in this course) may skip this section and Section without loosing information important for the following lectures.

A set of eigenvalues L? of the operator L2 is given by a set of equations

LPy; = L3y, (4.163)
where ; are individual eigenfunctions of L2. The same applies to L. and its eigenfunctions 1y :

Lot = Lo k- (4.164)

As L2 and L, commute ([ﬁQ,ﬁz] = 0), their eigenvalues can be evaluated simultaneously, using the same eigenfunction. The j-th
eigenfunction of L2 can be also the k-th eigenfunction of L. Here we denote such simultaneous eigenfunctions as ;. To relate the
eigenvalues, we use the Pythagorean theorem

LP=L3+Ly+L = (L3+L)wn= (L% = Lvsp = L — La(Latyn) = (L3 — L2 )50 (4.165)

2 2 ; F2 , f2 ; 2 2
Because Lj — Lz,k are eigenvalues of a square operator L7 + Lj, they cannot be negative. Therefore, Lz’k cannot exceed Lj.

In the next step, we take advantage of the operators f/+ and L_ introduced in Eq.|4.135, As L2 and L4 commute,

L2L+wj k= Ly L), = L+( ik) = L3 (Latjn) (4.166)
PLowpyp = LoDy = Lo (L) = L(L—v,8) (4.167)

According to Egs. 137 and [£.13§]
[i/z, L+] = fzzi/+ — i/+i/z = +hi/+ = i/ziq_ = i/ ﬁ + hL+ (4.168)
o b)) = bol — b bo =i = Dol =@_L.—hi_ (4.169)

and therefore

LaLytbjp = L Latbyp + hLiabjp = L (Lo wthy k) + hLgtby k = (Laok + h) (L thy.1) (4.170)
LoL g = L Latpj g — hL_tpjp = L (L. kbj6) — hL—tj 5 = (Lo — h)(L—jk). (4.171)

This tells us that the operator ﬁ.,. converts 1; j to another eigenfunction of f/z, to an eigenfunction associated with the eigenvalue
L, + h, ie. with the eigenvalue associated with v j increased by h. But we already know (Eq.[4.146), that % is the difference between
two successive eigenvalues of L.. Therefore, the eigenfunction created by application of f/+ to 1k can be called C4-1; py1:

Litpj i = Cabj g1, (4.172)

where Oy is a so-far unknown coefficient that cancels out in Eq. [£T170} If we insert 1; 41 into Eq. 170} we obtain ;42 and so
on. But we cannot play this game forever because we know that L2 & cannot exceed L2 There must be some maximum value kmax which
cannot be increased any further:
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L) o = 0 V)l (4.173)

In a very similar way, L_ decreases k down to Kmin:

L) ogmin = 0 Pkt (4.174)

We now apply L_ to ﬁ+wj,kmx and l:+ to L—wj,kmm:

Lo Lyt e = (Lo —iLy) (Lo +iLy)¥j ko = (L2 + L2 +i(LaLy — LyLa))¥j kpax = (L% = L2 +i([La, Ly))%; kmax
= (L2 — L2 +i(ihL2))yy, = (L% - L2 — hL.)y,, = (L} - L2 L N L. (4.175)

z,kmax

Ly L tpj g = (Lo +iLy) (Lo — iLy)j k= (L2 + L2 — i(Lo Ly — LyLa))j ko = (L2 = L2 = i([Lay Ly)) ¥ ki

kmax Kmax

(L2 = B2 ML)y = (B = L2 4 BE sy = (L2 = L2+ L Vi ko (4176)
Comparison with Egs. and requires
L= L2 — Bl g, =0 (4.177)
Li—L2,  +hl. .., =0 (4.178)
Subtracting the Eq. 177 from Eq.[4178]
Li,kxnax - Livklnin F AL knax + Lz ki = (D2 kmax = Lzkmin) Dz kmax + Lz kmin) T Lz kmax + Az kpin) =
(L2 kax + Lz okin ) Lz kmax — Lz okyiy 1) = 0. (4.179)
Obviously, (L, kmax + Lz kpin) OF (Lz kmax — L2,k +7) must be equal to zero. Because L, k... > L,k . , the only possible solution
is Ly kpax + Lz ky;, = 0. But the difference L . — L k,,, is also restricted. As successive values of L, j differ by & (Eq. ,
L kpmax = Lz kp, must be also a multiple of 4. Both conditions are fulfilled for L, .. = +jh and L, . = —jh, where j is integer

or half-integer. Considering what we learned about angular momentum and rotation in Section m the half-integer values seem to be
allowed mathematically but not physically (terms with half-integer values of the rotation angles do not appear in matrices 97 describing
rotations of vectors and tensors). However, we find a meaningful physical interpretation of 7 = 1/2 in the following lecture.

Substituting L, . = +jh into Eq. defines

L2 = j°0° + jh* = j(j + 1)h°. (4.180)
For such an eigenvalue of iZ, the possible eigenvalues of L. are

Our last task is to evaluate C in Eq. [4.172| and a similar coefficient C_ for ﬁ,w]-,k = C_; 1. We start by evaluating |C+ 2,
which requires calculation of the complex conjugate of the (in general complex) coefficient C;.. We express the complex conjugate taking
advantage of the fact that operators and eigenfunctions can be represented by vectors and matrices.

(Catoj)* = (L))t = (W k| LE, = (] L, (4.182)

where [¢); 1) and (v, 1| are treated as a column and row vector, respectively, and [A/+ and L_ as mutually transposed square matrices.
Then,

ICtj k] = Wkl Lo Ly Wy k) = (jk|L? — L2 — KLz | ) = §(5 + 1A% — m(m + 1)R2. (4.183)

In a similar manner,

C—tpjil® = (Wl Ly Lo |9 p) = (k| L? = L2 + hLlz|ypj k) = j(i + DA — m(m — 1)h%. (4.184)
The absolute values of C'y and C_ are

(C4| = /3G + 1)h2 — m(m + 1), (4.185)

(O] = /(G + D2 — m(m —1). (4.186)

The phases of C'y and C_ are not restricted. We can therefore set them to zero and define C'y and C_ as real numbers

Cy = h /3G + A2 — m(m + 1), (4.187)

C_ = m /i + 1)h? — m(m —1). (4.188)
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4.9.15 Eigenfunctions of angular momentum operators

After evaluation of eigenvalues of L? and ﬁz, we can proceed to the determination of the eigenfunctions ;. We have already found
eigenfunctions of L. in Section [4.9.13] (Eq. 4.145). In order to find wave functions that are simultaneously eigenfunctions of L2 and L.,
we have to express both operators in spherical coordinates. For L., it has been done already in Eq. [4.140} for L2, the desired algebraic

expression is (see e.g. B15.3)
2
L?=— ,ﬁ (i (sinﬂg) + 9 ( ,1 i)) . (4.189)
sind \ 09 oY Oy \sinv O

We have therefore to solve a set of equations

~ .0

Lot = —lha%,k =L, pjk =kl i, (4.190)

R [ d 9/ 1 o

L%, = — — (sin9— — — k=L =50 + 1)h%; k. 4.191
Yik = T 50w (aﬁ (Sm 819) *ap <sinﬁ &p)) Wik = Livg e =30 + DI (4.191)

If Y6 = Qjk(r, V) Rj k(0),

. 0
Qs g R = kB (4.192)
Rjk (0 (. 5ij) ijBQRjk) L
——= — [V ’ : ’ = DQ; xRk 4.193
sin ¢ (819 (sm a9 + sing 92 3 +1)QjkRj k ( )

The first equation has been already solved in Section [4.9.13] yielding ((Eq. [4.145))
Rj ) = Ry =% (4.194)
We can use this solution to calculate 8% Ry, /9p?

O2Ry,  O%cike

= = —k%*¥ = —k’R 4.195
8¢2 3(,02 e k ( )
and insert it into Eq. {193}
Ry, (d (/. dQ; k) Qjk o ) L
— — v > - — kR, = QxR 4.196
sin ¥ (dﬁ (sm d9 sin ¥ k 3G+ 1)@ Fx ( )
1 d /. dQjx . 2 )
— Y—L - —5— ) Qjr=0 4.197
sin d¥ (sm dv ) +U+D) sin? ¥ Qi ( )
d?Qjk dQjk G +1)(A —u?) — K
1 — 2 Bk _ g Js =0, 4.198
( ) du? v du + 1—u? Qik ( )

where the substitution u = cos ¥ (and du = — sin ¥99) was used on the last line. This equation has the same form as Eq. derived
in Section A simplified version of Eq. was solved in Section [2.5.4] where the solution was searched for in a form of a series
of powers of u. Solving the complete equation is more difficult due to the presence of the (1 — u2)~! factor in the term proportional to
Qj,k- In order to cope with the (1 — u?)~1 factor, we notice that each differentiation of a function multiplied by a so-far undefined power
of (1 — u?) produces terms with the power decreased by one (in addition to other terms). We may hope that this compensates for the
opposite trend in Eq. Qj,k is associated with (1 — u?)~1 the first derivative of Qj,r with (1 — u?)0, the second derivative of Qjk
with (1 —u?)'. This motivates us to look for solutions in a form

oo
Qjk = (1—u?)* Y (4.199)
1=0
with the first derivative
dQj k 2ys d S l 2ys—1 - l 2500 -1 2ys—1 S 1+1
T’:(l—u) d—Zalu —2us(1 —u?) Zalu =(1-u") Zlalu —2s(1 —u®) Zalu (4.200)
w “I1=0 1=0 1=0 1=0

and the second derivative
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d2Q; d & 1 d BIPR BIPRS
dQ;‘k =(1- uz)sd— E lagut=t — 25(1 — u2)371d— E auttt — 2us(1 — u?)s~1 g lajut ™ + dus(s — 1)(1 — u?)* 2 g ajultt
w u u
=0 =0

=0 =0
=(1—u?)* Zl(l — Dagu! ™2 — 25(1 —u?)* ! Z (2 + Dagul +4s(s — 1)(1 — u?)*~2 Zalu (4.201)

=0
I dQ, i a?Q;k -
Substituting Q; x, %, and d?fzk into Eq.|4.198|

(1 —u?) <(1 —uQ)SZl(l — Dagut™2 — 2s(1 —u?)*7! Z(Ql—i— Dagu! 4 4s(s — 1)( )5~ 2Zalu )
1=0 1=0
—2u<1—u Zlalu — 2s( l—u 12111“ >
JG 4+ DA —u2?) — k2 5
+ ( )1(—u2 ) (1 —u?) galul =0. (4.202)

Now we use the u and 1 — u? factors to adjust the exponents in the sums to u!

20+ Dajul 4+ 4s(s — 1)(1 — u?)* " 1u? Zalul

]38

oo oo
(1 —u?) 9le—lalu (1 —u?) Sle—l)alul—2s(1—u2)S
1=0 1=0

Il
o

oo o0
—2(1 — u?)® Z lajul 4+ 4s(1 — u?)* 102 Zalul

o0
(G + 1)1~ u?) Zazu — k21— u?) 1Y ! = 0.(4.203)

=0
We succeeded except for the first sum. We factor out (1 — u2)® and combine all terms into one sum
= 4s(s — 1)u? + 4su? — k2
(1—u?) SZ{ (I — Dayu! 2+{—l(l—1)—2s(21+1)—2[+j(j+1)+ s(s )f +2S“ :|alul}:(] (4.204)
—u
1=0
ad 4s52u? — k2
(1 —u?)® Zu {l(l —Dagut=2 + |:—l2 —4sl—2s—14+35(G+1)+ 72} alul} =0. (4.205)
1=0 1-u

This equation is satisfied if (1 — u?)® or the sum is equal to zero for every value of I. Let us first inspect solutions for I = 0

4s2u? — k2
(1—-u?s® {O—i— |:—2S+j(j+1)+ 172} ao} =0. (4.206)
—u
This must be true for any u, including v = 1 or u = —1 (solutions for v = cos¥ =1, i.e., § =0, and u = cos¥ = —1, i.e., § = 7). But
u = £1 makes the denominator in the last term to tend to zero. Such singularities must be checked carefully. If v = +£1, all terms in the
sum multiplied by (1 — u?)® are zero, except for the last one. The last term approaches infinity unless the numerator (equal to 4s2 — k2
for u = £1) is equal to zero. Therefore, the conditions

482 = k? =s5= @ (4.207)
must be fulfilled in order to satisfy Eq. for ap # 0. The inspection of the boundary conditions (the singularities at 6 = 0 and
0 = ) thus provided the so-far unknown value of s .
We now return to Eq. 4 and move the exponents in the first sum to u!. We proceed as in Sectlon The first two terms of the
first sum are equal to zero because the first term includes multiplication by I = 0 and the second term 1ncludes multiplication by [ —1 =10
for I = 1. Therefore, starting summation from [ = 2 does not change anything.

oo oo

U= Va2 =11 - Dagu' 2. (4.208)
=0 =2
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Decreasing the index ! in this sum by two moves u!~2 to u!, as desired.

> = Va2 = (14 2)(1+ Daggoul. (4.209)
=2 =0
We factor out u!
S R PO et it P
(1 —u?) Soul S+ 21+ Dagpo + | —12 = 20k|L— |k =1+ 5@ +1) + | =0 (4.210)
=0
(1= u?)E2N Ul {1+ 2) (1 + Daggn — [12+ 20Kl + K] + 1+ K2 —5G+ D] a} = 0 (4.211)
=0

oo
(1= u)F2S 0l {1+ 2) (0 + Darga — ([ + D (k[ + 1+ 1) =G + D] @i} = 0 (4.212)

=0

and obtain a recurrence formula very similar to Eq. [2.7]]

_ (RN + (k[ +1) =5+ 1)
ap2 = (+20+0D aj. (4.213)

(o)
Therefore, we can express the series Y a;u! as
=0

.- _ (ED(kI+1) -G +1) (kDRI +1) 3G +1) (k[ +2)(k[+3) -G+ 1)

galul—ao(l—k T2 u? + T2 . 3.4 u4+...)

(k[ + DAk +2) =50+ 1) 5 (R + DRI +2) —jG+ 1) (bl +3)(k[+4) =G +1) 5
2.3 2-3 4-5

+ a; (u+ ) (4.214)

The recurrence formula also tells us that every value of I satisfying the condition ! + |k| = j, i.e., l = j — |k|, terminates one of the
series in the parenthesis because

G = Ikl + EDG = K+ R+ D) = 3G+ 0
G — k[ +2)(G — k] + 1) IR G R+ 2) (G — R+ 1

Aj—|k|+2 =

We can therefore express all solutions Q; j using the same approach as in Section For each combination of j and k, one of the
series in Eq. is terminated at [ = j — |k| and the other one grows to infinity. To keep the whole sum finite, the so-far undetermined
coefficient multiplying the unterminated series is set to zero. For example, if [ = j — |k| occurs in the series following ag, then a; is set to
zero, and vice versa. The coefficient multiplying the terminated series is determined by the normalization condition, as discussed below.
In this manner, we can find, step-by-step, all solutions of Q;  as possible finite sums multiplied by (1 — uQ)““V2 = sin/*l 9 with the
corresponding value of |k|. The first solutions are listed in Table The complete eigenfunctions are the products R; 1 Q; r = Y}k, called
spherical harmonics. They are orthogonal, often normalized (by setting the values of ap and a1) so that the integral of the square of Yj j
over all possible orientations is unity:

27 T 27 1
/0 dcp/o sin9dd Yy (¢, 9)Yjr pr (. 9) :/0 dcp/ ) du Y] (0, w) Yy o (0, u) = 050 Opeper - (4.216)

The derived eigenfunctions deserve some remarks

e Spherical harmonics Y} 1 (¥, ¢) describe simultaneous eigenfunctions of L? and L, for all integer eigenvalues jh, but not for the
half-integer eigenvalues jh. Spherical harmonics are eigenfunctions of orbital angular momentum. The half-integer eigenvalues jh
and the corresponding eigenfunctions are discussed in the next lecture when the spin angular momentum is introduced.

e Spherical harmonics describe the angular dependence of the familiar atomic orbitals (derived for hydrogen).

e As expected for eigenfunctions of operator L., the square Y]*k (¢, )Y 1 (,9) depends only on ¥, not on ¢ (note that L. represents

projection of L on the z axis).

e Comparison of Tables and reveals a close relation between the spherical harmonics and Wigner matrix elements: except for
the normalization factor, Yj (9, ¢) is equal to 2] ,
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Table 4.1: Eigenfunctions of the operators I2 and L,.

l recurrence Qjk )ik
0=j—|k“ a2 =0-a9 = a1 =0 ap YO,0: ﬁ
0 0 a2 = 22 - ag v
1=5—1kl a3=0-a1=a0=0 ai1u=ajcos? Yi0 = %cosﬂ
+1 1=j—|k| a2 =0-a9=a1 =0 aom:aosinﬁ Ylyilzqiq/s%eii‘psinﬂ
0o 0 02:%'0‘0

1 a3:2_f3~a1

2=j—1]k| as=0-a2=>a1=0 ao(l—3u?)=aqg(l—3cos?9) Y20 = 4/ 1= (3cos?9 — 1)
2 41 0 a2 = 23 - ag
2 +1 1=j—|k a3=0-a1=>a0=0 a1vV1—uu=a;jsindcos?d Yoqr1=F é—ieiwsmﬁcosﬁ
2 4+2 0=j—1|kl a2=0-a0=a1 = ap(1 —u?) = apsin? 9 Ya 42 = /31275ﬂe:|:2igosin219
3 0 0 ag:%%ao

1 a3:%'a1

2 a4:3_f4~a2

3=j—1lk| a5=0-a3=0ap=0 1113“’:,35“‘3 :a13°0519*35cc’5319 Y30 = ,/% (5cos® 9 — 3cos )
3 +1 0 aQ:ﬁ.ao
3 £1 1 a3 = 33 a1
3 +£1 2=j—1]k|] a1=0-a2=>a1=0 aom(1—5u2):aosin'ﬂ(l—5c05219) Y3,i1:q:,/(i—;eiwsinﬂ&cosQﬂ—l)
3 42 0 az = 72 - ag
3 £2 1=j—1|k|] a3=0-a1=>a0=0 ai(l— u2)u = a1 sin? ¥ cos ¥ Y342 = ‘/%ei%” sin2 9 cos 9
3 43 0=j—1|k|] a2=0-a0=>a1 = ag~/(1 —u2)3 = agsin3 ¥ Y343 =F %ei&“’singﬁ

e Wigner matrices can be used to express Yj 1 (9, ) in different coordinate frames. The transformations are not limited to j = 0,1,2,
discussed in Section Wigner derived a general form of the transformation matrix applicable to eigenfunctions associated with
all eigenvalues jh (including the half-integer j). The elements of the general Wigner matrix are given by

' _g\2i—k+k' =21 , N k—k'+21
—1)k—kH (cos 7’9) (sm 7’9)

G-k—D)W(k—K +0)\G+k —1)!

emtked) | (0)e X = oIkt /TNG = R)IG + R)IG — KLY
l

)

(4.217)
where [ are integer values | > 0,1 < j—k,l < j+k’, and | > k' — k so that the factorials are computed from non-negative numbers.
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Lecture 5
Spin

Literature: Introduction to the special theory of relativity can be found in B10, but relativistic
quantum mechanics is not discussed in the literature recommended for this course or in general
physical chemistry textbooks (despite the important role of spin in chemistry). Therefore, more
background information is presented here than in the other chapters. NMR can be correctly described
if the spin is introduced ad hoc. The purpose of Section [5.7.3| is to show how the spin emerges
naturally. Origin of nuclear magnetism is touched in L1.3 and L1.4. Quantum mechanics of spin
angular momentum is reviewed in K6, L7, and L10.

5.1 Dirac equation

The angular momentum discussed in Section 4.7] is associated with the change of direction of a
moving particle. However, the theory discussed so-far does not explain the experimental observation
that even point-like particles moving along straight lines possess a well defined angular momentum,
so-called spin.

The origin of the spin is a consequence of the symmetry of Nature that is taken into account in
the theory of relativity. The Schrodinger equation is not relativistic and does not describe the spin
naturally. In this lecture, we describe spin using relativistic quantum mechanics, a theory which is
in agreement with two fundamental postulates of the special theory of relativity (see Sections
and for review of the special theory of relativity):

The laws of physics are invariant (i.e. identical) in all inertial systems (non-accelerating frames

of reference).

The speed of light in a vacuum is the same for all observers, regardless of the motion of the

light source.
The arguments presented in Sections [5.7.3] and [5.7.4] lead to the wave equation

. a ~0 . 8 ~1 . a ~92 . a ~3 27
—AY +ich—A" + ich=—A#* 4+ ich—#4° — 1)U = 1
(Uiat”y 1cha$’y 1chay’y 1chazfy moc 0, (5.1)

where 47 are the following 4 x 4 matrices
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10 0 0 0 001 000 —i 001 0
o |o1 0 o0 " 0 010 - 00i 0 » 000—1
T=1lo0-1 0 =1 o0-100 =1 o0io0 0 =1 <100 o0
00 0-1 1 000 100 0 010 0

(5.2)
The presented matrices 47 represent only one possible choice, but it is a good choice for describing
NMR as as the following sections show.
The solution of Eq. is a wave function consisting of four components

U
U = Zz : (5.3)
Y4

The explicit form of the solution for a free particle is presented in Section [5.7.6] Note that the
solution is written as a four-component vector, but the indices 1, 2, 3, 4 are not related to time and
space coordinate. Instead, they represent new degrees of freedom, distinguishing different spin states
and particles from antiparticles.

When postulated by Dirac, Eq. naturally explained the behavior of particles with spin number
1/2 and predicted existence of antiparticles, discovered a few years later. Relation of Eq. to the
non-relativistic Schrodinger equation is described in Section [5.7.7]

After describing the free particle, we should move to the description of particles interacting with
their surroundings, in particular with the electromagnetic fields. Strictly speaking, both spin-1/2
particles and the fields should be treated in the same manner, i.e., as quantum particles or, more
precisely, as states of various quantum fields. Such approach is reviewed in Engelke, Concepts Magn.
Reson. 36(A) (2010) 266-339, DOI 10.1002/cmr.a.20166. However, the energy of the electromagnetic
quanta (photons) used in NMR spectroscopy is low and their number is very high. As a consequence,
the quantum and classica]r'_-] description of the fields give almost identical results. As we try to keep
the theoretical description as simple as possible in this text, we follow with the classical description
of the electromagnetic field ]

5.2 Operator of the spin magnetic moment

The Dirac equation allows us to find the operator of the spin magnetic moment. We start by
deriving the Hamiltonian describing the energy of the spin magnetic moment in a magnetic field
(Section [5.7.8)). In a limit of energies much lower than the rest-mass energy moc?, the Hamiltonian

1S

'Here, ”classical” means ”"non-quantum, but relativistic” because the Maxwell equations are consistent with the
special theory of relativity.

2A consequence of the classical treatment of the electromagnetic fields is that we derive a value of the magnetogyric
ratio slightly lower than observed and predicted by the fully quantum approach. This fact is mentioned in Section



5.3. OPERATORS OF SPIN ANGULAR MOMENTUM 121

- 1 ) A A ’ 10
hQ 01 0 —i 1 0
1 (5, (1) () (1 0)). o

The Hamiltonian contains a part (shown in green on the first line) which is identical with the
non-relativistic Hamiltonian in the Schrédinger equation describing a particle in an electromagnetic
field (Eq. , but it also contains a new part (shown in red on the second line), which appears
only in the relativistic treatment (and survives the simplification to the low-energy limit). This
"relativistic” component closely resembles the Hamiltonian of the interaction of the orbital magnetic
moment with the magnetic field (Eq. and, as we discuss below, has all properties expected
for the Hamiltonian of the spin magnetic moment, despite the fact that we analyze a point-like
particle which cannot spin. Comparison of Egs. and helps us to identify the operator of the
components of the spin magnetic moment:

Q

. hQ (01
#x—z—mo(lo), (5.5)
. hQ [0
Myzz—mo(i 0)7 (5.6)
. hQ (1 0
= g (01 ) 57)

5.3 Operators of spin angular momentum

Our final task is to find the operators of the components of the spin angular momentum, which also
gives us the value of the magnetogyric ratio. Eq. itself is not sufficient because it does not say
which constants belong to the spin angular momentum and which constitute the magnetogyric ratio.
We cannot use the classical definition either because our case does not have a classical counterpart.
But we can use

e the general relation between magnetic moment and angular momentum i = ny and

e the commutation relations Eqs. 4.38, which define operators of x,y, z components of any
angular momentum.

In order to distinguish it from the orbital angular momentum [_:, we label the spin angular
momentum I, whereas we use the symbol /i for the spin magnetic moment. The operators of fi, fty, jt.
are given by

~

/lx = ﬁ)/jxa He = 'Y[Ag,n ,aa: = ’)/]Az, (58)
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and the operators of I, I, I, must fulfill the same commutation relations as the operators of
Ly, Ly, L,:

Ld - L0 =ikl Q- LD —ikl,, LD LI — ik, (5.9)

Following the classical definition i = yfj, we can express the operators I, fy, I, as Lo /Yy fiz/7,s

fiz/7, respectively, where fi,, ji., fi, are already defined by Eqgs. As shown in Section [5.7.9]
the commutation relations summarized in Eq. require that the magnetogyric ratio differs by a

factor of 2 from the value for orbital magnetic moment:

L, @

When we divide definitions of fi,, fi., fi. by this value of v, we obtain the definition of the spin
operators

i 2
A I A o I A O I e §
2\10 Yy 2\i 0 5 \0-1 1 01

5.4 Eigenfunctions and eigenvalues of I,

The fact that I, is diagonal tells us that we have written the matrix representations of the operators
of the spin angular momentum in the basis formed by the eigenfunctions of I,. This basis is a
good choice if the matrix representing Hamiltonian is also diagonal in this basis and, therefore,
eigenfunctions of I, are the same as eigenfunctions of the Hamiltonian These eigenfunctions can

EE)- ) FQ- Q) o

i.e., the two-component variants of the free-particle wave functions from Eq. in the low-
energy approximation (the explicit form of the four-component wave function and the normalization
factor h~3/2 are described in Section. The normalization coefficient A =3/2 and 1 can be canceled
out in the eigenvalue equations and the eigenfunctions can be replaced by the vectors

BING

corresponding to the first and second wave functions in Eq. [5.179,
The states represented by the eigenfunctions of I, (eigenstates) are traditionally called states o
and  and are further discussed in Section . The eigenfunctions of I, are usually labeled as |«)

or | 1) and |8) or | 1):

3This is a good choice because such eigenfunctions represent states that are stationary, as was shown in Section
an is further discussed in Section
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Hoy=+gl)  Ein=+30  5(o 1) (o) =*5(s). 1w

Hy =g Ho=-39 5 )()=--30)  ©»

The physical significance of the found eigenvalues +h/2 is discussed in Section [5.7.10]
Note that the vectors used to represent |«) and |3) in Egs. and are not the only choice.
Vectors in Eqgs. and have a phase set to zero (they are made of real numbers). Any other

phase ¢ would work as well, e.g.
1 el?
(1) (%) 515

The postulates of quantum mechanics, discussed in the preceding lecture, tell us that measurement
of spin angular momentum or spin magnetic moment of a single particle is limited by quantum
indeterminacy, described bellow and shown in Figure [5.1}

e If the particle is in state |«), the result of measuring I, is always +h/2. The expected value is
hi(f1 0 1 h
(L) = (a|L|ay = (10) (O 1) (O) —+§. (5.17)

e If the particle is in state |5), the result of measuring I, is always —h/2. The expected value is

) =teiis) = 01)5 (o) (1) =5 (5.18)

e Any state c,|a) + cg|f) is possible, but the result of a single measurement of I, is always +h/2
or —h/2. However, the expected value of I, is

(1) = (el = (s g (oY) () = el =l (5.19)

Wave functions |a) and |3) are not eigenfunctions of I, or fy. Eigenfunctions of I, and fy are
presented in Section [5.7.11

5.5 Evolution, eigenstates and energy levels

Knowledge of the Hamiltonian allows us to describe how the studied system evolves. We have learnt
in Section [4.6] that states corresponding to eigenfuctions, i.e., the ezgenstates are stationary. This
is shown for the eigenfunctions of I, in Section 2| and in Figure [5 If the system is in the
stationary state, its eigenvalue does not change in tlme. Therefore, a system in a state described by
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Figure 5.1: Plot of hypothetical results of individual measurements of the z components of the magnetic moment of
a spin-1/2 particle in a vertical magnetic field By. Individual measured values (equal to one of eigenvalues of ji,) and
average measured values (equal to the expectation value (u.)) are shown as red circles and green arrows, respectively,
for a particle in the « eigenstate (A), in the § eigenstate (B) and in the superposition state described by %|a> + % 18)

().
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an eigenfunction of the Hamiltonian can be associated with a certain eigenvalue of the Hamiltonian,
i.e., with a certain energy.

The states described by basis functions which are eigenfunctions of the Hamiltonian do not
evolve (are stationary). It makes sense to draw energy level diagram for such states, with
energy of each state given by the corresponding eigenvalue of the Hamiltonian. Energy of the
|a) state is —lwy/2 and energy of the |5) state is +hwy/2. The measurable quantity is the
energy difference hwy, corresponding to the angular frequency wy.

In general, the studied system can be present in a state that is not described by a single eigen-
function, but by a linear combination (superposition) of eigenfunctions. A shown in Section [5.7.13
and in Figure such a superposition state evolves in time and cannot be associated with a single
energy.

The states described by basis functions different from eigenfunctions of the Hamiltonian are
not stationary but oscillate between |a) and |5) with the angular frequency wy, given by the
difference of the eigenvalues of the Hamiltonian (—hw; /2 and fiw; /2).

It should be stressed that eigenstates of individual magnetic moments are not eigenstates of the
macroscopic ensembles of nuclear magnetic moments. FEigenstates of individual magnetic moments
do not determine the possible result of measurement of bulk magnetization. We present the correct
description of large ensembles in the next lecture.

Our ability to analyze evolution of the coefficients ¢, and cg also allows us to describe rigorously
the effect of radio waves on the spin states. Detailed analysis presented in Sections [5.7.14H5.7.18
shows that equations describing weak fields oscillating in one direction (a physically realistic model of
a radio wave) have the same form as equations describing rotating fields (such fields are not applied
in reality, but equations describing their effects on spin states have simple analytical solutions).

5.6 Real particles

Eq. 5.4} used to derive the value of 7, describes interaction of a particle with an external electromag-
netic field. However, charged particles are themselves sources of electromagnetic fields. Therefore,
is not exactly twice @@/2m. In general, the value of ~ is

Q

V=95 (5.20)

where the constant g include corrections for interactions of the particle with its own field (and
other effects). For electron, the corrections are small and easy to calculate in the fully quantum
approach (quantum electrodynamics). The current theoretical prediction is g = 2.0023318361(10),
compared to a recent experimental measured value of g = 2.0023318416(13). On the other hand,
”corrections” for the constituents of atomic nuclei, quarks, are two orders of magnitude higher than
the basic value of 2! It is because quarks are not ”bare” as electrons, they are confined in protons
and nucleons, "dressed” by interactions, not only electromagnetic, but mostly strong nuclear with
gluon. Therefore, the magnetogyric ratio of the proton is difficult to calculate and we rely on its
experimental value. Everything is even more complicated when we go to higher nuclei, consisting of
multiple protons and neutrons. In such cases, adding spin angular momenta represents another level
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Figure 5.2: Evolution of the probability P, that a spin-1/2 particle is found in the « state: for a particle in a vertical
magnetic field éo and in the « eigenstate at t = 0 (A), for a particle in a vertical magnetic field Eo and in the
eigenstate at ¢ = 0 (B), and for a particle in a horizontal magnetic field B and in the « state at ¢ = 0 (C). The states
a and j are represented by eigenfunctions of I, (Panels A and B), but |a) is not an eigenfunction of 1.
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Table 5.1: Values of the magnetogyric ratios of selected nuclei

Nucleus magnetogyric ratio
H 267.513 x 10°rad.s~ 2. T~!
13C 67.262 x 10°rad.s~1. T~}
12N —27.116 x 10°rad.s~ 1. T

ISF 251.662 x 105rad.s~ L. T!
ip 108.291 x 10%rad.s~+.T~!
electron 176 085.952 x 10°rad.s~ L. T!

of complexity. Fortunately, all equations derived for the electron also apply to nuclei with the same
eigenvalues of spin magnetic moments (spin-1/2 nuclei), if the value of v is replaced by the correct
value for the given nucleusﬁ Magnetogyric ratios of the nuclei observed most frequently are listed in
Table B.11

HOMEWORK

Check that you understand how commutators of the operator of the orbital angular momentum are
derived (Section [4.9.12)) and derive the Hamiltonian of the spin magnetic moment (Section [5.7.8)).

4ANMR in organic chemistry and biochemistry is usually limited to spin-1/2 nuclei because signal decays too fast if
the spin number is grater than 1/2.
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5.7 SUPPORTING INFORMATION

5.7.1 Special theory of relativity

The first postulate of the special theory of relativity says that physical laws have the same form in all inertial coordinate frames. Two
inertial frames can differ in the orientation in space. Vectors expressed in one frame can be transformed to those in another frame using
relations presented in Section But two inertial frames can also differ in velocity. For example, we may describe one coordinate system
as stationary and another one as moving with a constant velocity ¥. Galileo proposed that velocity in the stationary system is a vector
sum of the velocity in the moving system and of ¢. If we describe velocity in the stationary system as d7/dt (change of the position 7 in
time), and velocity in the moving system as d7”/dt, we can write the Galilean transformation as

dr _ d7
dt ~ dt
Note that both di and d7’ are differentiated with respect to the same time ¢. Galileo expected that time is a global parameter, same
in all systems.

+ 7. (5.21)

dt = dt’. (5.22)
Egs. and obviously imply
dif = d7 + vdt. (5.23)

We can use the direction of ¥ to define the x axis and to write for individual coordinates

dz = dz’ + vdt (5.24)
dy = dy’ (5.25)
dz = d7’ (5.26)

The Galilean transformation yields correct results for v much slower than the speed of light c.

The second postulate of the special theory of relativity says that the value of ¢ is the same in all inertial coordinate frames. This
contradicts the Galilean transformation and another transformation relations must be searched for. The relations that satisfy both
postulates of the special theory are known as Lorentz transformation. We are not going to derive them rigorously, but we present simple
arguments that point to them (without proving the assumptions that we make).

If anything moves with a constant speed 4 in the stationary system, or %’ in a moving system,

di = ddt = dr? —u?dt® =da? +dy? +dz? —u?dt>? =0 (5.27)
and
di = @'dt! = d&r'? —u?d? =da’? +dy’? +d? — WA =0, (5.28)

where the expression with squares do not depend on the directions of @ and %’'. Note that we are ready to accept that time may be
different in the coordinate frames (we distinguish ¢’ from ¢).

We know that the Galilean transformation d7 = d#’ + @dt is correct for low speeds. Therefore, we can assume that for « = 0 and
u' =0

dr? — u2dt? = dr? = da? + dy? + d2? = dr'? — /%A% = dr'? = ky (dz — vdt)? + kydy? + k.d22, (5.29)

where the unknown coefficients k., ky, and k. must tend to one for v < c.
The second postulate of the special theory of relativity requires that for u = |u| = ¢

dr? — |u?2dt? = dr? — Adt2 = da? + dy? + dz? — Pdt? =0 (5.30)
but also
ar'’? — [/ 2dt’”? = dr'? — Adt’? = da’? + dy'? + dz'? - 2ar? = 0. (5.31)
Combination of Egs. [5.295.31] gives

12

dz? + dy? 4+ d2? — Pdt? = kg (dz — vdt)? + kydy? + k2dz? — 2dt’> = kg (da? — 20dadt + 02dt?) + kydy? + k2dz? — 2dt (5.32)

Obviously, dt’ cannot be equal to dt, but the transformation of d¢ must generate a term that would cancel the red term in Eq.
We can guess that the following relation does what we need:
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1 2 1
dt’ = Vka <dt - —dex) = At =k (dt2 — Svdadt + —4v2d22) : (5.33)
C C C

Plugging this into Eq. [5.32

1
dz? + dy? + d2? — A2dt? = ky (da® — 2vdzdt + 02 dt?) + kydy® + k2d2? — ke (CthQ — 2udadt + —2v2dm2)
C

2 2
= ko (da:2 Fo2di? — 2de? — U—zde) + kydy? + kad2? = ky (1 - ”—2) (dz? — 2dt?) + kydy? + k.dz>
C C

(5.34)

The left-hand side is equal to the right-hand side if ky = k. = 1 and k; = 1/(1 — v2/c?). In summary, the transformation consistent
with both postulates of special theory of relativity is

ct' = ot —vz/c = ! ct — v/e =+ < ct — Y x (5.35)
V1—v2/c? V1 —v2/c? V1 —v2/c? V2 — o2 VeZ =27
, x — vt v/e 1 v c
v V1—v2/c? T V1 —1)2/C2CtJr V1 —v2/c2x RV —UQCtJr V2 oz (5.36)
¥ =y, (5.37)
7 =z, (5.38)

where the direction of ¥ defines the x axis. Transformations between inertial coordinate systems with other directions of ¢ are described
in Section m For example, transformation to a coordinate system where ¥ has a different orientation in the xy plane (v

/. = vCoSs p,
v; = —wvsing) corresponds to a rotation of the coordinate frame about the z axis by the azimuth angle ¢:
ct’ = ct, (5.39)
v’ vl v! vl
2’ = +(cosp)x + (sinp)y = +2x — Ly =+ = T — Y Y, (5.40)
v v \/’U/I2+'U,/y2 \/U/I2+U;2
/ ’ / /
. V. v, v. v
Y = —(sinp)z + (cosp)y = +—La + Ly =+ L+ Ly, (5.41)
v v \/’U/z2+’U3/42 \/Ulz2+v'ly2
7 =z, (5.42)

Note that time and space coordinates are not independent in the special theory of relativity (as they were in the Newton mechanics).

Egs. and tell us that
da? + dy? + dy? — 2dt? = do’? + dy’? + d2'? — 2’2 (5.43)

If the first system is stationary, i.e., the position 7 does not change, then dz = dy = dy = 0 and
Adt? = AdtE = Pdt’? — da'? — dy'? — d2'?. (5.44)

The time measured in the stationary system is called proper time, we label it tg, and it describes difference in time between two events
that occur at the same position. The quantity c2dt? — dz? — dy? — d22, called space-time interval, is invariant (the same in all inertial
frames), equal to czdt(z).

Eq. @ is analogous to the Pythagorean theorem in a four-dimensional space, called space-time, consisting of time and three space
dimensions. Events in the space-time are described by four-vectors (ct,z,y, z). Note however, that the space-time does not have Euclidean
geometry as the familiar three-dimensional space of the z,y, z dimensions. This is why the minus signs appear in Eq. [5.44} in contrast to
the Pythagorean theorem r2 = x2 + y2 + 22. Square in the space-time is calculated as

1 0 0 O cdt

20,2 _ 0-1 0 0 dz | _ 2.0 2 2 2

c?dtg = (cdt dz dy dz) 0 0-1 0 dy | =€ dt® — da” — dy” — dz*. (5.45)
0 0 0-1 dz

Transformation of four-vectors can be described by four-dimensional matrices, obtained by extending the three-dimensional matrices
of Section to the time dimension. For example, the transformations discussed above (change of velocity in the « direction and rotation
in the zy plane) can be described as
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1 _ v/c c _ v
ct! +\/17’U2/62 \/171}2/62 00 ct +1/C2—U2 e2—p2 00 ct
z’ ___w/e 1 00 x - +——L_—00 T
y/ = \/lfijz/c2 \/1,1,2/62 y = Ve2—v2 c2—v?2 (546)
) 0 0 10 0 o 10]|Y
o 0 0 01 # 0 0 01 Z
and
1 0 0 0
et/ 1 0 0 0\ [et 04— v % o [et
' | | 0+cosp +sing 0 z | _ \/v;2+v;2 \/%2-&-%2 T (5.47)
y ] 7 | 0 —sinp +cosp 0 y | 04 vy, n ! 0 y |’ :
2’ 0 0 0 1 z N Y CTE e z
0 1
respectively.
5.7.2 Relativistic momentum and energy
According to the first postulate of special theory of relativity, the second Newton’s law
. dp
F=2L (5.48)
dt

must have the same form in all inertial frames. In the Newton mechanics, the momentum § = md#/dt, where the velocity d7/d¢ is
measured differently in different frames. In order to keep the second Newton’s law the same in all inertial frames, momentum is defined in
the special theory of relativity as

dr dr dt 78
F=mo— =mp— = 0 (5.49)

dto dtdto /1 —u2/c2’

where @ = d7/dt is the velocity in the reference frame, not a velocity of the reference frame relative to another coordinate frame.

Eq[5.35| was used to evaluate dt = dtg/+/1 — u?/c? (note that dxz = 0 for a stationary system). By writing mg, we stress that we use the
mass measured in the stationary system (the rest mas

Let us assume that the work done by a force along a certain path is converted to the kinetic energy:

Sxin = —Wia = /F a7 = /7 /Z% <\/%> - @dt = mo 072ud (\/I“U72/62> : (5.50)

where the velocity increased from zero to uz. The final integral is well suited for integration by parts (per partes):

(5.51)

Exin = M /ud( >m u% m /2 v du
kin = M0 Y| T | —(Y——
—u2/c2 —u2/c2
J V1—u?/c /1 uZ/c? J V1—u?/c

‘We notice that

1
d(l—”LLQ/CQ)§ u 9, oy—1 u
N T 2 _ 2 - — 2 2 /02
T = (1—wu?/c?) = mdu c“dy/1—u?/c (5.52)
and consequently
‘/l—ug/c2
Exin :m0u72+m002 / dy/1 —u2/c? = mg——2—— + moc?y/1 — u3/c2 — moc® = mg uj+ —u2 — moc?
/1 —u2/c? /1 2/02 \/1—u3/c?

_ome® (5.53)
\/1—u3/c?

®Some old textbooks talk about a "relativistic mass”, in contrast to the rest mass. As the concept of the relativistic
mass was confusing, it has been abandoned. Therefore, it should be sufficient to talk about the mass as an invariant
quantity without stressing that it is the rest mass. Nevertheless, we use the symbol mg here to remind us that the
mass is constant and to avoid any possible confusion.
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Relabeling the final velocity us — u,

2

moc 5
Ekin = ————= — moc”, 5.54
k= e 559
or
moc? 5
&t = Exin + moc”, (5.55)

Vi

where & = moc?/y/1 —u2/c2 has the form of the total energy, consisting of £y, and Einstein’s famous mgc?, playing the role of a
potential energy. We can now compare the relativistic definitions of the momentum and of the energy:

2 m2 e
& = —0C ez OC (5.56)
/T—u2/c2 1—u?/c2
- 2,2
L mod 9 mgu
P= V1—u2/c2 = 1—u?/e? (557
This comparison shows that
2 4 2.2 .2 2.4 2.2
£2 _ 2.2 — ¢ T mouTer | Moc (I_U/C),mzal (5.58)
EoPe = 1—u2/c2 1—u2/c? R ’

Note that both mg (the rest mass) and c are identical in all inertial frames (mgo by definition, ¢ by the second postulate of the special
theory of relativity). We have found another invariant, the difference £t2 — p2c?, which is the same in all inertial coordinate frames. This
invariant is the space-time square of the momentum four-vector (&, cps,cpy, cpz).

5.7.3 Relativistic quantum mechanics

We found in Section that the special theory of relativity requires that the quantity 8t2 — p2c2 is equal to the invariant m%c‘l. This
can be written as

—EF + P2+ Ppl + Ppl + mict =0 (5.59)

; Let us look for an operator which represents the quantity *th +cp2 + chZ +c2p? +mgc4. We know that for a monochromatic wave
unction

)= e%(pzzﬂ)yyﬂ?zzf&t)’ (5.60)

partial derivatives of v serve as operators of energy and momentum:

0 0 16) o
0l = —py ma—f = e = =g (5.61)

Therefore, the operator of —53 +c2p2 + c2p?2/ +c2p? + m%c4 should have a form

0?2 0?2 0?2 0?2

hz@ fcthQ 762}12@ fczhza—yQ + (moc?)?. (5.62)
Eq. @ fulfills the requirements of the special theory of relativity, but it contains the second time derivative. As discussed in
Section an attempt to use Eq. to describe evolution of the quantum system in time is not consistent with our first postulate of
quantum mechanics and with our interpretation of ¥*W as the probability density. Therefore, we look for an operator that contains only
the first time derivative and allows us to formulate the equation(s) of motion that is in agreement with the special theory of relativity and
with the postulates of quantum mechanics. As this problem is not easy to solve, we will proceed step by step. Let us first assume that

particles do not move, i.e., p = 0. Then, Eq. simpliﬁes to

—&24+mict =0, (5.63)
which can be written as
(=&t +moc?) (& +moc?) =0, (5.64)
Using the operator of energy,
2 9% 2\2 2 2 4
P —— + (moc®)*p = (—EF + mgc*) p =0 (5.65)

ot2
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if ¢ is an eigenfunction of the energy operator. The operator of —EE + m%c4 (let us call it 02) can be obtained by a subsequent
application of operators O+ and O~ that provide the following equations of motion:

(ih% - moc2) =0Ty =0, (5.66)
(—ih% - m0c2) =09 =0. (5.67)

The operators O~ and O can be viewed as ”square roots” of 02

~ 2 ~ ~
O = rﬂ% + (moc?)2p = (ih% - mOCQ) (—m% - m002> »=0" (ow) 0. (5.68)

What are the eigenfuctions? One solution is a wave described by Eq. with pz = py = p. = 0. We can prove it by checking that
calculating the time derivatives give us the eigenvalues (see the green terms in the following equation):

0 ( . i i
<1ﬁé — mg(:2> (*iﬁ% — m,()(tz> en (TEtt) — (iﬁ% — mocQ) (—Et — mocQ) en (—€tt)

=(-& — moc?) <ih% — m062> e (=€) = (=& — moc?) (& — moc?) e (—E&et) (mdc* — &) en (=€) =g (5.69)

But the complex conjugate of the wave described by Eq. @ is another possible solution:
0 . o . i 1o} i
(iﬁ& — mo(:z> (—iﬁa - 777,()(’,2> e (Ett) — (ihﬁ — moc2) (St — mocz) o7 (Ett)

= (& — m062) (ih% — m002) e (Eet) — (& — mocz) (=& - m002) o (Eet) — (m‘(—’)& — 5,2) et (Eet) — g, (5.70)

The second eigenfunction can be interpreted as a particle with a positive energy moving backwards in time, or as an antiparticle
moving forward in time.
Let us now turn our attention to particles that can move (p'# 0). For the most interesting particles as electron or quarks, the operator
0? should have the form described by Eq. m
A 02 02 9?2 9?2
0% = (== — 2r2=— — 22— — A2r%2 = + (moc?)? . 5.71
v ( ot? 022 Oz2 Oy? (moc™)” )} ¥ (5-71)
Let us try to find ”square roots” of the operator 02 for a particle with a momentum p. In Eq. , Ot and O~ were complex
conjugates. A similar choice for a particle with a momentum p| i.e.

Oty = (ih% + 1ch8% + ich(% + ich% - moc2) » (5.72)
O~y = (4&% - icha% - 1cha% - ich% - m0c2) ") (5.73)

gives

o O O O O ¢ . b o
+ch2 2L 0% 4 p20Y 0V 20V 0% 02 ﬁ%—j

? oz ot Oy
9 O € 2 ) P 1 : O
+ch? % % +n? qug +ch? dy 9z —imoc®h 6.74)
D/‘\ ) p / 92' . 33 OY
teh? v b +h2 Bzg) —imoc3h i

—i—im(]czh% —i—imgc“h% —i—im(]c“hg—z —i—imgc“h% +(moc?)2y
with the correct five square terms shown in blue, but also with additional twelve unwanted mixed terms shown in red (the green terms
for t,x,y, z cancel each other.
As the second trial, let us try (naively) to get rid of the unwanted mixed terms by introducing coefficients ~; that hopefully cancel
them:

61t make sense to look for an operator which depends on time and space coordinates in a similar manner because time and space play
similar roles in quantum mechanics. As the first time derivative is our requirement, the equation should contain also the first derivatives

9/0x,0/0y,d/0z.
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A 1o} 0 17} 0
Oty = (iha’yg + ich%’yl + icha—y’yg + ichafyg — moCQ) P

(5.75)
A 0 0 0 0
O~ = ( —ih=n0 — ich—"1 — ich—~2 — ich—n3 — moc>
P ( 5070 ! ay 2 5.3 0 )w
(5.76)
Then,
—Oty = 02y =~ 2,292y +~07vy1ch? + ch2 2% 0% 4 v vach? Y ivgmoc2h2Y
0" 52 071 at OL Yov2ch” Fr 5, T073 at az Yomoch g
1) . 3. 09
+~170ch? 94 %—1 +'y%h2g? +~1v2ch? 53}11) gi/j +r1vsch? 58 52 —mmmm‘”z%
+A/27,Och2%% 271 ch2 2% % +3 12 gy +72 /‘3[‘}1 0‘ 71’\,’2777,0(‘3]7ﬂ (5.77)
137002 GL 5L 4ayich? G2 BL fyzach? GL GL 442h? —iygmoc3h L

+iﬂ,/omoezh% +iyq mo(% +ivamoc3hee oy +iﬂ,37n,0(:3h% +(moc?)2y.

ox

Obviously, the green terms with —iy; moc?h cancel each other, which removes eight unwanted terms. Can we also remove the remaining
dozen of unwanted mixed derivative terms? In order to do it, we need the following conditions to be fulfilled:

%=1 (5.78)
M=-1 HB=-1 ~r=-1 (5.79)

and
Yivk + kv =0 for j # k. (5.80)

These conditions are clearly in conflict. The first four condition require v; to be 1 or +i, but the last condition requires them to be
zero. There are no complex numbers that allow us to get the correct operator 02. However, there are mathematical objects that can fulfil

the listed conditions simultaneously. Such objects are matrices. _
Let us replace the coefficients 7; in Egs. by matricesﬂ %

. b3} ] b3} b3} .
Ootw = (iha’yo + ich%’yl + icha—y’y2 + icha—‘y?’ — m0021) U =0 (5.81)
O~V = <4h%&0 - icha%’yl - icha%/ﬂy 1ch§ - m0021> v =0. (5.82)

As 47 are matrices, the wave function must be a vector composed of several waves 1. This is emphasized by changing ) (representing
a monochromatic wave) to ¥ (representing a vector of monochromatic waves) in the equations.
We need a set of four matrices 47 with the following properties:

5050 =1, (5.83)
lat=-1 44°=-1 4.4°=-1 (5.84)

and
49 4R 448 .49 =0 for j # k. (5.85)

In addition, there is a physical restriction. We know that the operator of energy (Hamiltonian) is

A 0
=ih—. 5.86
ot (5:86)
We can get the Dirac Hamiltonian by multiplying Eq. by 40 from left:

d . ) ) )
iﬁam = (—wha— 50 . 41 —icha—y’yo 4 lchaz ~’?3+m002’yo) . (5.87)

"In relativistic quantum mechanics, these matrices can be treated as four components of a four-vector. There are two types of
four-vectors (contravariant and covariant) which transform differently. There is a convention to distinguish these two types by writing
components of covariant vectors with lower indices and components of contravariant vectors with upper indices. To keep this convention,
we label the gamma matrices with upper indices, do not confuse them with the power!
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Operator of any measurable quantity must be Hermitian ((¢|O¢> = <Ow|w)) in order to give real values of the measured quantity (see
Section , Since the terms in the Hamiltonian are proportional to 4% or to 4% - 47, all these matrices must be Hermitian (the elements
in the j-th row and k-th column must be equal to the complex conjugates of the elements in the k-th row and j-th column for each j and
k, see footnote [4] in Lecture 4.).

5.7.4 Finding the matrices

Our task is to find Hermitian matrices fulfilling the criteria imposed by Eqgs. ‘We have a certain liberty in choosing the matrices.
A matrix equation is nothing else than a set of equations. One of the matrices can be always chosen to be diagonal. Let us assume that
0 is diagonalﬂ How should the diagonal elements of 40 look like? In order to fulfill Eq. the elements must be +1 or —1.
Another requirement follows from a general property of matrix multiplication: Trace (sum of the diagonal elements) of the matrix
product A - B is the same as that of B - A. Let us assume that A =47 and B = 4° - 47. Then,

Tr{? 4%} =Ty 5750 (5.88)
But Eq.[5.85|tells us that 4°-47 = —47 .40, Therefore, the left-hand side of Eq.|5.88|can be written as Tr{47 - (—47) -4°}, resulting in
= Tef3? -5 4% = Tr{y 4740 (5.89)

and using Eq.
{3} = ~Tr{3°}. (5.90)

It can be true only if the trace is equal to zero. Consequently, the diagonal of 49 must contain the same number of +1 and —1
elements. It also tells us that the dimension of the 47 matrices must be even. Can they be two-dimensional?

No, for the following reason. The four 47 matrices must be linearly independent, and it is impossible to find four linearly independent
2 x 2 matrices so that all fulfill Eq. [5.85°]

Is it possible to find four-dimensional 47 matrices? Yes. We start by choosing

10 0 0

o_ |01 0 0

T =loo-1 o0 (5.91)
00 0-1

(the diagonal must contain two +1 elements and two —1 elements, their order is arbitrary, but predetermines forms of the other
matrices).
Being diagonal, 40 is of course Hermitian. The 4° - 49 products

J J J J J J J J
10 0 0 71,1 7,2 71,3 V1,4 Y1 M2 M3 Va4
01 0 0] [71%2%s%4 | _| 21 722 T3 Tua (5.92)
00—-1 0 VDY S S N el I S S S :
00 0-1 73,1 73,2 13,3 73,4 Y31 V3,2 73,3 T34
- J J J J J J
Vi1 Va2 'Yi,s Yi,4 Va1 Va2 Va3 Va4
must be also Hermitian, i.e.,
7{,1 7{,2 '7{,3 '7{74 (7{71)* ('Yg )" _(73 D =i Y4, 1)*
’Y%J ’Yg,2 ’Y%,g ’Y%,4 _ (7{,2)* (’Yz 2)” —(73,2)* (’Y4 )" (5.93)
IV A R R - J * ) * . .
V3,1 73,2 T7V3,3 V3.4 (71,3) (72 3) (’73_73) (74 3)
*74]1,1 *’YZL,Q *74];,3 *'74];,4 (7{,4)* (72 4) (7%,4)* ('74 4)

8This is a good choice because it results in a diagonal matrix representing the Hamiltonian, which is convenient.

?If the 49 matrices are linearly independent, they can be used as a basis. If they constitute a basis, there must exist a linear combination
of 47 giving any 2 x 2 matrix, e.g., the unit matrix 1: 1 = co4° + c15' 4 292 + c343. Let us now multiply this equation by 4° from left

(and use Eq. [5.83)

4% = col 4+ c14° - 41 4 24° - 42 4 ¢34° - 43,
then from right

A% =col + 19" - 4% + c25? - 4% + 3% - 57,
and sum both equations. If the matrices fulfill Eq.|5.85] the result must be 23° = 2¢o1, but this cannot be true because we need 49 with
a zero trace and the trace of the unit matrix 1 is obviously not zero.
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At the same time, Eq. requires 49 - 47 = —47 . 40

A~ AJ J J J J J J P R J J
1 7,2 713 Ma T1,1 M2 11,3 V1,4 10 0 0 1,1 77,2 71,3 V1,4
J J J J VR Y | J J g AT
Y21 Y22 Y23 V24 | _ | V2,1 V22 72,3 V2.4 01 0 O _ | =71 72273 Y24
j j P i i g g |l loo=1 o]~ j PR Y A I (5.94)
73,1 TV3,2 73,3 T34 73,1 73,2 73,3 V3,4 00 0—1 73,1 T73,2 73,3 V3.4
J J J J J AT AT AT — J J AT A
Va1 Va2 ~Va3 " Va4 Ya,1 Ya,2 Va3 Va4 Va1 Va2 Va3 Via

which is possible only if the red elements are equal to zero. Eq. shows that the blue elements form two adjoint 2 X 2 matrices for
each j > 0O:

0 0 Y37 0 0 MsMa

yi=| ) 0 Mama | 0 0 374 :( O ‘A’Aj). (5.95)
Y1732 000 —(M3)* —(n3s)* 0 0 —(6N)t 0
Yi1Yaz O O () =030 0 0

Now we use Eqgs. and to find the actual forms of three 67 (and consequently 47) matrices for j > 0.
Eq. -84 requires
0 & 0 & i . (0t 0 10 EE
0L L) = &7 (67) O ) == ()= (LYY, (5.96)
—(6)T 0 —(6)T 0 0 —(69)T - 57 01 0-1

67 (6Nt =) .67 =1 (5.97)

Eq. is obviously true if the 67 matrices are Hermitian (67 = (69)1), i.e. 07y, = (09,m)*. It implies that the 67 matrices have
the following form:

) a; Cs
=17 ) , 5.98
(cj b; ( )
where a; and b; are real, and ¢; is complex. Eq. can be then written as
2 2

i ) i - o .o +|C| (a-+b-)c- 10
”]'"JT:"J'”J:(%C])(aﬁd):(aj g = . 5.99
) ¢ by c; bj (aj +bj)ct b2+ c;[? 01 (5.99)
The off-diagonal terms of the product matrix must be equal to zero, which is true if a; = —b; or |¢j| = 0. In the former case, matrices

67 can be written as

w 1—|C-‘2 Ca
= (V9 i , 5.100
< c; —V/1—¢;[? ( )

in the latter case, there are only two possibilities how to construct the 69 matrix:

i 10 i 10
G — 57 —
6l = (0 1) or ¢’ = (O 1) (5.101)

(note that |c;|2 =0 = a? = b? =1.) Eq. shows that the second option is correct. Eq. requires

(—(Sjﬁ %j)'(—(cgw &ﬁk)+(—<2k>* %k)'(—(gjﬁ %) - (&j Ergenen (69)t - " : (&%) ~&f> - (8 8) (5.102)

therefore no &9 can be a unit matrix.
As Eq.|5.101f unambiguously defines one sigma matrix (let us call it 53), the other two (6! and 62) are given by Eq.[5.100] According
to Eq.[5.102] 67 - (6%)T 4 6% - (67)1 = 696* + 6%67 = 0 and consequently,

(1 0 ) V1—]c;2 c; n V1 —=e;j]? cj '(1 0 ) 7( 1—ej? 0 )7 (0 0) (5.103)
0-1 c; —v/1—¢;|? c; —/1—|¢;]? 0-1 0 —24/1—[¢;]? 00)’ ’

showing that |c; |2 = 1 and the diagonal elements of 6! and 2 are equal to zero. Therefore, these equations can be written as

A1 0 et 2 0 el¥2
G _(e*idn 0 7= o-is2 o (5.104)
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According to Eq.[5.102, 676% + 6%67 = 0 and therefore

0 ei¢1 0 ei¢2 0 ei%2 0 ei¢1 el(01-92) 4 o—i(P1—02) 0
(e—i¢1 0 ) ’ (e—id>2 0 ) + (e—i¢2 0 ) ’ (e—i¢1 0 ) = ( 0 e—i(d1—¢2) +ei(¢1*¢2)> -

(2cos(<z>01—¢z) zcos(¢01—¢>2)) _ (88), (5.105)

The off-diagonal elements of the sum of the matrix products are equal to zero if the phases differ by /2. Choosing ¢1 = 0, the set of

three sigma matrices is
.1 (01 .o (0 —i .3 (1 0
"‘(10 “=\io 7" =101 (5.106)

and the set of the four gamma matrices is

10 0 O 0 001 000 —i 001 0
o_|01 0 0 a2 | 0 o010 2 | 00i o0 s | 000-1
7= loo-1 o0 7= o-100 7= oio o T = -100 o0 (5.107)
00 0-1 -1 000 —-i00 0 010 O
With the help of the 47 matrices, we can modify our definition of Ot and O~ to get the correct operator 02
10 0 O 001 O 0 001 000 —i
L,0[01 0 0 .0 000 -1 ., 0 0 010 .0 001i O
h5iloo-1 o] T | —100 o] Tz | o-100|T 5| 0io0 0
00 0-1 010 O -1 000 —-i00 O
1000 1
_ 5[ 0100 2 | At+a
moc 0010 s =0TV =0,
0001 Py
(5.108)
10 0 O 001 O 0 001 000 —i
—ihg 01 0 O —iché 000 -1 —ichg 0 010 1ch£ 00i O
ot 00-1 0 8|1 -100 O oz 0-100 Ay 0i0 O
00 0-1 010 O -1 000 —-i00 O
1000 1
5 0100 Yo | oA
—moc 0010 bs =0~V =0.
0001 P4
(5.109)

5.7.5 Dirac equation and spin angular momentum

Introducing matrices means that we do not have a single equation of motion, but a set of four equations for four coupled wave functions.
The complete wave function ¥ therefore consists of four components. We are used to call arrays of numbers vectors. However, ¥ is not
a four-vector in our four-dimensional physical spacetime. The four components of ¥ have nothing to do with time and the three spatial
dimensions z,y, z. We have to treat ¥ as a new physical entity and explore how it behaves.

An important question is how ¥ transforms. In Section [5.7.1] we described that the relation between coordinates in two inertial
systems must be the Lorentz transformation, so that the physical laws and the value of the vacuum speed of light ¢ are the same in both
coordinate frames. As we claim that the Dirac equation is a general equation of motion, it must have the same form (be invariant) in
different inertial coordinate systems. This can be analyzed for a general Lorentz transformation in a mathematically elegant manner, but
here we explore just the rotation about the axis z.

Let us write the Dirac equation Eq.[5.108] shortly as

) ] o 8 .
(iha’yo + ich%’yl + icha—y’yQ + icha'f - mgc21) T =0. (5.110)

Then we express the Dirac equation in a coordinate frame rotated about the z axis by an angle —¢, as described for the passive
rotation in Section [[.5.3
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G0 0,0 1 0 5 0 3 2%
<1h%'y +1ch%'y +lch8—y,'y +ICFL£’Y —moc®l ) ¥ = 0. (5.111)

First, we have to evaluate the partial derivatives in the rotated coordinate frame. Let us to assume that we differentiate some function
f(t,z,y,2). Change of the coordinates means that we have to differentiate according to new coordinates t’',z’,y’, 2’. Eq.

ct! 1 0 0 O ct
' | | 0+4cosp +sing 0 x
y | | 0 —sinp +cosp 0 y |’ (5.112)
k4 0 0 0 1 z

shows that the new (primed) coordinates depend on the original ones. Therefore, the new partial derivatives can be calculated using
the chain rule:

of _oron ofoe  ofoy  of o

In order to proceed, we need the values Oz /9z’ etc.

= 5.113

ot ot ot! oz o' Oy ot 0z ot ( )

of _oj o ojos ofoy  of ox 1)
8z’ ~ Ot O’ Oz Oz’ Oy O’ = Oz Oz’ '

of _opon ofon ofoy  ofo: 5115
8y ot dy  Oxdy  Oydy 9z Oy '

of _or ot o5or  ofoy 050z 5.016)
8z Ot 8z Ox 8z Oy dz = 9z 9z '

or

or

ot’

or

We notice that differentiation of Eq.[5.112|provides the inverse partial derivatives:

Por Zoo Moo Hog (5.117)
%mt, =0 g—i = +4cosp aag;' = +singp %Zl =0 (5.118)
88—{: (Z—Z:—sinw %—Zz-{-cosw %:0 (5.119)

aa—ztlzo %:0 ‘Z—j:o %:1 (5.120)

It suggests that we should differentiate the inverse transformation to Eq.[5.112] The inverse transformation can be obtained easily by

changing ¢ to —¢:

ct
X

Y
z

1 0 0 O
0 +cosp —sing 0
0 +sing +cose 0
0 0 0 1

We write the individual equations of the inverse transformation:

Now we can evaluate

ot _

ot
o _y oo
ot oz’
9 )
Y _y 9
ot oz’

ct=ct

z=+cospx —sinpy
y=+sing 2’ +cosp y’

/
z=z

t t t
0 0 19} 0 1o}

88

ISR

dz’ ay' 92
n ox . ox
= +cos —— = —sin — =
ks oy’ v 0z’
. dy oy
= +siny 8—y/:+cosg0 @:

(5.121)

5.122)
5.123)

5.124)

o~ o~ o~~~

5.125)

(5.126)

(5.127)

(5.128)
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0z 0z 0z 0z
— = — =0 — =0 — =1 5.129
ot’ oz’ oy’ 0z! ( )
and
oF _of (5.130)
ot’ ot
1o} 1o} 0
a—;:/ = +cos¢p % —sing 8—5 (5.131)
0, 9 0
a—;/ = +sing % + cosgp 8—; (5.132)
or _or (5.133)
0z’ 0z
or
a 10 o o\ (%
@ _ 0 4+cosp —sinp 0 % (5.134)
557 0 +sing +cose 0 a0 | '
3 0 0 o 1)\7
oz’ 0z

Therefore, Eq. m can be rewritten as

(ih%&o +ich (cos w% — sin cp(%) 42 4+ ich (smgo; + cosgo;y) 42 4 ich%ﬁlg — moc? i) v =0. (5.135)

After expressing the operator (the expression in the parenthesis in Eq. in the rotated coordinate system, we have to pay
attention to the four-component object introduced by the Dirac equation, to ®. We know that scalar quantities do not change when we
rotate the coordinate frame. An example is a plane-wave solution ¥ of the Schrodinger equation, which contains the scalar product of
coordinates and angular momentum. We also know that vectors change as described by Eq. But what about ¥?. At this moment,
we do not know how ¥ transforms. Therefore, we write ¥’ using a so-far undefined transformation matrix S:

(ihgﬁo + ich (cos w% — sin @%) At 4 ich (sin Lpé% + cos wagy) 42 4 ich%ﬁﬁ - moCQi) SU =0, (5.136)
(' gt’y S +ich (cosap; sin@%) 418 +ich (smn,aa6 +cos<paay) 2S+1ch{i ‘S'meCQSA') ¥ =0. (5.137)

We then multiply the equation from left by the inverse matrix to S (we can move it after the partial derivatives because it is a constant

matrix):

o\ 4 A o 0\ 4 A o . N R
—) S7I4S +ich (Singp— + cos cp—) S71428 4+ icha—SflfAyBS — m0c21) v =0, (5.138)
z

0 4 - 0
(ih—Silﬁ/OS + ich (COS wa - sinapay P oy

ot

0 4 A 0 4 N d 4 A 0 4 34 a
(ihaS_lfAyOS + icha—S_1 (cos oyt + sin<p’yz) S+ icFLB—S_1 (f sin ¥t + Cos<p’y2) S+ icha—S_lnyS — m0021> v =0. (5.139)
z y z

The Dirac equation must be invariant. Therefore, Egs. @ and m must be identical for any ¢. It requires

§1508 = (5.140)
S—1 (cosgmx + sin ¥ )5‘ = ﬁ/ (5.141)
§1 (- sin @y + cos ¥ ) S = (5.142)
51438 = & (5.143)
We multiply Eq. @ by the imaginary unit, and then add it to Eq. @ and subtract it from Eq. @
571 (cosp (4 +14?) —ising (3" +15%)) § (5.144)

Il
n 0
A
—
o
1
Ay
—
)
o
+
3
(V)
N
Uy
Il
2
o
+
5
S

T cosp (31— 52) +ising (31 —157)) § = 571 (719 (31 —157)) § = 4" — 52 (5.145)
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Now we multiply the first equation by eti® and the second equation by e~1¥:

51 ﬁl + i’yz) § = otie (@1 + ifyZ) (5.146)
STU(AY —i52) § = e (31 —142). (5.147)

This is a remarkable result. The right-hand sides of the equations contain the factors e*'¥ multiplying the combinations of the
matrices 4! & i42. The exponential factors e¥'¥ described rotation of magnetization about z in Section where they multiplied the
combinations M, £ iMy, and rotation of a general vector 7 about z in Section where they multiplied the combinations 75 &£ iry.
We can therefore conclude that the right-hand sides of the equations describe rotation about the axis z by an angle ¢. But then also the
left-hand sides of the equations must describe rotation about the axis z. In other words, the so-far unknown matrix S must have the same
effect on the gamma matrices as the rotation matrix R has on the matrix representing the tensor T in Eq. m But remember that we
first introduced S as a matrix transforming the four-component quantity .

What does it mean? We have written Eq. so that it represents the Dirac equation for a system that rotates. We then expressed
explicitly how rotation changes the terms in the parentheses in Eq. [[.111] Finally, we have found out that the solution of the Dirac
equation, W, must also rotate to keep the Dirac equation invariant. But any rotating object must have an angular momentum. We see that
W carrying all available information about a point-like particle such as electron, described by the Dirac equation, must possess an angular
momentum. Our analysis did not include any assumption that the electron is moving along a curved path. It tells us that the angular
momentum of ¥ is not an orbital angular momentum. It must be an angular momentum associated with the particle itself, an angular
momentum called spin, regardless of the point-like nature of the described particle.

5.7.6 Plane wave solutions of the Dirac equation

Let us now describe solutions of the Dirac equations for particles such as a free electron. The operators O* and O~ consist of partial
-

derivative operators summarized in Eq. , and Eq. also shows that a monochromatic plane wave 1 = en (PeatPyy+pz2—Eit) jo oy
eigenfunction of the partial derivative operators, with the eigenvalues equal to &£, ps,py,p-. The wave 1) is also an eigenfunction of the
operator O? described by Eq. |5.62

A9 o 02 2,0 O° 2,0 02 2,0 02 212\ i (prztpyy+p.z—Est) 2 2 2 212
0% = (W 55 — ™ s — o = PP o 4 (moc?)? ) eR et Py 28D = (€3 + &% + (moc®))y, (5.148)

providing the expected eigenvalue —£2 + ¢2p? + (moc?)2. The requirement of the special theory of relativity
—E2 4?2+ (moc)2 =0 =  E2=c2p? + (moc?)? (5.149)
allows for two possible values of energy £, one with a positive sign and another one with a negative sign
Es = £4/2p? + (moc?)?) = £&;. (5.150)

We have labeled the energy £s in order to reserve the symbol & for always positive 1/c2p? + (moc?)2.
We check if a vector consisting of functions ) multiplied by different coefficients w; (i.e., ¥; = w;%) is a solution of the Dirac equation

10 0 0 001 0 0 001 000 —i
9 lo1 o of .. 0 000 —1 ;. 0 o10| ..8 | o00i o0
hailoo-1 o] T | —100 o] TGz | o-100| TG, | 0io0 0
00 0-1 010 0 -1 000 —i00 0
1000 w1
50100 wohp | AL
Mol go10 wyp | =0T =0
0001 w4t
(5.151)
10 0 0 001 0 0 001 000 —i
g0 lor o o) 0 000-1| . 0| 0 010| .. 0| 00i0
st loo-1 o0 el =100 0 Paz| o0o-100 Doy | 0i0 0
00 0-1 010 0 -1 000 —i00 0
1000 witp
50100 wop | oA
moc 0010 wath =0~V =0,
0001 warh

(5.152)
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or shortly

w1t
o 1o} 0 1o} N N
(1716 30 4 1cha—7 + 1cha—y’y2 + ichgﬁs — m0c21) z;i =0tw =0
watp
(5.153)
w1y
(71haa A — 1chaa At = ICEBBQ - ich%’y3 - moCQi) zzﬁ =0"Vv =0
wqp
(5.154)
For our wavefunction,
(Es —moc®)wy +0 ) —Cpz w3 —c(pe — ipy)wa
A 0 +(Es —moc*)wa —c(pz + ipy)ws  +cpwa
oty = : Y =0. 5.155
cprwi +c(pz — ipy)wz  —(Es + moc?)wz +0 v ( )
c(pa + ipy)wi  —cprwe +0 —(Es + moc?)wy

The values of w; are partially restrained by Eq.[5.155] but partially depend on the choice of the coordinate frame. One set of solution
is such that one of the coefficients w; is set to zero and another one to a normalization constant N in each solution. The normalization
constant can be determined as discussed in Section m by requiring

o oo 0o wl"»b oo oo oo
[ ] ] Cwrer wser wgur wivr) | 420 | dedyde = (i +wows + s +wid) [ [ [ ovtdedydz =1, .15
— 00 —00 —00 war) —00 —00 —00

where we define the probability as a ”square” of the vector W.
Let us find the first solution ¥ by setting wi,1 = N and w21 = 0. Eq. [5.155| then corresponds to a set of four equations

(Es — moc?)N 40 —Cpzw3,1 —c(ps —ipy)wa1 =0,

0 +0 —c(ps + ipy)ws,1  +epzwai =0, (5.157)
cpz N +0 —(Es + moc?)ws,1 +0 =0, '
c(pz +ipy)N —0 +0 —(&s +moc?)wa 1 = 0.

The third and fourth equation immediately provides the value of w3 1 and wy,1, respectively:

way = NP2 TiPy)

—_— . 5.158
FEs + m002 55 + m002 ( )

w3,1 =N

The solution is

P
0
= CPz
Ui=N| ey (5.159)
C(erlpy)w
Es+moc?

and the normalization condition is

2 2 2 (p2 xR R 2 2 20,2 2
z T z T+
2 2y v + ;) / / /w*wdzdydszQ 4 — 2P < (p py)2 B3
(Es + moc?) (Es + moc?)? Jod (Es + moc?) (Es + moc?)

o (&s + m002)2 +c?p?\ 4 o[ E2428imoc? + mict +c2p?\ 5 o (282 +28smoc? ) 5, 2Es 3
=N 5 h> =N 5 hW=N|—"——F5 |W=N |75 )|h =1
(Es + moc?) (Es + moc?) (Es + moc?) Es +moc?

(5.160)

2
N = ,/% (5.161)
t

Therefore,
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and
1
2 0 .
Uy = &t + moc cps ot (Poz+pyy+pzz—Eit) (5.162)
2E:h3 Et+moc2
c(pe+ipy)
Et+moc?

Here, the energy &5 is a positive number £ = & = +4/p2c? + mgc4 (otherwise N — oo for slow motions, p — 0).
The second solution W is obtained by setting w22 = N and w12 =0

0 +0 —cp w3 2 —c(pz —ipy)wa2 =0,
0 +(& — mOCQ)N —c(pe +ipy)ws,2 +cpwa2 =0, (5.163)
0 +c(pe —ipy)N  —(Es +moc?)ws 2 +0 =0, '
0 —cp.N +0 —(Es + moc?)wa,2 =0,
wyp = NP2 EiPy) lp-”g wip = N2 (5.164)
Es + moc Es +moc
giving the same normalization condition. Therefore,
0
Er + moc? 1 i
Uy = LT 07 | c(pytipy) o7 (Pe@+Pyy+pz2—Ert) (5.165)
28¢h3 Eitmoc?
—cpz
£t+m0c2
with €5 = & = +4/p?c2 + mgc4.
The third solution W3 is obtained by setting w33 = N and w43 =0
(Es — moc2)w173 +0 —cpx N +0 =0,
0 +(Es — moc®)wa 3 —c(pe +ipy)N +0 =0, (5.166)
cpzw1,3 +e(pe — ipy)waz  —(Es +moc?)N +0 =0, :
c(pe +ipy)wi,3 —cpzw2 3 +0 +0 = 0.
The values of w1,3 and wa 3 are calculated from the first two equations. Keeping the same sign of the mass term,
w3 = NM wa3 = NLQ’ (5.167)
—FEs 4+ moc —FEs 4+ moc

Now the normalization condition is

oo oo oo
Nl L _Cwtr) / / / $rpdadyds = N2 (14— CP2 L Oty s
(=& +moc2)? (&5 +moc?)? R (—&s +moc2)?  (—&s + moc?)?

2
= N2 ((—83 +moc?)” + CQPQ) B3 = N2 (53 — 28smoc® + mget + C2p2> B3 = N2 (253 - 2537”002) h3 = N2 ( 26 ) B3 = 1.

(=&s +moc?)? (—Es +moc?)? (—E&s +moc2)? —&s +moc?
(5.168)
Therefore,
£ 2
N = ngc (5.169)
—2Esh
and
1__—cp= 1__—¢cpPz
[“¢ ol ) 3 ol
—&s + moc —C\Pz TPy i _et t +moc —c\Pz TPy i £t
V3 = s ~- | —&, 2  (Peztpyy+pzz—Est) _ [T P00 £ 2 7 (Peatpyy+pestEit) 5.170
3 YWY L+1moc e 2613 t-‘rToC e ( )
0 0

Here, the energy &s is a negative number & = —& = —4/p2c? + m2c? (otherwise N — oo for slow motions, p — 0). The fourth
solution Wy is obtained by setting w44 = N and w3 4 =0



142

(Es —moc®)wra 40 +0 —c(pe —ipy)N =0,
0 +(Es — m002)w274 +0 +cp. N =0, (5.171)
cpwi g +e(pr — ipy)wa,a 40 +0 =0, .
c(pz +ipy)wi,a —cpzw2 4 +0 —(Es + moc®)N =0
wa= NPT NP (5.172)
—Es + "nOC2 —Es + 'mOC2
with the same normalization condition as the third solution. Therefore,
*C(Pﬁipyz)
—Es+mpc
_ 2 z i
U, = &s +moc %’rﬂoﬂ o7 (Pz@+Pyy+pz2—Est) (5.173)
—2Esh3 0
1

with € = —& = —/p2c? + m3ct.

The negative energy has some strange implications. For example, the plane wave ¢ should propagate with the rate ¢. The value of ¢
is given by ¢ = A\/T = &;/|p| and the direction should be given by the momentum vector j

£ F &P
g= 2L - =P (5.174)
ol [pl P

Changing the sign of £ also changes direction of motion. However, note that opposite directions of the vectors of momentum give
the same p?:

p’=pp p’=-5 (-p). (5.175)
We can therefore use —p’ in the wavefunction with the negative energy £ = —&:. Such wavefunction is complex conjugate of v
describing the first two states
e%(—pzx—pyy—pzz—gst) — e%(—pww—pyy—pz2+£zt) — e—%(pmx-&-pyy-&-pzz—&t) =", (5.176)
and it is also an eigenfunction of 02

A2 2 O° 2,2 0 2,0 0 2,0 0 2\2 L(pez+pyy+ Eit) 2, 22 2,2
O%Y* = | — — c*h*— — c*h*— — c*h* — + (moc e R\ PaTTPyYTP22=Ctl) — (g2 4 c*p” + (moc *. 5.177
v = (o - e e T e T o)) (87 + 2 4 (moc?)p". (177)

When we change the signs of p., py, and p. in the coefficients w; 3 and w; 4, we can express the solutions of the Dirac equation in a
general form

u1
u
- vf:f 7 (5.178)
vap*
where
cpz —i
v 0 o Y
0 P c(pz+ipy) ¥ R
vy =N Lw* s Vo =N c(pe—ipy) |« s Uy =N Er+moc? s vy =N Ei+mgc? 5 (5.179)
Et+moc? Eitmoc? P ¥ 0
c(pztipy) P* —CPz .
Et+moc2 Ei+mgc? 0 P
& 2
N:M%, (5.180)
t
and

)= e%(pxzﬂ)yyﬂ?zsztt)_ (5.181)
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5.7.7 Relation between Dirac and Schrodinger equations

How is the Dirac equation related to the Schrédinger equation? We came to the Schrédinger equation using the relation &y, = p%/2m
(energy of a free particle, i.e., kinetic energy). Let us now try to relate the kinetic energy &y, to the total energy & of the relativistic
treatment. We know that mass contributes to & as moc?. We can assume that in the absence of an electromagnetic field, the total energy
of a free particle consists of the mass contribution mgc? (rest energy) and of Eyi,. Therefore, the square of the total energy should be

£ = (moc® + &xin)? = (moc?)? + 28 (moc®) + €2, (5.182)

As a next step, we divide the square of the total energy by the square of the mass contribution

&g (moc?)? + 2En (moc®) + £, 142 Exin Ein (5.183)
(moc?)? (moc?)? moc2  (moc2)?’ '
If the speed of the particle is low, Elfm < (mpc?)?, and the last term can be neglected
&? Exin
o) Ml R (5.184)
But Eq. also tells us that
g2 2p2
g2 = 2)2 4 22 o t -1 . 5.185
2 = (moc?)? + ¢%p ez =1 G (5.185)
Comparison of the right-hand sides of Eqs. [5.184] and [5.185] shows that
5kin C2P2 p2
9 =_r o g =P 5.186
moc2 (moc?)? kin 2mg ( )

We see that the approximation for low speeds led us to the relation defining the kinetic energy as in the Schrddinger equation.
Therefore, Schrodinger equation can be viewed as a low-speed limit of the Dirac equation. We use similar arguments more rigorously in
Section [5.7.8] when we relate Dirac and Schrédinger Hamiltonian in the presence of the electromagnetic field.

5.7.8 Hamiltonian of spin magnetic moment

Our next goal is to find Hamiltonian for a relativistic charged particle in a magnetic field. When we compare the classical Hamiltonian of
a particle in an electromagnetic field (Eq. [4.74) with the classical Hamiltonian of a free particle H = (5)2/(2m) outside the field, we see
that the presence of an electromagnetic field requires the following modifications:

HoH-QV  p—p—QA, (5.187)

Accordingly, the operators of energy and momentum in the quantum description change to

i?i3 — ih2 —QV — ih2 — —ifi2 — QA, — ih2 — —ifi2 - QA — iﬁu3 — —ih3 —QA,. (5.188)
ot ot ox ox dy oy 0z 0z

This modifies Eq. to

(ihﬁ - Qv) iw = (—c (ihﬂ + QAx> 4041 — ¢ (in3 + QAy> 4042 — ¢ (ih3 + QAZ) 3043 4 moc%o) v, (5.189)
ot ox oy 0z

where 1 is a 4 x 4 unit matrix. In order to obtain an expression comparable to Eq. |4.26 (nonrelativistic Schrédinger equation), we
apply the operator (ihd/0t — QV') twice



144

.0 .0 R
(1h§ — QV) (1ha — QV) 1v = <1h— - QV)

0 2 0 0 2
= <02 <ih6735 + QAz) “A/O’AYI’AYO’?l +¢? (ihaiy + QA'y) ,70,?2,70;},2 42 (iha +QAZ) ;YO,Y3 205 3 +m§c4~/0'yo> o

—mod? ((mﬁ + QAx) 594140 4 ( o QAU) 594240 4 (inﬁ + QAZ) a%%(’) v
0. 8y 0z
—moc® ((lh— +Q4.) %991 + (i +.Q, ) 495052 + (i 2 +Q4.) %5%5° ) w

B 9 F)
+e (( hom + QA ) ( h— + QAy) 7°4'4°4% + (ih— + QAy) (ih— + QAz) ﬁoﬁ%oﬁl) v
oy oy ox
e ((lhf 1 Q4 ) (m3 +QA. ) 19425043 + (mﬁ 4 QAZ) (mﬁ + QAy> v%?’v%?) w
0z 0z oy
+c2 ((lhag +QA, ) (u‘za— +QA, ) 40434041 4 (lﬁag + QA ) (maﬁ +QA. ) 594 17073) U, (5.190)
T

We use the properties of the gamma matrices (Eqgs. [5.83H5.85) to simplify the equation. In particular, we invert of the order of matrices
in the products

504940 = —(5030)49 = —47, (5.191)
1°479°37 = (3" (4757) = —()(-1) =1, (5.192)
70474998 = —(3°3°)(#4*) = (D) (F4*) = 475" =447 (5.193)

and obtain

d 2. d 2. d 2. 9 2. R
(mf - Qv) iw = <02 (ih— + QAZ) 142 (ih— +QA,) 142 (mf + QAZ) i+ mgc41> U
ot ox y 0z
3 L 0 A1 0 2 0 ~3
+mgpc <<1h— + QAI) ¥+ (1h— + QAy> ¥4+ (1h— + QAZ) o' ) \'4
Tz Iy 0z
—moc® (i +Qa ) 31+ (02 +Qa ) 47 + (i +Qa.) 4°) w
z
e} 8 0
( )( 3y+QAy)_ y+QAy)< "oz +QA$))
2 0 .0 0 o 9.3
((ﬁia—y + QAy) (1ha + QAZ) — (1h$ + QAZ) (1ﬁ8— + QA ) AW

8 8 b3} d
A [in= A, ) [ ih—=— Ag ih— Az)(h— A) 4351w
(‘aer hoe T @ hoe T @ he. T 9 R

c? ( lhﬂ + QA, 152w
ox

(5.194)

where the second line and the third line cancel each other. To proceed, we need to evaluate the products of operators on the last three
lines. Let us look at one of the lines more closely

c? ((ihﬂ + QA1.> <ih(i + QAU) - <ih(i + QAU> <ihﬁ + QAJ,))&W%I/ (5.195)
ox dy ’ dy ’ ox

and analyze the operator part (green) and the wave function part (blue) separately. We start by the green operator (to emphasize
that we work with the operator, we apply it to some arbitrary function, labeled ). The green operator is composed of linear operators,
we have to apply them twice (we must be very careful with the differentiation)

(o v0n) (n v m) o 0 (o ) -

o oY o oY . O(Ayt) oY 9(Azy) oY
B o (P S 2(AgAy — AyA Q=22 + Ay —— — —Ay— ). 5.196
<8m8y 8y8m)+Q( ey Y x)dJ-i-lLQ( oz + T oy oy Y oz ( )
The first two terms on the second line cancel each other because 92/dxdy = 9% /dydx and AgAy = AyAz (A, Ay are numbers,
not operators). Then we apply the chain rule to calculate the partial derivatives of Az and Ayt:
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10 (a(Ayw) 44,20 24sY) —Aya—w) = ihQ (8Ayw+Aya—¢ 1A, 20 ey %4 8¢) —ihQ (% - ‘”‘ﬁf) ¥.
ox oy dy ox

ox ox oy Oy oy Yoz ox dy
(5.197)

Note that the resulting difference of partial derivatives in the parentheses is nothing else but the z component of the rotation (formally
a vector product) of the definition of B in Eq. [4.58] Therefore, we can write

2(00¢ 00y 2 _ o (2As?) 0 _OAwy) BN .o (94 0AL\
- <8z 9 9y 69”) T Aedy — Ayda)i +inQ ( Oz e Oy Oy Ay 6m) = ( Ox 0y ) =By,
(5.198)

The combinations on the last two lines of Eq. [5.194] are obtained in the same manner.
In addition to the combinations of the operators evaluated above, the last three lines of Eq.[5.194] also contain the products 4142,

4243 and 434!. They can be calculated from Eq.

1a 0 ot 0 o2 6162 0 (830
W= (761 0 ) (7&2 0 ) :_( 0 s62) "0 6%) (5-199)
2.3 0 62 0 o3 263 0 (6t 0
VA= (_&2 b 53 0)7 "\ 8 s263) T\ 5 s ) (5.200)

Y
I

0 &3 0 & 361 0 (620
' (—&3 0)(—&1 6):_( 0 6%61) " '\ 04s2) (5:201)

where the following important properties of the 67 matrices were used in the lasts steps:

5te? = ((1)(1)) (?7;):(5_?):%3 (5.202)
6263 = (?_Oi) (é _?):(?é):i&l (5.203)
- (éff) (?é):(flé):i&? (5.204)

Note that we have written the 4 X 4 matrices 494% in a block-diagonal form, using 2 X 2 matrices &' and 0.
After inserting everything into Eq. [5.194] we get

q

q

=

6’3

oY

)

1 A 52 A 53 4
2 gt 0 c 0 ° 0
chQ(BZ(O&1>+By(6&2)+3z(0&3))\1ﬁ (5.205)

To emphasize the block-diagonal form of the equation, we use 2 x 2 matrices 1 (unit matrix) and 0 (zero matrix) to write the 4 x 4
unit matrices on the first line (note that the same symbol 1 represents a 4 x 4 matrix above and a 2 X 2 matrix here and below).

Now we have a relativistic equation describing our particle in an electromagnetic field. Let us now separate the mass contribution to
the energy from the operator ih9/0t and let us call the difference H (it becomes clear soon why we choose the same symbol as the symbol
used for the Hamiltonian in the Schrédinger equation):
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A= ih% — moc?, (5.206)

Eq. can be rewritten as

51 A 52 A 53 4
2 6t 0 gc 0 ° 0
chQ(BZ(O&1>+By(6&2)+32(6&3))\1/, (5.207)
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where the two red terms m%c4 cancel each other. Dividing both sides of the equation by 2mqgc? gives

(H-QV)* i0).

( 2o *HQV>(61)‘P—
1 .0 2 /.8 2 /.9 2\ /1§
s (s w0n)' s (s wan) s (s w00 )) (1)

hQ 61 0 62 0 63 0
_%(Bx<6&l>+3y(ﬁ&2)+31(0&3))\11. (5.208)

Note that the rest energy of particles mgc? is huge. Unless the eigenvalue of His very large (which is not expected in a standard NMR
experiment), the first term with mgc? in the denominator can be safely neglected. For the same reason, the factors +cp. /(& +moc?) and
c(pz £ ipy)/(Et +moc?) in Eq. are close to zero for v < c.

The derived matrix equation represent a set of four equations for four unknowns. The block-diagonal form of all matrices reveals that
the first two equations and the last two equations can be solved separately. Therefore, we obtain identical sets of two equations describing
particles and antiparticles:

(w1 0 2 (.0 > (0 ? s hQ A1 52 -3 u1p
()= (s (02 vn) s (52 von) s (12 v0a) ) s @v) i 12 (must o s 9| (120,

(5.209)

(o 1 ) 2 7.9 2 709 2 . hQ o - 3 v
H(U2w*)~<2m)<<(lﬁax+QAz) +<1h8—y+QAy) +<1h£+QAZ) +QV 1—%(3950 + By6° + B.6%) (v2¢*)7

(5.210)

where we described the wave functions using the notation introduced in Eq.[5.178] In both matrix equations, the terms multiplied

by 1 constitute the Hamiltonian of the non-relativistic Schrédinger equation (Eq. , and the terms with the 67 matrices appear only in
our relativistic equations.

5.7.9 Spin magnetogyric ratio

The value of the magnetogyric ratio for the spin magnetic moment can be derived by inserting the expressions defining operators of spin
magnetic moment components (Egs. 5.7) into the commutation relation (Eq.[5.9), e.g.

i ip _heiy Ayfe 1 (BQNT((0LY (0= (0= (01\)_ L (mQ\*((i 0\ _(-i0
ey T e = T T T 2 \ame 10)\i o i0)\10))7 52 \ame 0 —i 0 i
2 [ hQ \?
—is (ﬁ) (1 0) (5.211)
0% 2mo 0-1
The commutation relation Eq. requires that
s .. 2 /RhQN\?/1 0 . .k hQ)<1 o) 2 hQ hQ
Iply — Iyl =i— | —— =ihl, =i— [ —— = ———a=1 = =2——. 5.212
s T T (2m0) (0—1> T (2m0 0 -1 7 2mo* 7T "omg N

5.7.10 The factor of one half in the eigenvalues of I,

The eigenvalues +5h/2 are closely related to the fact that spin is a relativistic effect. Special relativity requires that the Dirac equation
must not change if we rotate the coordinate frame or if it moves with a constant speed (Lorentz transformation). This is true in general,
but for the sake of simplicity, we just check rotation about the z axis.

We start by writing explicitly the Dirac equation as a set of four equationﬂ

ONote that we use the form of the Dirac equation which directly defines the relativistic Hamiltonian (Eq. |5.87).
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iha(g;w) = ficha(v(;:] ) — icha(vgf ) +icha(u(;2yw ) +m002u1w,

iha(UQw) = +ich6(v2¢ ) ficha(vldj ) ficha(wlw ) +moc2u21/),
ot 0z Tz dy

iha(vlw ) = ficha(ulw) — icha(qu) +icha(m2w) — moc2v1¢*,
ot z ox dy

2028 _ L 0ued) g 00ny) g 00my) e,
ot z z oy
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(5.213)
(5.214)
(5.215)

(5.216)

Let us assume that we have an original coordinate frame ¢, z,y, z and a rotated frame t’,2’,y’, z’. If we rotate about z by an angle ¢,

and

and consequently
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" (8f of
=e — —i—
ox'! oy’
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(5.221)
(5.222)

(5.223)

(5.224)

(5.225)

(5.226)

We also need to transform the wavefunction ¥ to the rotated frame. We already know (Egs. and that rotation of
a complex function f by an angle ¢ can be written as f’ = fel®. Let us assume that each of component of ¥ rotates by some angle
(¢1, 92, p3, v4,) — the key step of our analysis will be to relate values of these angles the actual angle of rotating the coordinate frames .
Now we have everything that we need to write the set of Egs. m—m in the rotated coordinate frame:

iha(eim ui ') _

ot’

i d(e'P2ulyr’)

ot

1

ot’

1

ot’

e

,ha(eimvéd)’*)

=+

= +ic

o(el®3 ! '™ A(ei(wate) yl ' * H(iel(Pate) ! * .
—ich (e av/lw ) —ich (e > /v21/1 ) T+ich (ie — va’") + moc2e 1l
z #a y
O(elPayl ' * A(el(®3=¢) ! 4! * O(iel(P3—=®) ! ! * )
ien2te 6”/” ) et a ,”11/’ ) _ e 20e 5 /””Z) ) | moc2e %2y,
z T y
a(elP1y ! a(elle2+9) ! ! A(iel(w2+e) L o’ . .
= —ich (e alfﬁ/’) — ich (e p uz¥') +ich (ie o uz¥’) — mocZelP3uiy’",
F1 i 1y
i ha(ew?uéd/) —icha(el((pliw)u&d/) —icha<iel((p17¢)uiw,) —mocgei‘“véwl*.
0z’ ox'! oy’

(5.227)

(5.228)

(5.229)

(5.230)

According to the first postulate of the special theory of relativity, Eqgs. [5.227H5.230| must have the same form as Egs. [5.213H5.216]
In other words, we must eliminate the complex exponential expressions from Egs. 1
first equation by e~'¥1, both sides of the second equation by e~'¥?2, both sides of the third equation by e~!'¥3  and both sides of the last

equation by e~1¥4:

Let us first multiply both sides of the
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O(u! W' 9(el(w3—01) ! 4! * O(el(Pa—®1+0) l oy * H(iel(Pa—e1+0) l o' *
iﬁ;fgiﬁil I o D (G — va¥) | e 00 — V) | ol (5.231)
z T y
a(ul ! O(el(Pa—p2)yl o' * A(eilP3—P2—0) ! 4! * A(iel(P3—p2—0) ! o *
ihi(gijb) — ien2C — LD (C — v’ Ol o ) | o, (5.232)
z T Yy
(v '* O(el(P1—®3) 4/ 1/ O(el(P2—=p3+®) 4! 4 A(iel(P2—P3+®) 4L 4
mi%gglzgwh(e 8,1“w)7mh(e — up¥) e dlie o U2¥) oo, (5.233)
z z y
S(vh'™* O(el(w2—pa) ! 4/ A(el(Pr—pa—p) ! A(iel(P1—pa—v) g/ 4!
mi%gl:+wi@ 8/%¢)4m(e -~ U _ g 20 o Y o', (5.234)
z x y
This cleared the t and mg terms. The exponential expressions disappear from the 2z’ term if 1 = 3 and 2 = ¢4 (i.e., if the rotation
of w11 and v19* is identical and the same applies to ug1 and va1*). In order to fix the ' and y’ terms, we assume that ¢1 = —¢p2 and
3 = —a, l.e., that the rotation of u1? and w2 is opposite and the same applies to v19* and wvee*. This implies that ui¢ and ugvy

describe states with opposite spins (and v1%* and vey* too). Then, w1’ and v}4’* in the 2’ and y’ terms are multiplied by e!(2¥1=¢),
and uht’ and vhy'* in the ' and 3’ terms are multiplied by e~(2¢1=%). In both cases, the exponential expressions disappear (are equal
to one) if p1 = /2. What does it mean? If we rotate the coordinate system by a certain angle, the components of the wavefunction rotate
only by half of this angle! The function describing rotation of the wavefunction about z has the form

24 ¢
2

R, =¥ (5.235)

This looks very similar to Eq. [4.145] but with one important difference: rotation by 27 (360 °) does not give the same eigenfunction
R; as no rotation (¢ = 0), but changes its sign. Only rotation by 47 (720 °) reverts the system to the initial state!
Eq. [4.145] tells us that the eigenvalues of the operator of the spin angular momentum are half-integer multiples of h:

Li=- ILo=—=-. (5.236)

5.7.11 Eigenfunctions of I, and fy

Eigenfunctions of I, are the following linear combinations of |a) and |3):

1 1 1 /1) _
ﬁ|0¢> + EL@ = 5 (1) =] =), (5.237)

i i 1 /=i
~l 8 = o= (1) =1 (5.239

or these linear combinations multiplied by a phase factor el?. E.g., state vectors multiplied by ¢™/2 =i are

et (D -h (-0 - (D)D) e

Eigenvalues are again i/2 and —h/2:
R h h 1
Li=+5 5 (1) (5210)
. h h(o —i
L] )= +51+) 5(1 ( i). (5.241)

Eigenfunctions of I, are the following linear combinations of |«) and |B):

1—i 1+i 1/1-1) _
5l + ——18) = 35 (1_+i) =|®), (5.242)
1+i 1—i 1/14i1)

e+ =18 = 5 (1471) =), (5.243)

or these linear combinations multiplied by a phase factor e!?. E.g., state vectors multiplied by e!™/4 = (1 4+1)/v/2 are
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ir/al (1—1 1+il1 /f1—i 1 /71 im/al (141 1+i1 (1+1i 1 (i
— iw/4 ~ _ - — — iT/4 = — - -
®)=e 2(1+i) \/52(1+i) \/5(1) [©) =e 2(1—1) \/52(1—1) 2(1)' (5.244)
Eigenvalues are again /i/2 and —7i/2:

A h h(0o—-i\1/1-i h 1/1-i
we=+3o 3 (90)3 (051 =+ 35, (5.245)
. _h hifo—i\1/1+i\ A 1 /1+i
1y|®>——5|®) E(i 0)5(1—1)“5'5(1—1)‘ (5.246)

An operator representing angular momentum pointing in a general direction, described by angles ¥ (inclination) and ¢ (azimuth) can
be written as

I, cos® + I sind cos o + I, sin 9 sin . (5.247)

Its eigenvalue are again %/2 and —//2 and its eigenfunctions are

cos geﬂ —sin gefi%
[0, <P> = 9 i ) [0 47, ) = Y Fig (5-248)

sin ge
or the vectors described by Eq. |5.248| multiplied by a phase factor e!?, e.g.

P i ?
\ﬁ,¢>=( .y ) |19+7r,so)=( ?f?w). (5.249)

ain Yl v
St} 26 CcOos 26
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5.7.12 Stationary states and energy level diagram

In the presence of a homogeneous magnetic field By = (0,0, Bp), the evolution of the system is given by the Hamiltonian H= —'yBofz.

The Schrédinger equation is then
L0 (ca) A1 0 Co
1}‘1,& (c5) = —’yBog (0 _1) (c;; , (5.250)

which is a set of two equations with separated variables

dca .’YBO
Lo _ , 5.251
dt Ty e ( )
deg vBo
B , 5.252
at -~ 2 ” (5:252)
with the solution
. v B . W
o = ca(t =0) et 2t = co(t = 0)e i 2t (5.253)
4B cw
cg = cg(t= 0)671720 b= ch(t = 0)e+170t. (5.254)
If the initial state is |a), ca(t =0) =1, cg(t = 0) = 0, and
o = eI, (5.255)
s = 0. (5.256)

Note that the evolution changes only the phase factor, but the system stays in state |a) (all vectors described by Eq. [5.16| correspond
to state |a)). It can be shown by calculating the probability that the system is in the |a) or |B) state.

Po = chca = etz te i3t =, (5.257)

Pg = CECB =0. (5.258)

e
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If the initial state is |8), ca(t =0) =0, cg(t =0) =1, and

ca =0,

cg = ¢€

(5.259)
(5.260)

Again, the evolution changes only the phase factor, but the system stays in state |3). The probability that the system is in the |a) or

|B) state is

*
Po = chca =0,

szcgc,g:e 5 te

(5.261)
(5.262)

Let us summarize results of our analysis. If evolving wave functions are eigenfunctions of the Hamiltonian describing the evolution:

e The probability of finding the system in a given state do not change the state is stationary.

e Only the phase factors of the coefficients constituting the state vector change with a frequencies equal to the eigenvalues of the

Hamiltonian divided by A (Eqgs. [5.253| and [5.254)).

o The eigenvalues of the Hamiltonian represent energies of the individual eigenstates. Such energies can be plotted as the energy

level diagram.

5.7.13 Oscillatory states

We now analyze evolution of states described by other wave functions that eigenfunctions of the Hamiltonian.

‘We can continue the

discussion of the previous section (evolution of evolution of |a) and |8) due to H = —yByI,) and change either the wave function or the

Hamiltonian. We start by the latter option, which is easier.

In the presence of a homogeneous magnetic field By = (B1,0,0), the evolution of the system is given by the Hamiltonian H= 7'yBOIAz.

The Schrédinger equation is then

L0 (ca) hfo1 Ca
IE'E(C/B)__WBS(W)(%)’

which is a set of two equations

deo YB1
— =i c8,
dt 2

deg .vB1
— =1 Co-
dt 2

These equations have similar structure as Eqgs. 4.151] and [4.152] Adding and subtracting them leads to the solution

{281 e
Ca+05:C+e+l 5 t:C+e 12t7

_ixB1 =
co —cg =C_e "2 t=(C_etizt,

If the initial state is |a), ca(t =0) =1, cg(t =0) =0, Cy =C_ =1, and

cos (ﬂt),
2
—isin (ﬂt>
2

Probability that the system is in the |a) or |3) state is calculated as

Ca

s

(5.263)

(5.264)

(5.265)

(5.266)
(5.267)

(5.268)

(5.269)

(5.270)

(5.271)



5.7. SUPPORTING INFORMATION 151

If the initial state is |B), ca(t =0) =0, cg(t =0) =1, Cy =1, C_ = —1, and
o (wL
o = 1Sln( . t), (5.272)
w1
cg = cos (77&) . (5.273)

Probability that the system is in the |a) or |3) state is calculated as

P, cos(w1t), (5.274)

N = N =

N N =

w
chea = sin? (ét)

w1
P3 = cleg = cos? (—t) =
B BB 2

+

cos(wit). (5.275)

In both cases, the system oscillates between the |a) and |3) states.
Now we return to the Hamiltonian of the vertical field H = —yByI., but analyze the evolution of superposition states called | —) and
| =) in Section [5.7.11] The Schrodinger equation has in this case the same form as in Section [5.7.12| with the solution

. vB, .
o = ca(t = 0)et 2t = o (t = 0)e 12, (5.276)
. B LW,
cg = cg(t= O)eﬂW?O L=cp(t= O)e“TOt. (5.277)
We are interested in evolution of a wave function that can be described as
[¥) = cs| =) + | ). (5.278)
According to Eqgs. and
Ca cg
cy = —+— 5.279
~=5T5 (5.279)
. Ca . Cp
Coe = —i—=+i—=. 5.280
- NG (5.280)
If the initial state is | =), ca(t = 0) = 1/V/2, c5(t = 0) = 1/+/2, and
1w 1 .
cs = 56_170t + §e+170t = cos (?t) (5.281)
ce = —%e—iﬂz“ + %e“ﬂz“ = —sin (%t) . (5.282)
Probability that the system is in the | —) or | <) state is calculated as
1 1
P, = c* ¢, = cos? (%t) =5 + 5 cos(wot), (5.283)
1 1
P =ct c =sin? (%t) =575 cos(wot). (5.284)

5.7.14 Evolution in general alternating magnetic fields

Bloch and Siegert analyzed in Phys. Rev. 57 (1940) 522-527 a general case of evolution of spin states in a magnetic field B whose z and y
component alternate with the frequency w;.qio. The analysis is not simple and the main purpose of discussing it here is to explain why the
effect of radio waves is usually described approximatively, assuming presence of rotating magnetic fields, instead of a much more realistic
description using fields oscillating in one direction.
The Schrodinger equation describing evolution in the general field B = (Bz, By, B:) is
oy

ih5 = Ay = —yB,I¢p — yBolypth — yBylyy (5.285)
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()0 E) (D) () e

Written as a set of two equations,

d

% = +i% (B.ca + (Bs — iBy)cs) , (5.287)
de

d—f = —i% (=B.cs + (Bz +1By)ca) - (5.288)

The coefficients cq and cg are not independent because cac}, + 0502 = 1. Therefore, we can combine them into a single variable and
then solve one equation instead of two. Bloch and Siegert divided both equations by cg and introduced a variable u = cqo /cg:

1 deq

=% i (Bou+ (Ba — iBy)), (5.289)
cg dt 2

1 de

— % = {1 (“B. + (B: +iBy)u). (5.290)
(%] dt 2

We multiply the second equation by w and subtract it from the first one

1 de 1 deg v . .
5?: - u;E =i (2B.u + (By — iBy) — (Bs + iBy)u?) . (5.291)
The time derivative of u is
du d cq deq cg — Cadi 1 dco 1 dcg
— =2 dt ¥ Td ", (5.292)
dt dt cg c% cg dt cg dt
Inserting the result into Eq. [5.291}
d
d%‘ - i% (2B.u + (By — iBy) — (Bx + iBy)u?) . (5.293)

We assume that the longitudinal component of B is the static magnetic field Bo and that the transverse component of Bis composed
of two counterrotating fields with general amplitudes and phases:

B. = Bo, (5.294)
B + 1B, = Bjel(¥radiott91) | Bye~i(Wradiottd2), (5.295)
By —iBy = Bje {(“Wradiot+¢1) | B,el(wradiot+é2), (5.296)
Then,
% = i% (230 + Byel(@radiotte1) 4 poe—i(wradiot+d2) _ <Ble—i(wmdiot+¢1) + B2ei(wmdioi+¢2)> u2) , (5.297)
% =i (wou + %ei(wradiot+¢1> + %e—i(wradiot+¢2) _ (%e—i(wradiot-‘r%) + %ei(wradiot+¢2)) u2> . (5.298)

We multiply both sides by %e’i(“’radiot+¢1) and introduce a new variable

w= %e*i(wradiotvLm)u (5.299)
with the time derivative
dw = —iWpadi W1 —i(wradiot+91) + ﬂe—i(wradioi+¢1)dl (5.300)
dt ey 2 dt

We obtain

d 2 ) .
di: =—i ((UJO + Wradio)W + ujTl (1 + :7?67‘(2wx'adiot+¢1+¢2>) _ (1 + %el(2wradiot+¢l+¢2)) w2) . (5.301)
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To simplify the right-hand side, we use the definition of the frequency offset Q = wg + wradio (see Section [1.5.8) and write 2wyadiot +
¢1 + ¢2 = 2wradiot + ¢ as @:

d 2 ) ) ) Q 214 L2710
Y _ (Qw + % (1 + ﬂe*@) - <1 T Ee@) wz) =i (1 + ﬂe“P) <w2 S S f LT D, (5.302)

dt w1 w1 w1 1+ Z—fe@ 4 1+ Z—fe@
To proceed, we note that
d cot d —sin? n — cos?
cotn _ 70?577 _ —sin .772 cos®n _ (1 + cot? n). (5.303)
dn dn sinn sin“n
We try to modify Eq. m to resemble Eq. m We rewrite the left-hand side as
dw dwdn
A anar (5.504)
and complete the square in the right-hand side:
dw dn wa 1 Q 2 1 0 +wf (1 + %e,@) (1 + %e@)
——:i(l—i——e@) w—s——] — = 5 , (5.305)
d’l’] dt w1 21+ Ee‘ 4 (1 + ﬂei@)
w1
. . . 2
dwdy i e (14 e (14 220) . 41+ e 1o )\’ (5.300)
_— = - — W— = .
dn dt 4 1+ “2¢i® Q2 + w2 (1 T ﬂe—i<1>> (1 + ﬂeid)) 21+ 22el®
w1 1 w1 w1 w1
We can identify
a1+ ﬂe@)Q I q 2
Q2+ wf (14 2e71®) (14 L2ei?) 21+ Ze

and consequently

2(1+ 22 1 Q 2(1+ 226 1
cotn =1i ( v ) <w > =i ( “1 ) <w T3l ) (5.308)

) w2 id w2 oi®
\/Qz +w? (1+ %eq@) (1 + %e@) 214 32 A o ®

cosn in_ o—in
_EQ_i)\COtn_}QJ’_)\isinn _EQ"‘)\% (5.309)
21+ Ze® 2 1+ 2?2 14 Ze®
where
A= \/92 +w? (1 + %e*@) (1 + %e@) = \/QQ +w? + w2 + 2wiwg cos & = \/QQ + w? + w2 + 2wiwz cos(2wradiot + ¢).  (5.310)
1 1

The solution should be obtained by inserting Eq.[5.309|into Eq.[5.306} Before we try it for the general field, we check a simpler solution
for we = 0.

5.7.15 Evolution in rotating magnetic fields

A magnetic field composed of éo and of a component rotating about the z can be completely described by By = B, and a single rotating
*5.306

field Bjel¢@radiotté1 = B + iBy. The absence of the wao = —yBs term simplifies Eq. to
dwdn _ 102 4 w2) (14 cot?n) = — 22 (1 + cot? n) (5.311)
dn dt 4 ! 470
and Eq. [5.309| to
1 i 1 1, cosn 1 1, e4ein
w==-0—=Xgcotn==-Q+ =X\ =-Q4+ -Ao——m1, 5.312
g T O T T S0 Gy 2 T2 0 — i (5:312)
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where Ao = /2 + w% is constant (time-independent). Differentiation of Eq. [5.312is then simply

d d /1 i i d cot i
w_ 4 Q- l>\o cotn | = —i)\o ikl - i)\g (1 + cot? 77) (5.313)
dn dn \ 2 2 2 dn 2

because both  and A\g are constants. Inserting the result into Eq. @ gives

dwdnp i 5 + dn iq 9
— — = —Xo (14 cot — = ——=Aj (1 +cot . 5.314
ay a2l Ol ") (5.314)
Evaluation of 7 is then a matter of straightforward integration
n_, t1 , 1 1 .
dn’ = — —Aodt’ = —=XMot n=mno — —Aot. (5.515)
o 0 2 2 2
Inserting to Eq. [5.312| and returning to the variable u,
w= 27wei(wradiot+¢1) = (ﬂ - i& cot 77) ol (Wradiot+é1) — (ﬂ + &M) ¢l (@radiot+1) (5.316)
w1 w1 w1 w1 wy eln —e—in
u* = Ee_i(wradiot"'qbl) _ E + i& cotn e~ (Wradiot+¢1) — ﬂ _ EM e—i(wrmﬁot-‘rm)7 (5.317)
w1 w1 w1 w1 w1 el —e 1M
and
Jww* 1 . . 02 Q2 +w?cos?n Q2+ wicos?n QP+ w?—w?sin?n Q2 +w?
uu® = 5— = —5 (R +idocotn) (R —idocotn) = — + 5 L —— = 5 .12 = ; .21 = — .21—1,
wy wy wi wj sin“n wi sinn wy sin“n wi sin“ n
(5.318)
This allows us to calculate P, and Pg:
* 2 2 * 2 2
uu w7y sin“n uu 1 wi sin“n
Py = clcq =uu*cheg = uu®(1— P, = P, = =1-=1 , Pg=1—-P,=1— = = .
¢ o G ( o) * T+ wus 02 + w? A « 14+ uu* 1+ uu* 02 + w?

(5.319)
The derived equations include results of Section for w; = 0 and of Section for Q = 0.
The last issue discussed in this section is determination of the integration factor 9. The value of 79 depends on the initial conditions.
For example, if we start from P, = 1 at t = 0, sinn(t = 0) and consequently n(¢ = 0) must be zero. As n = 19 — \ot/2, no must be zero to
give n(t = 0) = 0. With the boundary condition P, =1 at ¢t = 0, the variable u is determined by

Ao Ao
. . it et
= 27wel(wradiot+¢1> - (2 _ i& cot &t) el(@Wradiot+o1) — £ + &% el(wradiot+¢1)
20 20
w1 w1 w1 w1 w1 eith _ eth
) i _ RN _ 20

Q Ao e—Not 41 ) Ao +80 —idot + Ao—Q0 ) Ao +820 —imHE + Ao =20 +iFHE )
= (2 4202 T ) eilwradiot+d1) — @1 @i oi(wradiot+é1) — _ Wi w1 l(Wradiot+91) (5 .320)

w1 wyp e irot —1 e~irot — 1 —i20¢ il

e 2" —e 2

Consequently (taking into account that Ao = /92 + w? and sin?(—z) = sin® z),

1 N R . e
“1 in2 ! Po=1-P3=1- 1 Gin? L. (5.321)

= = t,
1+ wu* 02 + w% st 2 02 + w% 2

Pg

which serves us as a reference when discussing the general case in the next section.

5.7.16 Evolution in non-rotating magnetic fields
In general, w is (Eq.

1Q—iXcotn 1 (Q )\ei"+e*i"> A+ Q) e+ (A—Q)e A+ Q)+ (M- Q)

w= - T = 4 . = (5.322)
2 1+ 22 9 (1 + 2 eln — e~in (1 + %e@) ein — e—in 2 <1 + %e@) (e2in — 1)



5.7. SUPPORTING INFORMATION 155

In the presence of wy = —vyB2, differentiation of w defined by Eq. is far from simple because ® = 2w aqi0t + ¢1 + @2 and

A= \/QQ + w% +w§ + 2wiwsz cos ® are not constants, but time-dependent functions. To follow the analysis by Bloch and Siegert, we
”hide” the time-dependence in a single quantity denoted £ in the following text. We express u using w defined by Eq. [5.309

MQ 2in | A=Q
w1

_ 1 - li‘ Cotbnei(“’radiot“"?l) - w1 el(wradiot+¢1) (5.323)
2 i - -
w1 1+ Tlel (1 + %é@) (821'0 — 1)
and require, in analogy with Eq. [5.320] that it is equal to
M+Q = o—irgt 4 Ao=0 M+ e o—idot 4 A= Mot iE500 | Ag—0 —if50t
= —1 i W1 giwradiot+d1) — @1 ; W1 i(wradiot+d1) — W1 w1 ei(wradiot+¢1),
(E e—iXot _ 1) (elg e—iXot _ 1) eiifzkot B 6715*;\0*'
(5.324)

where = = €€ is a time-dependent factor to be determined (note that any = can be written as i€ if we allow & to be a complex

quantity). The following rearrangements confirm that = can be really expressed analytically as a function of well-defined ® and the
unknown quantity 7.

1 A4+Q 2§ 1 A—Q .
152 el® w1 et + 152 el® w1 % = e ot 4 %
o2in _ 1 = = e—irot _ | (5.325)
; 1 A+Q 5 1 A—Q A Q : Ao — Q2 ;
(E e~ ot _ 1) 1 AtPom, 1 (70 R i L ) (e2”7 . 1) (5.326)
1+ w—?e@ w1 1+ w—fe@ w1 w1 w1

s 1 A+ Q 1 A= X+Q : 1 A+Q o 1 A—-Q -0 .

E et < PEYRT e 4 EEPRT - = (62”’ B 1>> = W id e PEPRT + = (62"] - 1)
1+ e w1 1+ e w1 w1 1+ o w1 1+ e w1 w1
(5.327)
/\+Q. Ag— 2in A—&’Z. _ Ao —=90
AMQ At g2in 4 A=Q | Ao+Q '
w1 +wael® w1 w1 +woel® w1

Determination of Z is demanding. Therefore, we postpone it to Sections[5.7.17] and and present here only the solution. For the
sake of simplicity, the solution for the most interesting case of a field oscillating in one direction (i.e., for wa = w1) is summarized below,

a more general is derived in Sections and

e It is possible to find sufficiently accurate approximation of £ for oscillating fields much weaker than the static field B; < Byp. If
the alternating fields oscillate close to resonance, this also implies w1 < wWradio-

e The solution can be found as a series expansion of £ in powers of wi/wradio. The second-order approximation is sufficient for
standard NMR experiments.

e Using this approximation, &, u, Py, and Pg can be evaluated.

e The solution is greatly simplified if we are interested only in average results of repeated experiments and assume that phase factors
dependent on the actual beginning of the measurement average to zero.

® As w1 /wradio < 1, the terms proportional to (w1 /wWradio)? can be neglected in the expressions defining the average values of Pg

and of P, =1 — Pg. Then,
2
2
2 w1
wi+ | Q-
_ w? .y \/ 1 ( 4wradio)

Pg = » 5 sin 3 t. (5.329)
w% + (Q - 4Wraldio)

We see that in a field of radio waves oscillating in one direction with frequency close to wg and amplitude much lower than By, the
-5.321

equation describing evolution of ﬁ[; has the same form as the equation describing evolution of Pg in a rotating field (Eq.
The only difference is a smalE Bloch-Siegert shift of the frequency offset (by w?/(4wyadio)). This justifies the common practice
to approximate the effects of radio waves by effects of rotating fields.

llThe shift by W%/(4wradio) changes Q from © = wp + wradio t0 2 = wo + Wradio — "J%/(4wradio) =wo + wradio(l - (wl/(zwradio))z)' The
relative change is thus proportional to (w1 /(2wradio))?
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5.7.17 Modifying factor ¢ in description of non-rotating fields

In order to determine Z in terms of known parameters, we convert u expressed in Eq. [5.324] to w, and evaluated its square and time
derivative

A+Q = —ix Ao—Q A+Q = [ —ix At+Q | Ag—Q
20 _ e i(radiotté1) _ G Ee A O BT DT A Xt 0 g 1 (5.330)
wr o = e~idot — 1 N = e—itot — 1 W wip Zeirot — 1’ '
Q= —_Q Ao+Q = (. —ix Ao+ | Ag—Q
w—LO; :e”‘ot—i-i)\oQ _UT“(elot_l)+OT+(L71_)\o+Q Ao (5.331)
N =Ze—idot —1 N Ze—idot —1 ) Ze—idot — 1’ '
2 (QotQ Ao 20 FN\ | Qo+ Do A3 (5.332)
we = 2 = e—idot — 1 - 2 = e—idot — 1 = _—ixgt PR :
=e Ze (B e=irot —1)
d£ _ Oi 1 ~ %e*i)\ot —iXoE e—iXot _ AgE e—iXot B )\Oe—i)\ot dE (5333)
dt dt = e~trot —1 (2 e=irot —1)? (Eerot —1)*  (Ze-idot —1)% dt’
and insert them into Eq. [5.302}
dw . wi w2 __ie w2 e, 2
— =—i(Quw+ —= 1+ —e — (14 —e w (5.334)
dt 4 w1 w1
M2 e~ ot Aoe— ot 4=

! (2 e—irot —1)? B (2 oot — 1)2 dt

Q Q Q 2 . . 9] 2 Q )\2
_i< Qo +9) o +%<1+ﬁeﬂ¢)_(1+ﬂe1¢) <<’\0+ ) 4 QotDho 0 >> (5.335)

2 = e—irot —1 w1 w1 2 Ee ot —1 (g e-itot — 1)2

Then we separate dZ/d¢

d= <AOE L 0 +9) (Fe — 1) Ze ot 1  w?

= 2
(1 n ﬂe—i¢>> (E et —1)

dt 2 Ape—irot e—irot 4 w1 Ape—irot
2 (= .—idot 2 = a—iXot
B w2 e Ao+ Q\? (B emirot —1) Ze ot 1 Ao
(1 + w1 ¢ ) (( 2 Ape~ 1ot +Ro+9) e~irot + e~irot ’ (5-336)

and simplify the right-hand side as much as possible in a series of routine steps:

d= ,((29,\0+2§22+wf — (A2 + 290 + Q2) Leter e wze@Angzmo+92) (2 e—irot —1)?

dt 4 4 wr w1 4 Age~ R0t
= a—iXot
_ _ w2 e Eel ol om0 w@2e o
(Q (Ao + ) o e“(Xo + Q)) oot + A= inot o e ot ) (5.337)
A= _ (20004207 + 0} — (P +0f 200+ 0%)  wlwr g wz g A3+ 200 +02) (e P - 1)?
dt 4 4 wr w1 4 Aoe—irot
e idot 1 g @ = eirot 1 e irot 1 g @ A0
—AO o—irot — w—lel (AO + Q) o—Thot + AO o—hot — w—lel efi)\ot> , (5338)
_ = i 2 .
A= fwwz [ e e (Aot Q 7\ B0t —1)" w2 o (Ao + )= e ot — (5.339)
dt 40 w1 e—irot w1 e—irot ’
= 2
d= _q w2 [ e _ e (M) (EQe—iAOt _o= +ei>\ot> -~ ﬂei(}()\o FOE4+ W2 i® ) idot (5.340)
dt 4o w1 w1 w1 '

- 2
4= _ wiws [ e <5267i>\0t _om gy ei)\ot> T (M) <5267i>\0t o9z +ei>\ot> i ANG + AN - 400 ixge (5.341)
de 4o w1 w% w% ’
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wiws _io M+ 20?6\ 22 Cingt —i® i
o=y e — [T ) | B2t 2 (e —
dt 40 w1

Q2 + w2 + 2000 + Q2 — 2(Q% 4+ w?) — 200 ei‘b) -
wi
. A2 2000 + Q%2 —4Q) . .
i ( —ie _ Mot 0 +2 Oe@) el/\ot) , (5.342)
wi
dE _ wiws —id® Xo + Q)? i® | =2 —i\gt —i® i) = —i® Xo — Q)2 i® | Lixot
5—14)\0 <<e ol G e =%e 72(e +e )_Jr e "o e e . (5.343)
We express the complex quantity Z as e'é, where ¢ is also a complex time-dependent function. Then
4= _ d(g) e _de
dt dt
Dividing Eq. [5-343] by iZ gives
dg

=iE—
dt
2
g wiwy o—i® _ ()\0 + Q) oi® | Gi6=20t) _ 9 (e—iq> +ei<1>) 1 ei® (
dt 4o w1

anyway

(5.344)

Ao —Q

ol® | g—ie—20t) |
w1
This differential equation cannot be solved by direct integration because the variables ¢ and £ are not separated. But we proceed
1S t
wiw
/ ¢’ = 1w2

(5.345)
2
/ o—i® _ ()‘O +Q) o ® ) Gl(E=20t") gy
40 w1
0

—i® i ’
dt
20 / (e +e )
0
right-hand side can be evaluated

Wiw2

A 2
wiwz / i (Ao - Q) ol ) o—ilE—rot) gy
40 w1
0

— / /
applying the boundary condition P, =1 = u —+ 0o = E=1and £ =0 at t = 0 (see Eq m Only the middle integral of the

t
_ wiwz / —ie
2)o
0

t

(5.346)
® 4 ® P
dt - w2 /cos B = — 212 / cos ®dP’ = — L2 /cos ®dP’ = —5/cos ®dP’
Ao Ao do’ 2A0Wradio
0 ¢ ¢ ¢
(sin ¢ — sin @) = e(sin ¢ — sin(2wyadiot + @)) (5.347)
where ¢ is a dimensionless constant
. wiw2
2Wradio V 02 + w1
The other two integrals can be modified, but not solved, in the same manner
t
wiwe / _i® ()\0 +Q
e _
40
0

(5.348)
2 ® i’ 2 i’ 4 A —¢
) ei® | eFi(E—2ot") gy — wlwg/ e _ (AOiQ) e e He- 02“’r1d10 do’
w1 40 ¢ 2Wradio w1 2Wradio
wiw2 7 b/ Ao =0 2 il(ﬁ Ao £
— / eflfb _ ( ) el<I> e 2w
8)‘Owradio p w1

o
2
mdm)dCDf _ E/l o—i? _ (AO iQ) o’ ei‘(5 2o s
4 w1
@
In summary, we have found that the time-dependent factor £ is defined by
L
1 & Ao +Q\?2 o (5 A a
E=¢ sinqb—sinCI)—i—/((e“I> —(L) e‘q)>e % 2eradio
4 w1
@

2 @’
!"ldl()) T < _ip! _ (}\0 - Q) eiq>/> e—l(f Ao 2w
w1
This definition is only implicit, because £ is present also in the integral in the right-hand side

)d<I>’. (5.349)

ﬁ)) do’

(5.350)
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5.7.18 Factor ¢ approximated by power series expansion

Bloch and Siegert noticed that the constant € plays a critical role in Eq.[5.350] The function £ depends on € and, if € is sufficiently small,
this dependence can be approximated as a power series

E=¢6 +e&1+e2&+... (5.351)

In other words, we assume that £ ~ £ and add corrections €1, €2£2, etc. to improve accuracy of the approximation. If € < 1 is, the
higher powers of ¢ are even smaller and already low powers provide good approximation. When is ¢ sufficiently small? Eq. shows
that on resonance (i.e., for Q = 0),

w2

e <

< : (5.352)
2wradio

We see that ¢ < 1 if wy < wradio, it 1S not necessary to have ws < wi!. This shows that our approximation is well applicable for
counter-rotating fields with By = Bz (and therefore ws = w1) and with ¢1=¢2 that add up to a field oscillating in one direction:

Bjel(wradiot+ 1) | B e~ H@radiott91) — 2B cos(wyadiot + ¢1)- (5.353)

For ws < wradio, we can replace ¢ in Eq. by &€ = &9 + €1 + €262 + ... and compare the terms with the same powers of ¢ to
determine the functions &p,&1,£2,.... As £ is a time-dependent function, we should also check how it evolves in time. The oscillator
terms like e~1“t (where w is a constant) stay within the range +1 even if ¢ — co. However, as we show below, the integral in Eq.
also yields linear terms. Therefore, we have to express £ as a sum of oscillatory components (labeled by the symbol ~ and including also
constant contributions) and components linearly increasing in time (labeled by the symbol £):

E=E" +E7t =65 +efy +20 + -+ &Gt et + 5t + (5.354)
Eq. [5.350] with the power expansion of the left-hand side is

E=& +ety +°65 4+ + ot +elft+ e3¢5t + - = e (sing —sin®) +

@ 7 ’

/ <<e—iq>/ _ ()xo + Q)Qei¢’> eiENei<547>‘°>2$x-;d?o + <e—iq>/ _ ()\0 — Q>2€1q>'> e_igNei(§4>\o)m> 4o’
w1 w1

]

=e(sing —sin @) +

> m

o
}/ <<e—i<l>’ _ (M)2e1¢’> Eeigwem@/e—uw + <e—i<1>/ _ (M)Qeiqﬂ> se—igwe—iAtb’eiAqb) da’, (5.355)
4 w1 w1
¢
where
z
- A
A= (5.356)
2Wradio

We have already evaluated (from the initial condition) 9 = £(t = 0) = 0. Therefore, we can skip the constant &y part in the expansion.
To determine the higher terms, we replace the time-dependent exponential functions eti€” by a power series

e ~ 1
T+ ) S 1 i (g 225 4. ) — (552 (€)Y +. ) (5.357)
and consequently

ceT€ Tt — e iy . (5.358)

Equating terms linear in e, we determine &1

~ ~ -9
GL=E HEt =+ o —— =
Wradio
o 2 2
sin ¢ — sin ® + 1 / o—i® _ Ao+ i | A —ihg | [ o—i®’ _ Ao — Q2 o) o—ir® iAe | g/ —
4 w1 w1
P
(7 Ao +9Q\? Ao —Q\?
sin ¢ — sin ® + /e—i(l—A)qﬂefiAqb +emirmeging _ (A FONT sainyer —ine (A0 = QYT 0097 Gire | 4e’ = sin ¢ — sin o+
4 w1 w1
¢

2 3
12Notethatex:1+%+%+g—!+,“
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Fr Fi Fyi F_

——f—— —fN— ——fN— ——f—
efi(lfA)cbefiA(p _e—i¢ efi(1+/\)¢‘ei/\d) _e—id N (}\O + Q)Q ei(1+A)<I>e—iAq> —ei® N (}\O _ Q)Q ei(l—A)rbeiAqﬁ —ei®
w1

1
4 1—A * 1+A w1 1+A 1—A

je=i¢ [ e=21(1-Mwradgiot — 1 e—2(1+A)wradiot — 1
sin ¢ — Sin(2wradi0t + ¢) + 4 1—A + 1+ A *
i0i® [ /20 + O\ 2 21+ wradiot _ | Ao — Q) 2 - Meragiot 1
69 ([0t ) e (M e . (5.359)
4 w1 1+A w1 1=A

The integration produces only oscillatory terms or constant terms (those depending on ¢ only), implying that £f = 0. Note that all
terms depend on ¢ values of these terms are arbitrary because the value of ¢ depends on the choice of t = 0. If a series of independent
experiments is run, the ¢-dependent terms average to zero. Therefore, such terms must be evaluated in order to proceed to the next order
of approximation, but they themselves do not contribute to the results of repeated experiments. Another feature of the solution is that the
result of the integration can be written in terms of two time-dependent functions, denoted F, F_ and written in blue, and their complex
conjugates, denoted F7}, F* and written in red. We use this fact when we evaluate {24 in the next step.

Equating terms quadratic in €, we determine &2

~ ~ -9
=& +EGtl=& +&, —— =
Wradio
>
. 2 2
i/£1~ <<e—i<l>’ 7 <M) eicb’) eiA«b’e—iAqb - (e—icb’ - (M) e@’) e—iA<I>’eiA¢> 4%’ =
w1 w1
¢
P 7 Xo+Q)\? Ao —Q\?
i/§1~ <ei(1A)<I>’eiA¢ _efi(1+A)<I>’eiA¢ _ ( 0 ) ei(1+A)<I>’e—iA¢ + ( 0 ) ei(lA)@’eiA¢> 4o’ (5.360)
4 w1 w1
[

The function to be integrated is a product of the following expressions:

i(f*—ei¢ Fi—e ¢ (/\O+Q)2]-'+—ei¢ (AO—Q)2f—ei¢>_

~ o in o sind s L
S =sing =sin® 40 | —— =+ — ¢ T+A . 1—A

w1

. * _ ,—ip * _ a—ip 2 i 2 i
1 gemio _ 9ei¢ _ gu—i® 4 gei® | FL—e® n Fi—e Ao + QN Fp —e? Ao —Q\* Fo —el?
4 1—A 1+ A w1 1+ A w1 1-—A

and

i Ao 4+ )2 Ao — )2
1(;*—?1—(°+ )f++(° )]—'.).
4 w1 w1

This product consists of three types of terms:

1. Constant terms. Their integration produces a linear function, i.e., the {2415 component of &3.

2. Terms that oscillate in time but do mot depend on the phase ¢. Their integration yields oscillatory and constant terms, i.e.,

contributions to £5”.

3. Oscillatory ¢-dependent terms. Their integration also yields oscillatory and constant terms (contributions to £5°). However, values
of these terms are arbitrary and do not contribute to a description of repeated experiments because they depend on the choice of
t = 0 as mentioned when we discussed the obtained &; factor. As we stop our approximation at the second order of the power
series expansion, we do not need the ¢-dependent terms to calculate corrections of higher orders and neglect them in our analysis.

We use the following relations to identify the constant and oscillatory ¢-independent terms.

FiFL = 1 (5.361)
Fre it = oHPHALFiAG  o—id _ (+2i(1EA)wradiot Fretid = o ioFiAPHiNG  oFi _ o 2i(1£A)wradiot (5.362)

Fre 1P = oHiPEAD FIAG | (—i® _ (E2iAwradiol ]_-;e+i<1> — oI FIAD HiAG | AP _ F2iAwradiot (5.363)
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Eqgs. andtell us that we have to inspect all terms of the product obtained by multiplying a red function by a blue function,

or vice versa.
D
/.F7 Fi 0ui® _ o _ (Mot 9 N O A a9’
16 w1 1+A w1 1—-A
. 7 (25 7 (2 ) (e e T T (5.364)
16 wi * w1 A ¢ I—A I+A '
¢
(A0+Q)2 1 (Aon)Q U\ g
w1 1+A w1 1—-A
Wradio | 4inm — X4\ 1 N - \? 1 o (49N 1
+ 7/6“"2‘ Wradiot 2 (elewradiot _ 1) + + ef2lwradiot _ P dt’
8 w1 1+ A w1 1—A w1 1+ A
0
e~ 2iWradiot’ _ Ao — € * 1 d¢’
w1 1—-A
¢ 2 2
+Wradio/ (>\O+Q) 1 _()\O_Q) 1 ar’
8 w1 1+A w1 1—-A
0
4 Wradio /te+2iAwmdiot’ N EIU. (e+2iwmdiot' _ 1) (Mot QN1 b1 ) et 2ivraaiet’ 4 (Ao SR P
8 w1 w1 1+A 1—-A w1 1—-A

0

2 2 2
_ wradlo / 721A“’radlo 2 AO -0 <672iwradiot, — 1) _ )\O -0 L + 1 e+2iwradiot, + AO -0 1 dt/
w1 w1 1+A 1-A w1 1+A
0

(5.365)
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8

0

+
/N
VS

g
&t
o
N——
(]
—
+ =
&>
/N
&
g1
o
N——
(V]
—
|| =
=

. . R . o
‘We combine terms with the same s in the exponents e281Awradiot

t

_ wradio Ao + Q) ? Ao —Q\? 1 /
§2 = dt
4 1+ A w1 1-—A
0
R 2
70.)radio/ +21Awrdd]0 ()\04’9) ( 1 )+2 ()\04’9) 11
8 1 + A w1
0
M+0\2/ 1 1 /\U+Q 1 Ao —Q\? 1 i
_ 9 et2iwradiot’ 9 2iwragiot’ { qg/
+< w1 ) (1+A+1—A ) < 1+A+ wi T
t 9 )
 Lradio / +2ihwraaiot’ | (20 =9 LE S PP (UL I
8 w1 1+4A 1-A w1
0
n Ao — )2 1 n - 2 ) et2iwradiot’ _ Xo+0\2 1 n Xo—Q\?2 1 L+ ) e 2wt | gy (5.366)
w1 1+ A 1—A w1 1+ A w1 1-—A ’ '

In order to simplify Eq.[5.366] we examine the value of

£ _ A Z 2¢62 o=\
A= £ 0 _ 551 +e 52 + 0. (5.367)
2Wradio 2Wradio

‘We have determined that {14 = 0. Therefore, A at the examined level of approximation (including corrections up to quadratic in €),

B 52524 - )\0 B w1w2§2 Ao w% {2 w1 &2
- 2,3 2 2 + 2° (5'368)
2wradio )‘ Wiadio 2Wradio Q + wy 2wrad10 2Wradio wy
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Our approximation is applicable only for wyaqdio much higher than wo or wy (recall that we = wi for the most interesting example of a
field oscillating in one direction). The ratios wi/wradio and w2 /wradio in Eq. [5.368] indicate that A < 1. For A 1,1+ A=1—-A~1.
Consequently, the red terms Eq. [5.366| are negligible, and the green expression simplifies to 4(Q2 + w%)/w%, which allows us to further

simplify the integral by in the next step
A 2 2
_wradio/ (()\D+Q) ()\079) ) /
&2 = - dt
4 w1 wi
0

¢ 2 2
+ Wradio / {e2iAwradiot/ ((H) + 1> _ ot2iAwragiot’ <(>‘0+Q) + 1) } dt’
4 w1 w1
0

t

i " QQ 2 o: ’ 01011/ ’
+ wr‘;dlo / :2“)1 <C*21(1*A)wmdiuf _ o 21(14+A)wradiot ) dt’ (5.369)
1

because the green exponential factors cancel each other for A < 1. Neglecting the last line, the integration yields

~ _ Wradi Mo+ 2\%2 Ao —0)\2
€2 =E5t+ 65 =“4’° (( 0 ) 7( 2 ) ['l5
w1 w1

1t . Mt
—2iAwyadiot +2iAwradiot
4 Wradio <<>\0_Q)2+1> [e ! ]O_Wradio <(>\0+Q)2+1> {e ! ]o

4 w1 _QiAwradio 4 w1 2iAwradio

Wradio )‘0 +Q 2 )\O —-Q 2 i A0 +Q 2 +2iAw iol AO -Q 2 —2iAw iot
= - t4 — 1 radiol _ 1 1 radiol _ |
4 << w1 > w1 + 8A w1 + (e ) + w1 * (e )

(5.370)

A2
= Wradio Tt‘f'
w1

i ([ do+0)\? . i ro—2)\? ,
— + 1) (cos(2Awraqiot) + 18in(2Awraqiot) — 1) + — + 1 | (cos(2Awradiot) — isin(2Awyaqiot) — 1)  (5.371)
8A w1 8A w1

Aof2 i Ao +02\2 0 —Q)\? 1 Ao +O\% Ao — 0\ .
= wmdioo—Zt + L ( 0 ) + (07) + 2 | (cos(2Awragiot) — 1) — — ( 0 ) — ( 0 ) sin(2Awyaqiot) (5.372)
w3 8A w1 w1 8A w1 w1

Ao€2 i o+ Ao—Q)\? 1 409 .
= Wradio ot 4+ — [ 22 4 2220 (cos(2Awradiot) — 1) — — 2= sin(2Awradiot) (5.373)
wi 8A w1 w1 8N wi
Ao i A2 1 2Q
= Wradio 7 t+ ﬂw—%(cos(ZAwradiot) —1)— M w2 sin(2Awradiot)- (5.374)

We easily identify 524 and &5 as the red and blue expressions. We are now ready to express the factor = = el€ as

2f 2g

. 1 2 1 20
i w3 %z— oA ( w2 ) (cos(2Awradiot) — 1) =i — ( w2 ) — sin(2Awradiot)

“3 o

ei§ = ei52§2 =e “radio 2wradio 2A \ 2wradio Ao = ei 2wradio 20 t=2f-2ig (5375)
and
f 9
2 2
w2 1 wa 1 wa Q
i =2 ﬁfﬁ)t—— cos(2Awyagiot) — 1) —i — — sin(2Awragiot
ei%w = el<4wradio 0 ? 4A (2wradio) ( ( radio ) ) ' 4A 2wradio )‘0 ( radio ) = eiAwrmliot_f—ig, (5376)

where we simplified notation by introducing real functions f and g. Using the notation, we can express ﬁ[g =1— P, from the last
term in Eq.|5.324| (the horizontal bars indicate that ﬁg and P, are averages for a large number of measurements with random phases ¢)

2048 pidwradiote—f—ig 4 20=Q —iAwiadiotefHig  A0+2 o —iAwradiote—fHig 4 20— giAwiadiotef —ig
* w1 w1 w1 w1
e‘A‘*’radiote_f_‘g — e_lA"-’radiotef‘Hg e_lAWradiote_f+19 — elA‘*’radiotef_‘g
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2 2 2 2 . . . .
<>\O+Q> e—2f + (/\O—Q) e2f + )‘0729 (621Awradiote—21g +e_21Awradiot6219)
w1 w1 wy

e—2f + e2f — @2iAwradiote—2ig — g—2iAwradiote2ig

2,2 . . . )
% (e—2f + e2f) + M (e—Qf _ ,32f) 4 e2iAwradiote =219 | g—2iAwradiote2ig
w w
1

_ 1
- e—2F | 02 — (e2Awradiote—2i0 | o~ 2ihwradiote2id) (5.377)

Ag+0? 4 1) (872f +e2f) + % (e72f _e2f) 2:\T§ (efzf +e2f) + 21029 (e72f —e2f)
i i

—Z
@i

1—wu* = (5.378)

e—2f + e2f — (eQiAwradiote*Zig + 672iAwra(“OtQQig) - e—2f + e2f — (e2iAwradiote72ig + e*QiAwradiotemg).

To proceed, we look at f and g more closely. Knowing the explicit expression of 524 (Eq. [5.374)), we can calculate A from Eq. [5.368

2¢2 2 2
€ A 1 w Q A A w5$)
P :,( 2 ) 8 M _ X (1_ 2 2). (5.379)
2Wradio 2Wradio 2 2Wradio )‘0 2wradio 2Wradio 4wradio)‘0
Inserting the expressed A to Eq.
2 _wy )
1 ( wo ) B Toradio _1 1 _1! ! (5.380)
4N \ 2wradio 2 (2 )2 2 phe 2@ (e )2 N2 g 9] '
Wradio Ao Wradio Ao w2 Wradio 4
\/Qz+w% wa  wa w1
Since we assumed that ws < wradio, this expression and consequently f and g are much smaller than unityE
1 | 1 1
- ( - ) == N2 2 L . (5.381)
4A 2Wradio 2 Q _ 4 %@radio w1 \/QQ-HU% 8 Wradio W1 /2 + UJ%
\/QZ+W% wz w2 w1

We can therefore express ef and el9 as power series and safely ignore higher than linear terms

ef 1+ f, €9 ~1+ig (5.382)
This simplifies Eq. to
42) g2 0
o2 T 0.2 f A2 2 — 4/\7f
1—uw” = T S YT PR YT sy v St A Ey - (5.383)
2 — (c iAwradiot + e~ 2iAwradio ) + 2ig (c iAwradiol — @—21AWradio ) wy 1— C05(2Awradiot) —2g Sln(2AWradiot)
and
?ﬁ _ 1 _ oﬁ ) 1 — cos(2Awradiot) — 29 sin(2Awyadiot) (5.384)
- V] Q : '
1 — uu* A§ 2 — 4>\—Of
Writing f and g explicitly,
1 wo 2 Q .2
- 1 w? 1 — cos(2Awradiot) — 55 (ﬁ) g sin (2Awradiot)
P T wur A2 1 29 o ’ (5.385)
o 24 4 (22-)" 201 - cos(2Awraaiot))
Using the identities cos(2x) = cos? 2 — sin® = 1 — 2sin? x and sin(2z) = 2sinz cos z,
2 2
— w% 2Sin2 (Awradiot) - % (wazd. % SiHQ(Awradiot) COS2 (Awradiot) w% 5 1- % (gwwzd, ) % COS2 (Awradiot)
B8 = )\72 : 5 e 2, = FSin (Awradiot) . 1 — 2
0 2+ X (2“":;2&0) o SiHQ(Awradiot) 0 1+ X (2W:Jazdio> o sin? (Awradiot)

13Taking into account that Q < \y/Q2 + w%, w1 < A /02 + w%, and that w2 is not substantially greater than wi (in the most relevant

case of linear oscillations wa = w1).
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2 2
_ 1 wa Qo 2 . 1 wo Q o2 )
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2 4
Q Q
w% 1- % (2“’:)&2(“0> o + ALz (Zw, 1d|o> (T) sin (Awrddlot) COS2(Awradiot)
= 32 5in* (Awragiot) - - - : (5.386)
' 1 () () sint (Annaot)

where the blue term was obtained using the Pythagorean identity cos?z + sin® z = 1. The terms containing the very small factors
printed in red can be safely neglected, yielding an equation closely resembling Eq[5.321]

— 2 1 20 2 2 Q
Py~ oL (1—( -2 ) = ) sin?(Awragiot) = <1 (1— - 7) sin® (Awradiot). (5.387)

A% A 2Wradio Ao A?} 2Wradio 2Awradio Ao

Using Eq. [5.379]

2
2AWradioNo = — (w% T2 2 Q) (5.388)
4wradio
and
w2 +02 — iﬂ ? 24 02 2 w3 Q (w2 + Q2 02
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= w4 (Q _ b ) wp o, v Q@ _ w? 4 (Q _ 3 ) w3 wi (5.389)
4wradio 16wradlo 16wrad10 UJ% + Q2 4wradio 1()2.4.11 adio "df + h
Neglecting the very small red term,
1 w2 2
Awyadio & \/ w? + (Q -2 ) (5.390)
2 dwradio

2

Taking into account that sin?(—z) = sin? z, we can express ?B as

\/ ( 2 2
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2 2 dwradio

— UJl 1 UJQ Q 2 d

Pg =~ sin t
s w? + Q2 2Wradio w? 402 — 4wwg Q 2
radio
2

2

2 o w3
w2 w? + Q2 + 4WL::dioQ . \/ + (Q 4Wrdd10)
= oo ) sin 5 t (5.391)
e s

2
Multiplying numerator and denominator of the second fraction on the second line by w% + 02— 4ww2d_ ), we obtain
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4 2 2
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Again, we neglect the very small red terms, cancel (w% + 92)2 in the denominator and numerator of the first and second fraction,
respectively, and obtain

Pg =~ i t. 5.393
8 . 2 5 sin 3 ( )
w1 + (Q - 4“"rad10)
Comparison with Eq [5.32]]
w? wi + Q2
Pg = L sin2 t 5.394
B w? + 02 2 ( )

reveals that the expression describing the average population ﬁ[; for non-rotating fields (in the approximation keeping terms propor-
tional to wi/wradio but neglecting terms proportional to higher powers of wi /wyadio) differs form the expression describing the population
2
w2

4wradio

Pg for rotating fields only by the frequency shift



Lecture 6
Ensemble of non-interacting spins

Literature: A nice short introduction is given in K3.1. The topic is clearly described in K6, L11,
(C2.2. The mixed state is introduced nicely in B17.2, K6.8, L11.1, and C2.2.2. The general strategy of
analyzing NMR experiments is outlined in C2.4. More specific references are given in the individual
sections below.

6.1 Mixed state

So far, we worked with systems in so-called pure states, when we described the whole studied system
by its complete wave function. It is fine if the system consists of one particle or a small number
of particles. In the case of a single particle, the wave function V(z,y, z, ¢,) depends on the z,y, z
coordinates of the particle plus the additional degree of freedom describing the spin state (in terms
of the four components of the solution of the Dirac equation). Extending the quantum-mechanical
description to more than one particle presents both fundamental and practical problems. A funda-
mental problem is that particles of the same type cannot be distinguished as in classical mechanics.
This issue is briefly discussed in Section The major practical problem is a high complexity of
multiparticle systems. The complete wave function of whole molecule is already very complicated,
represented by multidimensional state vectors and their properties are described by operators repre-
sented by multidimensional matrices. In the case of macroscopic ensembles of many molecules, the
dimensionality of the state vectors and operator matrices is described by astronomic numbers. A typ-
ical NMR sample contains approximately 10%* particles (electrons, protons, and neutrons). Clearly,
we cannot use the brute-force approach requiring determination of the complete wave function. In
this lecture, we describe two levels of simplification routinely applied to describe NMR samples.
The first level of simplification is separation of the description of spin magnetic moments from
the other terms of the wave function. In the NMR spectroscopy, we are interested only in properties
of molecules associated with the spins of the observed nuclei. If we assume that motions of the whole
molecule, of its atoms, and of electrons and nuclei in the atoms, do not depend on the spin of the
observed nucleus, we can divide the complete wave function into the spin wave functions and the
wave function describing all the other degrees of freedom. Validity of such assumption is discussed in
Section m Based on the arguments presented there, we can conclude that (in most cases except
for some relaxation effects) the wave functions (and consequently the Hamiltonians) can be divided
into two parts, one dependent on the spin degrees of freedom, and the other one dependent on the
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other degrees of freedom that are not important in the NMR spectroscopy. To describe the NMR
experiment, it is sufficient to analyze only the spin wave function (the spin state vector). However,
the number of dimensions of the spin state vector is extremely high, typically ~ 10%, and properties
of the large sets of magnetic moments in bulk samples are described by operators represented by
matrices of the same dimensionality. Another level of simplification is therefore needed.

The second level of simplification is related to the question whether individual magnetic moments
can be treated independently. This is possible if the spin Hamiltonian can be decomposed into a sum
of operators acting separately on individual nuclear magnetic moments, as shown in Section It
this condition is fulfilled, the spin wave function of the whole ensemble can be decomposed to inde-
pendent spin wave functions of individual nuclei, and the Hamiltonian has the same eigenfunctions
(|}, |3) in the case of a vertical field By) when applied to any of the individual spin wave function.
These eigenfunctions can be used as the same basis set for all spin wave functions (state vectors) of
individual magnetic moments. Using the same basis for vectors representing spins of different nuclei
allows us to use two-dimensional operator matrices (for spin-1/2 nuclei) instead of multidimensional
operator matrices. Similar arguments can be applied to the Hamiltonian of magnetic moments in
magnetic fields in other directions.

The expected value (A) of a quantity A for a single nucleus can be calculated using Eq. as
a trace of the following product of matrices:

(A) = Tr ( Cata Cacf) (A“ A”) | (6.1)
CsC,, Cﬁcﬁ Agl A22
The expected value (A) of a quantity A for multiple nuclei with the same basis is
(A) = Tr { (Ca,lcj*;J Ca,10%71> (An A12) + (%,2032 Ca,QCZg,g) (An A12) .. }
€8,1Cq1 CB,1C3 1 Agy Agy €3,2Ch 2 €8,2C3 2 Aoy Ago

—T Ca,lcz,l Ca,1CE71 Ca,2CZ72 Ca,20f3,2 Ay Apg
€6,1Ca,1 €5,1C31 €6,2Ca,2 €5,2C32 21 22

— NTr (Cacj %) (A“ A12> — NTr {,afl} . (6.2)
CpCa CaCh) \ Ao An )
p A

The matrix p is the (probability) density matriz, the horizontal bar indicates average over the
whole ensemble of nuclei in the sample, and N is the number of non-interacting nuclei described in
the same operator basis.

Why probability density? Because the probability P = (W|W), the operator of probability can be
written as the unit matrix 1: (¥|¥) = (U|1|¥). Therefore, the expectation value of probability can
be also calculated using Eq. as Tr{pl} = Tr{p}.

The most important features of the mixed-state approach are listed below:

e Two-dimensional basis is sufficient for the whole set of N nuclei (if they do not interact with
each other).
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Table 6.1: Examples of operators and a density matrix expressed in the same basis. The density matrix is shown
in red, the operators are shown in green. The elements of the density matrix are expressed in terms of the |9}, ¢;)
states, as described in Section [6.7.4]

Description of units  symbol explicit expression (linear combination of basis matrices)

mixed state 1 D 1><%((1][1)>+ @X%G),?)‘f‘ Wcos@%(?é)—&— sinﬁsian%(?_é)
angular momentum Js I (')X% (é [1)) + hx% (é 7?) + Ox% (? é) + OX% (? 7;)
magnetic moment JT! Ly OX% ((1) [1)) + “,hx% ((1) 7(1)) + Ox% <(1) (1)) + OX% (? _01)
energy J H Ox% (é (1)) — “,fBzhx% ((1) _(1)) — ”,BA,,hx% ((1) é) — ”,/Byhx% ((: _01)

e Statistical approach: the possibility to use a 2D basis is paid by loosing the information about
the microscopic state. The same density matrix can describe an astronomic number of possible
combinations of individual angular momenta which give the same macroscopic result. What is
described by the density matrix is called the mized state.

e Choice of the basis of the wave function is encoded in the definition of /) (eigenfunctions of I.).

e The state is described not by a vector, but by a matrix, p is a matrix like matrices representing
the operators.

e Any 2 x 2 matrix can be written as a linear combination of four 2 x 2 matrices. Such four
matrices can be used as a basis of all 2 x 2 matrices, including matrices representing operators
(in the same manner as two selected 2-component vectors serve as a basis for all 2-component
vectors). Examples of such linear combinations are presented in Table . Note that the
density matrix and the operators describe different features, they are clearly distinguished by
the coefficients of the linear combinations.

e A good choice of a basis is a set of orthonormal matrices/l]

e Diagonal elements of p (or matrices with diagonal elements only) are known as populations.
They are discussed in Section [6.2

e Off-diagonal elements (or matrices with diagonal elements only) are known as coherences. They
are discussed in Section [6.3]

6.2 Populations

Population is a somewhat confusing name of a diagonal element of the probability density matrix,
the correct physical interpretation is clearly described in L11.2.

1Orthonormality for a set of four matrices Al,AQ,A37A4 can be defined as Tr{/l}flk} = 0;k, where j and k €
{1,2,3,4}, §;, = 1 for j =k and 0, = 0 for j # k, and A; is an adjoint matrix of Aj, i.e., matrix obtained from Aj
by exchanging rows and columns and replacing all numbers with their complex conjugates.
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In a pure state, cocl, is given by the amplitude of c,: coch = |co|*
In a mized state, the coeflicients ¢, ; are different for the observed nucleus in each molecule j.

The populations c,cj, and cgcly are real numbers |c,|? and [cs|?, respectively, and their sum is
always onel]

If ca,j and cg; describe stationary states, the populations c,cf, and cscy do not change in time.

A population ¢, > 1/2 describes longitudinal polarization, i.e. polarization of magnetic
moments in the z direction (the direction of éo), an excess of magnetic moments with positive
1, components. The sum of u, of all magnetic moments in the sample divided by the volume
of the sample is the z component of the bulk magnetization (M,).

The value c,c, = 1/2 indicates no net polarization in the direction éo (equal populations of
the « and § states). It does not indicate that all spins in the ensemble must be either in the
« state or in the f state! The value ¢, = 1/2 describes equally well all combinations of
superposition states describing sets of magnetic moments pointing in all possible directions as
long as their vector sum has a zero z component. Probability that the system contains 50 %
spins in the « state and 50 % spins in the [ state is actually negligible.

When cqc, is specified, cscjy does not carry any additional information because its value is

already fully described by the c,cf, value: cgcy = 1 —cqcf. It also implies that the real number
cqcCl, carries the same information as the matrix

caCl 0 [ cac 0 _1 10 . *_1 1 0
0 coc3)  \ 0 1-ceer ) 2\01 “fa™5 ) \o-1)

Consequently, the longitudinal polarization is described equally well by the number c,c} and
by the second term contributing to the displayed matrix.

Graphical representations of quantum mechanical objects are helpful but not perfect. An at-
tempt to visualize the population c,cj, is presented in Figure[6.1] The polarization is depicted
as one possible distribution of magnetic moments and as a vector describing the bulk magne-
tization as a result of the longitudinal polarization of magnetic moments.

6.3 Coherence

Coherence is a very important issue in NMR spectroscopy. It is discussed in K6.9, L.L11.2, C2.6.

e In a pure state, cpcl is given by amplitudes and by the difference of phases of ¢, and cga:

cpCs = |calleple (@m0,

ZNote that Z;V:l(c%jcz’j + ¢p,jcj ;) = N. Therefore, cocf, + cgef = 1.
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e In a mized state, coj = |Coj|6'%7 and cs; = |cg ;€79 are different for the observed nucleus in
each molecule j.

e The coherence cgch is a complex number |Ale™® = |c,||cs| - e7(®a=%8). Tts amplitude |A| is

|callcs| and its phase ® is given by e (%a=%8) = cos(d, — ¢s) — i sin(Pa — P3).

e In general, the spin magnetic moments in individual molecules are present in various super-
position states corresponding to various linear combinations of the |a) and |3) eigenstates
(Ca,jla) + cpj|B)). If there is no macroscopic relationship between the phases ¢, ; and ¢g; in
individual molecules, the difference ¢, ; — ¢, can take any value in the interval (0,27) with
the same probability. Therefore, e (?a=98) = cos(¢p, — ¢g) —1i sin(¢a — ¢5) = 0+0 = 0 because
the average values of both sine and cosine functions are zero in the interval (0,27). Obviously,
cgc, = 0 in such a case, regardless of the amplitudes. Such an ensemble of states is called an
incoherent superposition of the |«) and |3) eigenstates.

o If e i(?ai=%55) does not average to zero, a macroscopic relationship exists between the phases
¢a,; and ¢z ;. Such an ensemble of states is called a coherent superposition of the |a) and |5)
eigenstates. This is why the term coherence is used for the off-diagonal elements of the density
matrix, whose non-zero values indicate a coherent superposition of the |a) and |/3) eigenstates,
or simply a coherence of the system.

e The non-zero coherence czcl, describes the transverse polarization, i.e. polarization of magnetic
moments in the xy plane (a plane perpendicular to éo). The magnitude of the transverse
polarization is |c,||cs| and its direction is given by the phase of czcf. Since the result of
polarization of magnetic moments is a bulk magnetization, the direction of the transverse

polarization can be described by the x and y components of the magnetization vector M:
M, = |M|cos®, M, = |M,|sin ®, where ® is the phase of cgc}, and M| = \/M? — M?2.

e If the evolution of the phases ¢, ; and ¢g; is coherent, the differences ¢, ; — ¢, change in
time, but identically for all magnetic moments. In such a case, the coherence of the system
persists and cgc’ describes the transverse polarization with a constant magnitude and in the
direction specified by the actual value of the phase ®. Section describes explicitly how
the coherence cgc?, depends on ¢, ; and ¢g ;.

e The number c,cj does not carry any additional information, it is just a complex conjugate of
cacr. It also implies that the complex number cgc, carries the same information as the matrix

0 cac}g .
cgcr 0
Consequently, the term coherence is used for the complex number cgcl, as well as for the

displayed matrix.

e As cac is a complex number, it carries information of two real numbers, of its amplitude and
phase, or of its real and imaginary components |c,||cs| cos @ and i|c,||cg|sin @, respectively.
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Figure 6.1: Pictorial representation of the populations cocf, = 1/2 (left) and cock > 1/2 (right). The populations
are depicted as distributions of magnetic moments (black) and as a magnetization vector (cyan) defining the direction
of the longitudinal polarization.

The same information is encoded in purely real and purely imaginary matrices

——= (01 (01
]ca\|05|cos@(1o) 1|ca]|05|sm¢(1 O)'

e A graphical representation of the coherence cgc}, is shown in Figure .

6.4 Basis sets

The usual choices of basis matrices are (C2.7.2):

e (Cartesian operators, equal to the operators of spin angular momentum divided by A. In this
text, these matrices are written as %, ., 7., %. In a similar fashion, we write JZ = H /h
for Hamiltonians with eigenvalues expressed in units of (angular) frequency, not energy. The
normalization factor v/2 is often omitted (then the basis is still orthogonal, but not orthonor-

mal):

V2.7, = ! (01) \/iﬂy:i<?_é>. (6.3)
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Figure 6.2: Pictorial representation of the coherence cgc, as a distribution of magnetic moments (black) and as a
magnetization vector (cyan) defining the direction of the transverse polarization.

e Single-element population

10 00
fa—ftJrfz—(OO) ﬂg—ft—fz—<01> (6.4)
and transition operators
. 01 . 00
f+:fw+1fy:(00) ﬂzfx—lﬂy:<10>. (6.5)

e A mixed basis
1 /10 1 /1 0 01 00
1 O B () B (1 I (RS

6.5 Liouville-von Neumann equation

In order to describe the evolution of mixed states in time, we must find an equation describing how
the elements of the density matrix change in time. Derivation of such equation is nicely described in
(2.2.3 and reviewed in Section [6.7.5] of our text. The result is

dp 1 A - i N 1 =~

— =—(pH — Hp)=—|p,H| = —=[H,p 6.7

3 =5 p)=+1p H] = —+|H,p] (6.7)
or in the units of (angular) frequency

dp . s o =

i \(p — D) =i[p, H) = —i[A, p]. (6.8)
Eqgs. and are known as the Liouville-von Neumann equation.
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The Liouville-von Neumann equation can be solved using techniques of linear algebra. However,
a very simple geometric solution is possible (K7.3, C2.7.3, L11.8) if the Hamiltonian does not change
in time and consists solely of matrices which commute (e.g., .% and .., but not .%, and .%,).

The evolution of p can be described as a rotation in an abstract three-dimensional operator space
with the dimensions given by %, .%,, and ., as shown in Section [6.7.6, An example is given in
Fig. [6.3
If the operator .#;, defining the density matrix p(t = 0) = ¢.#;, and the operator .#, defining
the Hamiltonian ¢ = w.#, satisfy the following commutation relation

55, 5] = i, (6.9)
where j, k,l € {x,y, 2}, then the density matrix evolves as

p=ct; — cFcos(wt)+ cFsin(wt), (6.10)

which corresponds to a rotation about . in an abstract three-dimensional space defined by the

basis .7, Z, .

Figure 6.3: Evolution of the density matrix p = c.%, cos(wt) + ¢.#, cos(wt) under the influence of the Hamiltonian
H = w.J, visualized as a rotations in the space of operators .7, .7, .7,.

6.6 (eneral strategy of analyzing NMR experiments

The Liouville-von Neumann equation is the most important tool in the analysis of evolution of the
spin system during the NMR experiment. The general strategy consists of three steps:

1. Define patt =10
2. Describe evolution of p using the relevant Hamiltonians — this is usually done in several steps

3. Calculate the expectation value of the measured quantity (magnetization components in the
z,y plane) according to Eq.

Obviously, the procedure requires knowledge of
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1. relation(s) describing the initial state of the system (5(0))
2. all Hamiltonians

3. the operator representing the measurable quantity

In the next section, we start from the end and define first the operator of the measurable quantity.
Then we spend a lot of time defining all necessary Hamiltonians. Finally, we use the knowledge of
the Hamiltonians and basic thermodynamics to describe the initial state.

HOMEWORK

Analyze when we can separate the spin part of the wave function from the non-spin part (Sec-
tion and when we can treat individual magnetic moment separately (Section [6.7.3]). Following
Section and in particular Eq. [6.61] calculate the density matrix after 25 us, starting from the
state .#, and evolving under the influence of the Hamiltonian % = wy.#,, where wy = 7 x 10° rad/s.



174

6.7 SUPPORTING INFORMATION

6.7.1 Indistinguishable particles

In the classical mechanics, where particles are described by coordinates and momenta, two particles can be always distinguished by tracking
their coordinates. This is not possible in quantum mechanics, where particles are described by wave functions. For example, two electrons
in a hydrogen molecule are indistinguishable, it is not possible to tell which electron ”originally” belonged to which hydrogen atom. This
seemingly innocent quantum mechanical feature has dramatic consequences.

Let us investigate a set of three identical spin-1/2 particles, e.g. electrons. Their state is completely described by a wave function ¥,
which depends on their coordinates and spin degrees of freedom:

W(x1,Y1, 21, Cay, T2, Y2, 22, Cas, T3, Y3, 23, Cag )- (6.11)

The probability density that one particle is in a place and in a spin state described by the coordinates x1,y1, 21, ca;, another one in
a place and in a spin state described by the coordinates x2,y2, 22, Cay, and a third one in a place and in a spin state described by the
coordinates x3,ys3, 23, Cag is given by U*¥ = |¥|2:

p=|U(T1,Y1,21,Cars T2,Y2, 22, Cass T3, Y3, 23, Cay )| (6.12)

If the particles are indistinguishable, ¥*¥ = |¥|2 should not be changed by exchanging the particles because we cannot say which
one is which.

p = |W(x1,Y1,21,Cay s T2, Y2, 22, Can, T3, Y3, 23, Caz )|
= |U(22,Y2, 22, Can, T1, Y1, 21, Cay , T3, Y3, 23, Caz )|
This is true only if the amplitude of ¥ is not affected by the exchange. The phase of ¥ can differ, but only in a limited way. If the

exchange x1,y1, 21, Ca; ¢ *2,Y2, 22, Ca, changes ¥ to UelA? then the second exchange x1,y1, 21, Cay < T2,Y2, 22, Cay, must return ¥ to
its original form because we have returned to the initial state:

Vet o (WeiS?) A0 — w20~y o A0 (6.13)

Therefore

W(T1,Y1, 21, Car, T2, Y2, 22, Cas, T3, Y3, 23, Cag ) = £W(22,Y2, 22, Can, T1, Y1, 21, Cay T3, Y3, 23, Cas )- (6.14)

The wave functions for spin-1/2 particles always change the sign, they are called antisymmetric, whereas wave functions keeping

the sign upon particle exchange are called symmetric. Note that a possible solution of the Schrodinger’s equation may by a linear

combination of the ”correct” symmetric and antisymmetric wave functions, which is not symmetric or antisymmetric. Then, the symmetric

and antisymmetric wave functions, correctly describing the system, must be recovered by finding appropriate linear combinations of the

?wrong” solutions. For example, if our function ¥ is not symmetric or antisymmetric, we first write all functions obtained by all possible
permutations (exchanges) of the coordinates:

no exchange :
1 exchange :
1 exchange :
1 exchange :
2 exchanges :

2 exchanges :

L1, Y1, 21, Cay T2, Y2, 22, Cagy T3, Y3, 23, Cag)

T2,Y2, 22, Can, T1, Y1, 21, Caq T3, Y3, 23, Cag )

W(
(
W(23,Y3, 23, Cags L2, Y2, 22, Cag, L1, Y1, 21, Cay )
W(21, Y1, 215 Cay s T3, Y35 23, Cag s T2, Y2, 22, Can)
U(

T2,Y2, 22, Can, T3, Y3, 23, Cag, L1, Y1, 21, Cay )

W(23,Y3, 23, Cag, T1, Y1, 21, Cay > L2, Y2, 22, Can )

Then, the sum of all permuted wave functions is symmetric

(6.15)

U =+ —W(21,Y1, 21, Cay s 2, Y2, 22, Cay, L3, Y3, 23, Cas )

,_.S._.
(=)

+ —=Y (22,92, 22, Cas, T1,Y1, 21, Cay , T3, Y3, 23, Cas)

+ —=V (3,93, 23, Cag, T2, Y2, 22, Cas, T1, Y1, 21, Cay )

-5l %

+ \/6‘1’(51717yl,Zl7001,13793,237(3&3,1'27l/2722.(3u2)
1
+ 7\/6‘11(‘7527ylZ:227(@27137y37Z3:CO¢37I1~,y17Zl7cal)

1
+ %‘1’(5537113,2370%,061,y1,21,cu.71’2,y2,Z2,cu2) (6.16)
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and the sum of the permuted functions multiplied by (—1)", where n is the number of exchanges, is antisymmetric

1
U = + —W(21,Y1, 21, Cay, 2, Y2, 22, Cay, L3, Y3, 23, Cag)

-5

— —=W(x2,Y2, 22, Can, T1, Y1, 21, Cay > £3; Y3, 23, Cay )

-5

— —=U(x3,¥3, 23, Cag, T2, Y2, 22, Can, T1, Y1, Z1, Cay )

-5

—=W(21,Y1, 21, Cay T3, Y3, 23, Caz, T2, Y2, 22, Cay )

+
-5

—=W (22,2, 22, Cays T3, Y3, 23, Cag> T1, Y1, 21; Cay )

V6

1
+ —=U(x3,Y3,23,Cas,T1, Y1, 21, Cay » L2, Y2, 22, Cas )- (6.17)

V6

The factor 1/+/6 is a normalization constant, used to obtain |¥%|? = |[¥2|2 = |¥|2. The symmetry of ¥ and the antisymmetry of U2
can be checked easily. If we switch any pair of particles, the individual contributions ¥ may change. But the exchange of particles changes
the given ¥ to another ¥, which is already present in the sum, with the same sign (in ¥®) or with the opposite sign (in ¥#). Therefore,
the exchange of particles does not change ¥® and changes all signs in W?.

The minus signs in Eq. [6.17] require that all indistinguishable particles in a system described by an antisymmetric wave must be
in different quantum states (Pauli ezclusion principle). E.g., if particles 1 and 2 in our three-particle set are in the same state, i.e., if
T1,Y1,%1,Ca; = T2,Y2,22,Cay, the lines 1 and 2, 3 and 6, and 4 and 5 in Eq. [6.17] cancel each other and the final result is ¥ = 0.
Consequently, |\Ila|2 = 0 and the probability of finding the particles anywhere is zero.

Whereas the wave function of a set of indistinguishable particles can change its sign when the particles are exchanged, the Hamiltonian
acting on them must stay the same because the Hamiltonian represents the total energy which does not change if we exchange particles.
And because the evolution of ¥ is given by the Hamiltonian, a symmetric wave function remains symmetric and an antisymmetric wave
function remains antisymmetric during the evolution.

As described in Section [6.1} we usually separate the spatial and spin degrees of freedom:

V= wnon—spin(fﬁl y Y1, 21, 22,Y2, 22,%3,Y3, Z3) ) wspiﬂ(cﬂl y Cags Ca3)~ (618)

Note that 1non-spin must be symmetric and v¢pin antisymmetric, to obtain an antisymmetric W.

6.7.2 Separation of spin wave function

The separation of the spin wave function is trivial in the case of a free particle in the low-speed (i.e., low-energy) limit, as shown in

Section [5.4
1 iy . A0 LIPS Ca
U = . erPzT o/ PYY . gxPz7 . (619)
h3 cp

Here, we expressed the wave function as a product of the green vector describing the degree of freedom important in NMR spectroscopy,
and of a function dependent of the irrelevant degrees of freedom, shown in red.

In molecules, we first have to be able to separate the nuclear component of the wave function from the electronic one. This is possible
if we assume that motions of the electrons in the orbitals are (i) much faster then evolution of the nuclear spin statesEl and (ii) little affected
by the magnetic moments of nuclei (i.e., if we assume that the magnetic fields of the nuclear magnetic moments are too weak to influence
motions of electrons). Then, we can use shapesEl of molecular orbitals as a static description of the distribution probability of electron
localization, independent of the actual state of the nuclear spin.

31n the currently available NMR spectrometers, the frequency of the magnetic moment precession is ~ 109s~1. The velocity of the
electrons in atoms is not sharply defined (a consequence of the commutation relation between #; and pj, known as the Heisenberg’s
uncertainty principle). Nevertheless, a rough estimate can be made. In a stationary set of bound particles described by the classical
mechanics, the total kinetic and potential energy are related as follows. Since our set of particles is stationary, the time derivative of the
quantity >, (P 7% ) is equal to zero. The time derivative can be expressed as Zk(% T+ Dk %) = Zk(ﬁk T +mv,§) = Epot +2&in =0,
where 7}, is the position vector of the k-th particle, pj is its momentum, ¥ is its velocity, ﬁk is the force acting on it, Ekin and Epot are
the total kinetic and potential energy, respectively. In the case of the electron in the hydrogen atom, Epot = 7Q2/(4ﬂ'607’), where Q@ is
the elementary charge and r is the electron-proton distance, related to the velocity by the uncertainty principle r;p; ~ h. Therefore,
mu? ~ muQ?/(4reoh) = v ~ Q?/(4meoh) = ¢/137, where c is the speed of light. Considering the size of the atom (~ 10719 m), the
”frequency” of the electron is roughly ~ 1016 s~! in hydrogen and higher in heavier atoms.

4Here, the word ”shape” is a synonym for values of the wave function dependent on the z,y, z coordinates in a coordinate frame
attached to the molecule, independent of the position and orientation of the molecule as a whole.
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Second, we have to consider how the nuclear spin wave function depends on the coordinates of the nucleus (to see if the degree of
freedom describing the spin state can be separated from the degrees of freedom describing the position). Infrared spectra tell us that
vibrations of nuclei in molecules are much faster (roughly 1014 s~1) than the precession of magnetic moments (~ 10°s~1). Therefore, we
can safely use coordinates describing averaged positions of nuclei in the molecule. Then, the molecule is defined as a rigid object, and
the average coordinates of nuclei define the orientation of the molecule, but also the orientation of the cloud of electrons, discussed above.
Instead of investigating the effects of magnetic moments on individual nuclei, it is sufficient to ask how the magnetic moments of nuclei
affect the orientation of the molecule. The magnetic fields of the nuclear magnetic moments are weak (the energy of magnetic moments in
NMR spectrometers is much lower than the kinetic energy of molecules at the ambient temperature), and we can assume that the influence
of the magnetic moments on the orientation of molecules is negligibleEI

At this moment, we have finished our discussion of the first level of the simplification of quantum mechanical description of magnetic
moments in molecules. The second level of simplification is discussed in Section m

6.7.3 Separation of variables

Our task is to find when a wave function tgpi, depending on degrees of freedom of many spinsﬁ can be treated as a product of wave
functions of individual spins spin = D @) 3 where (9 depends only on the spin degree of freedom of the first nucleus etc.
Such separation works if the Hamiltonian can be written as a sum of operators that act only on individual particles (on magnetic moments
of nuclei in individual molecules):

Hopin = HD + H® + H® 4. (6.20)

Hapmtbopin = (HO + A £ A 4. M @6 1 = @) L 00 LD @) D@ () @ L @@
Let us assume (see Section [£.9.10) (6.21)
Hepin¥spin = EspinVspin- (6.22)

Then, expressing tspin as the product D) () pB) | results in

Hopintbspin = 0@ - 6@ ... ADpM 4 g0 3 L AOy@) 40 @) FGg® f o — g w3 (6.23)

If we divide both sides by 9spin = 1) - (2 . () |
HWyp®  g@y@) FG)yG3)
20 T T e

The right-hand side is the constant £pin. Therefore, all terms I:I(j)i/)(j)/w(j) must be constant if the equation is true for all values of
the spin degrees of freedom of all nuclei:

= Espin- (6.24)

O gy BEOYO o HO®

N ' P»@ ’ »(3) ’

S AWM — gy F@GE Zg@p@) GG Z g(3) )
= 8(1) + 5(2> + 5(3) +-e= Sspirv (625)

If the nuclei are indistinguishable (see Section , all equations fI(j)t/)(” = £y ) are identical and the superscripts can be
omitted

Hip = . (6.26)

Nuclear magnetic moments in all molecules are now described by the same spin wave function ¢ and by the same Hamiltonian H
with eigenvalues £; and eigenfunctions ;. For example, we have shown (Section [5.4) that the Hamiltonian representing the energy of a

magnetic moment in a vertical magnetic field described by By is

¥Boh (1 0\ _ h(10
B (0_1)_%5(0_1), (6.27)

5This is a very reasonable assumption in most cases. However, note that it is not true completely: if motions of the magnetic moments
and of the molecules were independent, it would be impossible to explain how the magnetic moments reach their equilibrium distribution.

5We are now interested in the spin degrees of freedom, but the same arguments can be applied to any variables.
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its eigenfunctions are (after separation from the wave functions describing the dependence on z,y, z) the vectors

(6)=tor  (9)=1m (6.28)

Boh h Boh h
W2o _ - = +’Y20 :_w()i:gﬁ, (6.29)

and its eigenvalues are

respectively. This Hamiltonian and its eigenfunctions can be used to describe all nuclear magnetic moments of a macroscopic sample
if all consequences of interactions of individual magnetic moments can be described by modifying only the values £, Eg to some &, Sé

(actually, only the energy differences o — g and £, — & IB are relevant). Such modification may account for the shielding magnetic fields

by electrons, variation of the external field éo etc. The modification should be general, i.e., we should be able to use a single expression
for &, — 5;3 of any magnetic moment in the sample.

6.7.4 Phases and coherences

The coherence cgc, with the amplitude |co||cg| and with a phase ® describes the transverse polarization of magnetic moments. In order
to analyze the coherences explicitly, we use an eigenfunction of the operator representing an angular momentum pointing in a general
direction, described by angles ¥ (inclination) and ¢ (azimuth), introduced in Section [5.7.11] The eigenfunction (cf. Egq. [5.248)) is the

following linear combination (superposition) of the o and 3 eigenstates of I.:

€B.j

9, %5
cos e 2 Ca.j
R ( A ) = (o7 ) = catod + e 19). (6.30)
If states of all magnetic moments in our ensemble are described by an eigenfunction of this form, the density matrix element cgc}, is
— ¥ [V 11—
cgct, = cos — sin —eti® = —gingetiv. 6.31
5Ca 5 8N 3 (6.31)
If the distributions of the angles ¥ and ¢ are independent,
- 1l— —
cgct, = §sm19 -etiv, (6.32)

What is the physical interpretation of such density matrix elements? If the phase ¢ is the same for all magnetic moments of the
ensemble (it is never true in reality), the direction of the transverse polarization is given by Mz = |M |cos ¢ and My = |M |singp. E.g.,
¢ = 0 describes the polarization of the magnetic moments in the z direction, ¢ = 7/2 describes the polarization of the magnetic moments
in the y direction, etc.

What defines the values of ¢; in real samples? In Section we analyzed how the phases of the co and cg coefficients evolve in a
magnetic field described by the Hamiltonian H = —yBgl, = wol.. We have found (Egs. that the phases of both coefficients
rotate with the frequencies given by the eigenvalues of the Hamiltonian (£, and £g):

;Bo Y _,et=0) | .vBg ¥ _et=0) _.wg ¥ _iet=0) | .Ea
Ca(t) = cat=0) "2 t=cos—e 7 2z ez t=cos—e T 2 e 2l=cos—e T = el hl (6.33)
2 2 2
. 1Bo .9 Lie(t=0) _.yBg CY et=0) | .wg LU ew=0) _.Ep
cgt) = cg(t=0)e "2 " =sin—et'" 2 e 72 ' =sin—e 2 e 2f=sin—et 2 e lH? (6.34)
B B 2 2

where we have used the explicit forms of co(t = 0) and cg(t = 0) for |9, ¢), (cf. Eq.[5.248). Note that the evolution in the magnetic
field By changes only the azimuth ¢, not the inclination ¥.
If all magnetic moments experience the same magnetic field Bo, the coherence cgc}, evolves as

— 17 T i i
cach, = Esinﬁ etip(t=0) e+1w0t7 (635)

i.e., all azimuths ¢; evolve with the same angular frequency wp.
We have described the evolution of the coherence, but we have not yet specified what defines the distributions of ¥; and ¢;(t = 0),

determining cgc} at t =0, i.e., %sinﬁ etiv(t=0), The general answer is that the magnetic field felt by the magnetic moments determines

the statistical distribution of ¥; and ¢;(t = 0). A quantitative analysis of various magnetic fields (the external static field Eo, the influence
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of the electrons, the field of the applied radio waves Eo) is presented in the next lecture At this moment, we only comment two results
that are derived in the next lecture.

The first example is an equilibrium ensemble of magnetic moments in Bo. At the thermodynamic equilibrium, there is no preferred
azimuth of magnetic moments in the vertical field By. Therefore, the state of the system is an incoherent superposition of the eigenstates
a and B with et1¢(t=0) = 0 and consequently cgcy, = 0.

The second example is an ensemble of magnetic moments in Bo after applying a radio-wave pulse that rotated the bulk magnetization
to the direction y (cf. Figure[l.4). In such a case, My = |[M|cos® = 0 and My = |M|sin® = |M]|, telling us that & = 7/2 immediately
after the pulse. Then, the phase factor starts to rotate with the frequency wo = —vBp:

el® — otip — otip(t=0) gtiwot _ ei% eHiwot _ ei(%wLwot). (6.36)

Now only the magnitude %sinﬁ remains to be specified. In the next lecture, we derive (i) that the magnitude of the transverse
polarization after the pulse is equal to the longitudinal polarization before the pulse and (ii) that the longitudinal polarization at the
equilibrium is defined by a statistical relation resembling the Boltzmann’s law of classical statistical mechanics.

6.7.5 From Schrodinger to Liouville-von Neumann equation

We start with the Schrodinger equation for a single spin in the matrix representation:

d Ca '\ _ Hao o Ha,,B Ca \ _ Hy aCa + Hayﬂclfg
ih— = = . (6.37)
dt \ ¢s Hp,o Hpp ) \cs Hp,aca + Hp,gep
Note that the Hamiltonian matrix is written in a general form, the basis functions are not necessarily eigenfunctions of the operator.

However, the matrix must be Hermitian, i.e., Hj = H} T
,

Hop=Hj, Hp o = H}, . (6.38)

If we multiply Eq. |6 by the basis functions from left, we obtained the differential equations for ¢ and cg (because the basis functions
are orthonormal):

d d
(10)in (Z;) = ih% = Haaca + Ha pcg (6.39)
. d (¢ .. deg
(0 1)17}5 (CZ> =1 ¥:H57QCQ+H5”365. (6.40)
In general,
de

ZCk :_,ZH,”CZ (6.41)
and its complex conjugate (using Eq. [6.38) is
deg i
k = ZHk 1 = +,€ZHl,k07- (6.42)
l

Elements of the density matrix consist of the products c;c;,. Therefore, we must calculate

d(cic};) dej | de i i
E%) = 2SN H et — LSTH et 6.43
dt g Y nzl: Lk h; AUk (6.43)

For multiple nuclei with the same basis,

d(cjich | +cjack o +--0) deg 4 de;j dcj, de.
’ s ) 5 — L * + + * 3,2 o 6.44
dr Ca—g T hag T2 d k27 g4 (6-44)
i i
=3 D Hik(cjiciy +¢jacia+) — P > Hju(eiachy 4 ciach g +e0)- (6.45)
l

l

Note that

7Setting the beginning of the time scale is somewhat tricky. Therefore we start the analysis by defining the elements of the density
matrix (the distribution of ¥; and ;) for a stationary macroscopic state, when the density matrix does not depend on time. Then we can
start to vary the magnetic fields and count the time from the first applied change.
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D (ejaciy +ciacio+ - )Hig = N> pjiHik (6.46)
l l

is the j, k element of the product Nf)I:I, and

> Hjuleraciy +eaachot)=N> Hjipk (6.47)
. 7

is the j, k element of the product Nﬁﬁ. Therefore, we can write the equation of motion for the whole density matrix as

dp i, o i
— = —(pH — Hp) =

Tl 710 H] = —[H, ). (6.48)

6.7.6 Rotation in operator space

Let us look at an exampleﬂ for # = eI + woF> and p = ca I + cy Iy + 252 + et I4.
Let us first evaluate the commutators from the Liouville-von Neumann equation:
4 is proportional to a unit matrix = it must commute with all matrices:

(A, 751 =0 (j ==,y,2,1). (6.49)
Commutators of .7, are given by the definition of angular momentum operators (Eqgs. [4.35H4.38):
[F2, I = [S2, F] =0 2, Iz) =19 T2, Iyl = —1I. (6.50)
Let us write the Liouville-von Neumann equation with the evaluated commutators:

deg de de. det L. .
Efm + d—tyfy + o &, + Eﬂt =i (—lwgce Sy + iwocy Fz) - (6.51)

Written in a matrix representation (noticing that ¢, and ¢; do not evolve because the ¢, .#, and c¢;.#; components of the density matrix
commute with both matrices constituting the Hamiltonian),

dez 1 (01 dey 1 /0 —i B 1/0—i 1/01
?5(10)—"_35(1 0)+0+07W()Cz§(i 0)—wocy§(10>, (6.52)
1( 0 d= 1( 0 —iw i/ 0 —woe i/ 0 iwoe
- dt - dt I * - 0Cy
(e ) va (5 ) rovoma (am5) va (e ). (032)
dt
Adding the matrices,
d(cg—icy) .
0 —=— . 0 —(ce —icy)
dt — T Y
<d(c”dticy) 0 ) - (cx +icy 0 ) ' (6:54)

This corresponds to a set of two differential equations

dlcs —i
w = —iwo(cx — icy) (6.55)
d(ce +1

% = Fiwo(ca +icy) (6.56)

with the same structure as Eqs. [4.154] and |4.155] The solution is

cz — icy = (cz(0) — icy (0))e w0t = gei(wot+do) (6.57)
o +icy = (cz(0) + icy (0))eTw0t = ¢yeti(wot+do) (6.58)

with the amplitude co and phase ¢g given by the initial conditions. It corresponds to

8Various Hamiltonians encountered in NMR spectroscopy are discussed in the next lectures. At this moment, take 5% = ;% + wo2>
just as an example.
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Cx

co cos(wot + ¢o) (6.59)
co sin(wot + ¢o). (6.60)

Cy

We see that coefficients cz, ¢y, ¢ play the same roles as coordinates r, ry, 7> in Egs. respectively, and operators %, %y,
#, play the same role as unit vectors 7, 7, E, defining directions of the axes of the Cartesian coordinate system. Therefore, evolution of g in
our case can be described as a rotation of a three-dimensional vector consisting of the elements cz, ¢y, c. in an abstract three-dimensional
space defined by %, %y, and .#,. In our case, if ¢ = 0, then p(0) = co Iz + ¢z &> + ct.%; and it evolves as

co Iz + ¢z Iz + ct Iy — co Iz cos(wot) + oIy sin(wot) + ¢ I + ¢4 It (6.61)



Lecture 7
Chemical shift, one-pulse experiment

Literature: The operator of magnetization is described in C2.4.1, Hamiltonians discussed in L8,
thermal equilibrium in L11.3, C2.4.1, K6.8.6, relaxation due to the chemical shift in C5.4.4, K9.10
(very briefly, the quantum approach to relaxation is usually introduced using dipole-dipole interac-
tions as an example). The one-pulse experiment is analyzed in K7.2.1, L11.11 and L11.12.

7.1 Operator of the observed quantity

The quantity observed in the NMR experiment is the bulk magnetization M , i.e., the sum of the
magnetic moments of all nuclei divided by volume of the sample, assuming isotropic distribution
of the nuclei in the sample. Technically, we observe oscillations in the plane perpendicular to the
homogeneous field of the magnet By. The associated oscillations of the magnetic fields of nuclei
induce electromotive force in the detector coil, as described by Eq. Since a complex signal is
usually recorded (see Section , the operator of complex magnetization M, = M, + iM,, is used
(M_ = M, —iM, can be used as well).

M, = Ny(I, +il,) = N~I,, (7.1)

where N is the number of nuclei in the sample per unit volume.

7.2 Hamiltonian of the static field éo

The Hamiltonian of the static homogeneous magnetic field By can be easily derived from the classical
description of energy of a magnetic moment in a magnetic field (Eq. @:

Since Bo defines direction of the z axis,

E=—ji-By=—pu.By=—yBylL.. (7.3)

Replacing the value of I, (z-component of the spin angular momentum) by its operator provides
the Hamiltonian:
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[:IO,lab = —’VBofz- (7-4)

7.3 Hamiltonian of the radio field El

Using radio waves in NMR spectroscopy has two consequences. First, frequency of the radio waves
defines angular frequency of the rotating coordinate frame, used to describe evolution of the distribu-
tion of the magnetic moments in the presence, but also in the absence of radio waves. Second, radio
waves allow us to change the distribution of the magnetic moments, described by the probability
density matrix p.

The oscillating magnetic field of radio waves irradiating the sample is usually approximated by
a magnetic field B rotating with the frequency of the radio waves wyaqio (validity of such approx-
imation is discussed in Sections [5.7.14H5.7.18)). Evolution of the density matrix is then described
in a coordinate frame rotating with the opposite angular frequency wpot = —Wradio, as described in
Section[1.5.6] The z axis of the rotating coordinate frame is defined by the direction of the By vector.
The phase ¢, of this vector is given by the convention described in Section [I.5.6]

In the rotating coordinate system, frequency of the rotation of the coordinate framdl|is subtracted
from the precession frequency and the difference 2 = wy — w0t = —7By — wrot 18 the frequency offset
defining the evolution in the rotating frame in the absence of other fields{

In the absence of other fields than éo,

]:IO,rot = (_/YBO - wrot)jz = sz (75)

During irradiation by the radio wave, the magnetic field of the radio wave influences the distribu-
tion of the magnetic moments described by p. The Hamiltonian contains an additional term H; ;o4
describing the effect of the field of the radio waves:

HO,rot + -Hl,rot = (_’VBO - wrot)fz - ’YBl]Aa: = sz + wljx- (76)

As the radio frequency wyagio (and consequently w,o) should be close to the precession frequency
of the magnetic moments of the observed nuclei, we can assume |Q| < |yBy|. If the radio frequency
is very close to the resonance, —yBy & wyet, 2 < wy, and the I, component of the Hamiltonian can
be neglected.

The above description is sufficient for a one-dimensional experiment, discussed in this lecture.
However, radio waves are applied in several pulses in many NMR experiments. During different
pulses, the phase of the radio waves is often shifted. In such a case, it is the phase of the first pulse
which defines the x axis of the rotating coordinate frame. In order to be able to analyze the multiple
radio pulses later in our course, we now also describe the form of a Hamiltonian of the magnetic field
affecting the magnetic moments during irradiation by a wave shifted by 7/2 from the phase of the
first pulse:

!Formally opposite to wradio-
2Note that eigenvalues of such Hamiltonian are not values of the energy in the field By.
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ﬁO,rot + ﬁl,rot = <_’)/BO - wrot)jz - ’}/Blfy = sz + wljy- (77)

Note that such a radio wave (phase shifted by 7/2 from the first pulse) defines the direction of
the y axis of the rotating frame. Therefore, a pulse of such a wave is referred to as a y-pulse. In a
similar manner, we describe pulses of waves shifted by 7 or 37/2 as —z or —y pulses, respectively.

7.4 Hamiltonian of chemical shift

In addition to the external field, magnetic moments are also influenced by magnetic fields of electrons
in the molecules. In order to describe our ensemble of spin magnetic moments by a 2 x 2 density
matrix, the interactions with the electrons must modify only eigenvalues, not eigenfunctions of the
already introduced Hamiltonians. The concept of the chemical shift tensor, introduced during our
classical treatment of the magnetic fields of moving electrons in Section [1.4] allows us to include
the chemical shift into the already defined Hamiltonians without changing their eigenfunctions. The
values of i, 11,, and p, in the classical equations are simply replaced by the operators I, fy, and I,:

B
Hs = _’V(IxBe,x + IyBe,y + 1.B, z) = _7( x [y IZ) B 4 -

€,

o o
8

IS

6mx 6:23/ 53?2 BO,m ~
— (I, I, 1) | 0y 0y Oy | | Boy | = —7T- 8- Bo. (7.8)
62:(: 5zy 5zz BO,Z

As we have also learnt in Section [I.4] we can decompose the chemical shift tensor ¢ into isotropic,
axially symmetric and asymmetric (rhombic) components. The corresponding decomposition of the
chemical shift Hamiltonian to FAL;,i, }A[M, and PAL;J is presented in Section [7.12.1, The complete
Hamiltonian of a magnetic moment of a nucleus not interacting with magnetic moments of other
nuclei in the presence of the static field By but in the absence of the radio waves is given by

H = Hopap + Hy; + Hso + H;,. (7.9)

If we insert the explicit forms of ]:I(;,i, I:IM, and ]:157]r (Section [7.12.1)) to Eq. , the Hamiltonian
including the chemical shift becomes very complicated. Fortunately, it can be simplified in many
cases, as we show in the following sections.

7.5 Secular approximation and averaging

e The components of the induced fields B, , and B, , are perpendicular to Bo. The contributions
of ]:1571 are constant and the contributions of f{&a and ]:L;J fluctuate with the molecular motions
changing values of ¢, ¥, and x. Since the molecular motions do not resonate (in general)
with the precession frequency —~v By, the components Be,xfx and Be7yfy of the Hamiltonian
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oscillate (in addition to fluctuations due to the molecular motions) rapidly with a frequency
close to —vBy in the rotating coordinate frame. These oscillations are much faster than the
precession about B., and B., (because the field Eo is much larger than f?e) and effectively
average to zero on the timescale longer than 1/(vyBy) (typically nanoseconds). Therefore, the
Bmfx and Beﬂu,fy terms can be neglected if the effects on the longer timescales are studied. Such
a simplification is known as the secular approximationﬁ The secular approximation simplifies
the (time-averaged) Hamiltonian to

H = —yBy(1+ & + 6a(3cos> 0 — 1) + 0, (cos(2x) sin ¥)) L. (7.10)

e [f the sample is an isotropic liquid, averaging over all molecules of the sample further simplifies
the Hamiltonian. As no orientation of the molecule is preferred, all values of y are equally
probable and independent of ). Therefore, the last term in Eq. is averaged to zero.
Moreover, average values of Z2 = cos® psin® ¥, of Z} = sin® psin® ¢, and of Z2 = cos® ¥ must
be the same because none of the directions x, y, z is preferred. The consequence has been already
discussed when we described relaxation classically (Eq. in Section: (3cos2¥d —1)=0
and the anisotropic and rhombic contributions can be neglected.

The Hamiltonian describing the effects of the static external magnetic field and coherent effects
of the electrons in isotropic liquids reduces to

H = —yBy(1+6)1.. (7.11)

Note that the described simplifications can be used only if they are applicable. Eq. [7.11]is valid
only in isotropic liquids, not in liquid crystals, stretched gels, polycrystalline powders, monocrystals,
etc.! Moreover, Eq. does not describe relaxation processes, as discussed in Section [7.7}

7.6 Thermal equilibrium as the initial state

Knowledge of the Hamiltonian allows us to derive the density matrix at the beginning of the ex-
periment. Usually, we start from the thermal equilibrium. If the equilibrium is achieved, phases of
individual magnetic moments are random and the magnetic moments precess incoherently. There-
fore, the off-diagonal elements (coherences) of the equilibrium density matrix (proportional to .7,
and .#,) are equal to zero. Values of the diagonal elements (populations) are derived in Section
and the complete equilibrium density matrix is

3In terms of quantum mechanics, eigenfunctions of B, 1L, and B, yI differ from the eigenfunctions of HO lab ()
and |B)). Therefore, the matrix representation of B, zI and B, yI contains off-diagonal elements. Terms proportional
to I, represent so-called secular part of the Hamiltonian, which does not change the |a) and |3) states (because they
are eigenfunctions of I.). Terms proportional to I, and I, are non-secular because they change the |a) and |B)
states (la) and |B) are not eigenfunctions of I, or I,). However, eigenvalues of Be,I, and B, ,I,, defining the off-
diagonal elements, are much smaller than the eigenvalues of Ho,lab (because the field B is much smaller than BO).
The secular approximation represents neglecting such small off-diagonal elements in the matrix representation of the
total Hamiltonian and keeping only the diagonal secular terms.
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1 ’yBoﬁ

R 5+ 0 1/10 vyBoh (1 0
peq: 2 4kpT Bk — ( ) 4+ — ( ) :%‘{’szy (712)

< 0 % - Zk]:T 2\01 4kgT \ 0 —1

where
’}/B()h
= . 1

K= T (7.13)

Note that we derived the quantum description of a mized state. The difference in two diagonal
elements (populations) of the density matrix describes the longitudinal polarization of the magnetic
moments (their sum is equal to one by definition). Populations do not tell us anything about
microscopic states of the individual magnetic moments. The two-dimensional density matrix does
not imply that all magnetic moments are in one of two eigenstates!

7.7 Relaxation due to chemical shift anisotropy

The simplified Eq. does not describe the effects of fast fluctuations, resulting in the relaxation. In
order to derive the quantum description of the relaxation caused by the chemical shift, the Liouville-
von Neumann equation must be solved for the complete Hamiltonian including the axial and rhombic
contributions. Bloch, Wangsness, and Redfield developed a theory, described in Section that
treats the magnetic moments quantum mechanically and their molecular surroundings classicallyﬁ
The theory provides the same definitions of the rate constants describing relaxation due to chemical
shift anisotropy as we derived classically in Section [2.5.1

3 1 1 3
Rl = Zle <§J(W0) + §J(—w0)) =~ Z—leJ(W()), (714)
, (1 3 1

where b = —2vByd, and J(w) is the spectral density function introduced in Section [2.3]

7.8 One-pulse experiment

Having the initial form of the density matrix, the Hamiltonians, and the operator of the measured
quantity, we can proceed and describe a real NMR experiment for a sample consisting of isolated
magnetic moments (not interacting with each other). The basic NMR experiment consists of two
parts. In the first part, the radio-wave transmitter is switched on for a short time, needed to rotate
the magnetization to the plane perpendicular to the magnetic filed By. Such application of the radio
wave is called excitation pulse. In the second part, the radio-wave transmitter is switched off but the
receiver is switched on in order to detect rotation of the magnetization vector about the direction of

4The surroundings can be also treated quantum mechanically, as described in Abragam: The principles of nuclear
magnetism, Oxford Press 1961, Chapter VIII, Section II.D.
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B,. We start by describing the density matrix before the experiment, then we analyze evolution of
the density matrix during these two periods, evaluate the relaxation rate, and finally we calculate
the magnetization contributing to the detected signal.

7.9 One-pulse experiment: excitation

At the beginning of the experiment, the density matrix describes thermal equilibrium (Eq. [7.12)):

p0) = I, + kI, (7.16)

The Hamiltonian governing evolution of the system during the first part of the experiment consists
of coherent and fluctuating terms. The fluctuating contributions result in relaxation, described by
the relaxation rates R; and R,. The coherent contributions include

H = —yBy(1 + &)I, — vBi(1 + 6;) cos(—Wradiol) Fz — YB1(1 + 63) Sin(—wradiot) Fy» (7.17)
where we have chosen the directions x and y so that the initial phase ¢yagi0 = 0 (see Section [1.5.6)).
The Hamiltonian simplifies in a coordinate system rotating with w,o; = —Wradio

‘%ﬂ = (_730(1 + 51) - wrotz <ﬂz + £_'7B1(1 + 51)2 jx, (718)
Q o1

but it still contains non-commuting terms (%, vs. .#,). Let us check what can be neglected to
keep only commuting terms, which allows us to solve the Liouville-von Neumann equation using the
simple geometric approach.

e The value of w; defines how much of the magnetization is rotated to the x,y plane. The
maximum effect is obtained for wym, = /2, where 7, is the length of the radio-wave pulse.
Typical values of 7, for proton are approximately 10 us, corresponding to frequency of rotation
of 25 kHz (90° rotation in 10 us corresponds to 40 us for a full circle, 1/40 us = 25kHz).

e Typical values of R; are 1071s7! to 10%s™! and typical values of R, are 1071s™! to 10*s™ for
protons in organic molecules and biomacromolecules. Therefore, effects of relaxations can be
safely neglected during 7,,.

e When observing a single type of proton (or other nucleus), €2 can be set to zero by the choice of
Wradio- However, variation of ) is what we observe in real samples, containing protons (or other
nuclei) with various ;. The typical range of proton §; is 10 ppm, corresponding to 5kHz at a
500 MHz spectrometer.ﬂ The carrier frequency wiaqio is often set to the precession frequency of
the solvent. In the case of water, it is roughly in the middle of the spectrum (4.7 ppm at pH
7). So, we need to cover £2.5kHz. We see that |Q2| < |wi|, but the value of |Q2] is 10 % of |w|
at the edge of the spectrum, which is not completely negigible.

5Chosen as a compromise here: spectra of small molecules are usually recored at 300 MHz-500 MHz, while spectra
of biomacromolecules are recorded at > 500 MHz.
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In summary, we see that we can safely ignore fluctuating contributions, but we must be careful
when neglecting 0.#,. The latter approximation allows us to use the geometric solution of the
Liouville-von Neumann equation, but is definitely not perfect for larger €2 resulting in offset effects.

Using the simplified Hamiltonian 5 = w;.%,, evolution of p during 7, can be described as a
rotation about the ”.#, axis”:

p(0) = A+ kI, — p(1p) = I + k(L cos(wiTy) — F sin(wiy)). (7.19)
For a 90° pulse,

p(1p) = Fi — KIy. (7.20)

7.10 One-pulse experiment: detection

After switching off the transmitter, w,.%, disappears from the Hamiltonian, which now contains only
commuting terms. On the other hand, the signal is typically acquired for a relatively long time (0.1s
to 10s) to achieve a good frequency resolution. Therefore, the relaxation effects cannot be neglected.

The coherent evolution can be described as a rotation about the ”.#, axis” with the angular
frequency 2

p(t) = S + k(=S cos(QUt) + &, sin(§2)). (7.21)
The measured quantity M, can be expressed as (Eq. [4.12)

(M) = Te{p(t) M} = NARTE{( I, + v(— 7, cos(Q) + I, sin(Q)).7 } (7.22)
= NyRT{ 4.9, } — Nyhk cos(Qt)Te{ 5,7, } + Nyhr sin(Qt) Tr{ 7, .7, }. (7.23)

The final expression includes the following three traces:

R (CHICHIT((1)) ST
war-n{ (B E)-={(8) -
L 1) () T

As mentioned above, relaxation effects should be taken into account when analyzing acquisition
of the NMR signal. Including the exponential relaxation term and expressing x

(7.25)
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DO | —

1
2
0
0
1
2
0

~—

252
(M) = %e—w(m(m) ~ icos(Q1)), (7.27)
B

which can be rewritten as



188
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(—1) (cos (2t) +isin (2t)) = WonT

(7.28)

We know that in order to obtain purely Lorentzian (absorption) real component of the spectrum
by Fourier transformation, the signal should evolve as e f2%ei® We see that the magnetization
described by Eq. is shifted from the ideal signal by a phase of —7/2. However, this is true only
if the evolution starts exactly at t = 0. In practice, this is impossible to achieve for various technical
reasons (instrumental delays and phase shifts, evolution starts already during 7,, etc.). Therefore,
the rotation has an unknown phase shift ¢ (including the 7/2 shift among other contributions),
which is removed by an empirical correction during signal processing (corresponding to multiplying
Eq. by €7/2). It tells us that we can ignore the phase shift and write the phase-corrected signal
as

252
(M) = me_R2t(cos(Qt) +1isin(2)) =

N’YQ w2 By o Rat ol
4kgT '

AkgT
Knowing the expected magnetization, we can try to describe the one-dimensional NMR spectrum
quantitatively. Factors that should be taken into account are listed and analyzed in Sections [7.12.4]

and|7.12.5| The analysis shows that the signal-to-noise ratio is proportional to |y|*/ ZB(? /2 and further
influenced by the relaxation, that strongly depends on the temperature.

(7.29)

7.11 Conclusions

In general, the analysis of an ideal one-pulse experiment leads to the following conclusions:

e The analysis of a one-pulse NMR experiment shows that the density matrix evolves as

p(t) o< Sy cos(Qt + ¢) + &, sin(Qt + ¢) + terms orthogonal to S, (7.30)

and that the magnetization rotates during signal acquisition as
(M) = | Mo tei® (7.31)
(with some unimportant phase shift which is empirically corrected).

e Fourier transform gives a complex signal proportional to

22 _

T R+ (w—-92 R+ w-07

e The cosine modulation of .#, can be taken as the real component of the signal and the sine
modulation of .#, can be taken as the imaginary component of the signal:
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e The signal-to-noise ratio (without relaxation) is proportional to |y|*/ 2303 / ? with the optimal
temperature given by relaxation properties (close to room temperatures for proteins in aqueous
solutions).

HOMEWORK

Analyze the One-pulse experiment (Sections and [7.10) and make sure that you understand the
conclusions presented in Section [7.11
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7.12 SUPPORTING INFORMATION

7.12.1 Decomposition of chemical shift Hamiltonian

The Hamiltonian of a homogeneous magnetic field aligned with the z-axis of the coordinate frame can be decomposed into
e isotropic contribution, independent of the rotation in space:

Hs; = —yBodi(I2) (7.33)

e axial component, dependent on ¢ and ¥:

ﬁs,a —vBpda(3sin cos ¥ cos Lpfgc + 3sin 1 cos ¥ sin gofy + (3 cosZ 9 — l)fz)

—vB00a(3Z4 Zo 1y + 32y Z. 1y + (322 — 1)I,) (7.34)

e rhombic component, dependent on ¢, ¥, and x:

IA{(;yr = —yBopd:( (—(2cos? x — 1) sin® cos ¥ cos ¢ + 2sin x cos x sin ¢ cos ¥ sin ) I, +
(—(2cos? x — 1) sin ¥ cos ¥ sin o — 25sin  cos x sin ¥ cos ¥ cos go) +
((2cos? x — 1)sin? 9)1,)

= yBod: ((cos(2x) Zz — sin(2x)Zy) Zs 1 + (cos(2x) Zy + sin(2x) Zz) Z= 1y + cos(2x)(Z2 — 1)I,) (7.35)

7.12.2 Density matrix in thermal equilibrium

We use the mixed state approach to define the state of the sample in thermal equilibrium. In the large ensemble of nuclei observed in
NMR, the equilibrium distribution of the magnetic moments is such that their orientations in the x and y directions are equally probable,
and the orientation in the z direction (defined by the direction of the magnetic induction of the external homogeneous field éo) is slightly
favored.

Classically, the energy of individual moments depends only on p:

& = —fij - Bo = —p= ; Bo, (7.36)

where j identifies the molecule with the observed nuclear magnetic moment, and the overall energy is Z &;.

Quantum mechanically, the ensemble of magnetic moments represents a mlxed state and the expected value of the energy is given by
Eq. |6 - where (A) = (£) and A = H. Note that Eq. [6.2] contains an operator (in our case the Hamiltonian) representing the quantity
of interest (in our case the energy) for a single magnetlc moment, although we calculate the expected value for the whole ensemble. If
we use eigenfunctions of I, as the basis (the best choice for magnetic moments in the filed with By defining the z axis), eigenvalues of
H=—yBy(1+ 6i)fz are the diagonal elements of the matrix representation of H:

_ N Jhif1 0\ _ (—vBo(1+6)% 0 _ (& O
H=—vBo(1+ &), = 'yBo(1+§l)2 (O _1) = ( 0 +’YBO(1+61)§ =l0e) (7.37)
Eq. in this case has the form
CcaCl cacCh &, O S -
« 5 o _ * * —
(&) = NTf{(cﬁc* 0303> ( 5 &s)} —N(caca Ea +cach 55) =N (Pa Ea + P3 &3) . (7.38)
7
p H

We see that the expected value of the energy of our mixed state is a weighted average of the energies of the o and 3 eigenstates of a
single magnetic moment. The off-diagonal elements of p, the populations, play a role of statistical weights in the derived relation. At the
equilibrium, the populations can be evaluated using statistical arguments similar to the Boltzmann law in the classical molecular statistics:

e e—Ea/kpT
o T e*ga/kBT_Fe*SB/kBT’ (739)
—E5/kpT
Pt = © (7.40)

e—Ea/kBT 4 ¢—Ep/kBT’
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where kg = 1.38064852 x 10723 m2kgs—2 K~ is the Boltzmann constant.

The thermal energy at 0°C is more than 10000 times higher than vBph/2 for the most sensitive nuclei (protons) at spectrometers
with the highest magnetic fields (1.2 GHz in 2021). The effect of the chemical shift is four orders of magnitude lower (roughly 10~ 8kgT).
We see that (i) the effect of the chemical shift §; on £, and £ can be safely neglected, and (ii) that the values in the exponents are much
lesser than unity. Therefore, we can approximate the exponential terms by a linear expansion

i730(1+6i)h ’YBOE
e +

kBT 1 kT (7.41)
and calculate the populations as
» e—Ea/kBT 1+ 322 1+ 220k
Pa - e_ga/kBT—Fe*gﬁ/kBT - 1+ ~Boh +1— yBoh 2 ) (7.42)
2kpT 2kpT
- o—E5/kBT 1— ;,f};; 1— ;ﬁ;g
PB = Ea/knT 5 o—Es/ReT = | ABai | 2B = 5 . (7.43)
2kgT 2kgT

7.12.3 Bloch-Wangsness-Redfield theory

The Liouville-von Neumann equation describing the relaxing system of magnetic moments interacting with moving electrons in a so-called
interaction frame (corresponding to the rotating coordinate frame in the classical description) has the form

dap i
dt &

where 1:157a and fIg’r are defined by Egs. and , respectively, and Ap is a difference (expressed in the interaction frame)
between the density matrix at the given time and density matrix in the thermodynamic equilibrium. Writing Ap in the same basis as used
for the Hamiltoninan,

[HzS,a + H(S,rv APAL (744)

Ap=dils +d. I, +dy I e @0t +d_J e iwot, (7.45)

If the chemical shift is axially symmetric and its size or shape do not change,

d(dsI; + dyI4elwot 4 d_f_e~iwot . 3 .. 3. . . L
( 21z +dylye = + e ) __Z CZIZ + \/;C+I+elw0t + \/gcil_eil(‘)ot,dzlz +d+I+elw0t + d_[_eflwot , (746)
where IyeTivot are operators Iy = I+ ify in the interaction frame, wg = —yBo(1 + 0a), b = —27Bgda, and
=1 2 I
= 5(3cos 9—-1)=06 (7.47)
+ 3 . - 201 i
¢ =4/ =sindcose ¥ =4/ -O"e ¥ (7.48)
2 3
_ 3 . +i 2 01 4
¢~ = 4/ =sinYcosPe¥ =4/ =-O—eT¥ (7.49)
2 3

Analogically to the classical analysis, the evolution can be written as

UL = [ (500, s (0, AR (7.50)
0

The right-hand side can be simplified dramatically by the secular approzimation: all terms with efi¥ot are averaged to zero because
they rapidly oscillate with the angular frequency wg. Only terms with (¢#)2 and c¢tc~ are non zero (both equal to 1/5 at t; = 0)
These are the terms with [I, I, Ag]], [I1,[I_,Ap]], and [I_, [I1, Ap]]. Moreover, averaging over all molecules makes all three correlation
functions identical in isotropic liquids: ¢#(0)c?(t) = ¢t (0)c=(t) = ¢~ (0)ct(t) = c(0)c(t).

In order to proceed, the double commutators must be expressed. We start with

., Ix] = [I;, L)) % i[l., Iy = £h(I, £il,) = +hiys (7.51)

6We have factored out /3/8 in order to make ctc— = (c?)Z.
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and
Ui, I-] = Iy, L) — i[lx, Iy] + i[Ly, o] + [Iy, Iy] = 2hl.. (7.52)

Our goal is to calculate relaxation rates for the expectation values of components parallel (M.) and perpendicular (M4 or M_) to

—

By.
Let us start with M. According to Eq. [4.12]

A(M,) = Tr{ApM,} (7.53)

where A(M.) is the difference from the expectation value of M in equilibrium. The operator of M, for one magnetic moment observed

s (Ea.
M, = Ny, (7.54)

where N is the number of molecules per volume element detected by the spectrometer. Since the basis matrices are orthogonal
products of I. with the components of the density matrix different from I, are equal to zero and the left-hand side of Eq.[7.50| reduces to

dd.
7.55
e (7.55)
when calculating relaxation rate of (M.). In the right-hand side, we need to calculate three double commutators:
[IAZ’[IA27IAZ” =0 [IA-‘rv[f—ij” :2h2fz [f—7[f+7iz]] :2h2iz (756)
After substituting into Eq.
dd. For 32w7,iwt 3200774“”5 i7
" Tr{l.I.} = — Zb ct(0)c (¥)e'otdt + Zb c=(0)ct(t)e™'wotdt | d.Tr{I.I.} (7.57)
0 0
dA(M:) 3.2 e iwot 3.2 i —iwgt
@ Zb ct(0)c (t)e'votde + Zb c=(0)ct(t)e™w0tdt | A(M;) (7.58)
0 0

The relaxation rate Ry for M., known as the longitudinal relazation rate in the literature, is the real part of the expression in the
parentheses

(oo} oo

3 - . - .

= Zb2§)ft /c+(0)c* (t)e’“’otdt-i-/c* (0)ct (t)e~iwotds (7.59)
0 0

As already discussed in the classical description of relaxation, if the fluctuations are random, they are also stationary: the current

orientation of the molecule is correlated with the orientation in the past in the same manner as it is correlated with the orientation in the
future. Therefore,

o] o] 0 o]
/ F(0)e (@ewotdt = ; / F{0)e (Deotdt + / F(0)e (Deotdt % / F{0)e (e ot dt. (7.60)
0 0 —oo —oo
/c* (0)ct(t)eiwotdt = 5 /c (0)ct(t)e™wotdt + / (0)ct(t)e iwotdt | = 3 / c=(0)ct(t)eiwotde, (7.61)
0 0 —oo —o0

The right-hand side integrals are identical with the mathematical definition of the Fourier transform of the correlation functions and
real parts of such Fourier transforms are the spectral density functions J(w).
The relaxation rate R; can be therefore written in the same form as derived classically:

Ry = 21;2 (%J(wo) + %J(wo)) ~ ZbQJ(wo) (7.62)
What is the physical interpretation of the obtained equation? Relaxation of M, is given by the correlation functions ¢t (0)c—(¢) and
¢=(0)ct (t) describing fluctuations of the components of the chemical shift tensor perpendicular to By (in the case of an axially symmetric
tensor, of the Z, and Z, components of the vector defining the symmetry axis Z) Such fluctuating fields resemble the radio waves with
By L By. If the frequency of such fluctuations matches the precession frequency wo, the resonance condition is fulfilled and, for a short time
(comparable to the frequency of molecular collisions) when a fluctuation accidentally resonates with wg, the —yBe ¢ I; and/or —yBe 1y
components of the chemical shift Hamiltonian are not completely removed by the secular approximation. In analogy to Eq. the 7,
component of 5 (and consequently (M. )) slightly changes due to —vBe I, and/or —yBe o1y .
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If the molecular motions are assumed to be completely random and independent of the distribution of magnetic moments, M, is
expected to decay to zero, which does not happen in reality. If the coupling between molecular motions and magnetic moment distribution
is described correctly by the quantum theory (see footnote , a correlation function is obtained that describes correctly the return of g to
its equilibrium formm This drives the system back to the equilibrium distribution of magnetic moments.

Let us continue with M. According to Eq.

A(My) = (My) = Te{ApIL ) (7.63)
The expectation value of M4 in equilibrium is zero, this is why we do not need to calculate the difference for (M4 ) and why we did

not calculate the difference in the classical analysis.
The operator of M for one magnetic moment observed is

My = Nryly = Ny(Ip +ily). (7.64)

Due to the orthogonality of basis matrices, the left-hand side of Eq. reduces to

dd+ 2wt
7. eiwo 7.65
3 e (7.65)

when calculating relaxation rate of A(M4) = (M4). In the right-hand side, we need to calculate three double commutators:
[fzv[fz7f+“ :h2f+ [IA+7[IA77]A+]] :2h2f+ [IA*7[IA+7IA+” =0. (766)

After substituting into Eq. [7.50]

%Tﬁf{f—ﬁ} =— v /de sz /mei“otdt dyTe{l 1.} (7.67)
0 0

W) (v [Eoema+ 2 [Foe @eta | o). (768
0 0

The relaxation rate R for M4, known as the transverse relaxation rate in the literature, is the real part of the expression in the
parentheses.

c#(0)c? (t)dt + R sz/cﬂO)c*(t)ei‘*’Otdt . (7.69)
0

R2:b2

0\8

Note that the first integral in m is a real number, equal to Rg derived by the classical analysis.
Using the same arguments as for M,

1 3 1
Ry = b2 (§J(0)+§J(wo)) %Ro—l—ERl. (7.70)

What is the physical interpretation of the obtained equation? Two terms in Eq. m describe two processes contributing to the
relaxation of M. The first one is the loss of coherence with the rate Rg, given by the correlation function ¢#(0)c*(t) and describing
fluctuations of the components of the chemical shift tensor parallel with By (of Z.). This contribution was analyzed in Section using
the classical approach. The second contribution is due to fluctuations of the components of the chemical shift tensor perpendicular to
By (of Zz and Zy), returning the magnetization vector M to its direction in the thermodynamic equilibrium. These fluctuations renew
the equilibrium value of M., as described above, but also make the M; and M, components to disappear. Note however, that only one
correlation function (¢t (0)c—(¢)) contributes to the relaxation of M4, while both ¢t (0)c~(¢) and ¢—(0)ct () contribute to the relaxation
of M. Therefore only R1/2, not R, contributes to Ry. If we defined Rs as a relaxation rate of M_, only ¢~ (0)ct(t) would Contribute

"It can be described as J(wo) = e_h"JO/kBTJ(fwo). In the semi-classical Bloch-Wangsness-Redfield theory, this is taken into account
by working with Ap and (AM.) instead of p and (M.).

8 Fluctuations with the frequency +wq affect M and fluctuations with the frequency —wg affect M_, but both affect M. Alternatively,
we could define Ry as a relaxation rate of M, or M,. Fluctuations of the Be , component affect M, but not M,, while fluctuations of
the Be,z component affect My but not M;. On the other hand, both fluctuations of Be ; and Be 4 affect M,. Working with My, M_ or
My, My, the relaxation of M, due to Be,» and B,y is always twice faster.
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7.12.4 Thermal noise of electrical circuits

All NMR measurements are influenced by the thermal noise (also called Johnson noise) generated by random motions of electrons inside
electric conductors. In order to analyze the thermal noise, we use a simple model circuit, consisting of two electric devices connected by a
cable of the length a. As we are interested only in the effect of the thermal noise, which is described by the electric resistance, we can view
the devices as two resistors R; and Ra. For the sake of simplicity, we assume that both resistors have the same resistance Ry = Ro = R
and that the cable does not radiate any energyEI The thermal motions of electrons in the resistor R generate a randomly fluctuating
voltage Ui (t) that propagates through the cable to the resistor Ra. If the cable does not irradiate any energy, all electric energy associated
with Uy (t) is absorbed by Ra. The fluctuations of Uy (¢) travelling through the cable can be decomposed into a series of standing waves
(vibration modes) along the cable. The permitted wavelengths of the standing waves are

A = 27“ (7.71)

where j is an integer numberm The corresponding allowed frequencies are

c .
fi= 20 (7.72)
where c is the speed of the wave propagation. In NMR spectroscopy, we observe frequencies only in a certain window, selected by the
band-pass filter. Therefore, we are interested only the vibration modes in this window. If the window is defined as a range between fo and
fo + Af, the number of modes in the window is equal to 2aAf/c.

The statistical thermodynamics shows that the thermal energy of a single mode is (approximatelyE for sufficiently low frequencies)
equal to kgT. The thermal energy of all modes within the frequency window Af is 2akgT A f/c. Half of this energy (i.e., akgTAf/c) is
generated by the resistor Rq, transmitted by the cable, and absorbed by Ra. The energy arrives at Ro in the time At = a/c. The power
transmitted in this time is

akgTAf/c  akpTAf/c

pP=
At a/c

= kpTAf. (7.73)

The power can be also described using the resistance. In general, P = UT and, applying the Ohm’s law (U = RI), P = RI?. The
voltage Uy generated by the thermal motions of electrons in R; produces the current

U -
R1+ Ro 2R
and consequently the power
2 2
U
P = RI? :R(;%) = le' (7.75)

By comparing Egs. and , U12 can be expressed as U12 = 4RkpTAf. As U;j represents the noise voltage, we can define the
mean-squared noise voltage as

(UZoise) = 4RKBTAF. (7.76)
7.12.5 Spectrum and signal-to-noise ratio

In order to describe the one-dimensional NMR spectrum quantitatively, we need to know

1. how is the detected signal related to the magnetization. Here, we analyze a simple experimental setup with a detector coil
perpendicular to the external field, and sufficiently far from the sample. In this case, the voltage induced in the coil is described

by Eq. [55] (Section [0.5).

2. how is the noise defined. As derived in Section [7.12.4] the mean square of the voltage variance is (U2 . ) = 4RkgTAf (Eq.[7.76),
where R is the resistance and Af is the frequency bandwidth of the detector (the range of frequencies actually detected).

3. how is the time-dependent signal converted to a frequency spectrum. Here, the answer is described in Lecture 3, the most important
step is the Fourier transformation.

gTeChnically, the impedance of the cable matches the impedance of the devices (in our case simply equal to the resistance R). In NMR
spectroscopy, we try to match the impedance by setting the capacitance of the matching capacitor when tuning the spectrometer before
the measurement.
01y a similar manner, mechanic waves propagate along the plucked string of a guitar or another string instrument. Very similar
arguments led to the formulation of the basic ideas of quantum physics (black body radiation).

M The exact value, given by the statistics of a quantum harmonic oscillator, is hf/(e"f/(*8T) — 1),
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According Eq. describing the voltage induced in the detector coil in our setup, the amplitude of the induced voltage is

Ko 2n|plS
IUinduced| = - 7|ﬂ l

7.77
- |wol,s (7.77)

where po is the magnetic permeability of vacuum, r is the coil from the measured sampleE n and S are the number of turns and the
cross-section area of the coil. The amplitude of the magnetic moment p, rotating with the frequency wo, is equal to the amplitude of the
transverse magnetization of the sample, multiplied by the volume sensed by the detector coil. Eq.[7.29 -derlved in Sectlon-tells us that
the expected value of the magnetization rotating in the plane perpendicular to By is (in the laboratory coordinate frame)

N~?1? By e—Rat N72h2BoefR2teiwot.

M. cos(wot) + isin(wot)) = 7.78
(My) = T (cos(wot) (wot)) T (7.78)
We start our analysis ignoring the relaxation factor e~2¢, In such a case,
1o 2nS N~v2h2 By 1o 2nS N~v2h2 By wo (B2 2nS N|y|3 B2
|Uinduced| = 22 202 TV 201, = K020 TV L0y gy = K0 (1) 202 2T 50 (7.79)
4 r 4kgT 4T r 4kgT 4 \ 2 T kT

where N is the number of magnetic moments in the volume sensed by the receiver coil.

As described in Section IE the coil (serving both as transmitter and receiver coil) i 1s a part of an LC circuit, acting as a resonator.
If the capacitor Cp, wired in parallel with the coil, is tuned to the resonance frequency wO = LC, than it accumulates the energy given
by %LIQ, where [ is the current induced in the coil. On the other hand, the coil has also some resistance R, and therefore it dissipates
a part of the energy as the Joule heat. Balance of the energy accumulation and dissipation is described by the quality factor @, defined as

energy stored 1 2

Q = |wo = |w

power loss ol Rc01112 = [wol L/ Reoit (7.80)

When calculating the parallel impedance of the circuit, the resistance of the coil R¢ej can be repplaced by a parallel (shunt) resistance
of the circuit R
R = Q|wo|L (7.81)
The amplitude of the voltage actually measured across the coil terminals is

2nQS N|7|SB2

7.82
3 kT ( )

|Umeasured| Q'Ulnduced | 471‘ ( 2 )

Now, we move from the signal amplitude to the frequency spectrum and reintroduce the relaxation. We derived in Section (cf.
Eq.|3.5) that the height of a peak obtained by the Fourier transformation of a signal with an amplitude .A depends on the relaxation rate
Rs and on the acquisition time tmax as

Ymax =A

1 — e~ Ratmax 1\ 2 2nQS N|y|3B2 1 — ¢~ R2tmax

R> Tar \2 3 kpT R
From the practical point of view, it is not important how large is the detected signal (the measured voltage can be amplified or

attenuated if needed). The sensitivity of the measurement is given by the signal-to-noise ratio. Therefore, we also need to calculate the
noise in the spectrum. According to Eq. [7.76]

A
(U2.) = 4RkgTAf = 4RkBT—2w (7.84)
T

noise

As the noise voltage fluctuates stochastically, we can describe its correlation function in a similar manner as we described it for the
magnetic moment fluctuations in Sections and [2.5.5] i.e. as (Unoise(0) Unoise(t)), and calculate also the corresponding spectral density
function:

Jnoise(w) = / (Unoise(o) Unoise(t)>e_thdt- (7'85)

The inverse Fourier transformation allows us to calculate

1 7 ;
<Unoise(0) Unoise(t)> = E / Jnoise(w)elwzdw (7'86)

and by setting t =0

12446 assume that this distance is large, which is not true in NMR spectrometers, but later we include the distance in a general parameter
defining the geometry.
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(Ugoise) = (Unoise(0) Unoise(0)) = % / Jnoise(w) dw. (7.87)

When applying a band-pass ﬁlteﬁ selecting only frequencies in the range from wigw t0 Whigh = Wiow + Aw,

Wlow‘_“AW

1 7 1
<U30ise> = (Unoise(0) Unoise(0)) = o / Jnoise(w) dw = P / Jnoise(w) dw (7.88)

Wlow

because Jnoise(w) = 0 outside the limits wigw and whigh = wWiow + Aw. Comparison with Eq. where 4RkgT is frequency
independent, shows that:

Wiow +AW Wow FAwW Wow +AwW
1 1 1 1
(Uotse) = 5-4RKRTAw = ——4RkpT / dw= - / ARkpT dw = / Jnoise(w) dw (7.89)
Wow Wlow Wlow

and therefore Jheise(w) = 4RkpT. This finding helps us to evaluate how the noise enters the signal-to-noise ratio of the frequency
spectrum. The Fourier transform

tmax
Ynoise - / Unoise(t)eith dt (790)
0

is a random quantity that cannot be evaluated easily. However, its mean square can be related to Jyeise(w) if tmax is sufficiently long
(tmax > 1/Aw):

tmax tmax tmax oo

(Yioise) = / dt / (Unoise (t)Unose (t — t'))e 7 (¢t dt”z% / dt / (Unoise (1) Unoise (t — t'))e (=1 gy
0 0 0 —o0
tmax tmax
=%Jnoise(w) / dt = 2RkpT / dt = 2Rk Ttmax. (7.91)

We can use Eq.[7.81]to convert R to |wo|L/Q. Since the inductance of a solenoid is L = pon2S/l, where [ is the length of the solenoid,

Qlwo|Sn? _ Ql|v|BoSn?

R = Q|wo|L = ] 7 (7.92)
and
2Q|y|BoksT Sn’t

(YI120i56> = 1 e . (793)

We can now combine Egs. [7.83|and [7.93] and calculate the signal-to-noise ratio as

2 3p2 —
po (1)* 2nQS N|7|°Bj 1—e~ F2tmax 5/2 23/2
Signal /noise — Yhax _ 4 (2) 3 kT Ry _ Mo <§)2 /2QVeon N «’,/|u/zB()/ 1 — e~ B2(T)tmax (7.94)
V) /P TS e w\2) WP mmid

K

where Vio;1 = SI is the coil volume. The signal-to-noise ratio in the spectrum also depends on other tricks applied during signal
processing. When deriving Eq. @ we already assumed that the phase correction was applied. Another factor determining the sensitivity
of the spectrum in practice is apodization, but we ignore it now for the sake of simplicity. The actual sensitivity is also proportional to
square root of the ratio of the time of signal acquisition to the overall time of the experiment

Eq. contains many factors. The blue geometry and construction factors do not deserve much attention as they depend on the
actual instrumental setup, and can be replaced by a general parameter K. The green factors are most interesting. They show why NMR
spectroscopists like to work with high concentrations (resulting in high N), with high-y nuclei, and at high-field spectrometers. The total

13Limiting the detected range of frequencies is important. A completely random noise is present at all frequencies. Without the band-
pass filter, this infinite range of frequencies (representing theoretically an infinite noise power) would be aliased (Section [3.6) into the
spectral width given by the time increment of the digital signal.

o many experiments (but not necessarily in the one-dimensional experiment), the recycle delay (waiting for the sample to return close
to the equilibrium before the next measurement) is much longer than the actual signal acquisition.
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acquisition time (purple) and temperature (red) and are set for each experiment. We usually prefer to acquire the signal for tmax > R2 in
order to avoid truncation artifacts discussed in Section However, the noise also accumulates in time, it grows proportional to v/tmax-
Therefore, an optimum #¢max should be set (depending on Rs) and/or a well chosen apodization should be applied (Section . For
example, if our tmax is substantially longer than R> and we decide to prolong it further, we accumulate only the noise without acquiring
any additional signal. The temperature is also a factor that can be controlled easily. At the first glance, lower temperatures seem to
be beneficial. However, the dependence ofthe signal-to-noise ratio on the relaxation rate Rg introduces also additional dependence on
the temperature and, in the case of the relaxation caused by the chemical shift anisotropy, on 7Bg. The relaxation seriously reduces the
sensitivity of the detection of the magnetic moment precession in large, rigid molecules. In such molecules, the major contribution to R2
is the loss of coherence (we labeled its rate Rp in Section . As shown in Section in a large rigid spherical molecule,

1 _6D™  3kgT
Ry b2 dar3p(T)b2’

(7.95)

the water viscosity in Eq. influences 1/ R more than the linear temperature dependence of the numerator. Therefore, the temperature
dependence of sensitivity on the temperature has a maximum (interestingly close to the room temperature for medium-size proteins in
aqueous solutions).

The factor 1/b? in Eq. is equal to 1/(yBoda)? for the for chemical shift anisotropy. It suggests that the signal-to-noise ratio should
decrease with increasing Bg. However, the relaxation in most chemical groups of molecules is dominated by other mechanisms than the
chemical shift anisotropy, in particular by the dipole-dipole interactions with magnetic moments of nearby protons. As the dipole-dipole
interactions do not depend on By, a high field usually increases the signal-to-noise ratio. Nevertheless, Eq. Warns us that using a high
magnetic field does not always improves the sensitivity. For example, the relaxation due to the chemical shift anisotropy reduces sensitivity
at high fields in the case of 13C nuclei in sp? hybridization without attached protons (e.g. in carbonyl groups).

It should be stressed that when deriving Eq. we made many simplifications. We neglected the effect of the preamplifier,
resistance of the sample, and assumed that the receiver coil and sample have the same temperature. In the most sensitive NMR probes,
the motions of the electrons are suppressed by cooling the receiver coil to a very low temperature, approximately 20 K. Therefore, we have
to include the sample and coil temperature separately. If the effect of preamplifier is included, we get a bit more complex relation

When inserted to Eq.[7.94] 1/R2 may seem to change the temperature dependence to 1/T1/2. However, the temperature dependence of

3/2 _
Signal/noise = —max_ _ k0 (E)Q alelil: Lo Tl (7.96)
(v2 .y 4w \2 k> Toampte/(Teon + Toample B /R + (L + R/R)TY)  Ro(T)tnlax

where R is the resistance of the coil, R’ is the resistance induced by the sample in the coil (proportional to the conductivity and
therefore to the ionic strength of the sample), and 7" is the so called noise temperature of the ampliﬁer%

The numerical values given by Egs. [7.94] and [7.96] are of little practical use. However, it is useful to notice how sensitivity depends on
individual factors (temperature, field, magnetogyric ratio of the observed nucleus).

15 The input noise is amplified by the factor (14 T'/T)G, where G is the gain of the preamplifier.
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Lecture 8
Dipolar coupling, product operators

Literature: The product operator formalism for multi-spin systems is described in B17.4, B18§,
C2.5.1, C2.7, L15. The dipole-dipole Hamiltonian is discussed in 1.9.3. Relaxation is described in
K9, L19-L20, C5 in different manners. All texts are excellent. It is very helpful to read them all if you
really want to get an insight. However, relaxation is a difficult topic and absorbing the information
requires a lot of time.

8.1 Dipolar coupling

So far, we analyzed effects of various fields on nuclear magnetic moments, but we assumed that
individual magnetic moments are independent and their properties can be described by operators
composed of two-dimensional matrices. In this lecture, we take into account also mutual interactions
— interactions with fields generated by magnetic moments of other nuclei.

As usually, we start by the classical description of the interaction. If spin magnetic moments
of two spin-1/2 nuclei interact with each other, the magnetic moment of nucleus 1 is influenced by
the magnetic field By of the magnetic moment of nucleus 2. The analysis presented in Section m
shows that the magnetic field of nucleus 2 contributes to the magnetic field at the position of nucleus
1 as

By » 37@% —r? 3ryry  3rTs o
Byy | = 4?;5 3rgry 3ry =1 3ryr. || g2y | (8.1)
B, 3ryr, 3Ty, 37“3 —7r? 2

where r; are components of a vector describing mutual positions of the nuclei in space. A graphical
representation of the effect of B, on nucleus 1 and of its dependence on the orientation of the nuclei
(given by the orientation of the molecule) is presented in Figure The matrix in Eq. can be
viewed as a representation of the tensor of the dipolar interactions. In contrast to the chemical shift
tensor, the tensor of dipolar interactions does not have any isotropic or rhombic component.

Having the classical description of the interaction of two magnetic dipolar moments, derivation
of the quantum mechanical Hamiltonian is easy, as shown in Section [8.9.1 The result of Eq. 8.1]is
inserted into the general relation £p = — /iy - ég, the magnetic moments are expressed by the angular
momenta (ji; = 71[_:1, o = 7212), and the energy and angular momentum components are replaced
by the corresponding operators. The result is
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Figure 8.1: A, Classical description of the interaction of a spin magnetic moment of the observed nucleus (shown
in cyan) with a spin magnetic moment of another nucleus (shown in green). The thick purple arrow represents EO,
the thin green induction lines represent the magnetic field B, of the green nucleus (the small green arrows indicate its
direction). The black line represents the internuclear vector 7. As the molecule rotates, the cyan nucleus moves from
a position where the field of the spin magnetic moment of the green nucleus Bs has the opposite direction than Bo
(A), through a position where B, is perpendicular to BO (B), to the position where Bg has the same direction as BO

().

A 3r2—r? 3ryr,  3rer, I,
HD = Mzﬁhzz (le [1y Ilz) 3TxTy 37“3 — T2 37’y7"z I2y
" 3o S 3i2o 0t )\,

- _4%13 <(3T“2” B rz)fleh + (37“5 - TQ)flijy + (37”2 - r2)f1zf2z+

3rxryf1mf2y + 3r,r,Lipds. + 3ryrzf1yf22 + 3ryrxf1yf2x +3r,rp Iy + 3rzryflzf2y) . (8.2)

After defining the Hamiltonian of the dipole-dipole interaction, we can ask how is the total
Hamiltonian representing the energy of the magnetic moment pairs influenced by the dipolar coupling.
In the absence of radio Waves !l the energy of the magnetic moment pairs depends on Bo, on the
chemical shifts §; and d, of the coupled nuclei, and on the dipolar coupling. The corresponding
Hamiltonian consists of the isotropic component Hy, and of an anisotropic part including axial
and rhombic components of the chemical shift Hamiltonian and of the Hamiltonian representing
the dipolar coupling, Hp. The complete Hamiltonian Hp described by Eq. is rather complex.
However, it can be often greatly simplified, as discussed in Section [8.9.2l The secular approximation
depends on whether the precession frequencies of the interacting magnetic moments are identical or
different. In the former case, Hp simplifies to

i - Mo 3(cos? ) — 1
b 473 2

(2j1zj2z - jlzj2m - jlyj2y> 9 (83)

'We assume that the field of the irradiating radio waves is much stronger than the dipolar interactions of nuclear
magnetic moments. Therefore, we neglect the effect of the dipolar coupling during the short radio wave pulses.
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in the latter case, to

5 pov1v2 3{cos®d) — 1 ( R )
Hp=-— 201,15, ). A4

As derived in Section M, Hp depends on the orientation of the molecule like the anisotropic
component of the chemical shift. It implies that whole Hp averages to zero in isotropic liquids

(Section [8.9.2)).

The Hamiltonian representing the energy of an ensemble of pairs of directly interacting spin

dipolar magnetic moments in By reduces in isotropic liquids to

H = =y Bo(1 + 6i1)11. = 72 Bo(1 + i2) .. (8.5)

The simplified Eq. is valid only in isotropic liquids and does not describe relaxation processes.
The effect of Hp is huge in solid state NMR and can be also be measured e.g. in liquid crystals or
mechanically stretched gels. Last but not least, dipole-dipole interactions result in strong relaxation
effects, discussed in Section [8.7]

8.2 Quantum states of magnetic moment pairs

We know how to construct the Hamiltonian of the dipole-dipole interactions from the operators
le, Ily, [13, ng, Izy, IQZ, but we still did not describe the explicit forms of these operators or of the
wave function the Hamiltonian acts on. To fill this gap in our knowledge, we look for a vector
representing the wave function of coupled magnetic moments. Although we are concerned with
direct dipole-dipole interactions in this Lecture, we try to formulate our conclusions so that they
apply to various couplings of nuclear magnetic moments in general.

We first describe a quantum state of a pair of non-interacting spin-1/2 nuclei. The wave function
W of such a pair of particles can be decomposed into the spin-part and a part dependent on the other
degrees of freedom (spatial coordinates of the nuclei). The spin part can be further separated into a
product of wave functions dependent on the spin degrees of freedom of the individual nuclei:

U = wnon-spin(gjla Y1, z1, T2, Y2, ZQ) : wspin(ca,la ca,Q) = wnon-spin : wl,spin : wZ,spin' (86)
Writing explicitly first 11 gpin
U — 1/} L Ca,1 . 1/}2 o 1/} L Ca,le,spin (8 7)
non-spin o1 ,spin non-spin Cﬁ,le,spin
and. then 1
Ca,2 Ca,1Ca,2 Caa
Cont €2 Ca1C c
) 1 2 _
U = wnon-spin : . Co = wnon-spin : 02:1052 = wnon-spin : C;j ) (88)
o Cp1C8,2 Cap
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we obtain a four-component wave function built as a direct productﬂ (or Kronecker product) of
two-component wave functions (state vectors) of single spin magnetic moments:

Cail (Ca,z) Ca,1Ca,2 Caa
O 1) B B B Bl R P 89)
€31 Cg,2 Ca,2 C3,1Ca,2 CBa
cba (%,2) Cp,1C5,2 Cop
A detailed analysis of the four-component wavefunction is presented in Section m (for non-
interacting and interacting magnetic moments). Here, we only summarize the results of the analysis.
In the eigenequation, ¢nonspin 1S canceled out (see Section . The introduced four-component
function is written in a basis of vectors that are simultaneous elgenfuctlons of the angular momentum
operators [1,[2,[12,[2Z If the magnetic moments are independent, [ = 122, Ilz = [22, and the
palr can be described in a two-component basis of the elgenfunctlons of I = Ilz = IQz (and of
2= 112 = _722), as described in Section
If the magnetic moments of the pair interact, they cannot be described in the two-component
basis of independent spin magnetic moments. The state of the first spin depends on the state of
the second spin. Therefore, the probability density matrix describing a large ensemble of pairs that
interact mutually, but are isolated from other pairs, must be four-dimensional, built from coefficients
of the wave function in Eq. 8.8 In other words, we can use the mixed-state approach, but we must
describe the pair of the interacting magnetic moments and its four states as one entity. Furthermore,
the Hamiltonian of dipolar interactions (Eq. is built from operators representing products of
individual components of the interacting magnetic moments. Let us now look for a basis that fulfils
these requirements.

8.3 Product operators

The wave function (state vector) describing a single interacting pair of magnetic moments is four-
dimensional. Therefore, the density matrix that describes an ensemble of such interacting pairs, and
consists of averaged combinations of the elements of the four-dimensional state vector, is a 4 x 4
matrix

* >k
CaaCha CaaChp CaaCha Caalhp

CapBCha Caﬁcz,ﬁ Caﬁcfaa Caﬁczﬁ (8 10)
CBaCha CAaChp CBaChy CaChp
CBRCha CBBChs CBACHn CBBCHS

>
I

2Dire§t product A ® B is a mathematical operation when each element of the matrix Ais multiplied by the whole
matrix B:

Bu By Bui Bz An By AnBia ApaBir ApByo
Aul g, B Ao g, B
A®B = A A (Bll Bl?) _ 21 222 21 D22 _ | AuBa1 AuBay A1aBoy A1sBo
Ag1 Az Ba1 B A, (BB , (Bu B A21B11 A21Bia A2eBii Az Bis
21\ By Bao Bay Bao A21Ba1 A21Bas AzaBo1 A2z B
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A basis used for such density matrices and for operators acting on the four-dimensional wave
function must consist of 42 = 16 matricesﬁ The four-dimensional wave function (state vector)
describing the interacting pair of magnetic moments was constructed as a direct product of two-
dimensional single-spin state vectors. Not surprisinglyﬁ the basis of the 4 x 4 matrices can be built
from direct products of 2 x 2 basis matrices used for spins without mutual interactions. For example,
Cartesian single-spin operators can be used to create a basis for two spins (see Tables and
using the following direct products of normalized basis matrices:

(

2

A

f”) & <\/§ %@)) _

I0) @ (V272 = 71 8.12
S 7)) = 71 8.13
I I = 71 8.14

RS Y
= = =
e = =

[
~

[
~—

= =
N2 N2

=
N

NQ/Q\ @%\ @Q/Q\ @Q%\ HQS\ &S§\ HQ%\
¥ ® & 8 & ® & ® & ® & ®& ©

N T N S N N NS NS NS NS NS NS N, N N, N
=

P N e e e e e e e e e N e e

N ST N T NS N NS NS NS NS NS NS NS NS N,

RERERREERERERERRERREE

)

—
S
~—
®
—

where the numbers in parentheses specify which nuclei constitute the spin system described by
the given matrix (these numbers are not written in practice). The matrices on the right-hand side

3In general, the density matrix for n states is a n x n matrix. Basis used for such density matrices must consist of
4™ matrices.

4The relation between the construction of the state vectors and of operators acting on them is described by the
group theory. It follows from the analysis of the rotation of the state vectors and operators acting on them that the
coupling between the state vectors and between the operators is the same.
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are known as product operators. Note that 2.%;, equal t 1, is not written in the product operators
for the sake of simplicity. Note also that e.g. I and 22 are the same 2 X 2 matrices, but ﬂl(f)
and f;f) are different 4 x 4 matrices. Basis matrices for more nuclei are derived in the same manner,
a more detailed discussion is presented in Section [12.4.5

The basis presented in Egs. [8.11H8.26| represents one of many possible choices. Other choices are
presented in Section [8.9.4]

8.4 Density matrix of a two-spin system

The introduced formal description of the density matrix would be useless if we did not understand
its physical significance. Interpretation of the 4 x 4 density matrix requires more care than the
interpretation of its two-dimensional version. In general, the density matrix p is a linear combination
of 16 basis matrices %; (the actual forms of %; depend on the chosen basis):

16
7j=1

Each basis matrix #; describes one feature of the mixed state (e.g., longitudinal polarization of
the first magnetic moment) and the coefficients C; specify how much the given feature contributes
to the mixed state. Below, we interpret the individual matrices of a commonly used Cartesian
basis. Although we discuss direct dipole-dipole interaction in this Lecture, the interpretation of the
Cartesian matrices is general and applicable to other interactions between the magnetic moments.
The description of the matrices is also summarized in Tables and

The Cartesian basis contains four diagonal matrices. Like in the two-dimensional case, the di-
agonal elements of p and diagonal matrices describe the longitudinal polarization of the magnetic
moments. The sum of the diagonal elements is equal to one, like in the two-dimensional density ma-
trix. Therefore, we have three independent populations. Two of them, corresponding to contributions
of matrices labeled .#;, and .%,,, describe separately longitudinal magnetic moment polarization of
nuclei 1 and 2, respectively. Contribution of the third diagonal matrix, 2.%,,.%,., describes correlation
between g1, and ps., how much the longitudinal polarization of fi; is influenced by the longitudinal
polarization of jiy, and vice versa.

Twelve off-diagonal elements or matrices composed of them are called coherences. Only six off-
diagonal elements are independent because each element below the diagonal has its complex conjugate
above the diagonal. Note, however, that coherences are complex quantities. The six independent
off-diagonal elements thus represent twelve real numbers. Therefore, none of twelve purely real or
purely imaginary matrices in Table is redundant. The coherences corresponding to contributions
of matrices .71, and %, respectively, describe the transverse polarization in the direction x of mag-
netic moments of nuclei 1 and 2, regardless of the state of the other nucleus. Contributions of .#;,
and %, describe transverse polarization in the direction y in the same manner. A contribution of
29,9, describes how the transverse polarization of fi; in the = direction depends on the longi-
tudinal polarization of ji;. The dependence of the transverse polarization of fiy in the z direction

51 is a 2 x 2 unit matrix in the case of ft(l) or ﬂt@), and a 4 x 4 unit matrix in the case of ft(l).
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Table 8.1: Contributions to the two-spin density matrix describing the uniform distribution and longitudinal po-
larizations of spin magnetic moments ji; and fs. In the graphical representation, the left and right distribution
corresponds to of superimposed ji; and jis, respectively. The uniform distribution is shown in black. In order to visu-
alize the correlation of the longitudinal polarization, the following color-coding is used. In the case of the longitudinal
polarization of fi;, magnetic moments of nucleus 1 in 10 % molecules with most polarized fi; are shown in cyan, and
magnetic moments of nucleus 2 in the same molecules are shown in green. In the case of the longitudinal polarization
of fiz, magnetic moments of nucleus 2 in 10 % molecules with most polarized fis are shown in green, and magnetic
moments of nucleus 1 in the same molecules are shown in cyan. The chosen distributions of orientation symbolize
the trend of the polarization represented by the given matrix, the depicted degree of polarization is lower than the
degree corresponding to the actual matrices: basis matrices describe either no polarization (the uniform distribution
of orientations) or complete polarization (identical orientations, i.e., a single arrow in the plot).
Matrix graph description
+1 0 0 0 " N
0+1 0 O

0 0+1 O
0 0 0+1

Iy =

no polarization of fi1 or fiz

N

+1 0 0 O

0O+1 0 O

. = longitudinal polarization of ji; regardless of jiz

ol
o
o

I
—_
o

Sy = longitudinal polarization of fiz regardless of ji1

N
OO O

291, Iy, = 1 correlation of longitudinal polarizations of i1 and fi2

|
o
o

|
—_
o

on the longitudinal polarization of ji; is given by the contribution 2.%,.%,,. The same applies to
2591y Is,,2.91,. 99, and to direction y. Finally, contributions of 2.%1,.%,, 2.%,%,, 2%1,%,, and
271,95, describe mutual correlation of transverse polarizations of /i, and fis.

8.5 Commutators of product operators

The Liouville-von Neumann equation can be written for coupled magnetic moments in the same form
as for spins without mutual interactions (Eq. [6.8)):
dp .. N ara . .

a = l(p% - %p) = 1[p7 %] = _1[%7 p]a (828)

but the density matrix and the Hamiltonian are nowlﬂ 4 x 4 matrices. Also Egs. and can
be generalized to the product operators. The same simple geometric solution of the Liouville-von
Neumann equation is possible if the Hamiltonian does not vary in time and consists of commuting
matrices only. However, the operator space is now 16-dimensional. Therefore, the appropriate
three-dimensional subspace must be selected for each rotation. The subspaces are defined by the

In general, Eq. is valid for n x n matrices describing ensembles of n mutually interacting nuclei.
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Table 8.2: Contributions to the two-spin density matrix describing coherences (see Table for color coding).

description

]lac

2ﬂlz<ﬂ22

Sy

2]13;«]22

jQw

2j1zj2w

F2y

2j1zj2y

2j11=/¢2z

Zﬂlngy

2910 Iy

291y I

Matrix
0 041 O
1 0 0 0+1
2141 0 0 O
0+1 0 O
0 0+1 O
1 0 0 0-1
2141 0 0 O
0—-1 0 O
0 0—-1 0
i 0 0 0-1
2141 0 0 O
0O+1 0 O
0 0—-1 0
i 0 0 0+1
2141 0 0 O
0—-1 0 O
0O+1 0 O
1|+ 0 0 O
2 0 0 0+1
0 041 O
0O+1 0 O
1|+l 0 0 O
2 0 0 0-1
0 0—-1 0
0—-1 0 O
i+l 0 0 O
2 0 0 0-1
0 0+1 O
0—-1 0 O
i+l 0 0 O
2 0 0 0+1
0 0-1 0
0 0 0+1
1 0 041 O
2 0+1 0 O
+1 0 0 O
0 0 0-1
1 0 041 O
2 0+1 0 O
-1 0 0 O
0 0 0-1
i 0 041 O
2 0—-1 0 O
+1 0 0 O
0 0 0-1
i 0 0-1 0
2 0O+1 0 O

+1 0 0 O

transverse polarization of fi; in direction z, regardless of fia

correlation between transverse polarization of [ in direction z
and longitudinal polarization of [is

transverse polarization of fi; in direction y, regardless of fia

correlation between transverse polarization of fi1 in direction y
and longitudinal polarization of jiz

transverse polarization of fi2 in direction z, regardless of (i1

correlation between transverse polarization of fi2 in direction x
and longitudinal polarization of ji;

transverse polarization of fiz in direction y, regardless of fi1

correlation between transverse polarization of [z in direction y
and longitudinal polarization of ji;

correlation between transverse polarization of fi1 and [is
in direction x

correlation between transverse polarization of fi1 and [is
in direction y

correlation between transverse polarization of fi1 in direction z
and transverse polarization of [z in direction y

correlation between transverse polarization of fi1 in direction y
and transverse polarization of [z in direction =
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commutation relations derived in Section The relations (applicable to any set of n? operators
of spin systems consisting of n spin-1/2 nuclei) are described by the following equations:

[fnccy lﬂny] = 1jnz [jnya jnz} = lfn:c [jnza tﬂnac] = ljny (829)
[ Injs 2Tk Inn) = 2] I, k| Inn (8.30)
[anjjn’la ankjn’m] - [jnja fnk]élm + [jn’h <ﬂn’m]éjkza (831)

where n and n’ specify the nucleus, j, k,I,m € {z,y,2}, and é;; = 1 for j = k and J;;, = 0 for
j # k. Since the dipolar interactions do not have coherent effects in isotropic liquids, we postpone
the discussion of the rotations in the product operator space to Section where we discuss
interactions that are not averaged to zero in isotropic samples.

8.6 Operator of the observed quantity for more nuclei

In order to describe the observed signal for a system of n different nuclei, Eq. defining the
operator of complex magnetization, must be slightly modified

My = Ny(lng +ily) = > Nyaloy, (8.32)

where the index n distinguishes different types of nuclei. In the case of the magnetic moment
pairs discussed in this Lecture, n = 2.

8.7 Dipolar relaxation

As mentioned above, dipole-dipole interactions do not have coherent effects (do not influence the
measured values of precession frequencies) in isotropic liquids. On the other hand, the dipole-dipole
interactions represent a very important source of relaxation.

Rotation of the molecule (and internal motions) change the orientation of the inter-nuclear vector
and cause fluctuations of the field of the magnetic moment jis sensed by the magnetic moment fi;.
It leads to the loss of the coherence in the same manner as described for the anisotropic part of
the chemical shift (cf. Eqs and [8.56). However, the relaxation effects of the dipole-dipole
interactions are more complex, reflecting the higher complexity of the Hamiltonian of the dipolar
coupling. A detailed analysis is presented in Section[8.9.6] The analysis shows how molecular motions
determine constants Ra1, Ra2, Rx, R21, and Ry, in the following relaxation equations:
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B0 _ _paaon) - RARL), (8.33)
% = _Ra2A<M2z> - RXA<M1Z>7 (834)
d<]§t1+> = — Ry (M), (8.35)
A{My)
T —Roo(Msy). (8.36)

The values of the relaxation rates and their dependence are discussed in Section [8.9.7] Here we
mention only two features that directly affect the experiment described in the next Lecture.

o Egs. [8.33] and R.34] reveal an important feature of the relaxation due to the dipole-dipole
interactions. Return to the equilibrium polarization of nucleus 1 depends also on the actual
polarization of nucleus 2. This effect, resembling chemical kinetics of a reversible reaction, is
known as the cross-relazation, or the nuclear Overhauser effect (NOE), and is described by
the cross-relazation constant R.. The value of Ry is proportional to r~® and thus provides
information about inter-atomic distances. NOE is a useful tool in analysis of small molecules
and the most important source of structural information for large biological molecules.

e Egs. [8.35 and have a similar form as those describing the transverse relaxation due to
the chemical shift anisotropy (Section . In real samples, contributions to the relaxation
due to the chemical shift anisotropy and due to the dipole-dipole interactions (often with
several spin magnetic moments close in space) are combined. The constants R; and Ry (and
other) are therefore sums of the relaxation rate constants described here and in Section [7.7]
At moderate By fields (up to 15-20T, depending on the molecule), the relaxation of 'H in
unlabeled molecules and of 3C and N in CH,, and NH,, groups of *C/*N labeled molecules
is usually dominated by dipole-dipole interactions with protons.

8.8 Thermal equilibrium with dipolar coupling

As shown in Section m, if we neglect the chemical shifts (6;; < 1,82 < 1), the density matrix
describing two different nuclei coupled only through dipolar interactions is

sy o : )
5 = 0 arEE-EE 0 ! (8.37)
0 0 1~ St T ST 0
! ! o
1000 +1 0 0 O +1 0 0 O
_ 1 0100 n Y1 Boh ( 0+1 0 O Yo Boh 0—-1 0 O (8.38)
410010 8kpT 0 0-—-1 O 8kpT 0O 041 O
0001 0 0 0-1 0 0 0-1
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== % (cﬂt + Iilflz + Iigﬂgz) 5 (839)
where
")/jBoh
= 20 (5.40)
HOMEWORK

To prepare for the next lecture, analyze evolution of the density matrix described in Section (9.2
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8.9 SUPPORTING INFORMATION

8.9.1 Tensor and Hamiltonian of dipolar coupling

As shown in Section , magnetic induction can be expressed as a curl (rotation) of the vector potential (E =V x A). Therefore, the
magnetic induction of the field of nucleus Bsg is given by the classical electrodynamics as

By =V x Ay, (8.41)

- o 9 0
V=(—,—,— | . 8.42
<8x’8y78z> ( )

Let us assume (classically) that the source of the magnetic moment of nucleus 2 is a current loop. It can be derived from Maxwell
equation that the vector potential As in a distance much larger than radius of the loop is

where

Bo iz X T
2

Ay =
2T 4 o3

(8.43)

where 7 is a vector defining the mutual position of nuclei 1 and 2 (inter-nuclear vector). The individual components of Ay are

_ Mo T2 Ty

Az = i (H2y73 - #2z73> ) (8.44)
_ Mo Tx Tz

Ay = I <N2zﬁ — K2z rj) , (8.45)
_ Ko Ty Tx

A2,z = E (MQ:EE — szﬁ) . (8.46)

Calculation of Bg thus includes two vector products

- - o X T
By = HOg « H2 2T

yymi 3 (8.47)
As a consequence, each component of B depends on all components of fia:
wo [ O0Asz . BAgy) ,u0< ( 0 1y 0 rz) 0 1z 0 rz)
Byp=—|—2——2|==— ——+ ——= | - —_— - — ], 8.48
2@ 47 ( Ory or. 47 H2z Ory r3  Oryr3d H2y ry r3 Hz= or, r3 ( )
o [(OA2 BAQZ) MO( ( 0 7. 15) rw) 0 Ty 1s] ry)
Byy="—|—>—-—2|==— — =+ — =) - —= — — ), 8.49
2V T 4 ( or, Ory ar \M Or, r3  Org r3 Hz= or, r3 H2e Ory 13 ( )
o [ OAzy 8A2x) MO( ( 0 7z 0 Ty) 0 7, 0 rz)
S e e - 2y T ) gy 2 — gy —— ). 8.50
2, 47 ( org Ory A 2= Orgy 3 Ory r3 H2z Org r3 Hzy Ory r3 ( )
To proceed, we have to evaluate the partial derivatives ai % and Oi Tk
T] T T] T
o ry 0 T _ 9 T _ Lo gre2n 1 3] (8.51)
Orjrd  Or; ( [r2 412 412 )3 s (r2 4 r2 +r2)*/? e s
0 i o Tk 1o} Tk 0-73— Tk - %7' - 2r; 3rjrk (8 52)
kR _ 7 - — = =— .
orj r3  Or; ( /r% +r2 +r§> or; (r2+12 _,_7,2)3/2 r6 rd
After inserting the partial derivatives from Egs. and to Egs. 8.50)
B _ ko 2 2
20 = 3 ((8rz — 1) oz + 3rarypoy + 3rerzp2z) (8:53)
By y = 4’;%(3”@#235 + (37“5 — 1) gy + 3ryrapzs) (8.54)
By, = 4’;25 (3rarzpor + 3ryrapoy + (3r§ — TQ)MQZ), (8.55)

"The derivation is presented in The Feynman Lectures on Physics, Vol. 2, Chapter 14 (the general description is presented in Section 14.2.
and the current loop is discussed in Section 14.5), using an analogy with the description of the electric dipole in Section 14.3. of Vol. 2.
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which can by described by a matrix equation

B, 4o STQ% —r2 3reTy 3rzTz Mo
By | = o 3rery 37‘5 — 72 3ryrs | w2y |- (8.56)
B . mr 3reTs 3ryTs 37‘2 —r2 H2z

The matrix in Eq. represents a tensor describing the geometric relations of the dipolar coupling and has the same form as the
matrix in Eq. [[109] describing the anisotropic contribution to the chemical shift tensor: the vector defining the symmetry axis of the
chemical shift tensor Z is just replaced with the inter-nuclear vector 7 in Eq. Like the anisotropic part of the chemical shift tensor,
the matrix in Eq. simplifies to

-1 00

4“03 0-10 (8.57)
o 0 02

in a coordinate system with axis z || 7. Rotation to the laboratory frame is described by angles ¢ and ¢ defining orientation of 7 in
the laboratory frame

-1 00 37"32; —r2 3rgry 3reTs
0-10] — 3 3rery  3r2 —r? 32ryrz2 , (8.58)
0 02 3rers S’f'y’f'z 31“2 -

where r; = rsind cos ¢, 1y = rsindsing, and r, = rcos¥.
As usually, Hamiltonian of the dipolar coupling can be obtained using the classical description of the energy. Classical electrodynamics

tells us that the energy of the interaction of the magnetic moment of nucleus 1 with the field generated by the magnetic moment of nucleus
2, described by Eq. @ is

B, _ _ Mo (
4mr3

(3r2 — r?)piapoe + (3ry — 17 p1ypay + (3r2 — r?)p1zpo-+

+ 3Tz7'y/»lflz:u2y + 3T17‘zﬂlzﬂ2z + 3"'y"'z#lyﬂ2z
+ 3ryropiypos + 3raTapizpos + 3TaTy 1z H2y) - (8.59)

Describing the magnetic moments by the operators ﬂlj’Ylflj and ﬂg’j’ylfgyj, where j is z, y, and z, the Hamiltonian of dipolar coupling
ﬁD can be written as

HD = 74Z23 ( (37‘3 — T2)f195f295 —+ (37“5 — T2)f1yi2y -+ (31”3 — T2)i1zf22+

+ 3rzryflacf2y + 3rzrzf1wf22 + 3ryrzflyf22

+ 37'y7‘zf1yf2x + 3Tz7'zf1zj2x + 3Tz7'yj1zf2y)

37":20 — 'f‘2 37'@""1’/ 3rers i2x N ~
- _MZ%?'(EZ hy Ir2) rory 3ry —r? Bryr. 1i2y =L DI (8.60)
wr 3rer.  3ryr. 3r2 —r2 Is,

where D is the tensor of direct dipole-dipole interactions (dipolar coupling).
The Hamiltonian can be written in spherical coordinates as

HD = —% ((?)Sin2 ¥ cos? - 1)IAMIA2“c + (351n2 9 sin? - l)flyfgy + (30052 ¥ — 1)f1zf22+
r
+ 3sin? ¥ sin ¢ cos gafufzy + 3sin ¥ cos ¥ cos Lpflzfgz + 3sin19005198in<pf1yf22

+ 3sin? ¥ sin @ cos (,Djlnyx + 3sin ¥ cos ¥ cos t,oflzfgx + 3sinﬁcosﬁsin<pf1zf2y> . (8.61)

8.9.2 Secular approximation and averaging of dipolar Hamiltonian

Like the chemical-shift Hamiltonian, the Hamiltonian of dipolar coupling can be simplified in many cases.
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e Magnetic moments with the same v and chemical shift precess about the z axis with the same precession frequency. In addition
to the precession, the magnetic moments move with random molecular motions, described by re-orientation of 7. In a coordinate
system rotating with the common precession frequency, 7 quickly rotates about the z axis in addition to the random molecular
motions. On a time scale longer than nanoseconds, the rapid oscillations of 7z, ry, and r, are neglected (secular approximation).
The values of r2 and 7‘32/ do not oscillate about zero, but about a value (r2) = (rﬁ), which is equal td°| (r2 — (r2))/2 because

(r2 + rf/ +72) = (r2) = r2. Therefore, the secular approximation (i.e., neglecting the oscillations and keeping the average values)

simplifies the Hamiltonian to

A HOY172 - 1. = 1. = poy1y2 3(cos?9) —1 /. - PN .
Hp = 7? (3(7‘5) — 7‘2) (Ilz12z — 5]11121 — 511y12y> = — rp— 2 (211z12z — Iz loy — 11y12y> . (8.62)

e Magnetic moments with different v and/or chemical shift precess with different precession frequencies. Therefore, the = and y
components of fiz rapidly oscillate in a frame rotating with the precession frequency of ii; and vice versa. When neglecting the
oscillating terms (secular approximation), the Hamiltonian reduces to

N Home 2 o s o+ poviye 3{cos?Py —1_. .
Hp = ~ s (3(r2) = r?) I1zdz. = — g 3 262125, (8.63)

e Averaging over all molecules in isotropic liquids has the same effect as described for the anisotropic part of the chemical shielding
tensor because both tensors have the same form. Terms with different coordinates average to zero because they contain products
of sine and cosine functions of 29, ¢ and 2¢. As the angles ¥ and ¢ are independent, their functions average independently. And
as 20 and ¢ can have in isotropic liquids any value in the interval (0,27) with equal probability, the averages of their sine and
cosine functions are equal to zero

e — 1
TaTy = 3sin? ¥sinpcosp = g(l — cos(29)) - 3 sin(2¢) = Zsin(&p) - ZCOS(Z'{?) -sin(2¢) =0—-0-0=0, (8.64)
e mm g _ 3. 3o
TzTz = 3sin?d cos ¥ cos p = 5(51n(219)) -cosp = Zsm(219) -cosg=0-0=0, (8.65)
_ o . a.__ a_ - _ 3 . . 3.7 —
TyTz = 3sindcosVsinp = 5(811}(219)) -singp = 25111(219) -sinp =0-0=0. (8.66)

The terms with the same coordinates are identical because no direction is preferred:

2 =172 =712 (8.67)

Finally,

Ti+ri+7‘§:r2:$r£+7‘5+r§:3r]2-:7"2é3r]2-—7"2:0. (8.68)

8.9.3 Interacting and non-interacting magnetic moments

We have decomposed a wave function of a pair of magnetic moments to (Eq. [8.8)

Col (‘3%2 ) Ca,1Ca,2 Caa
T \%s2 c
«,1C38,2 | — Ca
U= 'Lpnon—spin : = 'Lpnon—spin : 178, = 'Lpnon—spin : A s (869)
C C, C
Ca,2 B,1Ca,2 Ba
B\ gy €3,1C8,2 cap

What tells us if we can describe the state of the individual magnetic moments in the two-dimensional basis |a), |3)? We inspect
eigenfunctions and eigenvalues of the Hamiltonian including the influence of Eo, chemical shifts, and dipolar coupling, in the secular
approximation:

poy1y2 3{cos?d) — 1

H = —y1Bo(1+8 1)1 —v2Bo(1 4 8 2)la, — -
473 2

(2jlzj2z - jlijx - jlnyy)

=wo,1l1; +woele, +D (Qflzfzz — hados — flyfzy) (8.70)

8Note that (r2y = (rZ) # (r2) in general.
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If the magnetic moments are too distant to interact mutually (r — co = D — 0), the Hamiltonian simplifies to a sum of two operators

acting separately on each magnetic moment
H =wo1l1z +wo 212 (8.71)
As discussed in Section the action of such Hamiltonian can be described by two independent eigenequations
wo, 111, = 5(D1)1/1<1> wo,2l2:9? = 5532)1#(2)~ (8.72)

Since I1, and Iy, are represented by diagonal matrices, the eigenfunctions for a pair of magnetic moments can be found immediately:

100 0 1(%72) 1<Ca,2) 1000 CM(l) Cal(l)
woih [01 0 0 | 6.2/ | _ woih .2 wo2h [ 0-10 0 ~\0 _ wosh | 0
2 00-1 0 o o 2 o o 2 0010 . 1 2 . 1
00 0 —1 ch2 o 00 0-1 5.1 { o 5.1 ( o
000 (o)) o) 900 (<)) (=20
woih |01 0 0 | g2 _ wouh g2 woeh [ 0-10 0 Tl _ wozh Tl
2 00-10 L[ Caz - 2 e 2 0010 0 - 2 0 ’
000 —1 o o 00 0-1 g gl g

or, using direct products,

2t (5 0) e (69)) ((0) = (c22)) =+ (3) e (222)
®(EZ§>> = -5 ((1))@’(5;22)7 (8.74)

wo,1 10 1 1 ’lﬁ(2)
2 0 -1 0 2 0
wo,1h (1 0 0 (2 _ wo,1h (0 (2)
9 (0_1) 1)V =) (8.75)
woih (1 0 (1 _+w0,1h 1
2 0 -1 0/ 2 0
wo,1h (1 0 0\  wo1h (0
2 (05)- () =7 (1) 70

for the first magnetic moment, and
wo,2hi (/10 10 Ca,1 1 _ ,wo,2h (ean 1
0D (0 5))((5) =)=+ (51) = (o
wo,2h 10 10 Ca,l 0 _wo2h (can 0
01 (0 5)) (5 () =5 (22) = (1) &)

wo2h (1 0 1\ ) _  wo2h (1Y (1)
2 (0_1)~(0)w 5 o)?
wo2h (1 0 0 1) _ _UJO,2h 0 (1)
22 (5 %) (9) 20 () 40, (8.78)
wo2h (1 0\ (1 _+w0,2h 1
2 0 -1 0/ 2 0
wo,2h (1 0 0\  woz2h (0
(0 0) (1) =57 (0) @

for the second magnetic moment.

We see that the eigenfunctions of Eq. are (é) and (?) for any (@ = (22’2 ), and that the eigenfunctions of Eq. are
)2

also ((1)) and ((1)) for any (1) = (z‘;’l ) The energy differences, given by the differences of the eigenvalues, are wo 17 and wo,2h. As
1
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Eq. does not depend on w<2) and Eq. does not depend on w(l) , the original set of four equations, represented by the 4-dimensional
matrices, was redundant. If the nuclei are identical, the left and right equations can be replaced by a single equation with wg,1 = wo,2 = wo
(cf. treatment of indistinguishable nuclei in Section . Such case is equivalent to the mixed state described by the 2 x 2 density matrix
in Section [6.]]

If the magnetic moments interact (D # 0) and the Hamiltonian cannot be simplified to Eq. we have to work with four-dimensional
matrices and state vectors. The Hamiltonian then has the following matrix representation

“oitves 4 D 0 0 0
R 0 w0,1—w0,2 _ D _D 0
H=n 2 2 - 8.80
0 -D e 0 (8:80)
w,1+wo,2 D
0 0 0 —0ten2 4 D

If wo,1 and wo,2 differ substantially, the secular approximation allows us to neglect also the 7f1rf2r — flyfgy terms and to obtain a
diagonal Hamiltonian matrix

wo,l-;uo,z + % 0 0 0
R 0 wo,1—wo0,2 _ D 0 0
H=h 0 2 0 2 _WOJ;ng N % 0 (8.81)
0 0 0 _w0,1+2-w0,2 +%
with four-dimensional eigenvectors
1 0 0 0
0 1 0 0
0]’ 01’ 1] 0 (8.82)
0 0 0 1

If wo,1 and wp 2 are similar, the off-diagonal elements warn us that the vectors listed above (direct products of |a) and |3)) are no
longer eigenfunctions of the Hamiltonian in Eq8.81] Note that the analysis presented in this Lecture and in the following Lectures cannot
be applied to such spin systems. We return to the interacting magnetic moments with very similar wp,1 and wop,2 in the end of our course

(Section [12.2)).

8.9.4 Product operator bases

The basis presented in Tables and @ is used most frequently in NMR spectroscopy, but other choices are better suited for certain
applications. Here, we briefly review several commonly used orthonormal bases of two-spin systems and comment their advantages.

e Cartesian product operator basis is presented in Tables [8.1] and and in a condensed version in Table [8.3] The basis matrices
are written as 2.,;.%,/, where n and n’ specify the nucleus and j, k € {z,y,z,t}, but the unit matrix 2.%,; is usually not
written in the product. As discussed in Section the Cartesian product operator basis is well suited to describe contributions
(populations and coherences) to the probability density matrix p. Also, certain matrices after multiplication by appropriate physical
constants represent operators of components of spin angular momentum, magnetic moment, and consequently constituents of various
Hamiltonians.

o Coefficients C; describing contributions of single-element product operator basis to the density matrix (Table are equal to
individual elements of the density matrix. The basis matrices are written as .#1; %5 = Jj(l) ® Jk(2), where 1 and 2 specify the
nucleus and j,k € {«, 8,4, —}. The relationship between Cartesian and single-element product operator bases is given by Egs.
and applied to each Jj(n) matrix in the product:

R A N U e 7 U A A WAL (8.83)

m _Lam s Jn) _ 1 pm) _ pm) m _Lam g m _Lam sm
A 75(& +sM) A = §(f+ sy fi(ﬂa M) —5(% +.7M) (8.84)
e Shift product operator basis, presented in Table can be viewed as a combination of the previous two choices. The basis matrices
are direct products of the normalized matrices f+n), fin), ﬁ]z(n), and ﬁft(n). The shift product operators directly reflect the

coherence between spin states. The value of j+k in %, ;.7 distinguishes single-quantum (j+k = %1), zero-quantum (j+k = 0),
and double-quantum (j + k = £2) coherences.

e [rreducible spherical tensor operators, presented in Table are useful when rotation (of molecules, chemical groups) needs to be
taken into account (e.g., when analyzing stochastic motions resulting in relaxation).
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10
A =

(10) _
S0 =

0 _

1,41 —

02
FER

02
7 =
S02) _

1,41

(00) _
S0 =

1
ﬁ(jlz —ify) = S

L
V2

’ﬁll = =ﬁ10
1
_ﬁ(jlz +iSy) = -S4
1 .
5 —iIm) = o
S22 = F20

(So2z +1I2y) = — Iyt

(A1-Iay + I10520 + 14 I2-)

——=(S1-I20 — J1052-)

——(S14I20 — F10I2+)

(J1-SIoy — 2510520 + 14+ I2-)

(F14+I20 + F1052+)

2 1
<ﬁ0(7102) — 7%(,ﬁ1x=ﬂ2x + t71y<ﬁ2y + Sy I0y) = 7%
a2) _ . o
]17_1 = _(flzv]QZ — A2 I — 1(]1y]22 — jlzjzy)) — \/5
1
ﬂ1<,102) = ﬂi(ﬂlIJQy — Sy Ioz) = _ﬁ(j1+ﬂ27 — S Iat)
1
]flfi = —(S12I2: — I12I2: +1(I1y Iz — I1.52y)) = %
j2(71—2% = So 20 — r]19']2y - i(jh:]Qy + ]111]299) =S_Io_

1
jé’lﬂ = (S0 Sz + S12I00 — i(S1y S22 + S1252y)) = +ﬁ(f1—f20 + S1052-)
f2<102> = _\/?(jlzfﬂ%c + Sy Ioy — 291 I2;) = _b

: 3 7

1
I = (g Ios + I1aIra + (g Tas + I12Iay)) = -
IS = Ao — T1y Iy +(F1a T2y + I1yIaa) = I1q ot

8.9.5 Deriving commutators of product operators
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(8.85)

(8.86)

(8.87)

(8.88)

(8.89)

(8.90)

(8.91)

(8.92)

(8.93)
(8.94)

(8.95)

(8.96)

(8.97)

(8.98)

(8.99)

(8.100)

The product operators are direct products of 2 X 2 matrices %, %y, .#=, %, Therefore, commutators of product operators can be derived
from the their relations and from the general properties of the direct product of matrices. In general expressions used in this section letters

j, k,1, m replace one of the subscript z,y, z (but not t), n,n’ distinguish nuclei (1 or 2), and

Products of the 2 x 2 matrices %, .%,, .7, are related in the following manner (cf Egs. 4.38))

Iy Iy
Ty I,
Iy Iy
fj-fk

+
LIS SR

=[S, Sy) = iS5,
= [y, I2) = iIn,
= [S2, Tu] =5,
= jkjt-

0 =1 for j =k, and 6;, = 1 for j # k.

The following properties of the direct (Kronecker) products allow us to find the commutation relation also for the product operators.
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S

'flz

jQz

2=ﬁ1x=ﬂ2x

ST

N|—=

N

[N

jIOéJQOL

FaS2+

It I

Sy Iy

+1

0+1

0
0

0
0
+1

0+1

0+1

+1
0
0

0
0

0+1

+1

Table 8.3: Cartesian basis of product operators for a pair of spin-1 nuclei

0 0 O
0 0
0+1 0
0 0+1

0+1 0
0 0+1
0 0 O

0
0 0
0 0
0+1
0 0+1
0+1 O
0 0
0 0 O

1000
0000
0000
0000

0100
0000
0000
0000

0010
0000
0000
0000

0001
0000
0000
0000

+1

Sz =

SIS

291y I, =

2.9, I =

N

251y Sy =

N

Hatop =

aIo_ =

I I =

T ——

ol
+
—_
o

0 0 O
O0+1 0 O
0 0-1 O
0 0 0-1

0 0+1 O
0-1

0000
0100
0000
0000

0000
1000
0000

0000

0000
0000
1000

0000

0000
0010
0000

0000

S22 =

1y

Iy

2510 I2y

15520 =

ﬂlgﬂpr =

I4 Tap =

Y

NI

Nl
+
)

(NI
o

Table 8.4: Single-element basis of product operators for a pair of spin-3

0000
0000
0010
0000

0000
0000
0001
0000

0000
0001
0000
0000

0000
0000
0100
0000

[N
. O

|

-

S1pF2p =

Sp T =

STy =

I =

QﬂlzﬂQZ =

251y oy

N[

Q«fly S, =

2f1z</¢2y =

nuclei

0000
0000
0000
0001

0000
0000
0000
0010

0000
0000
0000
0100

0000
0000
0000
1000

N|=

N|=

N|=
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. . . . 1 .
Table 8.5: Shift product operator basis for a pair of spin-5 nuclei

1000
. _1]0100
Zi=310010
0001
0010 0100
_ 1 |o0001 _ 1 |oo000
Y1+=75 0000 2+ =751 0001
0000 0000
+1 0 0 O +1 0 0
1| o+1 0 0 1| 0-1 0 o0
S0 =3 0 0-1 0 20 = 3 0 0+1 0
0 0 0-1 0 0 0-1
0000 0000
_ 1 |oo000 _ 1 ]1000
S-=7 11000 Y2-=7 10000
0100 0010
0001
0000
S+ = | 0000
0000
0041 0 0410 0
} 1|00 0-1 1|0 00 o0
4720 =75 00 0 o0 S0+ =751 g 00 -1
00 0 0 0 00 O
0000 +1 0 0 0 0000
_|oo10 .y 0-1 0 0 . _loooo
S1+72- =1 5000 S10520 = 3 0 0-1 0 -T2+ =1 5100
0000 0 0 0+1 0000
00 00 0 000
. _ 1 | +10 00 _ 1| 0 o000
S10S2- = 75 00 00 S-220=751 11 000
00-10 0-100
0000
0000
S-S =1 5000

1000
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Table 8.6: Basis of irreducible spherical operators for a pair of spin—% nuclei

10
A

)

+1 0 0 O
(00) _ 1 O+1 0 O (10) _
jo,o ) 0 041 0 ]1,0 -

0 0 0+1

7(10) _
AN =

_1 |+t
1,-1 7 2| -1

0 000
L 0 000
| +1 000

0+100

+1 0 0 0
1 0+1 0 O
2 0 0-1 0
0 0 0-1

N

00+1 O
1 |00 0+1
V2100 0 O

00 0 0

0 0 00
0 00
0 00
0+1-10

0 0 00
. 0o o-10
v2lo+1 00

0 0 00

0+1-1 0
o o0 0o+
20 0 0-1

00 0 0

00 00

702 _ 1 +10 00
L-17 V2 00 00
00+10

+1 0 0 O

(02) _ 1 0-1 0 O
S0 =3 0 0+1 O
0 0 0-1

0+10 O

702 _ 1 0 00 O
T+l V20 0041
0 00 O

0000

(12) _ 0000

/2,52 0000
+1000

0 0 00

az _ 1| +1 0 00
S 0173 +1 0 00
0-1-10

+1 0 0 0

(12) 1 0-1-1 0
720 =& | 0-1-1 0
0 0 0+1

0-1-1 0

s12) _ 1 0 0 0+1
2+17 210 0 0+41

0 0 0 0

000 +1

(12 _ {000 O

o2 = 000 O
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=A@ (B+0), (8.105)
=(A-C)®(B-D). (8.106)

First, we derive commutation relations among operators of the form .#,;. Eq. @ shows that
2.9 ® (']j cIR) £ 29 R (S, - fj) =27 Q® (]j - I £ I - fj), (8.107)
Z(fj I ® Iy + 2(Jj I ® I = 2(]]' - I £ I - Jj) ® Ft. (8.108)

Therefore, the relations among %1, #1y, 1. and Jaz, Say, F2. can be obtained simply by replacing subscripts z,y, z in Egs. [8.101
by the subscripts 1, 1y, 1z and 2z, 2y, 2z. This is written in a concise form in Eq.
Second, we derive commutation relations between operators .%,; and 2.%,,.#,/;. Their commutator is

[Injs 20k Init] = 2Inj InkInit — 2InkIni1 Inj- (8.109)
Eq. |8.106| implies
1
IjIok = (I5 @) (S @ Ix) = (I - ) @ (S - I) = ZJJ- ® J, (8.110)
1
Fo Iy = (It @ Ig) - (I @ Ft) = (Je - I5) @ (Fk - Jr) = 175 @7k (8.111)

Therefore, 7191 — Hor-#1; = 0, ie., #1; and Sy (operators of magnetic moment components of different nuclei) commute and
can be applied in any order:

ﬂljfgk = ﬂgkﬂlj (8.112)
This allows us to switch the last two operators in Eq. [8:109] and obtain the relation described by Eq.[8-30}
2I0i InkInt — 2Ink It 1Ini = 290 InkInt — 290k IniInt = 21 Inj, InklPnli- (8.113)
Third, we derive commutation relations between operators 2.7, ;.%,,/; and 2.9, %,/
2705 T 01, 2T 0k Inrm] = 4In; It Ink Inrm — 4InkIntmInj Inri- (8.114)
We start by switching the commuting operators of magnetic moment components of different nuclei .%,,/;, p, and Z,,/,, Iy ;.
[Q]njjn’lv 2']nkjn’m] = 4ﬂnjjnk<]n’l‘]n’m - 4j’nkjnj<]n’mﬂn’l' (8115)
Then we use Egs. [8.101] to express

20 Ik = (InjInk = InkIng) T (InjInk + InkIng) = [Inj, Inkl + 6565, (8.116)
*2Jnk<ﬂnj = (eﬁnjfnk — fnkﬂnj) — (fnjtﬂnk + eﬁnk,fnj) = [,ﬁnj,,ﬂnk] — 5jk=]t; (8.117)
25011 I = (=ﬂn’ljn’m — =ﬂn’mjn/l) + (jn’kﬂn’m + jn/m]n’l) = [=ﬂn’l7 =]n’m] + O At (8.118)

=291 It = (It Inim — IntmInt1) — (Int1Inim + IntmInit) = [Inits Inrml] — Oim T (8.119)

Inserting the obtained expressions into Eq. m results in Eq. @
(2205 901,270k It m] = 450 Ink In 1t m — 4F k- Ini IntmInrl =
([Fnjs Il + 056 I) [Tty Inrml + 0imIt) — ([Pngs Ikl = 8512 ) ([Pt Inrm] = OimIt) = [Fnjs InklOim + [Inrt, Inrml k. (8.120)

Note that

j =k = [jnjwﬂnk] = 0, 5jk =1 (8.121)
l=m = [jn’lvjn’m] =0, =1 (8.122)
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8.9.6 Dipole-dipole relaxation: derivation

The Bloch-Wangsness-Redfield theory (see Section[7.12.3]) describes also the relaxation due to the dipole-dipole interactions. The Liouville-
von Neumann equation has the same form as Eq.[7.44] only the chemical shift Hamiltonian is replaced by the Hamiltonian describing the
interactions of spin magnetic moments:

dAp
dt

In order to describe the dipole-dipole relaxation on the quantum level, it is useful to work in spherical coordinates and to convert the
product operators constltutlng the Hamiltonian HD to a different basis. The operators 111122, Ilylgz, Ilzfgz, Ilzlzy are transformed using

the relation [+ = I, + 1Iy).

= 7i[ﬂD,Aﬁ], (8.123)

PUNEIN 1 ~ ~ ~ ~
IlzIQZ = §(+Il+122 + 117[22)7 (8124)
PN i ~ ~ ~ ~
Iiyla, = 5(—11+12z + 11 _122), (8.125)
PO 1 A PO
IIZIZ(L‘ = 5(+Ilzl2+ + 11212*)1 (8126)
PO i PO A A
IlzIQy = 5(_Ilz12+ + Ilz]27)~ (8127)
Since
cos @ + isinp = el¥, (8.128)
cosp —isinp = e”i¥, (8.129)

3sin cos ﬁ(flzfzz cos p + flyfgz sin ¢ + Tioiog cos p + flzfgy sin ).

3 ~ ~ . ~ ~ . A~ A . A A .
= 5 sinﬁcosﬁ([1+lgze_‘“p + [1_Iz.e'¥ + Ilz12+e_“p -+ 11212_6“‘0) (8.130)

The jlzjgz, flyfgy, flzfgy, flyfzz are transformed in a similar fashion

PN i ” ~ ~ ~ ~ N
Inglay = Z(+11+I2 — I Ioy —Inyloy +11_I2_),
PN i ~ ~ ” N ~ ~ ~ ”
Iiyloy = Z( Liyloo +N—Ioy — Iiyloy + L1 _1o-),
P 1 . . JR JUER JUR
Izl = Z(+11+12— +L_Ioy +1Iiploy +1-1I2_),
. . 1 . . JR PR JUR
I1ylay = Z(+11+12— +L_Ioy —Iigloy —i_Iz_),

and
3sin? ﬁ(flzfzz cos? @+ flyfgy sin? @+ flzfgy sin p cos ¢ + flyfgz sin ¢ cos @) — (flzfgz + flyfgy)

3 A a
=3 sin? 9 ( I14 1o (cos® p +sin? ¢ + isin g cos @ — isin @ cosp

+f1,f2+(cos2 © + sin? @ — isinycos ¢ + isin ¢ cos ¢
+f1+f2+(c052 ©— sin? p — isinpcosyp —isinycosy

)
)
)
+11_T5_(cos? ¢ —sin® ¢ + isin pcosg + isinpcos ) )
1 . PN
—1(211+12, +2]1712+)
1. = o, 1.2
= 111+127(3SIH 9 — 2) + 111712+(331n g — 2)
+Zi1+f2+ sin2 go—i2¢ 4 Zfl,fQ, sin2 9ei2®
1. = 1. .
= —111+IQ,(3COS219 —-1) — 111712+(3 cos? 9 — 1)

3. & i 3. . .
+111+12+ sin? 9e~iZ¢ 4 111’12’ sin? 9el2¢. (8.131)
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Using Egs. [8.130| and [8.131| and moving to the interaction frame (fni — fnieii“’“’"t), Eq. |8.61]is converted to

ﬁé = —% (flzfgz(3c03219 -1)
—if1+f2,(3 cos? 9 — 1)e!(wo,1—wo,2)t _ if1,f2+(3 cos? ¥ — 1)e~i(wo,1—wo,2)t
+2f1+f22 sin 9 cos Ye " 1Pel(wo, 1)t gﬁ,fgz sin 9 cos YelPei(wo,1)t
+gflzf2+ sin 9 cos Ye " 1Pel(w0,2)t %I}zfg, sin 9 cos YelPei(wo,2)t
+2f1+f2+ sin? Pe~12¢ei(wo,1two,2)t 2f17f27 sin2 Yei2Pei(wo,1+wo,2)t )
_ 7b(2azﬁzgzgf%c+—fy%g,Aféc—+fy,5+
B T A A T A MSEEs MU A A A ) (8.132)

The difference of the density matrix from its equilibrium form, written in a bases including the operators used to define JfID7 is in
general

Ap = dels + diod1s + d1+f1+ +di L 4dosdo, + d2+f2+ +do_ Iy
+ dozlizdos + d+—f1+i2— + d—+f1—f2+ + d+zjl+f2z +d_pli_Ia, + dz+j1zf2+ +dy_T1odo— + d++f1+f2+ +d I _Ip_.
(8.133)

However, here we analyze only evolution of dlzflz, dnggz, d1+f1+, needed to describe relaxation of A(M;i.), A(Mi,), and (Mi4).
Similarly to Eq. @ the dipole-dipole relaxation is described by

d“ f%/mW[%)Am (8.134)
0

The right-hand side can be simplified dramatically by the secular approzimation as in Eq.|7.50} all terms with eFlwo.nt are averaged

to zero. Only terms with (¢#%)2, ¢*tc¢*—, ¢t?c¢=%, ¢ct—¢=7, and ¢t+c~— are non zero (all equal to 1/5 at t; = 0)J°| This reduces the
number of double commutators to be expressed from 81 to 9 for each density matrix component. The double commutators needed to
describe relaxation rates of the contributions of the first nucleus to the magnetization (Mi.) and (M;4) are

[ 22, [hzlzz,hz]] =0, (8.135)
[ 1-Iay, [Il+127allz]i| =12 (I — I2z), (8.136)
[ hploo, [ 12+7112]] = n2(I1, — I2s), (8.137)
[f 1., 117[227[12}] = §ﬁ2f1z, (8.138)
[ 1- 12z, 11+12z,11z}] = %thlz, (8.139)
[i Ioy, 11212,,11z}] =0, (8.140)
[flz 2-, IlzIQ+7Ilz}j| =0, (8.141)
[f1+12+, i 12_,1121] = 12(I1s + I22), (8.142)
[ 1-Ir, 11+12+,11z]] =12 (112 + I2z), (8.143)

9Averaging over all molecules makes all correlation functions identical in isotropic liquids.
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The relaxation rates can be then derived as described for the relaxation due to the chemical shift in Section [7.12.3}

For AMji,,

As discussed in Section [7.12.3] the orthogonality of basis matrices reduces the left-hand side of Eq. to

Expressing the terms with the non-zero double commutators in the right-hand side of Eq. results in six integrals

ddlz
dt

Tr{[lzllz} =

b2

| =

b2

e

0\8 0\8 0\8

§52
2

- . 1
ct=(0)c= T (t)el(wo.1—wo,2)t gy 4 Zb2/

FFO)e @ ot tar 5 [

2z [11ZI2Z712Z]:| = 0
1-Iag, [I1+12—7122]] = h2(la, — I12),
j +IQ_, [11_12+,I2z]:| = h (122 - Ilz)v

140z, [T Izszz}] = §h2f227

N)

sl [hadam 122]] =0,
1242, 112124-,122}] =0,
hilay [hofo, Bau]| = 02(f2z + D12),

(e
1
[
1
[f1fae, Ui e, Foc]| = %rﬂfgz,
A
1
[
K

1-da, 11+I2+,12z]] = h2(las + I12),

1.5,

2z, 112122a11+}i| = *h211+,

fip T, (- Tor, Tiy]| = W2y,
1- 12+,[11+I27,I1+]]

+12z,[11712z,11+]] *hzf1+,

Ioy, [11z127,11+]] = *ﬁ2f1+7
1 22
1200, 11212+,11+]] = *ﬁ Ing,

14 doy, (- 127,11+]]

[FueF
K
k
K
(i1 foz, [T o, Fay]] = 0,
[F
k
[f
[

A—7[11+12+,11+]] §h2f1+~

(AMy.) = Te{ApMi.} = NyTe{Apl1.}.

ddlz
dt

Ilz

o0

0
oo

) 3 [ PR
c+Z(0)c*Z(t)e‘“’0Jtdt+ZbQ/C*Z(O)chZ(t)e*‘wOJtdt di.Tr{l1, 1.}

0
oo

0

(8.144)
(8.145)
(8.146)
(8.147)
(8.148)
(8.149)
(8.150)
(8.151)

(8.152)

(8.153)
(8.154)
(8.155)
(8.156)
(8.157)
(8.158)
(8.159)
(8.160)

(8.161)

(8.162)

(8.163)

=t (0)ct—(H)e w01 —w0.2)tqt | dy, (Te{f1.]1.} — Tr{l212.})

== (0)ctF (e~ wortwo. )t qp | (dy, (Te{f1.]1.} + Tr{laz12.}).

(8.164)
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As both sides of the equation contain the same coefficients, dnzTr{fnzfnz} can be converted to A(Mp):

AA(M 1) [ 1,
% = ZbQ /c+*(0)c*+(t)e‘(“"”l_“’m)tdt + ZbQ /C*J“(O)C**(t)e_l(wofl_“’o’?)tdt (A(M1z) — A(M2z))
0 0
3.9 mﬁ iwo 1t 3.9 mﬁ —iwg 1t
- Zb ct2(0)c=#(t)e' 01 dt + Zb c™%(0)ct=(t)e Atde | A(Mqz)
5 5
- gzﬂ /c++(o)c~(t)ei<wo,1+w0=2>tdt+ ng/c**(0)c++(t)e_i(“’o’l“'“’f"?)tdt (A(MLL) + A(Ma.)).  (8.165)
0 0

If the fluctuations are random and consequently stationary, the current orientation of the molecule is correlated with the orientation
in the past in the same manner as it is correlated with the orientation in the future (see Section [7.12.3), and the bounds of the integrals
can be changed

o0 o0
A(My . 1 _ . 1 - .
%:— §b2 / c+*(0)c*+(t)el(“’ovlfw‘)ﬁ?)tdt+§b2 / cH(0)ct— (e~ (wo1—w0,2)tqs | (A(My,) — A(May))
oo —o0
3.5 wﬁiwoﬁ 3 5 wﬁqwmt
— gb ctz(0)c#(t)e'v01tdt + gb c=#(0)ct2(t)e Atde | A(Mqz)
- %bQ / c++(0)c**(t)ei(“"”l*'w“ﬂ)tdt+ZbQ / )T F (e @00 2)tdr | (A(ML) + A(Mas)). (8.166)

Collecting the real parts of integrals preceding A(M.) of the same nucleus, noting that they are identical with the definitions of the
spectral density functions, and assuming J(w) ~ J(—w),

dA(Mi2)

1
7 = - ng(ZJ(UJO,l —wo,2) + 6J(wo,1) + 12J(wo,1 + wo,2)) A (M)
1
+ §b2(2J(w0,1 —wo,2) — 12J(wo,1 + wo,2)) A(Ma2_)

= — Ra A(Mi,) — RyA(May). (8.167)

The corresponding expression for relaxation of A(Ma.) is obtained in the same manner (or simply by switching subscripts 1 and 2 in
the result):

dA(Maz)

1
it = — §b2(2j(w0,2 — woyl) —+ GJ(UJO’Q) + 12]((.«)0’2 + wo,l))A<M22>

1
+ §62(2J(w0,2 —wo,1) — 12J(wo,2 + wo,1)) A{(M1)
= — RasA(Ma.) — RxA(Mi2). (8.168)
The same approach is applied to Miy.
A(My1) = (M1y) = Te{ApM14 }. (8.169)
The operator of M4+ for one magnetic moment observed is
M1+ :/\/71f1+:/\/"71(f11+if1y). (8.170)

Due to the orthogonality of basis matrices, the left-hand side of Eq. reduces to

ddyy .
di* Iy pelwort (8.171)

The terms with the non-zero double commutators in the right-hand side of Eq. [8-I34] give six integrals
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oo oo oo
djl; Teffy_f14} = —? / ) (Dt + Z / (0 (Dl “0.2tdt + % / ()T (Do w02t dt
0 0 0
o o] oo o

41 /mei(wo,l—wo,z)tdt 43 /mewo,ltdt 43 /me—uwo,wwm)tdt diy Te{f_T1s ).

4 0 4 0 2 0

(8.172)
The same coefficients in both sides of the equation allow us to replace diy Tr{l;_I11} by (M1 ):
oo oo oo
<A/<[jlt+> Y (/czz((])czz(th_ Z/meiwo,gtdt_i_Z/We—iuo,ztdt
0

oo oo
l /c+ (0)c—F(t)e!wo.1—wo,2)t gy 4 §/C+z 7 (t)elwo1tdt 4+ = /——7#() —ilwo,1two.2)tqy | (M ).
4 0 4 0

(8.173)
Like in the expression for A(M;.), the bounds of the integrals can be changed
oo oo oo
<f‘§t+> S / FO)E D+ / O e e + / 0T e 02tay
— 0o — 00 — o0
o0 o o
+ é / = (0)c T (t)el(wo1—wo,2)tqs 4 % / T2 (0)c 2 (t)e'wo1tdt + Z / C——(o)c-&--&-(t)ei(wo,lﬂLwo,2)tdt) (M)
—oo —oo —oo
(8.174)

and the real parts of the integrals can be identified with the spectral density values (assuming J(w) ~ J(—w)), providing the final
equation describing relaxation of the transverse magnetization of the first nucleus:

diMiy) _ 1

1
X b2(4J(0)+6J(w0,2)+J(w071—wo,2)+3J(w0,2)+6J(wo,1+wo,2))<M1+> = —Ro1(Miy)=— (Ro}l + 5R31> (M14). (8.175)

8.9.7 Dipole-dipole relaxation: discussion

The following equations, derived in Section [8.9.6] describe relaxation due to the dipole-dipole interactions in a pair of nuclei separated by
a constant distance 7:

dA(M) 1
8

p” b2(2J (wo,1 — wo,2) + 6J(wo,1) + 12J (wo,1 + wo,2)) A{M1.)

1
+ ng(QJ(wog —wo,2) — 12J(wo,1 4+ wo,2)) A(M2z)
= —Ra1A(Mi:) — RxA(Maz), (8.176)
dA{(M>, 1
% = _ng(QJ(wO,l —wo,2) + 6J(wo,2) + 12J(wo,1 + wo,2)) A{Ma)
1
+ §b2(2j(w0,1 —wo,2) — 12J(wo,1 + wo,2)) A(Mj2)
= _Ra2A<M2z> - RXA<M12>7 (8177)
Ay 1,
~—u - fgb (4J(0) + 6J(wo,2) + J(wo,1 — wo,2) + 3J(wo,1) + 6J(wo,1 + wo,2))(M1+)

1
= —Rp1(M1y) = — <R0,1 + 5Ra1) (Mi4), (8.178)



8.9. SUPPORTING INFORMATION 225

where

Hov1y2h
b= (8.179)

The relaxation rate Ry of the dipole-dipole relaxation is the rate of relaxation of the z-component of the total magnetization (M) =
(Miz) + (Ma2,). Ry is derived by solving the set of Egs. and The solution is simple if J(wo,1) = J(wo,2) = J(wo) = Ra1 =
Ra2 = Ra (this is correct e.g. if both nuclei have the same +, if the molecule rotates as a sphere, and if internal motions are negligible or
identical for both nuclei)m Then,

AAOT2) Ly (6.7 (wg) + 240 (200)) A (M) = — (Ra + R) A(MS). (8.180)
dt 8 N
Ry

There are several remarkable differences between relaxation due to the chemical shift anisotropy and dipole-dipole interactions:

e The relaxation constant Rp,1, describing the loss of coherence of the first magnetic moment, depends on J(0) like in the case of
the relaxation due to the chemical shift anisotropy. It is a result of changing position of ji; in the magnetic field of [y as the
molecule moves (Figure ) However, Ro,1 contains also an additional term, depending on the frequency of the other magnetic
moment, 3b2J(wo,2)/4. This term has the following physical significance. The field generated by the second magnetic moment
depends on its state. For example, ji2 in a pure |a) stat@ reduces the field and consequently precession frequency of fi if the
internuclear vector is horizontal (Figure )7 whereas [i2 in a pure |3) state has the opposite effectE If the molecule rotates
about the vertical axis with a frequency that is for a short time close to wg,2, f1 stays (for the short time) in a place where the
magnetic field of 2 pulls it in the z direction (Figure[8.2]B). A macroscopic consequence of such short and stochastic resonance of
the rate of molecular rotation with wp 2 is redistribution of [l changing the average value of p2 . (longitudinal polarization of fi2).
Fluctuations of wp,1 due to the stochastic changes of the longitudinal polarization of fia (described by J(wop,2)) contribute to the
loss of coherence of [i1

e The rate constants describing the return to the equilibrium polarization is more complex than for the chemical shift anisotropy
relaxation. In addition to the 3b2J(wo,1)/4 term, describing effect of stochastic molecular motions resonating with the precession
frequency of fi1 (Figure ), the auto-relazation rate Ra1 contains terms depending on the sum and difference of the precession
frequency of fi1 and fi2. These terms account for temporary resonance of random molecular rotation with the mutual difference in
the precession of fi1 and fz. For example, if the molecule rotates for a short time about the vertical axis with an angular frequency
wmol Which is accidentally close to wp,1 + wo,2, the precession of iz combined with the molecular rotation resonates with the
precession of i1 (see examples in Figure ,E). Quantum mechanically, such effects are described by the orientation-dependent
coefficients preceding 2f11f2z, 2f1yf2y, 211412y, 2f1yf21 components in Hp, contributing to J(wo,1 &+ wo,2).

e As mentioned in Section return to the equilibrium polarization of nucleus 1 depends also on the actual polarization of nucleus
2. The cross-relazation is a cause of the nuclear Overhauser effect (NOE), and its dependence on r (approximately proportional
to 7~6) allow us to measure distances between hydrogen atoms in molecules.

8.9.8 Two magnetic moments in thermal equilibrium

The initial density matrix describing an ensemble of pairs of nuclear magnetic moments is derived in a similar manner as outlined in
Section m for an ensemble of isolated nuclei. Again, we start from the thermal equilibrium and use the Hamiltonian. The difference
from the case of isolated nuclei is that Hamiltonian must be represented by a 4 X 4 density matrix in order to describe a pair of mutually
interacting nuclei. If secular approximation is applicable, the matrix representation of the Hamiltonian is diagonal. In general, the
Hamiltonian should include effects of the external field B—b, of chemical shifts of both nuclei, and of their coupling. However, the dipolar
coupling in isotropic liquids is averaged to zero. It is therefore sufficient to write the total Hamiltonian as

0ppe general solution gives Ry = % (Ral + Ra2 + \/(Ra1 — Ra2)? + 4R,2().
M Note that we mentioned the |o) and |B) eigenstates as an example, fio can be in reality in many superposition states.
2 The interaction is described here for nuclei with positive 1 and 72, e.g. protons.

1B3uch changes have a similar effect as the chemical or conformational exchange, modifying the size of the chemical shift tensor (the
chemical/conformational exchange was briefly discussed in Section . Therefore, 3b2.J (wo,2)/4 adds to Ry like the exchange contribution.
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10 0 O 1 00 O
. N - Aol 0 O Ahl0—-10 0
H = —y1Bo(1+di,1)l12 —v2Bo(1 + 8i,2)I2: = =71 Bo(1 + 6i,1)5 00—1 o | 72Bo(l+ 5i,2)5 0 01 0
00 0-1 0 001
=1 (L4 38i,1) —v2(1 + di2) 0 0 0
_ Boh 0 (14 6i1) +72(1+ 8 2) 0 0
2 0 0 Fy1(1+6i,1) —y2(1 4 di2) 0
0 0 0 Fy1(1+8i1) +y2(1 + & 2)

Eaa 0 0 O
0 Eap 0 O
0 0 Ega 0 |’ (8.181)
0 0 0 &sp

where the diagonal elements (eigenvalues) are the energies of the eigenstates of a single pair of magnetic moments.
As explained for the isolated nuclei, the off-diagonal elements of the equilibrium density matrix (coherences) are equal to zero. The

four diagonal elements (populations) represent statistical weights in the relation describing the expected energy of the ensemble of pairs of
coupled magnetic moments

() = Paalan + Pa@gaﬁ + PBOLSBQ + Pg@gﬁﬁ, (8.182)
The values of the populations are obtained as described in Section m

Ean
pea — o~ Eaa/knT o LT ket (8.183)
aa e—Eaa/kBT 4 ¢=€ap/kBT | ¢=€8a/kBT 4 ¢—€3s/kBT 4 ’
ga/}
pea — e fop/haT N LT FeT (8.184)
aB e—Eaa/kBT 4 ¢=€ap/kBT 4 ¢=€pa/kBT 4 o—€ss/kBT 4 ’ ’
EBa
P = e Coe/ket ~ LT (8.185)
Ba ™ —Eaa/kBT 4 o=Eap/kBT | o~Esa/kBT | o~Esp/kpT ~ 4 ’ )
_ Epp
Pl — e~ fan/teT o LT FeT (8.186)
BB e—faa/kBT 4 e—Eap/kBT + e—Epa/kBT + e—E88/kBT 4 ) :
and neglecting the small contributions of chemical shifts (d;,, < 1)
1— £aa Bok Boh 1 Boh Bok
kgT 01 0 0 01
pod kBT _ 2 146 ,) 20 146 ~ - , 8.187
aa 4 g T "1)8kBT e+ 1’2)8kBT 1 8y T P RkpT (8.187)
E
-2 Boh Boh 1 Boh Boh
P — R L (14 6) s —ya (14 Gi2) e & - CL o= 8.188
of 4 3 T Fda)gr = (4 i) g s ~ D4 Mg~ g (8.188)
E
- 225 Boh Bohi 1 Bohi Boh
kT on 0 0 on
Poam—7 =g ml+dngm+nltddg m~ g —ng w+eg o (8.189)
1588 Boh Boh 1 Boh Boh
P~ BT 2 (14 0% o(14 6 CLLNP L o 8.190
65 4 1 - e T = (4 Sie) s ~ L Mg T g T (8.190)

(8.191)
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Figure 8.2: Tllustration how random molecular motions resonating with five characteristic frequencies affect fiy = fic in the CH bond in

a 500 MHz spectrometer (Eo = 11.75T). The first diagram in each row shows positions of the nuclei (}3C in green, 'H in cyan), the second
diagram shows orientation of the coordinate frame, the following diagrams are snapshots of the orientations of magnetic moments shown
as arrows (13C in green, 'H in cyan) in a magnetic field of the neighbour (shown as force lines). The red arrow indicates the direction of
the change of the orientation of the influenced magnetic moment, but the actual change is very small (not observable in the pictures) in the
short depicted period of 4ns. The molecule is assumed to rotate with a constant frequency for 4ns. A, [ic oriented horizontally, s = g
oriented vertically, 13C in the yz plane, 1H in the center of the coordinate system. Rotation at any frequency about a horizontal axis varies
precession frequency of fic about By and results in the loss of coherence of '3C. B, jiy oriented horizontally, fic oriented vertically, 'H
above the 2y plane, 13C in the center of the coordinate system. Rotation at wy about a horizontal axis pulls jiyy up (red arrow pointing up
in the given coordinate frame) in the magnetic fields of ic. This reorientation of iy (observed only at time much longer than the depicted
period of 4ns) influences the effect of the J-coupling. C, jic oriented horizontally, fig oriented vertically, 13C above the zy plane, 'H in
the center of the coordinate system. Rotation at wc about a horizontal axis pulls fic up (red arrow pointing up in the given coordinate
frame) in the magnetic fields of jig. D, jic oriented horizontally, fig oriented horizontally, 13C close to the z axis, 'H in the center of the
coordinate system. Rotation at wy + wc about a vertical axis pulls fic up (red arrow pointing up in the given coordinate frame) in the
magnetic fields of fiyy. E, fic oriented horizontally, iy oriented horizontally, 13C in the yz plane, 'H in the center of the coordinate system.
Rotation at wy — we about a horizontal axis pulls puc up (red arrow pointing mostly up in the given coordinate frame) in the magnetic
fields of pupg. The reorientation of puc in Panels C—E (observed only at time much longer than the depicted period of 4ns) contributes to
the return of the distribution of the 13C magnetic moments to the thermal equilibrium.
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Lecture 9
Two-dimensional spectroscopy, NOESY

Literature: A very nice explanation of the principles of two-dimensional spectroscopy can be found
in K8.1-K8.2. The States-Haberkorn-Ruben method and other approaches to frequency discrimina-
tion are explained in K8.12, 1L5.9.4, and C4.3.4. The idea of 2D spectroscopy, but for a different type
of experiment (COSY) is also presented in C4.1, L5.6 and L5.9.

9.1 Two-dimensional spectroscopy

NMR spectroscopy based on the application of short radio-wave pulses gives us an opportunity to
display frequencies of multiple magnetic moments in multiple dimensions of a single multidimen-
sional spectrum. The great advantage of this approach is the possibility to immediately see various
correlations among the observed nuclear magnetic moments and use this information in the struc-
tural analysis of the studied molecule. When working with large molecules (proteins, nucleic acids),
spectra with three and more frequency dimensions are recorded routinely. In our course, we analyze
only two-dimensional experiments, but we try to understand in detail how various correlations of
interacting magnetic moments are encoded in the spectra. Before we reach this point, we have to
learn the basic principle.

In order to explain principles of 2D spectroscopy, we first analyze an experiment consisting of
three 90° pulses and two delays preceding the data acquisition. Later we learn that this experiment
is abbreviated NOESY and serves as a source of information about interatomic distances, but now
we use it just as a simple example. The application of three radio-wave pulse is already an advanced
experimental approach, deserving a clear formal presentation. The experiment can be described as

a(T/2)gy, —t1 —c (7/2)2q — T —e (7/2)4¢ — t2(acquire).

However, a pictorial representation shown in Figure is more usual and practical.

In the drawing presented in Figure [0.1] each application of radio waves is represented by a black
rectangle. In our experiments, all rectangles have the same width because all pulses have the same
duration. Later we discuss experiments that combine 90° and 180°. In schemes of such experiments,
90° and 180° pulses are represented by narrow and wide rectangles, respectively. Durations of the
delays between the pulses are described by time variables ¢; and 7, the time-dependence of the
acquired signal is labeled t5. In our analysis, we describe the density matrix just before and after
the pulses, as indicated by red letters ”a” to ”f” in Figure 9.1
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Figure 9.1: Schematic drawing of a two-dimensional NMR experiment. The symbols are explain in the text.

9.2 Evolution in the absence of dipolar coupling

We start with an analysis for two non-interacting magnetic moments, e.g. of two protons that have
different chemical shift d;; and d; 2, and are far from each other in a moleculeH The pair of protons
is an example of a homonuclear system, where all nuclei have the same magnetogyric ratio . Before
we analyze evolution of the density matrix in a 2D experiment, we must define its initial form. Like
in the case of the isolated nuclear magnetic moments, we assume that the experiments starts from
thermal equilibrium. Therefore, we use p, derived in Sections and , as p(t = 0) If we
neglect the very small effect of different chemical shifts in Eq. [8.39] the values of  are also the same
for both protons. As in the one-pulse experiment, we follow the coherent evolution of p step-by-step,
and add the effect of relaxation ad hoc.

p(a) = 3.5 + 55(H12 + Fa2)

We start from the thermal equilibrium described by Eq. [8.39. Note that the matrices are
different than for the single-spin mixed state, but the constant is the same. Moreover, only
Iy, I, S, contribute to p(a). If the magnetic moments do not interact, no 2. ;.%;, operator
(where j,k € x,y,z) contributes to any Hamiltonian. As a consequence, the .#;, and %,
components of the density matrix evolve separately, following the same rules as described for
#,. Therefore, we can use Eq. to analyze the evolution, we just repeat the analysis twice
for ., and S, treating both as ., in Eq. [6.10]

p(b) = 39, + 38(=Iy — Sy)

Here we describe the effect of the 90° pulse. For a detailed analysis, see the one-pulse experi-
ment.

plc) = L7 + 2k (= cos(Qut1) Fiy + sin(Quity) I, — cos(Qat) Iy + sin(Qaty) Fay)

Here we describe evolution during ¢; exactly as in the one-pulse experiment. To keep the equa-
tions short, we replace the trigonometric terms describing the evolution by (time-dependent)
coeflicients C11, C21, S11, and S91-

plc) = %ft + %Fd (—c Ay + 511510 — eIy + 521502)

'Protons in propynal (H-C=C-CO-H) may serve as an example.
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The coefficients ¢q1, ca1, S11, and so; deserve some attention. First, note that the first subscript
specifies the nucleus and the second subscript specifies the time period (so-far, it is always 1
because we have analyzed only the evolution during ¢;). Second, we include the effect of teh
relaxation into the coefficients:

c1p — e 211 cos(Q4) s11 — e 21t gin(O41)

Co1 — e~ f22t1 COS(QQtl) So1 — e~ f22t1 Sin(Qgtl)

p(d) = %eﬁt + %/f (—cn1 A1 + 511510 — ca1-5o. + S2152,)
Here we analyze the effect of the second 90° pulse, similarly to the step a — b. The z-pulse
does not affect the x magnetization, but rotates the —y magnetization further to —z. The final

magnetization is parallel with EO, but the equilibrium polarization is inverted.

ple) =7

This is a new case, it should be analyzed carefully. Here we perform the analysis for a large
molecule such as a small protein: In proteins, M,, M, relax with Ry > 10 s~! and M, with
R, =~ 1s7%. The delay 7, is usually longer than 0.1s. Let us assume 7, = 0.2s and Ry = 20571,
After 0.2s, e7f2m = ¢720x02 — ¢4 ~ (.02. We see that M,, M, relaxes almost completely.
Therefore, A, H1y, oz, P2, can be neglected. On the other hand, e f17m = 7102 = 702
0.82. We see that M, does not relax too much. Therefore, we continue the analysis with
1., F.. The #,, %, terms do not evolve because they commute with 57 = Q. .7, + Qy.%..
Consequently,

ple) = %f]t + %Fé (—e_Rl’lT‘“Cn«ﬂu — e_R1’2T“‘621f2z) = %ft - A S, — Ay I
We further simplified the notation by introducing the factors A; and A;. Again, we include
the relaxation effects into .A4; and Ay when we express the measurable signal:

A — ge_Rl’lecll = ge‘RlvlT‘“e_R“t1 cos(4ty)

Ay — ge_RL?Tmcm = ge_RL?T“‘e_R“t1 cos(Q2aty)

ﬁ(f) = %ﬂ + A1f1y + Agfgy

Here we analyze the effect of the third pulse, in the same manner as we analyzed the first pulse.

ﬁ(tg) == %eﬂt + Al (COS(Qth)fly — Sin(Qltg)ﬂlx) + AQ(COS(QQtQ)ny - Sin(Qgtg)jgx)
In the last step, we analyze the evolution during the data acquisition.

9.3 Signal modulation in a two-dimensional experiment

Having p(t2), we can calculate (M,). As the size of the matrices increased, it is more convenient
to use the orthonormality of the basis than to calculate all matrix products. It follows from the
definition of orthonormal matrices (see footnote [1|in Section [6.1) that for the two-spin matrices

Tt { I (e + 1))} = 1, (9.1)
Tr { Iy (I +150)} = i,
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and traces of products with other matrices are zero. Applying the orthonormality relations to
the product of M, with the obtained p(¢2) and introducing the relaxation, we get

(M) = Tr{p(tz) M}
= Nk (Ai (e 172 cos(Quta) Tr { 1y (F14 + oy )} — e 212 sin (o) T { S0 ( I+ + F2i)})
+ Az (€722 cos(Qata) Tr { oy (F14 + oy )} — € 2272 sin(Qoto) Tt { Fou (S14 + S21)}))
= N~vhA, (ie’R“t2 cos(Qty) — e~ 21tz sin(Qltg))
+ NyhA; (e 222 cos(Qats) — e 222 sin(Qoty)) . (9.3)

Note that the resulting phase is shifted by 7/2 similarly to Eq. , but in the opposite direction.
After applying the phase correction, the Fourier transformation of the signal provides spectrum in

the form (cf. Eq. [7.32))

RLY (W)} S{Y(w)}

A

| ARy AsR3 5 ) Aj(w — Q) A (w — Q) >
Nk ’ + ’ —iNAR [ — 4 ).
i <R§,1 F -2 Rt (w-— 92)2) ’ <R§71 Fw—)? " RZ, o+ (w— )

(9.4)

RY (@)}
Y (w)}

!
W W

9

In the one-dimensional experiment, A; and A; just scale the peak height. However, they depend
on the length of the delay t; in our two-dimensional experiment. If the measurement is repeated
many times and t; is increased by an increment At each time, the obtained series of 1D spectra is
amplitude modulated by ¢;; = e 12182 cos(Qt;) and ¢y = e 722t cos(Qyty). Since the data are stored
in a computer in a digital form, they can be treated as a two-dimensional array (table), depending on
the real time ¢, in one direction and on the length of the incremented delay ¢; in the other directions.
These directions are referred to as the direct dimension and the indirect dimension. The Fourier
transformation can be performed in each dimension providing the direct frequency dimension and
the indirect frequency dimension.

Since we acquire the signal as a series of complex numbers, it is useful to introduce the complex
numbers in the indirect dimension as well. The advantage of such spectrum is that the positive and
negative values of the frequency offset can be distinguished in both dimensions. Several protocols



9.4. NOESY 233
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Figure 9.2: Principle of two-dimensional spectroscopy (experiment NOESY). The acquired signal is shown in red,
the signal after the Fourier transformation in the direct dimension is shown in magenta, and the signal after the Fourier
transformation in both dimensions is shown in blue.

that discriminate the positive and negative frequency offsets in the indirect dimension are routinely
used. The frequency discrimination approaches are based on shifting phases of certain radio-wave
pulses. The method introduced by States, Haberkorn, and Ruben is described in Section [9.5.1 It
should be mentioned that phases are also changed in another manner, called phase cycling, in NMR
experiments. We discuss phase cycling later and describe recording two-dimensional signal arrays in
its full complexity in Section [11.7]

9.4 NOESY

If the two-dimensional spectra looked exactly as described in the preceding section, they would not
be very useful because they would not bring any new information. The same frequencies would be
measured in the direct and indirect dimension and all peaks would be found along the diagonal of the
spectrum. What makes the experiment really useful is the interaction between the magnetic moments
during 7,. Such approach is known as the nuclear Overhauser effect spectroscopy (NOESY) and is
used frequently to measure distances between protons in molecules.

As described by Eq. [8.33] the relaxation of nucleus 1 is influenced by the state of nucleus 2 (and
vice versa):
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_% = R A(My.) + R A(My,) (9.5)
_% — RuA(Ms.) + ReA(M,.). (9.6)

This set of equations is solved and the solution is analyzed in Section [9.5.2 The analysis shows
that the amplitudes .A4; and A depend on both frequencies €2 and €2y (contain both ¢q; and cg1).
Therefore, the spectrum contains both diagonal peaks (with the frequencies of the given magnetic
moment in both dimensions) and off-diagonal cross-peaks (with the frequencies of the given magnetic
moment in the direct dimension and the frequency of its interaction partner in the indirect dimension).

The presence of the cross-peaks provides very useful qualitative information about the studied
molecules. It tells us which nuclei are close in space. Such knowledge of spatial proximity often allows
us to assign measured frequencies to the hydrogen atoms in the studied molecule. But we often go
further and analyze the intensities of the cross-peaks quantitatively. As shown in Section [9.5.3] the
height of the NOESY cross-peaks Yi,.x depends on two factors: on the dynamics of the molecule
and on the distance of the interacting nuclei. Depending on the motions on the molecules, the peak
height can be positive or negative. If the molecular motions are slow, the cross-peaks have the same
sign as diagonal peaks. However, if the molecular motions are fast (e.g., if the molecule is small),
the sign is opposite. Obviously, there is a range of molecular motions that make the peak height
close to zero. In such case, other NMR techniques than NOESY should be applied. If the dynamics
of the molecule is favorable (sufficiently fast or slow), the dependence on the distance between the
interacting nuclei can be used to estimate distances in the molecule. For short 7,,, the cross-peak
height is approximately proportional to r~%. The studied molecules (especially large molecules like
proteins or nucleic acid fragments) often contain pairs of protons with a well-defined geometry. For
example, the distance between geminal protons in the CHs group is 0.17nm, distances between
protons in the ortho- and meta- positions in aromatic rings are 0.25nm and 0.42nm, respectively.
Such distances can be used as a reference for the measurement of unknown distances. If we assume
that two protons have similar dynamics as a reference pair of protons, the ratio of the heightﬂ of
the cross-peaks of the investigated and reference proton pairs is

Ymax Tref 6
= . 9.7
Ymax,ref < r > ( )
Therefore, the unknown distance r can be calculated as
Ymax re
F= g ref (9.8)

Ymax

It is quite remarkable that the dipole-dipole interaction allows us to measure distances nine orders
of magnitude shorter than the wavelength of the used electromagnetic waves.

2Volume (integral) of the peak gives more accurate distances because it is not influenced by the relaxation during
measurement. On the other hand, measurement of peak volumes may be difficult in crowded spectra of large molecules.
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HOMEWORK

Analyze the intensities of the NOESY cross-peaks (Sections[9.4][9.5.2] and[0.5.3] using Eqgs. [8.33}{8.34
from Section[8.7))
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9.5 SUPPORTING INFORMATION

9.5.1 States-Haberkorn-Ruben method of processing hypercomplex data

It is possible to introduce the complex numbers in the indirect dimension by repeating the measurement twice for each value of t1, each
time with a different phase of the radio waves applied during the second pulse. We describe the procedure for a pair of non-interacting
spin-1/2 nuclei. First we acquire the signal with the second pulse applied with the same phase as the first pulse. Such a phase is labeled =
in the NMR literature. Then, we repeat the acquisition with the phase of the radio waves shifted by 90° during the second pulse. Such a
phase is labeled y in the literature. The former case was analyzed in Section In the latter case, the #1, and %2, components are not
affected and relax during 7m, while the .#1, and %2, are rotated to —.#1, and —.%2,, respectively, and converted to the measurable signal
by the third pulse. Because the #1, and %55 coherences are modulated by s11 and s21, the amplitudes (labeled here B1 and Bs) oscillate
as a sine function, in the even spectra (unlike the amplitudes A1, A2 of the odd spectra, oscillating as a cosine function). So, we obtain
cosine amplitude modulation in odd spectra and sine amplitude modulation in even spectra:
B — %e_Rl»lesu = %e‘Rl,lee_szltl sin(Q1t1)
By — %e’RL?Tmsm = %e*RleTme’Rlztl sin(Qat1).

Processing of the complete data starts by complex Fourier transformation in the direct (¢2) dimension providing two sets of 1D spectra,
cosine amplitude-modulated in 1

R{y1(t1)}R{Y2(w2)} R{y1(t1)}S{Y2(w2)}
A1 R 1 A2R2 2 ) Ai (w2 — Q1) Az (w2 — Q2)
N~h : + : — iN~h - 9.9
K <R§,1 + (w2 = Q1)2  R3,+ (w2 — Q2)2) K (R;l + (w2 —Q1)2  R3,+ (w2 — Q2)? ®:9)
and sine amplitude-modulated in ¢
S{y1(t1)IR{Y2(w2)} S{y1(t1)}S{Ya(w2)}
Bi1Ra21 B2 Ra 2 . Bi(w2 — Q1) Ba(wa — Q2)
N~vh : + . —iN~vh - + = 1. 9.10
7 <R§’1+(w2—91)2 R§’2+(w2—92)2> 7 <R5’1+(w2—ﬂl)2 R%_’2+(w2—92)2 ( )

The cosine amplitude-modulated and sine amplitude-modulated real components of the obtained 1D spectra, respectively, are then
treated as the real and imaginary component of the complex signal in the indirect dimension.

R{y1(t1)IR{Y2(w2)} S{y1(t1)}R{Y2(w2)}
A1 R 1 A2 R2 2 . BiR2 1 BaRa 2
NAh : + : +iNAR : + : 9.11
v (Rg,l =+ (wg — 91)2 R%_Q + (w2 — Q2)2 v R%,l + (wg — Ql)2 R%,Z =+ (UJQ — 92)2 ( )
iB1)R iB2) R,
— Nk (2A1 +iB1) 2,12 n (2A2 +iB2) 2,22 (9.12)
R2,1 + (wg — Ql) R2‘2 + (wg — QQ)
2m2B
— N~*h*Bo e~ B1,1™mg—R2,1t1 COS(Qltl)# + e Ri2mme—Ra oty COS(QQtl)#
4kgT R2,1 + (wg — 91)2 R2Y2 + (UJ2 — 92)2
2 2B
i m e~ B1,1Tmg—R2,1t1 Sin(Qltl)QLH + e F12™mg—R22ts SiH(QQtl)QR;“ (9.13)
4kgT R2‘1 + (w2 — Q1) R272 + (w2 — Q2)
272
= Ny*h*Bo e~ R11™mg—Ra,1t1 i1t1 L S + e~ fi2Tm e R2 2816102101 _ Bz (9.14)
4kgT R%,l —+ (WQ — 91)2 R;Q + (OJQ — QQ)Q
The complex Fourier transformation in ¢; yields a spectrum
N~2h?Bo —R1,1™m Rz . Rz 4 e F1,27m Ra,2 . Ra,2
4kpT R3 |+ (w1 —Q)? R3,+ (w2 —21)2 R3 5+ (w1 —Q2)? R3,+ (w2 — Q)2
N~2h2B n —Q . - Q .
CNYR?By (g et Ro,1 oM W12 B2 5|, (9.15)
4kgT R21l +(wlle) R21l +(wzle) R212+(w1792) R212+(w2792)

where the positive and negative values of the frequency offset are distinguished in both dimensions.
Schematically, the States-Haberkorn-Ruben method can be summarized as
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y1(t1) - y2(t2) = R{y1(t1)} +iS{y1(t1)}) - (R{y2(t2)} +iS{y2(t2)})

J} Complex Fourier transformation in tg

R{y1(t)} +iS{y1(t1)}) - R{Ya(w2)} +iS{Y2(w2)})

J Discard imaginary component in wa

Ry (t)} +iS{y1(t1)}) - R{Y2(w2)}

J} Complex Fourier transformation in ¢
(R{Y1(w1)} +iS{V1(w1)}) - R{V2(w2)} = R{V1(w1)}R{Y2(w2)} +1 S{V1(w1) IR{Y2(w2)} (9-16)

Note that without separating the real component in wg from the imaginary one prior to the second Fourier transformation a spectrum
with a phase-twisted line-shape is obtained:

y1(t1) - y2(t2) = R{y1(t1)} +iS{y1(t1)}) - (R{ya2(t2)} +iS{y2(t2)})

} Complex Fourier transformation in o

R{y1(t)} +iS{y1(t1)}) - (R{Ya(w2)} +iS{Y2(w2)})

J} Complex Fourier transformation in ¢;
(R{Y1(w)} +iS{Y1(w1)}) - (R{Ya(w2)} +iS{Y2(w2)})
= R{Y1 (w1) {2 (w2)} — S{¥1(w1)}S{Y2(w2)} + i (R{Y1(w1)}S{Ya(w2)} + S{Y1(w1)}R{Y2(w2)}) (9.17)

real imaginary

with the real part having the following form (for each peak)

N’Y2h2BO e,Rl nTm R2,n R2,n _ w1 — Qn w2 — Qp (9 18)
4kJB’T R%,n + (UJl - Q"l)2 R%,n + (wQ - Qn)2 R%.n + (wl - Q”)Z R%,n + (‘/“)2 - Q’”r>2 ' '
which is not an absorption Lorentz function (due to the presence of the red term).
9.5.2 Quantitative analysis of cross-relaxation in NOESY
As described by Egs. [8.33{8.34] relaxation of nucleus 1 is influenced by the state of nucleus 2 (and vice versa):
dA(M
_% = Ra1A(Mi.) + ReA(Ma:) (9.19)
dA(M:
7% = Ra2A(Ma.) + ReA(My32). (9.20)
The analysis greatly simplifies if the auto-relaxation rates are identical for both magnetic momentsEI Then,
dA(M
—% = RaA(M1) + RxA(Mas), (9.21)
dA (M.
f% = RaA(Ma.) + ReA(My2). (9.22)

Such set of differential equations can be solved easily by adding and subtracting the equations

_d(A(M1) + A(Ms.)

a = (Ra+ R)(A(M12) + A(M2.)) = (A(My:) + A(Maz)) = (A(M12)(t1) + A(Maz)(t1))e~ FatB)mm

(9.23)

dA(AMML) — A(M>.)
dt

= (Ra — R)(A(M1z) = A(Maz)) = (A(Miz) — A(Maz)) = (A(Miz)(t1) — A(Mz)(t1))e Fa=Fx)m,
(9.24)

3This is a reasonable assumption for protons with similar dynamics and in similar chemical environment.
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Returning back to A(M;i.) and A(Ma.),

A(Mz) + A(M. + (A(M1z) — A{M: _ e fixTm | ot Bx™m e fixTm _ ot Rx™m
Aany.) = (800D 2 B # (BM) = BBe)) _ - (At (0 T A ) )
(9.25)
A(Mz) + A(M. — (A(M12) — A(M: _ e fixTm _ ot Bx™m e fixTm | ot Rxm
A<M2z> — ( < 1z> < 22>) 2( < 1z> < 22)) —e RaTm (A<M1z>(tl)f+A<M22>(tl)f
(9.26)
Therefore, the amplitudes .A; and Az in our two-dimensional experiment are
—RxTm +RxTm —RxT™m _ o+Rx™m
A = ge’Rﬁle*Raﬂ“ cos( 1 tl)L + cos( Q2 tl)é , (9.27)
~~ 2 ~~ 2
diag cross
—Rx™m _ o+Rx™m —RxTm +RxTm
A = ge’Rﬁle*Raﬂ“ cos( 1 tl)é + cos( Q2 t1)¢ . (9.28)
~~ 2 ~~ 2
cross diag

We see that A; depends not only on 1 but also on Q2 (and vice versa).

9.5.3 Intensity of NOESY cross-peaks

The intensity (measured as peak height or peak integral, i.e., volume) of the cross-peaks is proportional to the amplitudes .A; and A2. Here
we analyze how A1 and Az decay during mm. Eq. tells us that the overall loss of signal, proportional to A(Mji.)(Tm) + A(M22)(Tm),
due to the R; relaxation is given by e~ (RatRx)Tm "This effect is called the ”leakage”. The intensities of the cross-peaks are given by the
factor

1
_ 1t (eerm _ eform> e~ RaTm (9.29)
2

For short 7w, Taylor expansion can be applied. Neglecting higher terms, eftx™m — e~ Bx™m ~ 1 4+ Ry — 1 + Ry = 2RxTm and
e~ Fa™m is close to one. Therefore, the expression describing the cross-peak intensities can be approximated as

1
-5 (eR"Tm _ e—Rme) e~Ra™m ~ _R . (9.30)

and Ry can be expressed explicitly using Eqs. [8.176] [8.177] and [8.179]

432
_1 (eR"Tm — efoTm> e Ra™m R 7 = <@>2 rh (J(0) — 6J(2w0))Tm, (9.31)
2 8 76

where the difference of the precession frequencies due to different chemical shifts was neglected (assuming wg,1 = wp,2 = wo because
v1 = 72 and |wo,1 — wo,2]| is ~ 10_5w0,1 or lower). The obtained result shows that the cross-peak intensity is proportional to r~6 and
to J(0) — 6J(2wp) in the linear approximation. In order to investigate the impact of the dependence on J(0) — 6J(2wp), we calculate the
spectral density function for a simple correlation function of a rigid spherical molecule (Eq. :

oo oo
1 . 1 _iwretl 2 2 1—i 2
Jw) =R / ger’f/TCeercht =R /ge oty = g%{L} = &e{ S ‘“”C} = C . (9.32)

iwrc+1) 5 1+ iwtc 1 — iwte 1+ (wre)?
o 0

Setting w = 0, we obtain J(0) = %Tc.

If the molecular motions are slow, 7¢ is long and 2worc > 1 = J(2wo) < %TC = J(0) > 6J(2wp). Therefore the cross-peak intensity
proportional to J(0) — 6J(2wq) is positive (i.e., cross-peaks have the same sign as diagonal peaks).

If the molecular motions are fast, 2woTc € 1 = J(2wo) =~ %TC = J(0) = %’TC < 6J(2wp) = 6 x %Tc. Therefore the cross-peak
intensity proportional to J(0) — 6.J(2wp) is negative (i.e., cross-peaks and diagonal peaks have the opposite sign).



Lecture 10
J-coupling, spin echoes

Literature: The through-bond coupling (J-coupling) is described in L.14 and L15, the Hamiltonian
is presented in 1.9.4 and J-coupled spins are described in L.14.2, 1L14.3, and L14.5. Spin echoes are
nicely described in K7.8 and also presented in LA.10.

10.1 Through-bond coupling

Magnetic moments of nuclei connected by covalent bonds interact also indirectly, via interactions
with magnetic moments of the electrons of the bonds. This type of interaction is known as the
J-coupling, through-bond coupling, or indirect spin-spin coupling. A magnetic moment ps is a source
of a magnetic field that perturbs the distribution of electron magnetic moments. Such a distortion
(perturbation of the electron spin states or modification of electron orbital magnetic moments by
altering the magnetic field felt by the electrons) modifies the magnetic field at the site of ;. The fact
that such indirect interaction exists is itself not surprising. But it is less obvious (and was surprising
when first observed) why the indirect interaction is not averaged to zero in isotropic liquids. The
indirect interaction is just a series of direct interactions of different magnetic moments (of the nuclei
and of the electrons). We derived in Section that the effect of a direct interaction of two
magnetic dipoles is averaged to zero in isotropic liquids. Should not the whole series of interactions
be averaged to zero, when each interaction in the series seems to be?

Before we discuss this mystery, we write down a general form of a Hamiltonian representing a
contribution of the coupling to the magnetic energy of a pair of interacting nuclear magnetic moments.
For example, if nucleus 2 generates (indirectly, via interactions with the electrons as descried above)
a field B, at the site of nucleus 1, then coupling with jis contributes to the energy of the magnetic
moment iy by —jiy - B,. We can assume that each component of the field felt by magnetic moment
1 (e.g. of 'H) somehow depends on all components of magnetic moment 2 (e.g. of *C), in a similar
manner as we described the through-space direct dipole-dipole coupling. Therefore, it should be
possible to describe the indirect interaction by a tensor (like chemical shift or dipolar coupling):

. 7 S Jazac Ja:y Ja;z 1:296 oI A,
HJ: f(jlz Ily Ilz) Jyx Jyy Jyz I2y - fjliIZ (101)
J, [

T Jzy Jzz IQZ

To proceed, we should investigate the physical origin of the interaction. As discussed in Sec-

239
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tion [10.10.1] the major contribution to the J-coupling in most molecules is an interaction mediated
by electrons occurring at the same positions as the nuclei. Obviously, the interaction of such elec-
trons with the nuclei does not change as the molecule rotates. As a consequence, the J-tensor has
a dominant isotropic (orientation-independent) component, whereas the anisotropic part is usually
small (and difficult to distinguish from the dipolar coupling). Therefore, only the isotropic compo-
nent of the tensor is considered and the anisotropic component is neglected in practice. The isotropic
component is defined as described in Section for the chemical shift tensor{[]

Jxx 0 0 100 100
Jxx + Jry +J
o | 0 Jyy 0 | —on XX §Y+ ZZ1o10|=2r7(010]. (10.2)
0 0 Jzz 001 001

The unit matrix tells us that we can replace the tensor J (represented by a 3 matrix) in the
Hamiltonian by a scalar value (single number) J. Accordingly, the J-coupling is often called the
scalar coupling (implying that the anisotropic component is neglected).

The actual coupling between nuclei connected by chemical bonds is due to interactions of mag-
netic moments of electrons that (i) can be found with non-zero probabilities at the nuclei, and (ii)
contribute to the covalent bonds between the nuclei. Wave functions of electrons in a simple o-bond
are discussed in Section 10.10.21

The value of the constant J can be positive or negative, it depends on the actual distribution
of electrons, and its calculation requires advanced quantum chemistry methods. The factor of 27
reflects the convention to express J in the units of Hz. Note that the J-coupling does not depend on
the external magnetic field go- Therefore, it does not make sense to express J in relative units (ppm).
The proton-proton J-coupling is significant (exceeding 10 Hz) up to three bonds and observable for
4 or 5 bonds in special cases (planar geometry like in aromatic systems). Interactions of other nuclei
are weaker, but the one-bond couplings are always significant (as strong as 700 Hz for 3'P-'H, 140 Hz
to 200 Hz for *C-'H, —90 Hz for '®*N-'H in amides, 30 Hz to 60 Hz for 3C-13C, —10Hz to —15Hz for
I3C-15N). Typical values of two-bond (*J) and three-bond (*J) *H-'H couplings are —15 Hz and 0 Hz
to 20 Hz, respectively. As the value of J is given by the distribution of electrons in bonds, it reports
the local geometry of the molecule. In particular, three-bond J-couplings can be used to measure
torsion angles in molecules.

The J-coupling has a quantum origin, but its influence on evolution of magnetic moments can be
described classically, as shown in Sections [10.10.3 and [10.10.5]

10.2 Secular approximation, averaging, and relaxation

If the anisotropic part of the J-tensor is neglected, the J-coupling does not depend on the orientation
(the scalar coupling) and no ensemble averaging is needed. The secular approximation is applied
like in the case of the dipolar coupling.

INote that it is sufficient to consider only the average of the diagonal elements of the tensor J = (Jxx+Jyy+Jzz)/3
if the anisotropy (2Jzz — Jyy — Jxx)/6 and rhombicity (Jxx — Jyy)/2 are equal to zero.
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Figure 10.1: J-coupling. A, the probability of finding an electron in the hydrogen atom at particular coordinates is
described by the probability density p. The probability density described by the orbital 1s (depicted as a sphere) has a
non-zero value at the position of the nucleus (shown in cyan). Therefore, there is a non-zero probability of finding the
electron (red circle) exactly at the site of the nucleus. The field produced at the site of the nucleus by the electron’s
magnetic moment (red arrow) does not depend on the orientation of the atom if the positions of the nucleus and of
the electron coincide. Therefore, the interaction of the nucleus with the electron is not averaged to zero if the atom
rotates isotropically. B and C, the probability density described by the sigma orbitals (depicted as an ellipsoid) in
molecules has also non-zero values at the sites of nuclei. The spin state of the electrons in the bonding sigma orbital
is a superposition of the |a) ® |8) and |8) ® || eigenstates (indicated by the opposite direction of the red arrows),
perturbed by the magnetic moment of the nuclei. The parallel orientation of the magnetic moments is energetically
favorable for a nucleus and an electron sharing its position.

The Hamiltonian of the scalar coupling, i.e., of the J-coupling with the small anisotropic con-
tribution neglected, has one of the following forms.

e In the case of magnetic moments with the same v and chemical shift, precessing about
the z axis with the same precession frequency,

T A~ A A A~ A
A1y = 3 (2hedoe + 20l + 20, 1, ). (10.3)

This case is called strong coupling and is discussed in Lecture 12.

e In the case of magnetic moments with different v and/or chemical shift, precessing about
the z axis with different precession frequencies,
iy =0 =7 (2h.ho.) (10.4)
.]_h1z2z—h 1242z | - .
This case is called weak coupling. Only the weak coupling Hamiltonian is considered in
Lectures 10 and 11.

In principle, the anisotropic part of the J-tensor would contribute to the relaxation like the
anisotropic part of the chemical shift tensor, but it is small and usually neglected. The scalar coupling
(described by the isotropic part of the J-tensor) does not depend on the orientation. Therefore, it can
contribute to the relaxation only through a conformational or chemical exchange. Conformational
effects are usually small: one-bond and two-bond couplings do not depend on torsion angles and
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three-bond coupling constants are small. In summary, the relaxation due to the J-coupling is rarely
observed. However, the J-coupling influences relaxation of the sample in another way. As described
in Section the J-coupling creates density matrix components relaxing with different rates than

S, and Fy, analyzed in Sections [8.7 and [8.9.6]

10.3 Homo- and heteronuclear magnetic moment pairs

So far, we did not distinguish homonuclear pairs of magnetic moments (magnetic moments of the
same type of nuclei, e.g., two protons) and heteronuclear pairs of magnetic moments (magnetic
moments of different isotopes, e.g., proton and 3C). It is useful to distinguish these two cases when
we analyze advanced NMR experiments. Although the density matrix has the same form in both
cases, the Hamiltonians describing the effects of radio waves may differ. The reason is technical.
Differences in the chemical shifts are usually small and allow us to irradiate the sample by a radio
wave with a frequency sufficiently close to the precession frequencies of both nuclei. Therefore, the
resonance conditions can be matched reasonably well for both nuclei and they are affected by the
radio waves in a similar manner. On the other hand, the precession frequencies of different isotopes
differ substantially and the frequency of the radio waves can resonate only with one of the isotopes.
As a consequence, each of the magnetic moments of the pair is affected selectively, which is frequently
exploited in the NMR experiments.

In order to distinguish the heteronuclear systems from homonuclear ones in our written notes, we
save the symbols .#; and #; for homonuclear pairs (most often two protons) and use symbols .Z;
and .7 for operators of nucleus 1 and 2, respectively, if 7; # 2. Both labeling systems are mixed if
we describe more complex chemical groups. For example, we use symbols .#;, #;, and .#; for the
operators representing contributions to density matrix describing (mixed) states of nuclear magnetic
moments in the 3C'H, group.

10.4 Density matrix evolution in the presence of J-coupling

In order to extend the description of NMR experiments to .J-coupled pairs of nuclear magnetic
moments, we should update the analysis of the density matrix evolution derived in the previous
lectures. As always, the analysis starts by the definition of the initial density matrix form. Derivation
of the density matrix in the thermal equilibrium, presented in Section [10.10.6] is very similar to that
described for two nuclei interacting through space (dipolar coupling) in Section In principle, the
diagonal elements of the density matrix are slightly influenced by the J-coupling, but this influence
is at least five orders of magnitude weaker than the dominant effect of the external magnetic field
By. Therefore, the J-coupling contribution can be neglected together with the effect of the chemical
shifts, and the same equilibrium density matrix can be used as the starting point of the analysis
of NMR experiments in the presence of J-coupling, as it was used for systems with no or dipolar
coupling:

1
Pt = 3 (F + k112 + K2 Soz) (10.5)
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Figure 10.2: Graphical analysis of evolution of density matrix for *H (nucleus 1) and *3C (nucleus 2) in an isolated
—CH- group. In individual rows, evolution of coherences is shown for three protons (distinguished by colors) with
slightly different precession frequency due to the different chemical shifts 6;. The protons are bonded to '3C. Solid
arrows represent fractions of proton magnetization in 10 % molecules with '3C magnetic moments most polarized in
the direction of EO. Dashed arrow represent fractions of proton magnetization in 10 % molecules with *C magnetic
moments most aligned in the opposite direction. The first column shows the arrows at the beginning of the echo (after
the initial 90° pulse at the proton frequency), the second column shows the arrows in the middle of the first delay
7, the third and fourth columns show the arrows immediately before and after the 180° pulse(s) in the middle of the
echo, respectively, the fifths column shows the arrows in the middle of the second delay 7, the sixth column shows the
arrows at the end of the echo. Row A corresponds to an experiment when no 180° pulse is applied, row B corresponds
to the echo with the 180° pulse applied at the proton frequency, row C corresponds to the echo with the 180° pulse
applied at the 3C frequency, and row D corresponds to the echo with the 180° pulses applied at both frequencies (see
the schematic drawings in left part of the figure). The x-axis points down, the y-axis points to the right.

where

’ij()FL
Kj = T (10.6)

In the case of a homonuclear pair of magnetic moments (e.g., of two J-coupled protons), k; =
ko = Kk because v, = Ys.

Also the second step, the analysis of the effect of the 90° radio wave pulse (see the schematic
drawing in Figure ), gives the same result as for the uncoupled systems. Again, the reason is
that the fields indirectly produced by the coupled magnetic moments are too weak (much weaker
than the radio-frequency field) to have a noticeable effect during the short pulse. Therefore, our

1

analysis of the evolution in the presence of the J-coupling starts from p(b) = 2.9, + Lr(— .5, — ),

where the letter ”b” refers to the labeling of the time course in Figure [10.2
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In the presence of the J-coupling, the general Hamiltonian describing the evolution after a 90°
pulse is complicated even in a coordinate system rotating with w0t = —Wradio

% = —’leg(l + (5171) ﬂlz —’}/QB()<1 -+ 512) jQZ -+ wJ (Qﬂlzfgz + lexﬂzw + 2j1yﬂ2y) . (107)

S .

g

~~
Ql Q2

However, if the precession frequencies differ, the secular approximation simplifies the Hamiltonian
to a form where all components commute:

% = —’le()(]_ + 51712j12 :’YQBO(l + (5172) jgz + 7TJ lezfgz. (108)
o Qs

In such case, Eq. can be applied and the Liouville-von Neumann equation can be solved
geometrically as rotations in three-dimensional subspaces of the 16-dimensional operator space. The
relevant subspaces are defined by the commutation relations summarized in Eqgs. [8.29H8.31] and
presented graphically in Figure Graphical description of rotations in the 16D operator space of
a heterenuclear pair is derived from Figure by changing .#;; to .#; and #,; to ./}, or vice versa
(see Figure . Rotations described by different components of the Hamiltonian are independent
and can be performed consecutively, in any order.

For a density matrix p(b) = 1.7, + 1k(—.9, — S,) after a 90° pulse, the evolution due to the
chemical shift (described by €2; and €25) and J-coupling (described by 7.J) can be analyzed as follows

o (10.9)
— A
R TRt WU S
_jly — +s1c5 g

+51I10— + 5151, +8157 251y I

(10.10)
—C2Cy fzy
—Cgfgy—> {
- Fess 2P i (10.11)
20 2z
+S2]2x% { +52$J Qfgyflz

where the first (cyan) arrows represent a rotation "about” .#, by the angle Q;¢, the second
(green) arrows represent a rotation "about” %, by the angle Qat, the third (red) arrows represent a
rotation "about” 2.4,,.%, by the angle wJt, and

c1 = cos(t) s1 = sin(t) (10.12)
Cy = COS(QQt) S9 — Sil’l(QQt) (10].3)
cj = cos(mJt) sy = sin(mwJt). (10.14)
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Figure 10.3: Rotations in product operator space. A, effects of the Hamiltonian describing the chemical shift; B,
effects of the Hamiltonian describing the J coupling; C, effects of the Hamiltonian describing the radio wave pulses
with the phase 0 (z); D effects of the Hamiltonian describing the radio wave pulses with the phase 7/2 (y). The
rotations are shown for the magnetic moment 1, a similar diagram for the magnetic moment 2 can be obtained by
switching the subscripts 1 and 2 of the operators .#;; and Fyy.
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;/_2%%77;

Figure 10.4: Rotations in heteronuclear product operator space. A, effects of the Hamiltonian describing the chemical
shift; B, effects of the Hamiltonian describing the J coupling; C, effects of the Hamiltonian describing the radio wave
pulses with the phase 0 (z); D effects of the Hamiltonian describing the radio wave pulses with the phase 7/2 (y).
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As mentioned above, the same result is obtained if we first "rotate about” 2.4,,.%., and then
"about” 4, or %,,.

The described analysis can be further simplified if we use pairs of arrows to represent the product
operators contributing to p. In this representation, the direction of the arrows specifies the transverse
polarization of the observed magnetic moment and the style of the arrows (solid or dashed) specifies
the longitudinal polarization of the coupled neighbor. Pairs of arrows with the same orientations
represent coherences %1, F1y, oz, P2y, describing transverse polarizations regardless of the neigh-
bor’s longitudinal polarizations. Pairs of arrows with the opposite orientations represent coherences
2591 55,, 291y Iss, 20: 515, 25,91, describing correlations of transverse polarizations with the
neighbor’s longitudinal polarizations. For example,

—jly = y s 2j1xj22 = y s ete.
X X

The evolution due to the chemical shift, described by the Hamiltonian components 2;.#;, and
Q97 is represented by simultaneous rotation of the arrows (solid and dashed arrows rotate by the
same angle (4t or st in the same direction). The evolution due to the J-coupling, described by the
Hamiltonian component 7.J 2.91,.%,, is represented by the mutual rotation of the arrows (solid and

dashed arrows rotate by the same angle 7Jt in the opposite direction). 180° pulses flip the arrows
about the axes given by the phases of the pulses. More details are discussed in Section [10.10.7]

10.5 Signal in the presence of the J-coupling

The last step is the evaluation of the expectation value of the transverse magnetization. Only %,
Fy, Faz, Soy contribute to the expected value of M., giving a non-zero trace when multiplied by
I, (taking the advantage of using the orthonormal basis, see Section :

Tr {jlz(fﬂlm + ljly)} =Tr {jgx(fgw + ljgy)} == 1, (1015)
Tr {jly(jlx -+ lfly)} =Tr {jgy(fzx + lfgy)} = i, (1016)

Well-known trigonometric relations cos(a4b) = cos a cos bFsin asin b and sin(a+b) = sina cos b+
cosasinb allow us to convert the products c¢,c; (modulating .#,,) and s,c; (modulating .#,,) in

Eqgs. [10.10H10.11] to sums of cosine and sine functions, respectively:

1 1

acr =g cos((Q +7J)t) + 5 cos((2y — wJ)t) (10.17)
1 1

S16 = 5 sin((Qy + 7 J)t) + 5 sin((2y — wJ)t) (10.18)
1 1

C2Cy = 5 cos((Qo +7J)t) + 5 cos((Qp — wJ)it) (10.19)

1 1
s261 = 5 sin((Qq + 7J)t) + 3 sin((Qy — wJ)t) (10.20)
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The expected value of M, calculated from the complete density matrix is then

(M) = Tr { ﬁ(t)m} = NYRTe {p(t)(Sry + 191, + Joy +1.55,)}
= —INYhT (cos(( + mJ)t) + cos((@ — mJ)E) + cos((Qa + TJ)t) + cos((Qa — 7))
+ /\/'vhg (sin((Qq + mJ)t) + sin((Q — 7 J)E) + sin((Q + 7J)t) + sin((Q — w)1))
= N7 (=) (cos((Q = m)8) + isin((Q1 = m)8) + cos(( + 7)) + isin(( + wJ)1))
+ NG (=) (cos((Qz = mI)t) + isin(( = m)t) + cos((Qz + 7J)0) + isin((Qa + 7))

_ N~212 B, it (ei(Ql—wJ)t | el @mD)t  Gi(Qe-m)t | ei(Qg—HrJ)t) (10.21)
8kgT

At this moment, we should also include the relaxation. We have analyzed the relaxation in
Sections [7.7], [7.12.3] and 8.7} [8.9.6, However, the density matrix in the presence of the J-coupling
evolves into new terms 2.%,.%,,, 2.9, Ss,, 291, 52,, and 2.4,,.%,,, and these terms relax differently.
Their relaxation rates can be derived using the Bloch-Wangsness-Redfield approach, but we do not
do it in this course. If both dipole-dipole interactions and chemical shift anisotropy contribute to
the relaxation, another complication appears: the relaxation of .#;, depends on 2.%,.%,, and vice
versa, and the same applies to %, and Qle,ﬂ%H To keep our analysis as simple as possible, we (i)
assume that the contribution of the chemical shift anisotropy is negligible, (ii) describe relaxation
of the inter-converting p contributions %, 2.4, %, and %, 2.4,,.%, by average rate constants,
and (iii) assume that the average rate constants are identical for both nuclei (we use the symbol Ry).

Including the relaxation and applying a phase shift by 90 °, we obtain the description of the time
evolution of the expected value of M,

. N’}/Qh2Bo efﬁﬁ

<M+> — Sk T (ei(ﬂlfﬂj)t + ei(ﬂ1+7TJ)t + ei(ﬂg*ﬂ'])t + ei(QQ+ﬂ'J)t) (1022)
B

which gives four peaks in the spectrum after the Fourier transformation:

2The mutual dependence of relaxation is described by constants known as cross-correlated cross-relaxzation rate

constants, resembling R, in Eqs. and
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N’72h2Bo EQ RQ
T\ =
8kp Ry+(w—Q+7J)? Ry+ (w—Q —7J)?

Ry R,
= =
Ry4+(w—=Q+7J)?2 Ry+ (w—Qy—7J)?
N~2R2B, w— +xJ n w—0 —7J
i - —
8kgT R;—l—(w—Ql—HTJP R§+(w—Ql—7rJ)2

w—y+7J w—y —7J
= + — :
Ry4+ (w—Qs+7J)?2 Ry+ (w—Qy—7J)?
(10.23)
2w J 2nJ 2w J 2nJ
< <> --—> --—>
— —
3 3
> T T > | -
— —
= &
0 Qy
‘ 0, ‘ 2y
w w

The four peaks in the spectrum form two doublets, one at an average angular frequency €1, the
other one at an average angular frequency €2;. Both doublets are split by an angular frequency
difference 7.J — (—wJ) = 2mJ, or by the value of J if the frequencies are plotted in Hz.

After describing the spectrum of a homonuclear pair of magnetic moments, we should also mention
how spectra of heteronuclear pairs differ from the homonuclear ones. The selective irradiation of
either nucleus 1 or nucleus 2 also implies that the peaks of nuclei 1 and 2 are not observed in the
same spectrum. The signals of nucleus 1 and nucleus 2 are recorded in two experiments with different
frequencies (resonating with the precession frequency of nucleus 1 in one spectrum and of nucleus
2 in the other one) of the radio waves, as shown in Figure The sensitivities (signal-to-noise
ratios) of the experiments are in the ratio |y, /72|*? (Eq. or example, sensitivity of *C and
15N spectra is reduced by a factor of 32 (see Figure and 300, respectively, compared to proton
spectra, even if the molecules contain 100 % '3C and N isotopes.

10.6 Spin echoes

In many NMR experiments, the J-coupling is not just detected, but creatively employed to deliber-
ately change quantum states (mixed states) of the studied system. Such a manipulation resembles
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Figure 10.5: Spectra of a heteronuclear pair. Top, real and imaginary component of a spectrum recorded after
applying a radio wave pulse close to the precession frequency of nucleus 1. Bottom, real and imaginary component of
a spectrum recorded after applying a radio wave pulse close to the precession frequency of nucleus 2. Note that the
frequency offsets ; and Q, are measured from different carrier frequencies (close to w1 and wy 2, respectively). The
spectra are plotted so that the noise is the same in both spectra, the relative intensities correspond to a pair of 'H
(nucleus 1) and '3C (nucleus 2). The value of J is the same in the top and bottom spectra.
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the dream of the medieval alchemists, transmutation of chemical elements[’| and is sometimes called
the ”spin alchemy”.

Spin echoes are basic tools of the spin alchemy, consisting of a 180° (7) radio-wave pulse sand-
wiched by two delays of equal duration 7. In the case of a heteronuclear pair, we can apply the
180 ° pulse selectively to magnetic moment 1, to magnetic moment 2, or simultaneously to both (see
Figure . Such a collection of spin echoes gives us the possibility to control evolution due to the
chemical shift and due to the J-coupling separately. In the case of a homonuclear pair, the radio
waves affect both magnetic moments simultaneously, as shown in Figure [10.2D[]

Below, we analyze three types of spin echoes applied to a heteronucler system (*H and *C in
our example). For the sake of simplicity, we do not discuss relaxation effects, although relaxation is
usually observable. On the other hand, we have to extend the analyzed system to see how the echoes
affect evolution due to the chemical shift differences. Therefore, we analyze three pairs with different
chemical shifts of the observed nucleus in.

To see how the echoes influence polarization of the sample, we should compare the effect of the
echoes with the free evolution. Evolution of a single homonuclear pair of magnetic moments in the
presence of J-coupling was described in Section [10.4l To convert the description to our set of three
heteronuclear pairs, we should follow the evolution of a density matrix starting from

3 3
i 1 1 1
pa) = Z it D osimTne + ) okaTne. (10.24)
n=1 n=1

However, complexity of such analysis might obscure the effects of the analyzed spin echoes.
Therefore, we write the evolution for one heteronuclear pair and depict the set of three pairs only in
the graphical analysis, as shown in Figure [10.2]A.

L] ﬁ(a) = %aﬂt + %Klfz + %/ﬁlzyz
thermal equilibrium, the constants x; and ko are different because the nuclei have different ~.

o p(b) =17 — Lk Fy + Lo o

— 2
90° pulse applied to nucleus I only

o ple) =39, + Lk (—e1cs Iy + s1c) I + 15,29, + 515529, F.) + 3k2.S.

—2
free evolution during 27 (t — 27 in ¢; etc.)

3Transmutation of the mercury isotope 337Hg (which can be prepared from the stable isotope (9%Hg) to a common

isotope of gold }37Au is a nuclear reaction known as the electron capture: a proton in the nucleus absorbs an inner-shell
electron, emits a neutrino v, and changes to neutron. Since proton and neutron can be described as different quantum
states of an object called nucleon, the transmutation of mercury to gold can be viewed as a change of the quantum
state. Interestingly, proton and neutron differ in the isospin projection quantum number I3, whereas the quantum
states manipulated in NMR spectroscopy differ in the spin projection quantum number s,. The similar nomenclature
is used to emphasize similar symmetry (the same mathematical description) of two different physical phenomena.

41f the chemical shift of nuclei in a homonuclear pair differ substantially, a selective application of 180 ° pulses to
either magnetic moment is possible. In such a case, the power of the radio waves should be low, and their amplitude

is often modulated during the pulse to achieve a higher selectivity (see Section |1.5.11]).
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The 2.7,.%,, 2.9,.%, coherences give a zero trace when multiplied by .#, (they are not measurable
per se), but cannot be ignored if the pulse sequence continues because they can evolve into measur-
able coherences later (note that the J-coupling Hamiltonian 27.J.7,.7, converts them to .%,, .7,
respectively).

The graphical ”double-arrow” analysis in Figure shows how the coherences evolve with
different chemical shifts (arrows of different colors rotate with different frequency) and how is the
evolution influenced by the J-coupling (solid arrows rotate slowelﬂ than dashed arrows of the same
color).

10.7 Refocusing echo

The refocusing echo consists of a 90° pulse exciting magnetic moment 1 and a 180° pulse applied
to the excited nucleus in the middle of the echo (see the schematic drawing in Figure ) The
middle 180° pulse flips all arrows from left to right (rotation about the vertical axis = by 180°). The
faster arrows start to evolve with a handicap at the beginning of the second delay 7 and they reach
the slower arrows at the end of the echo regardless of the actual speed of rotation.

Even without a detailed analysis of product operators, we see that the final state of the system
does not depend on the chemical shift or on the J-coupling: the evolution due to both chemical shift
and J-coupling is refocused during this echo.

The evolution of the density matrix can be guessed from the graphical analysis. The frequency
of the applied radio waves resonates with the proton precession frequency and is far from the pre-
cession frequency of 13C. Therefore, the magnetic moments of *C should stay in their equilibrium
distribution, described by .#; and .#,. The initial state of protons was described (after the 90° pulse)
by —.#, in terms of product operators and by three arrows with the same —y orientation. As all
arrows only changed from the —y direction to the +y direction at the end of the echo, we can deduce
that the final state of protons is +.#,. Taken together, each pair of magnetic moment ends in the
state described by

o ple) =355 + %/ﬁfy + %/125/2

2

10.8 Decoupling echo

The decoupling echo consists of a 90° pulse exciting magnetic moment 1 and a 180° pulse applied
to the other nucleus in the middle of the echo (see the schematic drawing in Figure [10.2[C). The
graphical analysis is shown in Figure [10.2IC. The middle 180° is applied at the 3C frequency. It does
not affect proton coherences, depicted as arrows in Figure[I0.2C, but inverts longitudinal polarizations
(populations) of ¥C (solid arrows change to dashed ones and vice versa). The faster arrows become
slower, the slower arrows become faster, and they meet at the end of the echo.

Without a detailed analysis of product operators, we see that the final state of the system does
not depend on J-coupling (the difference between solid and dashed arrows disappeared) but the

5This is true for nuclei with v > 0.
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evolution due to the chemical shift took place (arrows of different colors rotated by different angles
2001 7). As the effects of the J-coupling are masked, this echo is known as the decoupling echo.

We again derive the final density matrix from the graphical analysis. As the arrows at the end
of the echo have the same orientations as if the nuclei were not coupled at all, we can deduce that
the final state of protons is identical to the density matrix evolving due to the chemical shift only.
Magnetic moments of the *C nuclei were affected only by the middle 180° pulse that inverted the
longitudinal polarization. The density matrix at the end of the echo is

o ple) =39 + ik (a1 Iy — s1.9,) — 3K2S

2

10.9 Simultaneous echo

The last echo consists of a 90° pulse exciting magnetic moment 1 and 180° pulses applied to both nu-
clei in the middle of the echo (see the schematic drawing in Figure ) As both nuclei are affected,
thye simultaneous echo can be applied to heteronuclear or homonuclear pairs. The homonuclear ver-
sion includes one 180° pulse of radio waves with a frequency close to the precession frequency of both
magnetic moments. In the heteronuclear variant, two 180° pulses are applied simultaneously to both
nuclei. The graphical analysis of the heteronuclear application is shown in Figure [10.2D. The 180°
pulses are applied at the 'H and '3C frequencies in the middle of the echo, resulting in a combination
of both effects described in Figs. [10.2B and C. The proton pulse flips the arrows representing proton
coherences and the *C pulse inverts the longitudinal polarizations (populations) of 3C nuclei (solid
arrows change to dashed ones and vice versa). As a result, the average direction of the dashed and
solid arrows is refocused at the end of the echo but the difference due to the coupling is preserved
(the handicapped arrows were made slower by the inversion of the longitudinal polarization of *C).

Without a detailed analysis of the product operators, we see that the effect of the chemical shift
is removed (the average direction of arrows of the same color is just reversed), but the final state
of the system depends on the J-coupling (the solid and dashed arrows collapsed). We can deduce
from the graphical analysis that the final state of the density matrix is obtained by rotation ”about”
2.7,.7,, but not "about” .Z, in the product operator space, and by changing the sign of the resulting
coherences:

e ple) = %ft + %/ﬁ (c1 2y — 5529,7,) — %RQYZ

HOMEWORK

Analyze the spin echoes (Sections [10.6H10.9)).
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10.10 SUPPORTING INFORMATION

10.10.1 Interaction between nuclei mediated by bond electrons

In principle, both orbital and spin magnetic moments of electrons can mediate the J-coupling, but the contribution of the orbital magnetic
moments is usually negligible (coupling between hydrogen nuclei in water is an interesting exception). In order to describe the mediation
of the J-coupling by the electron spin, we first investigate the interaction between electron and proton in the hydrogen atom.

A classical picture of interactions of nuclear and electronic spin magnetic moments is presented in Figure @ The energy of the
interaction between the (spin) magnetic moment of the nucleus fin and the magnetic field generated by the spin magnetic moment of the

electron B is given by (cf. Eq. D

_ o fle X T - T
5:—,zn-Be:—@ﬁ,,~vXM:—@ﬁn-vX(VX@). (10.25)
4 r3 47 r

In principle, the interaction with an electron does not differ from an interaction between two nuclear magnetic moments, described in
Sections and Depending on the mutual orientation of the nucleus and the electron, the direction of Be varies (Figure —C).
If the distribution of electrons is spherically symmetric, or if the molecules tumble isotropically, the interactions of the spin magnetic
moments of the electron and the nucleus average to zero. With one exception, depicted in Figure[10.6D. If the electron is present ezactly at
the nucleus, the vector of the electron spin magnetic moment fie has the same direction as Be and € is proportional to the scalar product
—[in + fle. The exact co-localization of the electron and the nucleus may look strange in the classical physics, but the interaction between
the nucleus and an electron inside the nucleus can be simulated by a hypothetical current loop giving the correct magnetic moment when
treated classically. To include the distribution of the electron around the nucleus into our classical model, the total energy of the integration
must be calculated by integrating Eq. over the electron coordinates. As mentioned above, the integral tends to zero for » > 0 in
isotropic samples. However, the integral has a non-zero value in the limit » — 0, as discussed e.g. in Abragam: The principles of nuclear
magnetism, Oxford Press 1961, Chapter VI, Section II.A.

Here, we present a quantum-mechanical analysis, following the original paper by Fermi in Z. Phys. 60 (1930) 320-333. Fermi started
from the eigenfunctions of the Dirac Hamiltonian for an electron in an electromagnetic field (Eq. of nuclei of alkali metals. We
investigate the simplest example, the ground state of hydrogen atom. The 1s atomic orbital of the hydrogen atom is particularly interesting
because it has a non-zero value in the center, at the place of the nucleus (cf. Figure ) The eigenfunctions describing an electron in
the 1s orbitaﬂ are

_po @%me?

e 4w h2 w
1 1o Q?mc?\ 2 0 0
U(1sy/9,+1/2) = — [ — . 2me2 = i s 10.26
(Is1/2,+1/2) N (471' h2 i Q:C Cosﬁe_%(rlQh,Z T f% Acflb’ ( )
T . #o @%me? —5 Ao
1o Qe gingeiv e Ar - nz
0
3 _%Q Q2’!Y2‘LC2T 0
1 (o @*mc®\ 2 e T -9
(lsy g, —1/2) = — (H2 , w?me? | = - , 10.27
(15172 /2 VT (47T h? -5 Q:C sin ¥e ¥ e_%Qﬁhir +3 Aot Y ( )
s i z /
4 g Q2mec? -3 Xci ¢
5 2 Q;C cos® e TH o mT " 2o

5Derivation of the Dirac or Schrodinger orbitals is beyond the scope of our course. It can be found in quantum chemistry textbooks.
Here we only use the results, reviewed e.g. by Powel in J. Chem. Educ. 45 (1968) 558-563. Note that we use results of the original
derivation for simple Coulombic potential (published in 1928). We ignore corrections of the interaction of the electron with its own field,
that has to be made to achieve a good agreement with the experiment.

A B

Figure 10.6: Classical description of interactions of nuclear and electronic spin magnetic moments.
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where Ac = hi/(mc) is known as the Compton wavelength, v is the familiar non-relativistic (Schrodinger) orbital 1s, and ¢’ = dy/dr.
Note that the 1s orbital is a real wave function, i.e. ¢* = .

Contribution of the interaction between the magnetic moments of the nucleus and of the electron to the expected energy can be
calculated by applying Eq. [£.8] to the spin magnetic part of the Hamiltonian in Eq.[5.189

E= /‘ll*Qc (=An,23°4" — Any3%42 — An 2404°%) U dz dy de, (10.28)
\%

where Ay, is the vector potential of the nucleus. Using Eq. , the vector potential can be expressed in terms of the nuclear magnetic
moment and electron coordinates

c 1 0 0 0.
&= —“Zf /73‘1’ ((zbm,y — Yim, 234" + (@pin,z — 2im,2)7°9% + Wiin,e — Tin,y)7°4%) T dz dy de. (10.29)
\%

The integral with ¥(1s /5, +1/2) includes the following three terms

0001 4
«Zlny = Ulng c0o1y, _ Finy ~ Ui Pozy o) 0010 L
N e AUATT = 3 <'¢) 0 3Acy?¥ FAc Y 0100 —j)\c%}ﬂ
1000/ \ —ixgztivy
—d gy
27, T
Zhn,y — Ypin, i i\, 2= —3Acq
= HmSUR (0 pozv pomity) | TP
P
Zfn,y — Yhn, i z+iy i oz—iy Zphny = Ybnz | Y Y2hn,y — Y pn,
= v nz( Aoy’ + ~2q W’)= g Ao vy = T Ay,
r 2 ' 2 T T r r
(10.30)
000—i (4
P Thine = Zlng 000 Thne ~ Zing N A Ly
1 = 520 = p (¢ 0 gAcf¥" A=Y ) [ g ig o —3sAcZy
i000 —EAo Ty
_%)\Cz+iyw/
T
Tfin,z — Zpin, i i\ 2 2AcTY
- eSS (o peiv bome) [ TR
i)
_ 1 i 1 —1i - - —a?
= Doz = e (D5 O Wy T Wy ) o iz = e Ty Dol ~ Tz gy,
r 2 r 2 r T r r
(10.31)
0010 P
PYlne ~ Thny Lo 5y _ Une ~ Tiny czy daessy ) [90 0 "
v = 3043y = = (¢ 0 A" A=Y )|y g 0 0 —sAczy
0-10 0 S Yer== 27l
_'%Agéif//
— . . . iyn ety
= WSt (o0 bofv baezsiny) | FRAeIERY
0
= Yne —Tiny (—%Acidﬂﬁ/ + ;xcfww’) = 0. (10.32)

Inserting the results of Eqs. [[0.30H10.32] into Eq. [I0.29}
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0Qc 1 (22442 Tz z 0 Qh 1 [r2—22 Tz z
e=t Q Ac / — <7yun,z — Jakne = %un,y) Yy’ dedydz = %% / 3\ Hns T ghme = %un,y Wy’ dedydz.

4 r2 r2 r2 r
(10.33)
Expressed in the spherical coordinates z = 7sin®d cos p, y = rsin¥sin g, z = rcos?, dV = dedydz = r2 sin 9drdddep,
5 2w iy oo
&= u—o@un,z/dg@/sinﬁdﬂ(l — cos? ﬂ)/¢(r)¢'(r)dr
4T m
0
;» s
- MOQL /dcpcoscp/smﬂdﬁsmﬁ/lﬂ (r)dr
4T m
0
A
_ ZO Q Lun y /dcp 51n<p/31n19d1951n19/w(7")¢ (r)dr (10.34)
Only the first term differs from zero because cos ¢ and sin ¢ are periodic functions and their integrals over the whole period
/dcp cosp = 0, /dcp sinp = 0. (10.35)
The first term can be evaluated using the substitution u = cos¥, du = — sin ¥d¥, and noting that
dp(r dja(r))? dy?(r dyp(r
dr dr dr dr
where p(r) is the probability density of finding the electron at the distance r from the nucleus.
Therefore,
h, 7 h / p(oo)d h 87! (s0)
2 e o]
=" Ho Q /dcp/51nz9d19( —cos 19)/'¢J r)dr = — Ho @ p,n z27r/ / p(r) = ﬂQ—;Ln,z%r U — w {B]p .
47 A7 2 4T m 31112150
-1 p(0)
(10.37)
As the probability of finding the electron at an infinite distance from the nucleus tends to zero,
n 23 0 no Ar h
=K @ ——Hn,zT | 2 — 0-— L) = _@Qiﬂn,z*l)(o) = MOQ Hn,zp(0). (10.38)
4w om 3 2 4T m 3 3Im

Note that Qh/2m is the eigenvalue of the component of the magnetic moment of the electron parallel to the magnetic field. This time,
it is the magnetic field of the nucleus (Bp does not play any role here). If we use the direction of fin as the z-axis of our coordinate system,

2 P
E= fg,uop(())un - fe- (10.39)
Accordingly, the corresponding Hamiltonian is
N 2 505
Hy = = 107m7ep(0) (In : Ie> , (10.40)

where I, and I are operators of the spin of the nucleus and the electron, respectively, yn and ve are magnetogyric ratios of the spin
of the nucleus and the electron, respectively, and the integral is equal to one inside the nucleus and to zero outside the nucleus. This type
of interaction is known as the Fermi contact interaction and does not depend on the orientation of the molecule in the magnetic field, as
documented by the scalar product in Eq.

We can now proceed from the nucleus-electron interactions to interactions between two sigma-bonded nuclei mediated by electrons of
the bond. The electrons in the bonding sigma orbital also have non-zero probability density at the positions of the nuclei (Flgure 110.7). If
the nuclei did not have any magnetic moments, the eigenfunction of the electrons is the linear combination \/5 la) ® |8) — \/5|,8> ® |a), as
discussed in Section m and shown schematically in Figure m Due to the Fermi interaction, the parallel orientation of the nuclear
and electron spin magnetic moments (Figure ) has a lower energy and the opposite orientation (Figure WJ) has a higher energy
than the unperturbed stationary state. Thus the orientation of the magnetic moment of the first nucleus is indirectly influenced by the
orientation of the second magnetic moment: the energy is proportional to the scalar product fi1 - fi2, where [i; and [z are the nuclear
magnetic moments. The exact value of the energy depends on the actual distribution of the electrons in the bonding orbital, the calculation
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Figure 10.7: J-coupling. A, the stationary spin state of the electrons in the bonding sigma orbital without nuclear magnetic moments
is a superposition of the |a) ® |3) and |3) ® «| eigenstates (indicated by the opposite direction of the red arrows). B, energetically favorable
state of electrons interacting with nuclear magnetic moments (green and cyan arrows). C, energetically unfavorable state of electrons
interacting with nuclear magnetic moments.
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of the energy requires advanced quantum chemical methods. Such methods can be applied to more complex systems too. In general, the
described indirect interaction is described by the Hamiltonian

~ 2T A A A A PN
Hjy = ?(llxl%c + Iiyloy + I12122), (10.41)

where 27J is a constant describing the strength of the indirect, electron mediated interaction and fnj are operators of the components
of the angular momenta of the nuclei.

10.10.2 Two electrons in a sigma orbital

A wave function describing two electrons must be antisymmetric, as stated in Section Assuming that the spin degrees of freedom
can be separated (see the discussion in Sections [6.1] and , we can decompose the wave function (i) into a symmetric non-spin part o®
and an antisymmetric spin part ¥2, or (ii) to an antisymmetric non-spin part o and a symmetric spin part ¢°. We try to express the spin
wave function in a suitable basis. In the case of a single particle in a field described by the Hamiltonian —vBofz, we used a basis consisting
of eigenfunctions of the operator I, i.e., the eigenvectors la) = ((1)) and |8) = (1)) These eigenvectors are also eigenfunctions of the
operator of I? because the matrix representation of I is proportional to the unit matrix (see Eq. and 1t = 4 for any v. For a pair
of two electrons, we could use the eigenfunctions of flz, f12, fzz, and f22 (i.e., eigenvectors listed in Eq. . However, it is more useful
to chose eigenfunctions of operators representing the z-component and the square of the total spin angular momentum I'=10+ fg, in
combination with flz and f22 Note that all operators of the set ff, f22, f2, and I, commute (the first two operators are proportional to the
unit matrix that commutes with any matrix of the same size, commutation of the last two operators is given by Eq. [4.38). The explicit
forms of the chosen operators are obtained using the matrix representations of the product operators in Tables @ and [8.2]

L [1000Y (e

3 3

oy = 25 [ QLU0 ok | (10.42)
0001/ \ cu

) 1000 Clk

A 3h 0100 c

2, _ o7 2k
Boe=" 10010 b | (10.43)

0001 Cak

Py, = (151-&-132)2%01@: (f%+f22+2fl'f2)¢k =

2000 Clk
0110 Cok

= (f12 + 12 4 201 Ioy + 201y 1oy +2f1zf2z) Y = h? 0110 o E (10.44)
0002 CqLk
1000 Clk
A A A 0000 c
Ly = (Ilz + Izz) =" 5000 Ci: (10.45)

0001 CaLk

The eigenfunctions of flz, f12, fgz, and f22 clearly cannot be eigenfunctions of the operator fz, represented by a non-diagonal matrix.
Therefore, we have to look for a new basis, where the operator I? is represented by a diagonal matrix 12, For this purpose, we use a

procedure that is not very elegant, but does not require any special approaches of matrix algebra.
From the mathematical point of view, we have to find a transformation matrix 7" so that

TI'? = 1?7 (10.46)

Then, the diagonalized matrix I representing the I? operator is obtained by multiplying the equation from left by a matrix T’l,
inverse to 7' (i.e., T7'7T = 1):

A =T 1T, (10.47)
Multiplying by 1" from left gives
TH" =T (10.48)

The desired eigenvalues are diagonal elements of the diagonalized matrix
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A0 00
0X, 00
0 0N o (10.49)
00 0 X
The eigenvalues )\;C and eigenvectors ‘1ZJ;C> can be obtained by comparing the eigenvalue equation
H ) = wil k) (10.50)
with the left-hand side of Eq. [10.48
T11 T12 T13 Tha )\/1 0 0 0 )\/1T11 >\’2T12 )\éTlg )\QTM
Fp — | o1 To2 Toz Taa 0 A5 00 | _ | MTor AgTha A5To3 AjToa (10.51)
‘ - T31 T32 T33 T34 0 0 )\é 0 - )\/1T31 /\/2T32 )\ngg )\ﬁlT34 :
Ty1 Taz Tu3 Tya 0 0 0 X N Ty1 NyTyo NjTyz NjTug
The eigenvalue equation can be written as a set of four equations for £ = 1,2,3,4
2000 Tk 2Ty, Ty
0110 T Top, + T: T:
Rt :h2 2k — hz 2k 3k =\ 2k ESVANIAY 10.52
H |wk> 0110 Tss Tor + T3 k Ta k|wk> ( )
0002 Tar 2T 4y Tk
The first row of the middle equality allows us to identify
Ay = 2n? (10.53)
if we set To; = T31 = T41 =0, i.e.,
T11
, 0
i) =1| o (10.54)
0
Similarly,
N, = 2n? (10.55)
for
0
, 0
i) = | o (10.56)
Taa
The X, and A} values can be calculated from the equations
NeTok = h*(Tok + Tai) (10.57)
XeTsi = W2 (Tag, + Tsp), (10.58)
(setting Tho = Tuz = Tha = Tuz = 0).
T3 can be expressed from the first equation
A — h?
Ty =~ 3—Tox (10.59)
and inserted into the second equation
No— h2
A;’“TT% = (N}, — BTy, + W2 Tog = N Toy, (10.60)
(A2 = 2020, = M (A, — 2R2) =0, (10.61)
directly giving
5 =0, 5= 2h° (10.62)

We have identified all diagonal elements of the diagonalized operator
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1000
&9 o201 0000
1'% =2k 0010 (10.63)
0001
The new basis is given by Egs. [L0.57} [L0.58] and the normalization condition
4
Wplvp) =1= > T5 =1. (10.64)
j=1
The normalization condition immediately defines 771 = Tyq4 = 1.
Substituting Af into Egs. [10.57| and [10.58| gives
To2+T32=0 = To=—T3. (10.65)
The normalization condition 1 = T222 + T322 = 2T222 requires
1 1
Too = 57 Tso = _ﬁ. (10.66)
Substituting A; into Egs. [10.57|and [10.58| gives
212 Tos = h2(Tos + Th3) (10.67)
212 T35 = h2(Taz + Ts3) (10.68)
= Taz = Tss. (10.69)
= Tag =Ths. (10.70)
The normalization condition 1 = T223 + T323 = 2T223 requires
1 1
Toz = %’ T33 = ﬁ (10.71)
Taken together, the new basis consists of the following eigenvectors
1 0 0 0
0 75 1 , v 1 . 0
) = | 3| = leo®loy, ety = | V3 | = (i) -I8ela)), 4) = | £ | = S=(aslg) el i) = | ) | = 18)918).
2 V2
V2 V2
0 0 1
(10.72)

Among them, [¢]), [1%), and |1} ), are symmetric and are multiplied by the antisymmetric o®, whereas [¢4) is antisymmetric and is
multiplied by the symmetric o°. Calculations of the non-spin functions ¢® and ¢® is not easy]’| and requires advanced quantum chemistry.
The result of such calculation is the bonding sigma orbital o° with a lower energy and the antibonding sigma orbital o with a higher energy.
Therefore, we are interested in o®|¢5) = o%(Ja) ® |B) — |B) ® |a))/v/2 if we study the ground state of the molecule. The corresponding

eigenvalues are 3h2/4 for f12 and f12, zero for 12 and 1.

10.10.3 Classical analysis of two J-coupled polarizations

Although the physical origin of the J-coupling is a consequence of quantum behavior of electrons, the evolution of the macroscopic
magnetization can be described classically. We have described precession of a magnetic moment f in a magnetic field B as (Eq. }

L ogxji=—-Bxj. 10.73
g O XA=—yBxi ( )
As i =L,

dL - L

E:Qxsz'yBxL. (10.74)

"The major difficulty is a mutual interaction of the electron charges.
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We assume that the magnetic moment is placed in a strong homogeneous magnetic field Bo defining the direction of the axis z (a
typical case in NMR). On sufficiently long time scales, effects of other, weaker fields, average to zero, unless the weak fields are oriented

along By or rotate with a frequency close to 7750 (secular approximation). Therefore, orbital magnetic moments of electrons modify the
field Bp only by adding a small chemical shift, which can be described by changing Bg to (14 §)Bg. If two magnetic moments are coupled,
they are influenced not only by the external field Eo, but also by a field proportional to the neighbor’s magnetic moment

dr - - - I - o . _—
T; = -7 ((1 + 51)30 + <L2> x L1 = 7’}/1(1 + 51)30 X L1+ (Lo X L1 = 7’71(1 + 51)30 X L1 — (L1 X Lo (10.75)
dLs _ - ~ L .
== ((1 +62)Bo + CL1> X Lo = —~2(1 +62)Bo x Lo + (L1 x La, (10.76)
where ( is a so far undefined coupling constant. As magnitudes of nuclear magnetic moments differ only in 1, v2, while |L1| = |L2| = L,
we can divide both sides of the equations by L, and analyze rotation of dimensionless vectors 71 = (z1,y1,21) and 72 = (z2,y2, 22),

describing orientations of fi; and [iz, respectively:

dr; _
% = 7’*{1(1 +51)Bo X 71 — CLFl X Ty = 030’1 X 7 — mwJ7 X T (10.77)
dr: _
g = —v2(1 4 d2)Bo x 72 + (L7 X T2 = &o,2 X 72 + wJF1 X 72, (10.78)

where we introduced the traditional symbols wo,1, wo,2, and 7J.
Writing the vector products explicitly,

dxq

o = woay — mJyizz + w1y (10.79)
dy1

el +wo,1z1 + wJx122 — TI 2122 (10.80)
d

% = —nmJx1y2 + mJyi1z2 (10.81)

and

dzo

e = —wo,2y2 + TJy122 — wJz1Y2 (10.82)
d

% = +wo,2x2 — TJx122 + T 2122 (10.83)
d

% = +nJxi1y2 — mJyix2. (10.84)

In the case of the weak J-coupling, evolution on sufficiently long time scales is influenced only by vertical magnetic fields(secular
approximation). Therefore, it is sufficient to neglect the effect of the horizontal fields (wJy2 acting on i and wJy: acting on ji2) and
analyze only rotations about the z axis. The equations simplify to

d.

bt = —wo0,1Y1 — wJy1 22 (10'85)
de

d

% = 4wo,171 + TJT122 (10.86)
d

1y (10.87)
dt

and

d

% = —wo,2y2 — TJ21Y2 (10.88)
d

% = +wop,2T2 + wJz122 (10.89)
d

£2 _ . (10.90)

dt
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In the NMR spectroscopy, we do not observe individual magnetic moments, but the bulk magnetization defined as

My = Nfin = NynLn = Noyn L, (10.91)

where the bar indicates an ensemble average. Therefore, the ensemble-averaged terms Ty, Tnz,/, Un, Ynz,’ should be followed to
describe the evolution of weakly coupled magnetizations:

dz
ar1 _ —w0,1TT — 7 JYiZs (10.92)
dt
die
% = 4wo,171 + wJT122 (10.93)
and
dzz
CT: = —wo 272 — TJETR (10.94)
dis
% = w0273 + 7 JFTI. (10.95)

We have two pairs of differential equations describing temporal changes of 1,31 and T3, 32, but each pair includes four variables
(T1, Y1, %122, Y122 and T2,Y2, 2122, 21y2). Therefore, we should look for another source of information about the temporal changes of the
terms T122, Y122, 2122, 21Y2. We take advantage of the fact that the motion of the magnetic moments in our case is rotation about the z
axis. We will describe rotation of fi; and [i2 in the spinor representation, introduced in Section We express 71 and 72 in spherical
coordinates

r1 = sin ¥ cos g1 r9 = sin Y2 cos g3,
y1 = sin ¥y sin g1 y2 = sin Y2 sin g3, (10.96)
21 = cos V1 29 = cos Vo

and represent the orientations by two-dimensional spinors according to Eq. [[.75]

er _ie2
(al)_ cosﬁ—zle 12 (ag)_ cos%e 172 (10.97)
—_— . .ﬂ —_ . 42 . .
by sin %eﬂ Pl b2 sin %eﬂ 2

As we checked in Section [1.5.5] the spinor components really represent orientation vectors:

9 0

anal, + bpb = cos? 7" + sin? 7” =1, (10.98)
¥ 7

anal, — bpbl = cos? ?n — sin? 7” = cos ¥y = zn, (10.99)

9 2 : .
anb) + bna) = sin 7“ cos 7” (ef'“"" + e+1‘p") = sin ¥y, cos pn, = Tn, (10.100)
% P In 2% —igp, +ip . . .
anby, — bpa;, = sin 5 s - (e n—e ") = —isin¥y sin pp = —iyn, (10.101)

where n = 1 or n = 2. Combining the components of 1 and 72, we express the ensemble-averaged terms of Eqs. [10.92H10.95

T1 = x1 - 1 = (a1b] + b1a})(aza} + b2bl) = arazbial + biazajal + a1babibl + b1b2aibs = ui + uj +v1 + 07, 10.102)
10.103)
10.104)

10.105)

—iy; = —iy; -1 = (a1by — bra})(azal + babl) = arazbial — biazajal + a1babiby — bib2ajbs = w1 — uj +v1 — 7,

Tizz = =1 - 22 = (a1b] + b1ai)(azai — b2b}) = arazbial + brazajal — a1bebiby — bibaaibl = uy + uj — vy — o7,

—~ o~ o~ o~

—iy1z2 = —iy1 - 22 = (a1b} — b1a})(azal — b2bs) = araz2bial — brazaial — a1bab}bl + bib2aiby = ui —uy —v1 + 07,

Tz = 1-x2 = (ara] + b1b})(a2b} + b2ad) = arazaibly + brazbibs + arbaaial + bib2bjal = uz + va + us + v3, 10.106)
10.107)
10.108)

10.109)

—iy; = —1-iy2 = (ara} 4 b1b7)(a2by — baal) = arazaibl + b1azbjbs — arbaajal — bib2bial = uz + va —u3 — v3,

Z1%2 = z1 - @2 = (a1a} — b1b7)(a2bs + b2al) = arazaibi — braxbibl + arbaatal — bibabial = uz — v2 + u3 — v3,

—~ o~ o~ o~

—iz1y2 = —iz1 - y2 = (a1af — b1b])(a2by — b2a}) = a1a2aibl — brazbiby — arbaajal + bib2bial = uz —v2 —uj +v3,
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The variables of the equations of motion Eqgs. [10.92H10.95| are linear combinations of ensemble-averaged producst of the spinor
components an, by, and of their complex conjugates. Note that the constituents of the ensemble-averaged products can be written a four
components of a larger spinor

aiaz
al az\ _ | aib2
(bl ) ® (bz) = bay |- (10.110)
b1b2
Our goal is to describe how the orientations evolve in time. Since we decided to use a four-component spinor to represent the

distributions of L1 and Eg, we first describe a change of a spinor representing a single pair of Ly and La. Such a change is described by
some transformation matrix

allalz Toa—saa Tab—aa Tba—»aa Top—aa aipaz
a’lblz _ Taa—sab Tab—sab Toa—sab Tob—sab a1bg 10.111
va, | = | T T T T, b : (10.111)
109 aa—ba Lab—ba Lba—ba Lbb—ba 1a2
bib Toa—bb Tab—bb Tha—bb Tbb—bb b1b2

The spinor components are complex numbers and therefore the components of the transformation matrix are in general complex
numbers as well. We can write the complex components of the transformation matrix in the exponential form

alaly Aga—saae Paa—aa/2 A e=iPabsaal/2 Ay, oeTPbasaal/2 Ay o eTiPbb—raal/2 a1as

"b! —i 2 —i 2 —i 2 —i 2

al b, _ Agasab® T‘/’aa—)ab/ Agb—sab® f%b—mb/ Apasab® f%a_mb/ Apb—sape f‘Pbb—)ab/ a1ba (10.112)
A Aaa_>ba97TWaa4>ba/2 Aabﬁbae*fﬂaababa/2 Aba_ﬂ)aeffﬂabaaba/2 Abb_ybae*‘“ﬂbbaba/Q biaz |’

b} b, Aga_sppe 1 Paa—bb/2 AL e=i0absbb/2 Ay e 19ba—sbb/2 Ay e 19bb—bb/2 b1bo

where the phases pqa—aa €tc. change the azimuths @1 and @2 of the vectors #; and 72 and the amplitudes Aqq—aa change the
inclinations ¥; and Y2 of the vectors 71 and 72, respectively.

We proceed to the evolution of the whole distributions of L; and Ly in large ensembles of molecules. We write the ensemble averages
Z1, 22, and z12z2 as combinations of the spinor components:

Z1=2z1-1= (alai‘ — blb’f)(azaz + bgbz) = alaga’l‘ag — blagb’l‘a; + a1b2a’1‘b§ — blbzb){b* = |a1|2|a2|2 — |b1\2\a2\2 + |a1\2\b2|2 — |b1|2|b2‘2,

(10.113)
Za=1-29 = (alai‘ + ble)(GQCL; — bgb;) = alagafag =+ blazb){(ls — aleGTb; — blbglf{b; = |a1|2|a2|2 =+ |b1\2\a2\2 — |a1\2\b2|2 — |b1|2|b2‘2,
(10.114)
Z1zs = 21 - 22 = (a1af — b1b})(a2al — babk) = arazafal —brasbial —arbaafbl +bi1bobibs = |a1|?|az|? — |b1|?]az|? — |a1|?[b2]? + |b1]2|b2|?.
(10.115)

Of course, the following combination is always constant

1=1-1= (a1a’1* + b1b’1‘)(a2a§ —+ bgb;) = alaga’{ag 4+ blagb{a; + ale(ZTb; + blbgb{bz = |a1|2|a2|2 + |b1\2\a2\2 —+ \al\z\b2|2 + |b1|2|b2‘2.
(10.116)
As mentioned above, it is sufficient to analyze only effects of vertical fields for a weak J-coupling. Such fields do not change the
ensemble-averaged z components of L1 and Ly 277 = %1, z2' = z3, but also z1z3’ = Z1z3, where z1’, z3’, and z12z3’ are the ensemble-
averaged z components of El, [_:2, and their product, respectively, after some evolution of the magnetic moment distributions.
All four combinations described by Eqs. [T0.113H10.116] are constant when the spinor evolves due to vertical fields. As a consequence,
each of the following terms must remain constant: ajazaja3, biazbjal, aibaaibs, and b1babib;. Let us now explore how these terms

transform. We start with ajazajaj, consisting of the spinor components ajaz and of its complex conjugates. A general transformation
matrix transforms ajas as

alal = Toa—aa0102 + Tap—saa@1b2 + Tha—aabra2 + Tob—saabibo. (10.117)

Therefore,

*/ K/

ahabat’al’ = (Taa—aa@102 + Tab—aa1b2 + Tha—saab1a2 + Thp—saab1b2)(Tiy—ea0tal + T b3b3).
(10.118)
In general, the transformation describes two types of motions: stochastic motions, influencing each magnetic moment differently, and
coherent motions with the same effect on all magnetic moments. But we decided to describe only the coherent effect of the J-coupling
in this section and to neglect relaxation, i.e., to neglect the stochastic motions. Therefore, we expect only coherent effects described by

Taa—aa €tc. that are the same for magnetic moments in all molecules and can be thus factored out of the ensemble averaging:

* Ik * >k >k *
bﬁaaale + Tbaﬂaablaﬂ + Tbbﬁaa
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@} aha7ay = + ToaaaT o aa010201 05 + TaasaaTp 001020305 + TaasaaTheaq@10203 05 + Taaaa Ty aqa1020105
* T %k * T R Lk * T 1k ok * T 1ok bk
+ Tab—saaTga—saa01b20703 + TapsaaTgp—0a@102a705 + TabsaaThe—aa@1020705 + Tab—aaThp—sqqa1b20703
+ Toa—saaTaa—aab102a705 + Toa—aaTap—0ab1020705 + ThasaaTha—saa010206705 + Toa—saaThy— aqb1020705
- c N . - -
+ TopsaaTga—aab10207a3 + TobsaaTap—aa102a705 + TovsaaThy—aab10207a5 + TobsaaThp— 00010207035,
(10.119)
But we know that @/ a’a* a*’ = ajasa*a’ because ajasza*a® should remain constant. This requires |Tha—saal? = 1 and all other
10207 Ay 192 192 q
combinations Taa"jkT;a—)l'm = 0. This is true only if the square Toa—aaTyq—sqa = \Taa_ma\Q = 1, requiring Aga—aa = 1, and all

other amplitudes Aqq—sab = Aga—ba = Aaa—bp = 0. Similar arguments for byagbias a1b2aibs, and b1b2bibs lead to the conclusion that
Aca—saa = Aab—sab = Aba—sba = App—pp = 1 and all other amplitudes are equal to zero. Therefore, the transformation matrix has the
form

. _j¥Paa
Taa—aa Tabﬁaa Tba%aa Tbb*)au. eiupua*ma/Q i 0 0 0 € 2 '(‘)Pab 0 0
Toa—sab Tab—ab Toa—ab Tob—ab _ 0 e 1Pab—rab/2 0 0 _ 0 e i 0 0
Toa—sba Tab—sva Toa—sba Tob—ba 0 0 e~ iPba—ba/2 -0 a 0 0 e i%* o
Taa—bb Tab—sbb Thba—sbb Thb—sbb 0 0 0 e~ iPbb—bp/2 0 0 0 —ihb
(10.120)

Since we need only the diagonal terms, we simplified the notation by replacing paa—saa With @qq etc. We see that we can write the
transformation of the spinor by vertical fields as

_{%aa
ayal, e 2 quab 0 0 aias
/BN —1—5
Z,lb;z - 0 erx 0 0 Zlb? . (10.121)
102 0 0 e T2 0 102
/1!
by 0 0 0 o) \hib2

Note that the effect of the vertical fields is limited to the phases ¢;; changing the azimuths ¢; and (2, i.e., to rotations about z, as
expected.

We started the classical analysis of the J-coupling by describing the evolution of the magnetization by the differential equations Egs.
10.92H10.95] Therefore, we also convert Eq. to a differential equation. The differential equation describing the evolution of the
spinor can be derived by analyzing the rotation for a small time increment dt:

_jd¥aa
ayal, araz +d(a1a2) e 2 ‘g%b 0 0 aias
allb/2 _ aibs + d(a1b2) _ 0 e T2 0 0 a1bo (10 122)
b/la'Q - biraz + d(bra2) - 0 0 e—id“’% 0 bias ’
bllbé bi1by + d(ble) 0 e*idw% b1by

As dt — 0, the exponential terms can be replaced by 1 — idpaa/2, 1 — idpap/2, 1 — idppe/2, and 1 — idep,p/2, respectively (Taylor’s
expansion), and the equation can be written as

;dYaa
d(ara2) 1— iS5 Od 0 0 aiaz aiaz
d(a1b2) 0 1-i%e 0 a1bs a1bs
= — = 10.123
d(braz) 0 0 1— i% 0 biaz biaz ( )
d(b1b2) 0 0 0 1 — idgbb b1b2 b1b2
1 —i%aa 0 0 0 ideaa g 0 0
—1=5 | aias 1000 aiaz 1T J aiaz
0 1—i%5ab 0 0 aitb | [0100 aiby | _ 0 —i%5 0 0 a1bs
0 0 1-— i(hp% 0 bias 0010 bias | — 0 0 ,idgba 0 bias
0 0 0 1— idWbe b1b2 0001 b1b2 0 0 0 —i d“gbb b1b2
(10.124)
Dividing by dt yields
s dpaa
aiaz -5 (? 0 0 aiaz
d _39%ab
d a1bz _ 0 19534t C? 0 a1bs (10125)
dt | biaz 0 0 —iSge 0 biaz
blb2 0 0 0 —i depy b1b2
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In order to identify the time derivatives dpaa/dt, dpgp/dt, dep,/dt, and dep,/dt, we use Eq. [10.125| to express the time derivatives

of uy, v1, ug, and va.

d d d(bja3 dpaa———  dppg— d
% = 7(adlta2)b*l‘a§ + a1a27( 5:2) =—i ;i;a arazbiaz +1i ;lbta arazbial = —i( ;’lta
dvy  d(arb d(bib; dpap—— dppp————

o= (dlt 2) e+ aby (5t2) =i ;;b a1ba b b +1%a1a2b*{b§ = 71< e

d d d(ajby dpaa——  dppg— d
% - %a{bg +a1a2% =i ;;t“ arazal b +i%a1a2a’l‘b§ = 4( ;Dd‘;“
dvy  d(bia2) d(b7b3) dopg 5 L dOby . (depe
2 biby +b -— b1azbibg +i LB azbiby — — -
at a ety oap Le201ve g, reehits = T Sy,

The time derivatives of the complex conjugates are obtained easily by changing the sign of the imaginary unit

du*f . ((dvaa dppe *
= =+i - Up,
dt 2dt 2dt
dof d d
v} ::-i-i( Pab Sﬂbb)UT7
dt 2dt 2dt
d’ll,; s dSOaa, d‘pab *
a _J“( 2dt  2dt ) ¥
dv3 d d
Vg = = +i Pba _ Povb ’U;.
dt 2dt 2dt

Now we use Egs. [10.102H10.109| to substitute =1, y1, T122, Y122 and T2,¥y2, 2122, 21Y2 DY Un, Un,us,, v

dlwi tuf +or+of) . (dpaa  doba (w1 —u) —i deay  dpy
dt 2dt  2dt tTh odt 24t

dluz +uj +v2+v3) _ (d‘Paa B d%b) (g — ul) — i (d%a B d‘Pbb) (2 — v3)
dt 2dt 2dt 2 2dt 2dt 2

doap  depy

) u1, (10.126)

(10.127)

) ug, (10.128)

(10.129)

(10.130)
(10.131)
(10.132)

(10.133)

in Eqs. [[0.02H10.95

) (v1 —v7) = —i(wo,1 +7J) (u1 — u]) —i(wo,1 — 7J) (v1 — v]),

(10.134)

= —i(wo,2 + 7J) (uz — u3) —i(wo,2 — 7J) (v2 — v3).

(10.135)
We immediately see that
Waa — W
wo1 4] = a“fb“ (10.136)
Waep — W
wo1 —mJ = % (10.137)
wo, 2 + mJ = e — Yab ;w“”, (10.138)
Wha — W
w2 —mJ = % (10.139)
This allows us to solve Egs. m—m
d : - 9 9 :
;Ltl = Ci(wor AN ui = ur = wpee (W0 tTE alobioama;oe_l(wm+7rJ)t —sin % cos %e P20 —i(wo,1+m )t
(10.140)
d . - 9 ] ) 9 i
% = —i (UJO,I _ 7rJ) V1 = vy = 'U]_(]e_l(w(]’l_ﬂ-‘])t — alObTObZObSQG_l(WO’l_TrJ)t — sin % cos %eflipu) Sil’l2 %e—l(wo,l—ﬂn})t7
(10.141)
d . - . 9 9 . ¥ i
% - i (w0’2 +rus = ug = u20e—l(wo’2+ﬂ'.])t _ 020b50a20a§06_1(w0’2+7TJ)t — sin % oS ﬂe—lmo cos2 %e—l(w0,2+ﬂ'J)t7
(10.142)
d . - . 9 U . 9 i
% = —i(wo2 —wJ)v2 = 2= woe_‘(“’ovz_ﬁJ)t = 0«20b§0b20b§06_1(w0*2_TrJ)t = sin 222 cos %e—‘wo sin? %e_‘(“’ov?_””t,

(10.143)
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where un0, Uno, @no, bno, Ino, and ¢no are the initial values of un, vy, an, bn, ¥n, and @y, respectively. Using the standard trigonometric
relations sin(209) = 2sin®¥cos®, cos(29) = cos?® — sin?¥ = 2cos? ¥ — 1, definitions of spherical coordinates, and the Euler formula
et = cosp +ising,

1 ; 1
up = Zsin 910(cos 10 — isin@10)(1 + cos Vg )e (w017t — Z(:clo —iy10)(1 + 220)(cos((wo,1 + 7J)t) — isin((wo,1 + 7J)t))

1 - - 1— - .
= Z(mo —iy10 + T10220 — 1y10220) cos((wo,1 + wJ)t) + Z(_lzw —y10 — iZ10220 — Y10220) sin((wo,1 + 7J)t), (10.144)

1 ; 1
vy = Zsin 910(cos 10 — isin@10)(1 — cosVgp)e (wo 1=t — Z(xlo —iy10)(1 — z20)(cos((wo,1 + 7J)t) — isin((wo,1 + 7J)t))

1 - - 1— - .
= Z(:cm —iy10 — T10220 + iy10220) cos((wo,1 — wJ)t) + Z(_lzw — y10 + 10220 + Y10220) sin((wo,1 — wJ)t). (10.145)

Changing the sign of the imaginary unit,

- - 1— - .
(z10 + iy10 + 10220 + iy10220) cos((wo,1 + wJ)t) + Z(lxlo — Y10 + iZ10220 — Y10220) sin((wo,1 + 7J)t), (10.146)

N N

- - 1— - .
(z10 +iy10 — T10220 — iy10220) cos((wo,1 — 7J)t) + Z(wlo — y10 + iT10220 + Y10220) sin((wo,1 — wJ)t). (10.147)

Note that knowing the time evolution of u1, uj, v1, and v, we can also write the differential equations describing the evolution of
T12z2 and y123:

d(a)lzg — iy122) _ d(u1 — ’Ul)

o m = —i(wo,1 + 7J)ur +i(wo,1 —wJ)v1 = —iwg,1 (u1 —v1) —inJ (u1 + v1)
= —iwop,1 (1‘1Z2 — iylzz) —inJ (H* iﬁ), (10.148)
d(T12z2 + iy122 d(uf —vr
($1Z2d—: ) 1dt i) _ +i(wo,1 + ) ul —i(wo,1 — wJ) 0] = +iwo,1 (u] —v}) +inJ (u] + vf)
= +iw0,1 (I1Z2 -+ iy1ZQ) +inJ (ﬁ#» 1y71) . (10.149)

The sum and the difference of these equations give

d7izz

’;1:2 = —woTiEE — 7T (10.150)
dyiz
% = w1 F1% + TJFT. (10.151)

The evolution of uz, u3, v2, and v3 and consequently of z1Z2 and z1y2 can be described in the same fashion.

We are now ready to analyze the evolution of the magnetization. In a first example, we examine the magnetization of the first nucleus
in a heteronuclear pair after a 90° excitation pulse. M1y = M1 +iMiy is proportional to 1 + iy1 = 2(u + v]). After the 90° excitation
pulse, the magnetic moments are polarized in the —y direction. Therefore, z19 = 0. If we assume that the equilibrium distributions of fi1
and [z are almost independent, then

Y10220 = Y10 - 220 K Y10 (10.152)

because the magnetic moments are very little polarized under the typical circumstances (Z20 < 1). We can therefore write

z1 +iy1 = 2(u] +oj) = % (icos((wo,1 + 7J)t) +icos((wo,1 — 7J)t) — sin((wo,1 + 7J)t) — sin((wo,1 — wJ)t))

= 1?% (cos((wo,1 4 mJ)t) + cos((wo,1 — wJ)t) + isin((wo,1 + wJ)t) + isin((wo 1 — wJ)t)) = y% '3 (ei(wﬁ"”t + ei<w011—m’>t) ,
i
(10.153)
which is the same result as obtained by analyzing the density matrix.
In a second example, we assume that M4 first evolved for ¢t = 1/(2J). Then,
- 1 0 1w L9011 LwW01 g Y10 . w01 . U0 . w01
z1 + iy (t = E) = y%()e'*"? (e+‘ 27 T3 4 eTi27 _‘f) = yQLOe‘H 27 (e*”“ +60> = y%()eﬁ-l 27 (—1+1) =0, (10.154)
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- 1 10 . .wW0,1 . Lw0,1 . Y10 . @o,1 . Y10 . wo,1
1 — iy1 (t = E) = y%()e_lf (e_' 27 2 +e_1TJ+‘§) = %e_l 27 (ef17r —i—eo) = y%e_l 27 (-1+1)=0, (10.155)

where we used e'2 =i and efi™ = —1. As both z1 + iy1 and 1 — iy1 are equal to zero at t = 1/(2J), T1r =y1 =0 at t = 1/(2J).
On the other hand,

Tizz =ul +uj —vy —v] = —y2ﬂ sin((wo,1 + 7J)t) + y%O sin((wo,1 — wJ)t), (10.156)

where we again neglected y10z20 < Y10, and

mi (1= 5 ) = B2 (—sin (S + 5) sin (S22 = 7)) = —wmmcos S22 (10157)

because sin(p + 7/2) = £ cos ¢.
If we continue in a rotating coordinate frame and M; is exactly on resonance (wo,1 — €1 = 0),

i (1= 2 i (10.158)
T12 = — | = —%10. .
122 27 Y10
If we start to count time from this momentﬁ Z1o’ = Y10’ = 0 and Ti0z20’ = —Y1i0’ = 0 but y1pz20" # 0. M1+ then evolves (Egs.
10.146H10.147)) as
_ " * U10220 . . . .
1 + iy = 2(u] +07) = — (icos((wo,1 + 7wJ)t) —icos((wo,1 — 7J)t) — sin((wo,1 + 7J)t) + sin((wo,1 — wJ)t))

, —
= i% (cos((wo,1 + wJ)t) — cos((wo,1 — wJ)t) + isin((wo,1 + 7J)t) —isin((wo,1 — wJ)t)) = %elg (ei(“’ovl“"])t - ei(“"“_”J)t) .

(10.159)
We obtain the same result, corresponding to anti-phase peaks, as obtain in Section by the analysis of the density matrix.

10.10.4 Comparison of classical and quantum analysis of J-coupling

We now try to compare how the classical analysis presented in Section [10.10.3| and quantum mechanical analysis describe relationship
between energy of stationary states and precession frequency. We start by the classical treatment. We assume that a magnetic moment is
placed in a strong homogeneous magnetic field Eo defining the direction of the axis z (a typical case in NMR). On sufficiently long time
scales, effects of other, weaker fields, average to zero, unless the weak fields are oriented along By or rotate with a frequency close to —yéo
(secular approximation).

Position of i in a magnetic field B, composed of Bp and a z-component of an additional weak field, changes as [i precesses about the
z-axis with a frequency (Eq.

w = —vB, = —v|B]|. (10.160)

The only exceptions are two stationary states, when [i is oriented in the same direction as B or in the direction opposite to B. The
former stationary state of fi (labeled here as fig) corresponds to a spinor with a = 1 and b = 0 (therefore, z = aa™ — bb* = 1) and has an

energy (Egs. |§| and

Eo=—B jio=—B Lo =—vB:La,» =wLq,, = —wL. (10.161)
The latter stationary state of i (labeled here as i, = —fis) corresponds to a spinor with a = 0 and b = 1 (therefore, z = aa™ —bb* = —1)

and has an energy
& =-B-fGy=—B Ly=—B:Ly. = wly . = +w|L|. (10.162)

If we compare Eqs[10.160] [{0.161] and [10.162} we obtain

&y —Ea =w(wly ; —wla,z) = wAL, = w(2|L|). (10.163)

As we have described in Section relativistic quantum mechanics also reveals existence of two quantum states (o)) and |8)) of
a spin magnetic moment of an electron (and similar particles) in a homogeneous magnetic field. A result of measuring z-component of
spin angular momentum must be one of two eigenvalues of the operator fz, ie., +h/2 or —h/2, related to two eigenvalues of the spin
Hamiltonian H = —'szfz:

h
Ea = 7’YBZIOL,Z = 77B257 (10164)

8We label the values at t = 1/(2J) as T10’, Y10’ , T10220 » Y10220 -
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h
€5 = —7BzI5,: = +7B: 7. (10.165)

The energy difference £5 — £, is related to the precession frequency of a spin magnetic moment in a general (superposition) state as
€ —Ea=—vB:(I3,; — Ia,2) =w(lp,; — Ia,2) = WAL, = wh. (10.166)

We see that the classical and quantum results differ only in the value of AL, (equal to 2|L|) vs. AT, (equal to i = 2|I|/V/3).

10.10.5 J-coupling compared to classical coupled oscillators

To see relation between J-coupling and coupling discussed in classical physics, we analyze obviously classical coupled systems: two coupled
oscillators or pendulums. Let us consider two equal masses m attached to walls with springs of the stiffness k; = k2 = k£ and connected
with another spring of the stiffness k12:

The horizontal displacements x1 and x2, respectively, of the masses from their equilibrium positions can be calculated from the second
Newton’s law:

d2z, P d2z,
m =mag = m .
a2 2 2 a2

Fy =maj = (10.167)

If both masses move together (z1 = x2), the middle spring does not get stretched or compressed and both masses just experience the
forces of the outer springs

Fy = k21 = —kay Fy = —kowy = —kao. (10.168)

As x1 = z2, both masses experience the same force Fy = F5. Therefore,

A%z d%z_
F1+F2=mw = —kxy, Fi1 —Fo=0=m a2 = —kx_ (10.169)
where x4 = z1 + x2 and z— = 1 — x2. The second derivatives of sine and cosine functions are proportional to the sine and cosine
functions themselves:

d2 d [/dsi t d
7] sin(w4t) = T (%) =4 (w4 cos(w4t)) = —wi sin(wyt), (10.170)

d2 d /d t d
P cos(w4t) = T (%) =% (—wy sin(wyt)) = —wi cos(wyt). (10.171)

The solution of our differential equation can be thus written in a form

x4 = Ay sin(wyt) + B4 cos(wyt). (10.172)

The coefficients A4, B4 can be obtained from the initial conditions. If we start measurement from the time when both masses pass
their equilibrium positions (z1 = z2 = 0 at ¢t = 0),

24+ (t =0) = 0= A4 sin(0) + B4 cos(0) = By (10.173)
and
x4 = Ay sin(wyt). (10.174)
Differentiation
d?z A d2 sin(w4t) A w? sinwst) 9 k (10.175)
= = —Ajw? sin(w = —wiry =——=x .
dt2 M Tt * T TR
shows that
k
wi =) —. (10.176)
m
Motions of individual masses can be back-calculated from the evaluated x and from the fact that x_ = 0:
1 A 1 A
1 = §($+ +z_)= % sin(w4t), z2 = E(er —z_) = TJF sin(w4t). (10.177)
If the masses move exactly in the opposite directions (anti-phase), the stiffness of the middle spring k12 increases the forces F1 = —F»

experienced by both masses
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Fy = —(k1 + k12)z1 = —(k + k12)z1 Fy = —F1 = (k2 + k12)z2 = (k + k12)22 (10.178)
and
d2z_ d2x+
Fl—FQZmF:—(k+2k12)CE,, Fi4+F=0=m a2 (10.179)
The solution is
z_ = A_sin(w_t) + B_ cos(w_t). (10.180)

If we start again from equilibrium positions (z1 = 2 = 0 at ¢t = 0),

z—(t=0)=0= A_sin(0) + B_ cos(0) = B_, (10.181)
z_ = A_sin(w_t), (10.182)
d2z_ d2 si _t k+ 2k
oA sin(w-1) = —A_w?sin(w_t) = —wiz_ = —gx_, (10.183)
di? di? m

and

k+ 2k
Y i b (10.184)
m

Motions of individual masses are now calculated from the evaluated _ and from the fact that x4 = 0:

1 A_ 1 A_
1 = §(m+ +z_)= +7 sin(w4t), xT2 = §(m+ —z_) = - sin(w4t). (10.185)

The two discussed modes of motions (in-phase and anti-phase oscillations) are stationary. The masses move with constant frequencies
and amplitudes. All other modes (e.g. starting with the left mass in the equilibrium and the right mass displaced) exhibit beats, double
oscillations with combinations of w4 and w_.

For example, if we start from

21(0) = A, 22(0) = 0, (10.186)
the initial conditions are
. A . A
24(0) = A4 sin(w40) 4+ B4 cos(w40) = z1(0) + z2(0) = 2 2—(0) = A_sin(w—0) + B_ cos(w—0) = z1(0) —z2(0) = > (10.187)

telling us that Ay = A_ =0 and By = B_ = A. The individual masses move as

! A A [ wt Fw— Wy —wo Wi +w— Wy —w—
T =g (x4 +2-)= 5 (cos(w4t) + cos(w—t)) = 5 (cos ( 5 t+ 5 t) + cos ( 5 t 5 t

A <cos (%t) cos (%t)) (10.188)

and

IS
b

(cos(w1) — cos(w-1)) = 5 (Cos( R t) fcos( St s ;w* t))

A (sin (#t} sin (%t)) . (10.189)

If k12 < k, w4 and w_ are similar and

1
zo = 5(56.»,_ —z_)=

e et el (10.190)
2 2
The second cosine in equations describing motions of the individual masses represents a second, slow oscillation of the rapidly oscillating
positions.
Analysis of two coupled pendulums (connected with a spring of the stiffness k12) yields the same solution (for small swing angles),
k/m is just replaced by g/l (gravitational acceleration divided by the length of the pendulum).
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How are the coupled oscillators or pendulums related to J-coupling? If we further differentiate Eq. we obtain second-order
equations of the same form as those describing the second Newton’s law for the coupled oscillators. For example,

d?(a1a2) d [d(aia2) . —wo,1 —wo,2 —mJ\ (. —wo,1 —wo2 —7J wo1 +wo2 +wJ\2
= — = (1 i ajag,= — | ——— ] ajae. (10.191)
dt2 de dt 2 2 2

As described above, the general form of the solution is

J J
ai1az = Agq sin (—wo’l + 4020,2 +tr ) + Bga COS (—wo’l +w20,2 il ) . (10.192)
The coefficients Agq and Bgq can be determined by comparing Eq. [10.192| with the solution obtained earlier (Eq. ?77):
L —wp,1—wg,2—7J J J
araz = a1(0)az(0)e 2 t = a1(0)az(0) cos (w) —ia1(0)az2(0) sin (w) . (10.193)
—— 2 | — 2
Baa Aaa

We see that evolution of magnetic moments due to the J-coupling can be described by the same equations as coupled oscillation. The
only difference is that the coefficients Aqq and B are complex numbers (note that the spinor components a1 (0) and a2(0) are complex
numbers in general).

10.10.6 Two J-coupled nuclei in thermal equilibrium

Before we analyze evolution of the density matrix in a 2D experiment, we must define its initial form. Again, we start from the thermal
equilibrium and use the Hamiltonian. The difference from the case of isolated nuclei is that we need to define a 4 X 4 density matrix in
order to describe a pair of mutually interacting nuclei. As explained above, the off-diagonal elements of the equilibrium density matrix
(proportional to %, and %) are equal to zero. The four diagonal elements describe average populations of four stationary states of a
system composed of (isolated) nuclear pairs: aa, a8, fa, and B5. These populations are:

pea e—Eaa/kBT 1— If;“% o101
00 T Teaa/knT 4 o Eas/FBT 4 o EpalkBT 4 o Esp/FBT 4 (10.194)
£
—Eap/kBT 1_ Lap
e "B/ EpT
Pos = = €as/kBT & o—Esa/knT 1 —Ess/kaT - =, (10.195)
e—€aa/kBT 4 ¢=€ap/kBT 4 ¢=€sa/kBT 4 o—€pp/kB 4
£8a
Pia o el L 10.196
Bo ™ o—Eaa/kBT 4 ¢—€ap/kBT 4 o=E€pa/kBT 4 o—Eap/kBT - 4 ’ (10.196)
£
P o e LR 10.197
BB T o—Eaa/kBT +e€ap/kBT 4 ¢=€8a/kBT 4 o—E€3s/kBT - 4 (10. )

In principle, the total Hamiltonian also includes the term H;, which describes the J coupling and which is not averaged to zero.

~ N N 2T A~ A
H = —v1Bo(1 +8,1)11- —v2Bo(1 + &i,2)I2- + ?IlzIQZ = (10.198)
10 0 O 1 00 O 1 0 00
hl0o1 0 O hl0-10 0 nJh|{0—-1 00
—y1Bo(1 +5i,1)5 00—1 o | 7B( +5i,2)5 0o 01 olt33|0 o-10
00 0-1 0 00-1 0 0 01
(10.199)

where the diagonal elements (eigenvalues) are the energies of the individual states. Therefore, the populations (diagonal elements of
the density matrix) should be given by
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1— £aa Boh Boh  wJh
Ped kT _ - 146 )220 1+ 6; o _ 10.200
o3 1 4+71( + 1,1)8kBT+72( + "2)8kBT TokpT" ( )
Ea
P Lt 1 +y1(1+8;,1) Boh (1+6i2) Doh | _mJh (10.201)
ap ¥ T T Ty W ST 2 42 ks T * 16kpT’ ‘
€84
pea L i _ 1 (14602 (14 50y 200 IR (10.202)
pa ¥ T T T W ke T2 Y2 kT | 16kpT’ '
E
P~ ﬁ _1 (1+6i1) Boh (1+ 6;2) Boh wJh (10.203)
867~ Ty RS T 2 Y2 keT ~ 16kgT '
(10.204)

However, the values of J in typical organic compounds are at least five orders of magnitude lower than the frequencies measured even
at low-field magnets. As a consequence, the contribution of J-coupling can be safely neglected, and the initial density matrix is identical
to that derived for a pair of nuclei interacting through space (Eq.[8.39).

10.10.7 Coherences depicted as double arrows

Algebraic analysis of the corresponding density matrix evolution is straightforward, but somewhat tedious. An alternative graphical analysis
using ”double arrows” was mentioned in Section and used in Figure [10.2] Here we discus the ”"double arrow” visualization in more
detail.

We have introduced a graphical representation of the product operators (density matrix contributions) in Table where the
contribution of each coherence is visualized as a colored plot of the magnetic moment distributions. Two examples are shown in the second
column of Table @ The third column of Table @ explains the difference between the depicted coherences. On one hand, the —.%1,
coherence describes the transverse polarization of [i; regardless of the distribution of fis. Therefore, we observe the transverse polarization
of iI1 (highlighted cyan arrows of most polarized fi1) in the same direction if we look at a fraction of molecules with ji2 pointing mostly up
or mostly down (highlighted green arrows of fi2). On the other hand, the 2.#1,.%5. coherence describes the correlation of the transverse
polarization of i1 with the longitudinal polarization of fia. Therefore, we observe the transverse polarization of fi; (cyan arrows) in the
opposite directions if we look at a fraction of molecules with fio pointing mostly up or mostly down (green arrows).

In order to depict the transverse polarization of three magnetic moments in a single diagram, the graphical representation is further
simplified in the fourth column. Directions of the orange arrows in the fourth column show the transverse polarization of fi; whereas
the style (dashed or solid) of the arrows describes the longitudinal polarization of {2 (up or down, respectively) in the same fraction of
molecules. The solid and dashed arrows can be viewed as vectors of partial magnetizations, and are thus affected by the radio waves in
the same way as the magnetization vectors: 180° pulses with the +x phases flip the arrows about the x axis, whereas 180° pulses with the
+y phases flip the arrows about the y axis. Our graphical analysis can be thus viewed as an extension of the vector model, presented e.g.
by Keeler in K4.

As described in Section the evolution due to the chemical shift is represented by simultaneous rotation of the arrows (solid and
dashed arrows rotate by the same angle 21t or Qat in the same direction). The evolution due to the J-coupling is represented by mutual
rotation of the arrows (solid and dashed arrows rotate by the same angle 7Jt in the opposite direction). The evolution of coherences of
f1 in the presence of chemical shift, J-coupling, or both is depicted in Figures respectively. Figure shows the evolution
of the coherences described by the double arrows for various signs of €1 and J, and relates them to the spectra plotted according to the
standard conventions.
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Table 10.1: Examples of two graphical representations of coherences: as distributions (used in Table and as arrows (used in
The color coding of distributions is similar to that used in Tables 3.2)
resonating with the applied radio wave (magnetic moments of 'H in our example) most aligned along the —y direction. Green arrows
represent magnetic moments that do not resonate with the radio frequency (magnetic moments of 13C or 1°N in our example) in the same
molecules. The solid and dashed orange arrows presented in the last two columns correspond to partial distributions of proton magnetic
moments, shown in cyan in the third column. The direction of the arrow is given by the average direction of the cyan arrows, the type
(dashed or solid) of the arrow is given by the average direction of the green arrows in the third column (up or down, respectively). The
orientation of axes in the schematic drawings of the magnetic moment distributions is shown below the table.

Figure (10.2)).

Coherence
contributing to p
in addition to %

depicted as distributions:
selected molecules with ji of 'H
closest to —y (in-phase) or

closest to = (anti-phase)

0 0-1
00 0
=241 0 o
0+1 0
0 0+1
00 0
2V¢11)'/¢2Z = % 41 0 0
0-1 0

[eNei o)

[Nl e]

Cyan arrows represent magnetic moments

decomposed distributions
based on ji of 13C/15N
being closer to 4+z vs. to —z
in the selected molecules
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Figure 10.8: Coherence evolution due to the chemical shift in the absence of J-coupling (J = 0). Several snapshots of evolving
coherences are shown in the circles in the middle. Evolution of the .#1, and .#1, coherences is plotted above the snapshots. Evolution of
the 2.1, .%2, and 2.1, .93, coherences is plotted below the snapshots. The blue bar coincides with the transverse polarization of magnetic
moments (cyan arrow), size of which is preserved in the presence of the chemical shifts and in the absence of J-coupling. The 2.1,.%5
and 2.#1y.%2. coherences do not evolve as s; = sin(wJt) = 0.
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Figure 10.9: Coherence evolution due to the J-coupling for 21 = 0. Several snapshots of evolving coherences are shown in the circles
in the middle. Evolution of the .#1; and .#1, coherences is plotted above the snapshots. Evolution of the 241, %, and 241, .%2. coherences
is plotted below the snapshots. The —.#1, coherence (blue bar) evolves into the 2.1, .. coherences (red bars). The orientation of the
2914 %2, coherence is given by the direction of the dashed bar. The direction of the transverse polarization in the absence of the J-coupling
is shown as the cyan arrow. The solid and dashed arrows, used in this text to describe evolution of coherences, are shown in orange. The
blue and red bars are projections of the orange arrows to the directions parallel and perpendicular to the cyan arrow.
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Figure 10.10: Coherence evolution due to the chemical shift and J-coupling. Several snapshots of evolving coherences are shown
in the circles in the middle. Evolution of the %1, and .1, coherences is plotted above the snapshots. Evolution of the 2.91, %,
and 241,92, coherences is plotted below the snapshots. The orientation of the transverse fi1 polarization uncorrelated with the fio
longitudinal polarization is given by the direction of the blue bar. The orientations of the transverse fi; polarizations correlated with the
[i2 polarization in the 4z and —z direction are given by the direction of the dashed and solid red bars, respectively. The direction of the
transverse polarization in the absence of the J-coupling is shown as the cyan arrow. The solid and dashed arrows, used in this text to
describe evolution of coherences, are shown in orange. The blue and red bars are projections of the orange arrows to the directions parallel
and perpendicular to the cyan arrow.
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Figure 10.11: Conventions used in NMR spectroscopy when describing the effect of radio-wave pulses and the evolution of coherences,
and when presenting the spectra. Evolution of coherences symbolized by the solid and dashed orange arrows (introduced in Table [10.1))

for nuclei with different signs of v and €2 is shown in the circles. The first row of circles represents the polarization immediately after

applying a very short 90° radio-wave pulse (at ¢ = 0). The second and third row show directions of coherences and of Bi at time ¢ the

laboratory and rotating coordinate frame, respectively. The direction of the transverse polarization in the absence of the J-coupling is
shown as the cyan arrow. The z axis is defined by the direction of By. The oscillating radio-wave magnetic field is decomposed into two

counter-rotating components. The purple arrows indicate the direction of the resonant component B (+]§radi0 for v < 0 and —Bradio for
~ > 0). The absolute value of By is supposed to be much greater that the amplitude of B;. Note the convention to add a phase of 180° to
the direction of B; (i.e., to revert the direction) for v > 0. The resulting spectra (after Fourier transformation and applying the necessary

phase correction, which is 90 ° in the presented cases), are plotted below the circles. Arrows above the spectra assign individual peaks to

the solid and dashed arrows. Note the convention to plot the frequency axis from the right to the left for nuclei with v < 0.



Lecture 11
Correlated spectroscopy using J-coupling

Literature: INEPT, HSQC, and APT experiments are nicely described in K7.10, K8.7, and
K12.4.4., respectively. INEPT is discussed in detail in L16.3., HSQC in C7.1.1. Decoupling trains are
reviewed in C3.5. COSY is described in detail in L16.1, C6.2.1., and K8.3 (with a detailed discussion
of DQF-COSY in K8.4).

11.1 Through-bond correlation

Correlated spectroscopy greatly extends the benefits of NMR. We have described in Section how
the dipolar coupling allows us to correlate frequencies of nuclei (usually protons) that are close in
space. The distance-dependence of the mentioned NOESY experiment is a great advantage as it
provides a structural information (the interatomic distance). However, the dependence of the signal
on the a priori unknown distances in molecules makes the interpretation of NOESY spectra difficult.
In many cases, it is desirable to introduce a correlation mediated by an interaction that depends only
on a presence of a covalent bond between the observed nuclei. The one-bond J-coupling (usually
between 3C or N and attached protons) is an ideal choice. The one-bond coupling constants are
almost identical in all C—H bonds in molecules, and the same applies to N-H, C-C, C=C, etc. It is
therefore possible to design experiments where identical one-bond J-coupling provides the correlation,
and the variable chemical shift provides the resolution.

Design of heteronuclear correlation experiments is facilitated by the possibility to apply radio-wave
pulses selectively affecting only one nucleus. Spin echoes can be used to separate the effect of the J-
coupling from that of the chemical shift. In the following section, we first introduce a pulse sequence
INEPT based on the simultaneous echo (Sections [11.2HI1.3)). It can be used as a building block of
multidimensional correlated experiments, but also as a one-dimensional experiment utilizing the J-
coupling to increase sensitivity of the measurement of the magnetization of nuclei with low ~v. Another
application of the simultaneous echo, known as APT (attached proton test) and useful for analysis
of the CH,, groups, is presented in Section[I1.10.1] Then we describe the most popular heteronuclear
correlation experiment HSQC, built of the INEPT modules (Sections [11.5H11.8]). Finally, we discuss
the use of J-coupling in thehomonuclear correlated spectroscopy (Section .
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11.2 INEPT

INEPT is a heteronuclear NMR experiment based on the simultaneous echo. It differs from the
simple simultaneous echo in two issues:

e The length of the delay 7 is set to 1/4|J|

e The echo is followed by two 90° radio wave pulses, one applied at the same frequency as the
excitation pulse (the 90° pulse preceding the echo) — this one must be phase-shifted by 90°
from the excitation pulse, and the other one applied at the precession frequency of the other
nucleus (**C or °N in Fig. [11.1)).

With 7 = 1/4]J|, 277 = 7/2, ¢; = 0,s; = 1 if J > 0, and s; = —1 if J < 0. Therefore, the
density matrix at the end of the echo iEE|
ple) = %ft — %ml (2.2,.7,) — %KQyZ
— p(f) = 3.5, + 3k1 (22.5,) — 3K2., after the first pulse and
— p(g) = 2.5, — 31 (27..7,) + 3K2.7, after the second pulse.
ft

If the experiment continues by acquisition, the density matrix evolves as

I — Iy — I (11.1)
4
—Cy 2jz47y — { IEZSJ gzyy
2.9, S — +SQCJ o (11.2)
2.0, S, — St
\ +82 { +823J yy
( <
+ngy — T2 dﬂy
) —C2S5 g Qymjz
Sy — , (11.3)
i Y RN —89Cy Sy
\ 27w —5957 25y I,

Both the "blue” coherence 2.7,.7, and the "green” coherence .7, evolve into ”measurable” product
operators, giving non-zero trace when multiplied by .#,. Note that all components of 5(g) commute
with .#,. Therefore, the chemical shift of the first nucleus (Hamiltonian ©,.7,) does not contribute
to the density matrix evolution.

Evaluation of the expected value of the magnetization must take into account the instrumental
set up used in the heteronuclear experiments. Only frequencies of the observed nucleus pass the
audio filters of the NMR spectrometer (see footnote [13|in Section [7.12.5)). Therefore, the detected
transverse magnetization is represented by the operator

My, = Nyohy = Nyoh (S +1.7,) . (11.4)

!The analysis is done for J > 0. If J < 0 (e.g. for one-bond 'H-'5N coupling), all blue terms have the opposite
sign.
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130 OI‘15N

Figure 11.1: INEPT pulse sequence applied to 'H and 3C or °N (top) and direct excitation of 13C or °N (bottom).
The narrow and wide rectangles represent 90° and 180° radio wave pulses, respectively. The label y, —y above the
pulse indicates application of phase cycling to the labeled pulse (irradiation by a radio wave with the phases alternating
between values of 90 ° and 270°, relative to the first pulse in the sequence, in subsequent measurements). Distributions
of magnetic moments corresponding to the density matrix contributions other than .#; are shown schematically above
the pulse sequences for time instants labeled by the red letters and arrows. For a better visibility, the distributions
are shown in a coordinate frame rotated by 90° counterclockwise about z, compared with the orientation used in

Table B2
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As discussed in Section only products of .7, ., /%, -7, with ., have non-zero traces:

T {. (S + 1)} = Tt { Fo( S +17)) = 1, (11.5)
Te {7, (S +17)} = Tt {F)(F, +17,)} =i, (11.6)

The expected value of M, is therefore

(May) = Tr {;S(t)M2+} = Nyl Te {p(t)(S, +1.7,)} = N’ygh( (casy +i8257) + %(_SQQ, + 1(;20,,>) .

The trigonometric relations cos(a+b) = cos a cos bFsin a sin b and sin(a+b) = sin a cos btcosasinb

allow us to convert the products cas;, s257 $acy, and cacy to goniometric functions of (Qy — w.J)t and
(QQ + 7TJ)t

(Myy) = /\/'vgh% (—sin((Q — wJ)t) + sin((Qy + 7 J)t) +icos((2y — wJ)t) —icos((2y + wJ)t)) +
Nﬁ/gﬁ% (—sin((2y — wJ)t) —sin((Qy + 7 J)t) +1icos((2y — wJ)t) +icos((2y + 7 J)t))

= Nwh%i (cos((2y — wJ)t) +isin((2y — wJ)t) — cos((Q2y + 7w J)t) —isin(( +7J)t)) +
N“/gﬁ@i (cos((2y — wJ)t) +isin((2y — 7w J)t) + cos((2y + wJ)t) +isin((Q2y + 7J)1t))

/\/'71%7i F (O @) g N?’QHeig (H=mt | gietmr) (11.7)
Bkpr 8kpr

where the unimportant red terms are removed by the phase correction. After including the
relaxation with the simplifications introduced in Section [10.5

<M2+> /;/];?/QFL —Rot (71 (ei(Q1f7rJ)t . ei(QH»ﬂJ)t) + 5 (ei(ShfWJ)l + ei(Q]JrTrJ)I,)) ) (118)
BT

The real part of the spectrum obtained by the Fourier transformation is

2h’B, R R
SkgT Ry+ (w—Q+ 7)) Ry+ (w—Qy—7J)?
N~2h%B o R 2R
Y2 0 +—5 Y2 iv2 +— Y2412 ’ (11.9)
8ksT Ry+ (w—Q4nJ)?2 Ry+(w—Qy—nJ)?

e The "blue” coherence 2.7..7, gives a signal with the opposite phases of the peaks at {2y — 7.J
and €y + 7J. Accordingly, it is called the anti-phase coherence.

e The "green” coherence .7, gives a signal with the same phase of the peaks at {2y — 7J and
Q9 + mJ. Accordingly, it is called the in-phase coherence.
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2nJ

R{Y (w)}

Figure 11.2: Real (left) and imaginary (right) components of an INEPT spectrum of a 'H-13C pair. The blue and
green curves are contributions of the INEPT transfer and direct excitation to the final spectrum (red). Note that
the direct contribution makes the final peak heights slightly unbalanced. The blue spectrum is obtained if the phase
cycling is applied, the direct measurement of '3C magnetization provides the green spectrum. The scale is the same

as in Figure [I0.5]

e More importantly, the "blue” coherence 2.7,.7, gives a signal proportional to |y;| while the
7green” coherence .7, gives a signal proportional to |y2|. The amplitude of the ”green” signal
corresponds to the amplitude of a regular 1D N spectrum. The ”blue” signal ”inherited”
the amplitude with |v;| from the excited nucleus, proton. In the case of 'H and °N, |v| is
approximately ten times higher than |ys|. Therefore, the blue signal is an order of magnitude
stronger. This is why this experiment is called Insensitive Nuclei Enhanced by Polarization
Transfer (INEPT).

11.3 Phase cycling

As described in the previous section, the "blue” and ”green” signals of different origins (evolving
from the "blue” coherence 2.7,.7, and from the ”green” coherence .#;) are combined in the INEPT
experiment. It results in different heights of the {25 — wJ and €2, + 7wJ peaks in the INEPT spectrum
(Figure . The "blue” and ”green” signals can be separated if we repeat the measurement twice
with the phase of the proton y pulse shifted by 180°(i.e., with the —y phase). The mentioned pulse
converts the 2.7,.%, operator in p(e) to —2.2,.7, if the relative phase of the radio wave is +90° (y),
but to +2.7,.7, if the phase is —90° (—y): p(e) = %ft — %/11 (2.2,.7.) — %@Yz —

pf) = 39 £ 3k (2.) — 3K2.S —>

p(8) = 35 F 31 (29.5,) + 5k27

Such alteration of the phase does not affect the "green” signal, but changes the sign of the ”blue”
signal. If we subtract the spectra, we obtain a pure ”"blue” signal. This trick, repeating acquisition
with different phases, is known as the phase cycling and is used routinely in the NMR spectroscopy
to remove unwanted signals.
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11.4 Simplified analysis

When analyzing more advanced NMR experiments, tracking the complete density matrix evolution
may be very demanding. In practice, the analysis is simplified (i) by working with the already known
effects of the complete building blocks (spin echoes, INEPT) and (ii) by ignoring the evolution of
the density matrix contributions that cannot influence the measured transverse magnetization. The
latter simplification is based on the following considerations (presented for a heteronuclear pair of
magnetic moments).

e Only product operators representing the uncorrelated transverse polarizations (S, &y, Su,
<), known as the in-phase single-quantum coherences, directly contribute to the measurable
signal. Furthermore, only the signal oscillating relatively close to the carrier frequency of the
radio waves passes the audio filters of the spectrometer (see footnote in Section .
Therefore, the operator of the measured quantity represents only the actually detected trans-
verse magnetization (M, in our case). This limits the coherences contributing to the signal
to 7, #, (if nucleus 1 is detected). Only traces of their products with M+ are not zero. The
coherences .7, ., can be converted to the "measurable” operators .#,, .#, by a combination
of the J-coupling and 90° pulses.

e Product operators representing transverse polarizations correlated with the longitudinal polar-
izations, known as the anti-phase single-quantum coherences (2.%,.%,, 2.%,.7, if nucleus 1 is
detected), do not contribute to the measurable signal (traces of their products with M, are
equal to zero), but they can evolve to the "measurable” in-phase single-quantum coherences if
the J-coupling is present (without application of any radio-wave pulses).

e Conversion of the operators 2.7,.7,, 2.7,.7, to the single-quantum coherences of the measured
nucleus 1 requires evolution of the J-coupling and application of a 90° pulse (at the precession
frequency of nucleus 1).

e Product operators representing twﬂ correlated transverse polarizations (29,5, 2.9y Sy, 2545,
2.7,.7;), known as multiple-quantum coherences, do not contribute to the measurable signal
(traces of their products with M 1+ are equal to zero), and can be converted to the ”measurable”
in-phase single quantum coherences only by applying a 90° pulse and by a subsequent action
of the J-coupling.

e Product operators representing the longitudinal polarizations (%, 7, 2.%,.7,), known as the
populations, do not contribute to the measurable signal (traces of their products with M1+ are
equal to zero), and can be converted to single quantum coherences only by applying a 90° pulse
(£,) and, in the case of ., and 2.7,.7,, by a subsequent action of the J-coupling.

e The product operator .#; never evolves to a measurable coherence because it commutes with
all Hamiltonians. It can be ignored right from the beginning.

2In spin systems consisting of more than two coupled magnetic moments, product operators representing more
than two correlated transverse polarizations also belong to this category.
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Based on the arguments discussed above, all operators other than ., .%,, 2.4,.%,, 2.9,.%, can
be ignored after the last 90° pulse applied at the frequency of the given nucleus.

11.5 HSQC

Heteronuclear Single-Quantum Correlation (HSQC) spectroscopy is a 2D experiment using the J-
coupling to correlate frequencies of two magnetic moments with different v (Figure ) The
experiment consists of

e cxcitation pulse, usually applied at the proton frequency
e INEPT module, transferring the polarization to the coupled nucleus (usually °N or 3C)

e evolution period of incremented duration 7, introducing the signal modulation by the frequency
of the other nucleus

e another INEPT module, transferring the polarization back to proton
e signal acquisition

We now analyze the evolution of the density matrix during the HSQC experiments using the
simplified approach described in Section [11.4

e After a 90° pulse at the proton frequency, the polarization is transferred to the other nucleus
(usually N or 13C). The density matrix at the end of the INEPT is
p(f) = %'ﬂf - %’fl (Q'jzyy> + %HQJWg

e During an echo with a decoupling 180° pulse at the proton frequency (the cyan pulse in Fig-
ure , top), anti-phase single quantum coherences evolve according to the chemical shift
p(f) — p(g) = %ft + %/ﬁ (cn25.y — sn259.7,) + %Hz (1) — 821.7%).

The coefficients c¢o; and so;, respectively, include the cos(€2st;) and sin(€9t;) factors, as de-
scribed in Section [9.21

e Two 90° pulses convert 2.7..7, to —2.%,.%, and —2.7..%, to 2.7,.7,. The magenta operator is
a contribution to the density matrix representing a multiple-quantum coherence, which can be
converted to a "measurable” in-phase single quantum coherence only by applying a 90° pulse
(and by a subsequent action of the J-coupling). Since our pulse sequence does not contain
any more 90° pulses, we ignore 2.7,.%,. The 90° pulse applied at the precession frequency of
13C or N converts .7, to the longitudinal polarization ... The .¥, is not affected by the 90°
pulses applied with the 0° (z) phase. As the pulse sequence does not contain any more 90°
pulses, we can ignore the green terms. Also, we ignore the red term .#, which never evolves to
a measurable coherence because it commutes with all Hamiltonians. The density matrix can
be written as
ﬁ(h) = —%H16212fyeyz+ unmeasurable contributions.
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e The last echo allows the J-coupling to evolve but refocuses the evolution due to the chemical
shift. If the delays 7 = 1/4.J, the measurable components of the density matrix evolve to
%/{1 cos({2ot1).#, (rotation "about” 2.7,.%, by 90° and change of the sign by the last 180° pulse
applied at the proton frequency):

,5(1) = %51021 jx—i- unmeasurable contributions

e During acquisition, both chemical shift and J-coupling evolve in the experiment depicted in

Figure [IT.3A:

1

+5K1C21C12CT Iy

+%:‘€1€21612SJ nyyz
i

+5kK1C21812C7 I

1
—5kK1C215125 29,7,

1

+%/€1021012 Iy — {
5/{1021Jm —

(11.10)
+%/€1021812 jy — {

The HSQC experiments are usually two-dimensional. The second dimension is introduced by
repeating the measurement with ¢; being incremented. Moreover, each increment is measured twice
with a different phase of one of the 90° radio-wave pulses applied to *3C or N (labeled in Figure[11.3]
by writing x/y above the pulse, do not confuse with the label x,y in Figure that indicates phase
cycling, i.e. storing a single record obtained by adding or subtracting data acquired with a different
phase). In the records acquired with the phase shifted by 90° (y), the pulses influence the density
matrix as follows:

e The density matrix at the end of the first INEPT applied with the 90° 1*C (or °N) pulse shifted
by 90° (y) is
ﬁ(f) = 1% + %/11 (szyx) - %52%7

)

e During the echo with a decoupling 180° pulse at the proton frequency (the cyan pulse in Fig-
ure [L1.3] top), anti-phase single quantum coherences evolve according to the chemical shift
ﬁ(f) — ﬁ(g) = ltﬁt — %Iil (0212j2¢5ﬂ$ + 8212,%25@) — %Iig (6215,57; + 821<,%/).

— 2

e Two 90° pulses convert —2.7,.7, to —2.7,.%, and —2.7,.7, to —2.7,.7,. The 90° pulse applied
at the precession frequency of 3C or N with a phase shift of 90° (y) converts —., to .. and
leaves —.7,, untouched. As discussed above, only 2.7,.7, evolves to a measurable coherence:
ﬁ(h) = —%/ﬁsgllﬂyﬁﬂz—k unmeasurable contributions

The density matrix then evolves as described above for the records acquired with the phase 0°
(x), the only difference is the factor s9; instead of cos:

+%fi1821012CJ Iy
+%K/18210128J ijyz
+%H1321312CJ 2y
—3K15915128) 29,7

1

1
+ok1821C12 S —> {
§K1321fx —

(11.11)
+%/€1$21812 fy — {
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The subsequent records acquired with the 0° (z) and 90° (y) phases of the 90° *C or °N pulse
are stored as real (modulated by co; = cos(€2:t1)) and imaginary (modulated by so; = sin(Qst1))
component of a complex signal, respectively, like in the NOESY experiment.

As described in Section we continue by calculating the trace of p(t;)Mi, and including
relaxation (with different rates Eg,l and Eg,g in the direct and indirect dimensions respectively).
The result shows that the expected value of M, evolves as

2h2B _ _ ) )
(M) = A%e_&me_&1752 cos(Qaty) (72 4 (i(@rtml)in) (11.12)
B

for the 0° (x) phase of the 90° '*C or '°N pulse, and as

<Ml+> — %efﬁwtlefﬁz,lh sin(Qgtl) (ei(Q1fﬂJ)t2 + ei(Ql+7rJ)t2) (11.13)
8kgT

for the 90° (y) phase of the 90° 3C or N pulse.

The last step is conversion of the data to a two-dimensional spectrum, described already in
Section . We first perform the Fourier transformation in ¢, for each t; and each phase (0° and
90°) of the 90° 3C or "N pulse. Then we take the real parts of the (correctly phased) one-dimensional
spectra and combine them in an array containing two 1D spectra per each t; value, one with the ¢y
modulation and the other one with the sy; modulation. We combine ¢y and sy; as coq 4159, = €28
and perform the Fourier transformation in ¢;. The real part of the obtained spectrum (real in both
dimensions) is

—=2 =2 =2
’h?’B R R R
R{Y (w)} = Nn 0 — 2,2 — 2,1 +— 2,1
SkgT’ Ry +(w—M)? \ Ry, +(w—Q+7J)2 Ry + (w—Q —7J)2
(11.14)

11.6 Decoupling trains

If we perform the experiments as depicted in Figure [11.3/]A and analyzed above, we obtain a 2D
spectrum with peaks at the frequency offset €25 in the indirect dimension and a doublet at €2} +7.J
in the direct (proton) dimension (Figure . Note that the splitting by +nJ was removed by
the cyan decoupling pulse in the indirect dimension. Splitting of peaks in the direct dimension is
undesirable, but the remedy is not simple. We acquire signal in the real time and cannot remove the
splitting by a decoupling echo. In principle, we can divide the acquisition time into short fragments
and apply a 180° pulse at the frequency of *C (or N) in the middle of each such echo (green pulses

3The relaxation rates differ because single-quantum coherences of '3C or ®N evolve during ¢;, whereas proton
single-quantum coherences evolve during ¢t5. Moreover, the single-quantum coherences oscillate between the in-phase
and the anti-phase terms during ¢; and ¢5, and the relaxation rates of the in-phase and of the anti-phase single-quantum
coherences differ as described in Section The actually observed relaxation rates EQJ and EQ,Q are averages of
the in-phase and anti-phase values, despite the fact that (i) the density matrix is purely anti-phase (consisting of
2.7, and 2.7,.7, operators) at the end of t; (due to the presence of the cyan decoupling pulse) and that (ii) only
the in-phase (£, and .#,) coherence contributes to the signal in ¢o.
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O1=Y, =Y.y, =YY, =YY =Y 03=XX, X, X, =X, =X, =X, ~X

signal multiplied by: 1,-1,-1,1,1,-1,-1,1

Figure 11.3: HSQC experiment. A, basic HSQC pulse sequence. B, general idea of the decoupling in the direct
dimension. C, standard presentation of the HSQC pulse sequence with decoupling in the direct dimension and phase
cycling. The decoupling pulse applied to proton and to 3C (or *N) are shown in cyan and green, respectively. The
label x/y indicates repeated acquisition with the phase of the given pulse set first to 0° (z) and than to 90° (y), in
order to obtain cosine-modulated and sine-modulated 1D records for each ¢; increment. In panel C, the pulses with
cycled phases are labeled ¢1, ¢2, ¢3, and the actual phases during the cycles are listed below the sequence. In order
to add signals with the same signs, the individual signals acquired during the phase cycles are multiplied by the +1
or —1 factors as indicated below the sequence. Other symbols are used as explained in Figure [T1.1]
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in Figure [11.3B). In practice, imperfections of such a long series of echoes, affecting especially the
magnetic moments with large €2y, are significant. However, more sophisticated series of pulses have
a much better performance. Typical examples of decoupling pulse sequences are

e WALTYZ - a series of 90°, 180°, and 270° pulses with the phase of 0° (x), or 180° (—x), repeating
in complex patterns

e DIPSI - a similar series of pulses with non-integer rotation angles

e GARP - computer-optimized sequence of pulses with non-integer rotation angles and phases.

In the schematic drawings of pulse sequences, the decoupling (and other) trains of many pulses
are depicted as rectangles with abbreviations of the used sequences (Figure MC)

11.7 Signal summation and arraying in 2D spectroscopy

Phases of pulses during NMR experiments really run in practice alternate in order to suppress
unwanted signals. The unwanted signals may be due to magnetic moments really present in the
sample (of water protons, of 13C or ®N nuclei without protons attached) or due to various artifacts.
An example of an HSQC sequence including such phase cycling is presented in Figure [I1.3C. When
phase cycling is applied, the experiments are repeated for each increment of ¢; with different phases
of some radio-wave pulses, and the acquired signals are combined. Repeating the measurements
of course extends the overall time of the experiments. However, this drawback is not as serious
as it may appear. In many cases, the sensitivity of the measurement requires to sum results of
several measurements anyway, in order to achieve a sufficient signal-to-noise ratio. Usually, the
signals recorded with individual settings of the phases are not stored separately but directly added
to the data acquired with the preceding phase setting. The phase of the desired signal acquired
with different phases of the pulses may vary. Therefore, the phase of the acquired signal has to be
adjusted before it is added to the sum of the signals recorded in the previous runs. In the example
shown in Figure [11.3(C, the phases of the signal acquired in the second, third, sixth, and seventh
runs are shifted by 180 °, which corresponds to changing the sign of the signal. Therefore, the signals
detected in the aforementioned runs are multiplied by —1 before they are added to the overall signal.

When the phase cycling is applied in a two-dimensional experiment, as discussed in this section,
we should carefully distinguish different purposes of repeating the data acquisition:

e In order to apply the phase cycling and to improve signal-to-noise ratio, the signal is acquired
repeatedly with various phases of certain radio-wave pulses. The individual signals are called
transients or scans in the NMR literature. Usually, the transients (scans) are not stored
separately, but combined (summed after a necessary phase adjustment). Quadrature receivers
of standard NMR spectrometers supply two output signals with phases shifted by 90 °, therefore
each transient represents a complex signal with the real and the imaginary component.

e In order to introduce the second dimension, the signal is acquired repeatedly with an increasing
(or decreasing) length of the delay ¢;. The individual signals are called increments in the NMR
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Figure 11.4: HSQC spectrum of a 'H-'3C (or 'H-'°N) pair. The two-dimensional peaks are displayed as contour
plots. Frequency offsets of the proton and 3C (or !5N) are Q; and s, respectively. The left spectrum was obtained
using the pulse sequence shown in Figure [[T.3A, the right spectrum was acquired with the decoupling applied in the

direct dimension (Figure [11.3B,C).

literature. The increments are stored separately as an array of one-dimensional data (data
matrix). Each increment is stored as two signals (sums of transients) with phases shifted by
90°, providing (after an appropriate phase correction) the real and the imaginary component
of the data in the direct dimension.

In order to achieve the frequency discrimination in the indirect dimension (using the States-
Haberkorn-Ruben method described in Section , each increment is recorded twice with
a different phase of a certain pulse. The individual increments are called cosine modulated
and sine modulated in the NMR literature. The States-Haberkorn-Ruben method of frequency
discrimination is based on changing a pulse phase (like the phase cycling), but (unlike the phase
cycling) data collected with different phases are stored separately. The real components of the
cosine- and sine-modulated increments provide the real and imaginary component of the data
in the indirect dimension as described in Section [9.5.1]

11.8 Benefits of HSQC

At the and of the discussion of the HSQC experiment, we summarize the advantages of recording a
2D HSQC spectrum instead of 1D proton and 3C or N spectra.

e The 13C or 1N frequency is measured with a high sensitivity (higher by |1 /72

5/2 than provided

by the direct detection, cf. Section [7.12.5).
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e Expansion to the second dimension and reducing the number of peaks in the spectrum (only
13C or N-bonded protons and only protonated *C or N nuclei are visible) provides a high
resolution.

e The 'H-3C and 'H-'"N correlation is an important structural information (it tells us which
proton is attached to which ¥C or PN).

11.9 COSY

We started the discussion of experiments based on the J-coupling with the heteronuclear correlation
because they are easier to analyze. The basic (and very popular) homonuclear experiment is COSY
(COrrelated SpectroscopY). Its pulse sequence is very simple, consisting of only two 90° pulses
separated by an incremented delay ¢; (which provides the second dimension), but the evolution of
the density matrix is relatively complex. Here, we analyze the evolution for a pair of interacting nuclei
(protons). During ¢, (signal acquisition), we discuss only the components of the density matrix that
contribute to the measurable signal. The complete analysis is summarized in Table [11.1]

L] ﬁ(a) = %eﬂt + %li(ﬂlz + jgz)
thermal equilibrium, the matrices are different than for the non-interacting spin, but the con-
stant is the same.

o p(b) = 35 + 3h(=S1y — Sy)
90° pulse, see the one-pulse experiment

) =57

k(—ciien Fy + suienFie + 15125152, + 51151291y 5az)

QH(—CmCJlfzy + S91¢1I00 + €215 7121, Iy + $21571251:Fay),

where C11 = COS(Qltl), S11 = sin(Qltl), Co1 = COS(QQtl), S91 = Sin(QQtl), Cj1 = COS(T('Jtl), and
sj1 = sin(mwJt;) — evolution of the chemical shift and coupling.

. i
_l’_
_l’_

== o

e The second 90° pulse creates the following coherences

pd) = 3.7
Xy t2
t1
b cd

Figure 11.5: COSY pulse sequence. The rectangles represent 90° radio wave pulses applied at a frequency sufficiently
close to the precession frequencies of both interacting magnetic moments.
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Fsk(—cricn A H suen S [-eis n 2.5y —| s11571291. 52 |)

-I—%li(—CleJlszvL 52171522 —0218.J12f1yf2m— 8213J12f1yf22 )
The red terms contain population operators, not coherences, they do not contribute to the
signal. The green terms contain in-phase single-quantum coherences, only they give non-zero
trace when multiplied with M+ X (S +1Iy + oz +15,). The blue terms contain anti-phase
single-quantum coherences, they do not contribute to the signal directly, but they evolve into
in-phase coherences during the acquisition due to the J-coupling. The magenta terms contain
multiple-quantum coherences. They do not contribute to the signal, but can be converted to
single-quantum coherences by 90° pulses.ﬁ Such pulses are not applied in the discussed pulse
sequence, but are used in some versions of the experiment.

The terms in black frames evolve with the chemical shift of the first nucleus during acquisition:

S11CJ1 f]r — S11CJ1 (?12(7}]2(%1 z + S11CJ1 812(1]2,%1 ’l/+ unmeasurable anti-phase coherences

_5215J12j1yj22 — SQlSJlClQSJlex + 8218J15128J2f1y+ unmeasurable anti-phase coherences [,

where ¢,0 = cos(Quta), Spe = sin(Qy,ta), cjo = cos(mJty), and sy = sin(wJty). Using the
following trigonometric relations

- + - + - +

Cnk + Cnk Cnk — C ~Snk + Snk Snk + Snk

CnkCJjr — T SnkSJk — T CnkSJk — T SnkCJjk = T, (1115)

where ¢, = cos((Q, £7J)t) and s, = sin((, = 7J)t), the terms contributing to the signal
can be written as

K _ _ _ _ K _ _ _ _
] (511 + 51+1>((712 +efy) F (e — c‘2F1)(_512 + SB) jlﬂc + ] (s11+ Sﬁ)(""u + SE) + (co1 — 02+1)(C12 - CB) cﬂly

[21,04] [2,01] [21,91] [29,01]
The %1, and %, coherences provide the real and imaginary component of the complex signal

acquired in the direct dimension (¢2).

Evaluation of the traces of M+ p(t2) gives the following modulation of the signal:
(14 50) (1074 SO ey — ) (O )

-~

[Q1,01] [Q2,91]
The imaginary unit in front of the blue term can be written as €™/“. The phase correction of
the whole signal by —7/2 (mathematically equivalent to multiplication by —i results in

im/2

—i (5]71 i ST]) (ei(Q]fﬁ.])Lg + ei(SZ1+7r.]>Lg) 4 (651 o C;H) (ei(ﬂlfﬂ‘J)tQ o ei(QI‘HTJ)tQ). (1116)

(. J/

[Q1,01] [Q22,91]

Note that the phase correction cannot remove the phase shift of 7/2 from the whole signal:
either green or blue part is always multiplied by the imaginary unit (equivalent to e/ 2). As a

4We have not analyzed the evolution of the multiple quantum coherences so far. To do it, it is sufficient (i) to
recognize that the multiple quantum coherences commute with 2.#,.%, (therefore they are not influenced by the
weak J-coupling), and (ii) to analyze the "rotation” of individual constituents of the product operators (e.g. of .7,
and #,) ”"about” .#,; individually and calculate the product of the results of the rotation.
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consequence, the blue and green parts of the signal result in peaks of different shapes (one of
a convenient absorption shape and the other one of an undesirable dispersion shape).

The imaginary signal in the indirect dimension is obtained by repeating the acquisition for each
increment of ¢; with a different phase of the second 90 ° pulse (shifted by 90°, which corresponds to
the direction y in the rotating coordinate system).

e The second 90° pulse with the y phase creates the following coherences
5(d) = 1.7,
P 2t
+%/‘€(— (311(?J1f1y —sicnd.—| 1151291, I +511$J12f1yf2a:)

1 S 7 G 7
+§ff(— Co1C 115y |— 52101 I —| €218712I12I2 H5215112I15-F2y).

e The terms in black frames evolve with the chemical shift of the first nucleus during acquisition:

—(311(,7(/1f1y — (f11(7,/1512(,7,/2f11, — (311(f,/1(f12(3,/2j1y+ unmeasurable anti-phase coherences

—8218J12j1$f22 — CQlSJlSlQSJlex — CQlSJlClZSJQﬂly‘I_ unmeasurable anti-phase coherences |.

The terms contributing to the signal can be written as

(e + ) (s1p +515) F (msgy —s3) ey —efy) | Tz — | ey + i) ey + ) + (msqy +53) (=515 +55) | F1y-
[©1,94] [Q2,82] [©1,0] [Q2,0]

e Evaluation of the traces of M + p(t2) gives the following modulation of the signal:
—i(ey; +¢fy) (ei(szlfﬂ.mg + ei(£21+7rJ)L2) — (s3, — 53) (ei(ﬂlfﬂz])tg _ ei(Q1+7rJ)t2)

(. J/
-~

[Q1,0] [Q2,01]
Again, the green part of the signal is shifted by 7/2 from the blue one (multiplied by —i), and
this difference in phases cannot be removed by any phase correction. If we apply the same
phase correction as for the experiment with the x phase of the second pulse, we obtain

o (C;l + Ciq) (ei<§2]77r./>t2 + ei(f2l+ﬂ./)f2) _'_ i<52_1 _ 53—1) (ei(Ql—WJ)tQ _ ei(Ql+7Te])t2) (1117)
[Q1,01] [Q;?h]

e Now we combine signals obtained with the different phases of the second pulse. The Fourier
transformation (with respect to the real time course during measurement, labeled ¢, here) of
the signal obtained with the phase z (Eq. after introducing the relaxation yields a series
of one-dimensional spectra with the following shape:

L 7]‘?.2‘1 T%Q#l i(Ql —mJ 7;02) i(Ql +nJ — UJQ)
— il +sh) (= : 5 T =2 : ;T =2 : ;T = : f
R211+(£217WJ7¢U2)— R2A1+(Q1+7T»wag>z R2V1+(S2177r,]7w2)2 R2.1+(521 +7T(]7w2)2
[©21,94]
+ (= + ﬁg’l ﬁz@ i(Q1 —7J — w2) i(Q1 +7J —w2)
(a1 —ea1) | =3 2 32 2 P2 2 g2 2 )
R271+(Ql—7ﬂ]—w2) R211+(Ql+7TJ—w2) R2,1 +(Q1 — 7 —w2) R2’1+(Ql +7J —w2)

[Q22,01]
(11.18)
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Separating the real and imaginary parts provides

L (Q —7J —w2) (Q +7J — w2) ) R R
+(‘*11+‘511)<2 piy e 5 M\ &2 ;T =2 5
R2A1 + (Q] — W.]*LUQ) RQA,I + (Q] +W.]7w2) R2,1 + (Q] —mJ 7{).)2) RZAI + (Q] +7T.]7Lu2)

[Q1,9]

+ (o + Ro1 Ro1 . (21 —7d —w2) (1 +7J —wa)
(621 - C21) p— 2 ) 2 +1 pu—) 2 p— 2 .
R2,1 + (Q1 —nJ — UJQ) R2’1 + (Q1 +7J — WQ) R271 + (Ql —nJ — UJQ) R2,1 + (Ql +7J — (.AJQ)

[Q22,64]

(11.19)

In a similar manner, the Fourier transformation of the signal obtained with the phase y
(Eq. [11.17)) provides a series of one-dimensional spectra with the following shape:

(C;l +Cirl) ( Ez‘l I E2,1 n i(Ql —nJ — UJ2) n i(Ql +xJ _OJQ) >
—- . -2 b =2 o =2 -
RZ’l-‘r(Ql—TrJ—uu)z R211+(Q1 +WJ—UJ2)Z R2_l+(Q1—7rJ—w2)2 R2V1+(Q1+7T.]—w2>2

[©21,94]
o §2,1 ﬁgyl i(Q1 —7J — w2) i(Q1 +7J —w2)
+i(sy _53_1) <2 5 52 2 + = 5 32 5 "
R2,1+(Ql+7TJ—w2) R271+(Ql—7TJ+UJ2) Rg’l-‘r(Ql—ﬂ'J—wg) R2’1+(Ql +7rJ—w2)

[Q22,01]
(11.20)

We wish to use the signal obtained with the phase y as an imaginary component. Therefore,
we factor out the imaginary unit and then separate the real and imaginary parts

s Q1 —7d —wa) (1 +7J —w2) . EQJ EQ,]
—l(cl]+cl+])<‘ -+ = - —i| = + = ‘
R2’1+(Q1 7#.]7&}2)2 R2$1+(Q] +7r(]fw2)2 B2#1 +(Q] 77!’.]70\)2)2 R2’1+(Q] +ﬂ-'],w2)2
[01,01]
s Ro1 Ro1 . (9 —7J —wa) (0 +7d —wa)
+1(521,5;1) <2 2*72 2+1<2 2*72 2 .
R271+(Ql —7TJ—UJ2) R271+(Ql +7TJ—0J2) R2Y1+(Ql—7TJ—WQ) R2’1+(Ql +7TJ—LU2)

[92791]

(11.21)

As described in Section the hypercomplex signal is obtained by (i) discarding the imagi-
nary parts and (ii) processing the signals recorded with the x and y phases of the second pulse
as real and imaginary components
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_ L Q —7d — we Q1 +7d — we
+ ((5’11 +Sir1> +i(ey +Cir1>) (2 (€ — 7 2) -+ = (€ ) . )
R2,l+(Q177rJ7WQ)Z R21l+(Q1 +WJ70J2)2

[©21,94]
_ - Ra Ra1
o+ o , _ )
((021 ) i S21)> (R;,l + (21 —7J —w2)? ﬁg,l + (47— w2)2> ‘

[Q22,91]
(11.22)

When we express the obtained complex numbers in the exponential form and write the —i
multiplying the green terms as e /2,

4 i (ei(fz_m/)tl 4 i@+t <7 (1 —7J —wa) T Q1 +7J —w2) )
R;]-ﬁ—(Ql—WJ—DJg)Z RQJ—&-(QL—}—T(.]—WZ)Z

[Q1,Q1]

=+ (ei(92—7f~])t1 — 91(92+7TJ)751) (2 R21 - = R21 >’
Ry + (1 —mJ —ws)? Ry 1+ (21 +7J —w2)?

[Q22,01]
(11.23)

we see that the green and blue parts differ in phase also in the indirect ¢; dimension. After the
second Fourier transformation, we obtain a two-dimensional spectrum with the intensity of the
real part proportional to

,\fﬂ,’Qh‘zBo( (@ —ml—w)  (+w]—w) >< (Q—ml-w) (47T —w) )

16kpT ﬁ;]—‘r(Ql—ﬂ',}—wl)E E§$1+<Q1+7TJ—UJ1)2 ﬁ;]-‘r(Ql—WJ—wQ)Z E;]-ﬁ—(Ql +7T.]—L/.J2)2
[€1,91]
N~2h2 By Ra 2 _ Ra Ra B Ra1
16ksT §§72+(9277FJ7W1)2 E§72+(QQ+TFJ7L01)2 §§,1+(Ql 77FJ70.)2)2 §§71+(Ql +7FJ7<;.)2)2 ’
[©22,04]

(11.24)

where Eg’l and Eg’g are the average relaxation rates of proton 1 and 2, respectively (ignoring
the differences in the relaxation of different coherences).

e The green component of the signal evolves with the same chemical shift in both dimensions,
providing a diagonal signal (at the frequencies [y, ;] in the 2D spectrum). The blue (orig-
inally anti-phase) component of the signal also evolves with €; in the direct dimension (ts),
but with €25 in the indirect dimension (¢;). It provides an off-diagonal signal, a cross-peak at
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frequencies [y, 1] in the 2D spectrum. As the phases of the blue and green components differ
by 90°, either diagonal peaks or cross-peaks have the undesirable dispersion shape (it is not
possible to phase both diagonal peaks and cross-peaks, they always have their phases differ-
ing by 90°, even when the spectrum is processed correctly following the protocol described in
Section . Typically, the spectrum is phased so that the cross-peaks have a nice absorp-
tive shape corresponding to Eq. (see Figure because they carry a useful chemical
information: they show which protons are connected by 2 or 3 covalent bonds.

e The diagonal peaks are not interesting, but their dispersive shape may obscure cross-peaks
close to the diagonal. The problem with the phase can be solved if one more 90° pulse is
introduced. Such a pulse converts the magenta multiple-quantum coherences to anti-phase
single-quantum coherences, which evolve into the measurable signal. The point is that other
coherences can be removed by phase cycling. The obtained spectrum contains diagonal peaks
and cross-peaks, but (in contrast to the simple two-pulse variant of the COSY experiment)
both diagonal peaks and cross-peaks have the same phaseEl This version of the experiment,
known as double-quantum filtered COSY (DQF-COSY), is analyzed in Section . Its
disadvantage is a lower sensitivity — we lose a half of the signal.

e Also, note that each peak is split into doublets in both dimensions. More complex multiplets
are obtained if more than two nuclei are coupled. The distance of peaks in the multiplets is
given by the interaction constant J. In the case of nuclei connected by three bonds, J depends
on the torsion angle defined by these three bonds. So, COSY spectra can be used to determine
torsion angles in the molecule.

e The terms in the cyan frames evolve with the chemical shift of the second nucleus during the
acquisition as

8216(]1:%2;,; — 8216J1612CJ21ﬁ27; + S21C 1 8120J2<ﬁ2y+ unmeasurable anti-phase coherences

—S118J1 2]12f2y — $11871C128.72-F 9, + 8115]15128]2f2y+ unmeasurable anti-phase coherences

and give a similar type of signal for the other nucleus:

./\/"",/2/7,230 (QQ —7mJ — w1) I (Qg +7J — (,«)1) (QQ —aJ — LUQ) 4 (QQ +nJ — UJQ)
16ksT  \ Ry, + (Q+7J —w1)?  Ros+ (-7 —w1)?) \Rop+ (o +7J —w2)?  Rao+ (R — 7] —ws)?

[Q1,04]

+ N~2H2 By Ro1 B Ra 1 Roo B Ra 2
16kgT §§,1 + (1 +7d —wp)? Eg’l + (1 —7J —wip)? Eﬁg + Qo+ 7J —w2)? E;Q + (Q2 —7J —w3)? ’

[Q22,4]

(11.25)

This signal represents the other diagonal and off-diagonal peak in the spectrum.

SWe cannot use phase cycling to remove the green terms resulting in the unwanted diagonal peaks because phase
cycling can distinguish multiple-quantum coherences from single-quantum ones, but it cannot distinguish anti-phase
single quantum coherences from in-phase single quantum coherences.
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Table 11.1: Evolution of the density matrix during the COSY experiment. Modulations of the density matrix
components (omitting the x/2 factor and the .% component) having the origin in %, and %, are shown in black

and cyan, respectively. The product operators are color-coded as in the text.

Real in t1:
ORI ORI RN IC) ) T ) (Fis ¥ Far T iy T 17550
Iz +1 0 0 —c11cg1 +ciicg 0
Aa 0 +s11c1 | +Ss11¢g1 | +S11€51€12C 2 + 521571C128 72 +s11cg1c12C52 + S21571C128 72
Fy -1 —c11¢g1 0 +s11cg1812C2 + 521571812872 i(+s11¢g1812¢02 + 521571512572)
251y Iz +s11871 | —s21571 | +S11¢51€12872 — 521571C12C )2 0
214522 +c11871 0 —511CJ1812872 + 521571812€C2 0
2912 2y —C118J1 | —C118J1C12C22 + 21571812522 0
2.4 I +c11871€12522 + C21571812C20 0
251y Iy —(21571€12522 — C118J1512C22 0
291y Iz —C21571 | —C21571€12¢20 + €11871812522 0
2.9, Iz +c21871 0 —521C71522572 + 811871522C 2 0
291, 2y 521571 | —8118J1 | +S21C 102250 — S11871C22C 0 0
Ty —1 —c2101 0 +s21C51522C72 + S118715225 72 i(+s21cy1522C70 + 8118715225 72)
T2a 0 +s21€71 +s21€71 +s21C71022C 72 + S11871C225 72 +521C71022C 72 + S11871C225 72
B2 +1 0 0 —C21CJ1 “+c21C71 0
Imaginary in ¢1:
p(a) | p(b) h(c) A(d) p(t2)
Sz +1 0 0 —s11CJ1 +s11¢71 0
v 0 +s11¢1 0 +ciieg1812¢ 2 + 2157181282 +ciieg1812¢ 2 + 21571812872
F1y -1 —C11Cj1 | —Cl11CjJ1 | —C11CJ1C12CJ2 — C21571C12572 i(—c11cyic12¢02 — C21571€12872)
251y Iz +s11571 0 +c11c51812872 — C21571812C72 0
251492, +c11851 | —c21571 | +er1cg1€12872 — €215 71€12C 72 0
29122y +s11851 | FS11851€C12022 + 21571812522 0
25020 —511871C12522 — 521571512022 0
251y Iy 5215 71€12522 + 811871512022 0
291y Iz 501871 | +521571€C12020 + €C11871512522 0
2.9 I +eo18571 | —e11851 | FC21C 1022570 — €11871C22C 2 0
2.9, Iy +821871 0 +c21C¢71822872 — €11871522C )2 0
Foy -1 —c21¢71 | —c21¢71 | —C21C51C22C 2 — €118 71C225.72 i(—ca1cyic00c0 — €11871C22572)
Sz 0 Fs21¢71 0 fc21¢51822¢ 72 + €118 715228 72 fFca1c71822¢ 72 + €118715228 72
Bow +1 0 0 —821CJ1 +s21C71 0
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Figure 11.6: COSY spectrum of a 'H-'H pair. The two-dimensional peaks are displayed as contour plots, the
positive and negative contours are shown in blue and red, respectively. A one-dimensional slice taken from the 2D
spectrum at the position indicated by the green line is displayed below the 2D plot. Frequency offsets of the protons
are 1 and Q. The left spectra were obtained by the pulse sequence displayed in Figure [[1.5] the right spectra by
the pulse sequence DQF-COSY.
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HOMEWORK

Analyze the COSY experiment (Section [11.9).
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11.10 SUPPORTING INFORMATION

11.10.1 APT

The attached proton test (APT) is useful for analysis of systems with multiple protons, most often CH, (C, CH, CHa, CHs).

The

experiment consists of 13C excitation, simultaneous echo (discussed in Section [10.9)), and 3C acquisition with proton decoupling. In the

following analysis, the 13C operators are labeled ., Sy, 7=, and relaxation is ignored for the sake of simplicity.

o pa) = 5w I+ 5+ k;(sz) + 527,

The probability density matrix at equilibrium is described in a similar manner as for one or two magnetic moments, the extension

to the multinuclear system is reflected by the scaling constant 1/2™, where n is the number of protons attached to 13C.

e p(b) =S + 5 k;(j“) - 52

Excitation of 13C is an analogy of cases discussed above.

e Understanding the next step is critical for the analysis. The general conclusions of Section [10.9] apply, but the actual form of
the density matrix must be derived for each system. The general conclusions are: evolution of Qo (13C frequency offset) due tho
the 13C chemical shift is refocused, J-coupling evolves for 27 as cos(27J7) and sin(27J7), nucleus 1 (proton) is never excited (no

proton 90° pulse), therefore only .#%, contributions are present for protons.

e The actual analysis for 13CHz and '3CHj3 groups requires extension of the density matrix to 2*t1 x 27+1 dimensions. Construction
of the basis matrices for such 4"*!-dimensional operator space involves additional direct products with the matrices %, Z, %y,
7. Evolution of the 2711 x 271 matrices is governed by their commutation rules, three-dimensional subspaces where ”rotations”

of operators take place are defined by these commutation rules (Egs. 8.31)).

e When the rules are applied, the analysis gives

n=0: %
n=1: ¢y —829.

~ 1 P P n=2: .Sy — sc 29 2L + 259, S ) — 824,71Z,72Z,7

Pe)=gnfit gt X ()58 o3 By - scg(ZfMyz + MQZ;@)E oS
—826(4ef12,ﬂ22<5’y + 491,93 Sy + 4ﬂzzﬂ3z§//y)
+538]1z]2z]32=yz

where s = sin(27J7) and ¢ = cos(2nJT).

e Since decoupling is applied during acquisition, only the .7}, coherences give a measurable signal. Note that the fact that the proton
decoupling is used tells us in advance that the terms containing ., need not be analyzed. Therefore the knowledge of exact
commutation rules is not necessary, the only important conclusion is that the observable contributions to the density matrix are
modulated by cos™ (2w J7) for CH,. During acquisition, these terms evolve under the influence of chemical shift, exactly like in a
one-pulse experiment. If 7 is set to 7 = 2J, then ¢ = cosm™ = —1. Therefore, signals of C and CHjy are positive and signals of CH

and CHj are negative = useful chemical information.

11.10.2 Double-quantum filtered COSY

The double-quantum filtered variant of the COSY experiment (DQF-COSY) provides spectra with the same phases of diagonal peaks
and cross peaks. The modification of the experiment consists of (i) adding a third 90° pulse and (ii) phase cycle of the first two pulses

(Figure [11.7). In DQF-COSY, the initial density matrix
pla) = 3 (S + K512 + K£I22)

evolves as shown in Table The experiment is repeated for times with different phases of the radio waves (see values ¢1 and ¢z

in Table [11.2). As the consecutive measured records are subtracted before storing the data (indicated by the multiplying factor m in

Table [11.2)), contribution of all coherences are canceled except for the multiple-quantum terms 2.7,,.%1, and 2.%1,.%1,. It is therefore

sufficient to analyze only the following component of 5(d):
p(d) = %(%(611811 Fea1571)2510 1y + %(cnsn €21571)25 1y 1z)
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ab

Figure 11.7: DQF-COSY pulse sequence. The rectangles represent 90° radio wave pulses applied at a frequency sufficiently close
to the precession frequencies of both interacting magnetic moments. The symbols ¢1 and ¢2 represent a phase cycle z,y, —x, —y. The
hypercomplex spectrum is obtained by repeating the measurement for each ¢; increment with ¢2 advanced by 90° (see Table |1

cde

Table 11.2: Evolution of the density matrix during DQF-COSY. Modulations of the density matrix components (omitting the x/2
factor and the #; component) having the origin in .#1, and %2, are shown in black and cyan, respectively. The lines labeled ¢1 and ¢2
show phase cycles of the first two radio-wave pulses (cf. Figure The multiplier m indicates whether the data recorded with the
given phases are stored as positive (+) or negative (—) numbers. The modulations after the second pulse averaged by the phase cycle are
presented in the last column labeled i >~. The product operators are color-coded as in Section

Real in t7:
EE IO FO) FC) mA(ds)
P1: +zty -z -yl +z +y —x -y +x +y —x -y +z +y —x -y
¢2: +az +y - -y +a +y - -y iz
m: — + - +
1z +1/0 0 0 O 0 0 0 0 —c11¢j1 —C11¢J1 —C€11¢J1 —Cc11¢ 1|+c11¢y1 —C¢11¢g1 +¢11¢g1 —C11¢g1 0
iz 0 1 0 —Il+si11cy1 +cr1ey1 —s11¢51 —c11¢g1|+s11¢1 0 —s11¢J1 0 —s11¢J1 0 +s11¢71 0 0
Fiy —10 1 0 |—ciicy1 +s11¢51 te11¢y1 —s11¢1 0 +s11¢51 0 —si1cJ1 0 +s11¢71 0 —s11¢J1 0
291y I2z +s11871 FC11851 —S11871 —C118 1| 521571 0 +s21871 0 +s21571 0 —521571 0 0
2510 I2z +ci1s71 —s11851 —c118g1 +S11851 0 +521571 0 —$218J1 0 +s2151 0 —5215J1
210 Foy —c118g1 +C215 71 —€11851 teo1s i|+e118y1 teors 1 Fe11sg1 Feois EXIVEN RS TENTY
251y F2a —c21571 tC118g1 —C215 1 te118 1| FC21571 +€11851 21571 11801 %
251, P2 €21871 —821871 —C21571 +821571 0 +s11871 0 —S118J1 0 +s11871 0 —S118J1 0
2912 Foy Fs21871 +C€21871 —821571 —C€21871|—8118J1 0 +s11871 0 +s11871 0 —S118J1 0 0
oy —1 0 1 0 |—c21cy1 +s21¢51 tc21¢51 —S21¢71 0 +s11¢71 0 —s11¢J1 0 +s11¢71 0 —s11¢J1 0
o 0 1 0 —If+s21cy1 te21cy1 —s21¢1 —c21¢51|+s21¢71 0 —s21¢71 0 —s21¢71 0 +s21¢71 0 0
2z +1]0 0 0 © 0 0 0 0 —C€21Cg1 —€21CJ1 —C21¢ 1 —¢c21¢ 1|+c21¢1 —C21€71 +€21¢51 —€21¢71 0
Imaginary in ¢
p(a) p(b) p(c) p(d) mp(d)
b1: +z+y —xz —y| =z +y —x -y +z +y —x -y +z +y —x -y
P2: +y -z -y +z +y -z -y +z iz
m: - + - +
Sz +1/0 0 0 © 0 0 0 0 —S11€J1 —811€¢J1 —811¢J1 —S11¢J1|+s11¢51 —s11¢71 +811¢J1 —S11C¢J1 0
A a 0 1 0 —14s11¢y1 +er1cy1 —s11¢51 —€11¢J1 0 +eiiega —c11cg1 0 +eiieg 0 —c11eg1 0
Ty —10 1 0|—ciicy1 +s11¢51 te11¢51 —s11¢ 1|—C11¢J1 0 +ciieg1 0 +ciiega 0 —ciieg1 0 0
251y I2z +s11851 +c11851 —S118y1 —C118J1 0 €218 71 0 c21571 0 c21571 0 €218 71
2512 F22 +c11871 —s11851 —€118g1 +S118 5121571 0 Fco181 0 €2158,71 0 €21871 0 0
2515 Fay FS11871 — 501571 FSIIS 1 — 52151 =118 71 — 52151 —8118 71 —s2151 [ AL S210J1
251y S 21871 —S118g1 +521571 —S118J1|$21571 —S118J1 — 521571 —S118J1 — ”2_5115“
291, Son €215 y1 —S21871 —C€21571 +821571[—C1157J1 0 +c11851 0 +ci1s1 0 —C115J1 0 0
2512 Sy Fs21871 +c21871 —821871 —€21871 0 —c115J1 0 +ci1sg1 0 —c118J1 0 +ci1sg1 0
F2y 1 0 1 0|=c21cy1 +s21¢51 +c21¢51 —s21¢51[—Cc21¢71 0 €21C 71 0 Fca1c1 0 c21¢71 0 0
. 0 1 0 l|4+s21¢51 +c21¢51 —s21¢51 —C21¢71 0 Fciicega 0 c11¢1 0 c11¢1 0 C11¢J1 0
L2z 1/[0 0 0 O 0 0 0 0 $21CJ1 —821CJ1 —$21CJ1 —821CJ1[+821C¢71 —$21CJ1 +821CJ1 —821¢J1 0
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./\‘/'”‘,212230 (Ql —7J — wl) n (Q1 +nJ — wl) (Ql —7J — wg) 4 (Ql +nJ — QJQ)
16k8T \Ry; + (1 —7J —w1)?  Raq+ (U +7J—wi)?) \ Ry +(Q -7 —w2)? Ry + (Q +7J — wp)?

[21,921]

N~2h2 By Ra o _ Ry Ra1 B Ro1
16kpT Eg’g + Q2 —7J —wi)? E;Q + Q2+ 7J —wi)? Eg,l + (1 —7J —w2)? Eg’l + (1 +7J —w2)? 7

[Q2,91]
(11.26)
It is converted by the third 90° pulse to
ple) = £(2(cr1sy1+co15/1)251251: + S(crisyi+teo151)252514),
which evolves during to as
pte) = %(%(0118J1+(’21-*2/1)0125J2=/(/1y - %(6115J1+f‘21SJ[)SlQSJQan + %(0115‘]14’“215'/[)(—522@/2(]2;1/ — %(0115J1+(131&/1)832&/2-72.7:)
plus unmeasurable anti-quantum coherences.
Considering orthogonality of the matrices,

T‘r{ﬁ(tQ)(jlz + ie]ly + <]2:n + 1j2y)} =
K, 1 1 1 1
5(15(6118J1+<‘21ﬁi/1)0128‘]2 - 5(0115J1+(721'“,/1)3123J2 + 15(611&]1*!‘31 571)C22572 — 5(6118J1+(‘;>1 571)822572). (11.27)

Using the trigonometric relations (Eq.[11.15]), the averaged signal (i.e., the signal recorded for the full phase cycle, divided by four) is
proportional to

Tr{p(t2)(H1e + 151y + Fou +152y)}

K . .
= 1(1(0118J1+(‘21-\,/1)0128J2 — (c11871+c21571)s12872 +i(c11871+c21571) 00570 — (€118 71 +C21571)522572)

=i 2 2
2 2 2 2 2 2 2 2

k(s +st —sptsly | s tsl —sptsh | —sp st e s
; + +

- + - 4+ , s - L+ 4 , + 4
. =811 T 811 €12 ~Cia So1 Sy €1 = Clg | =81 T 811 Con — Cop Sg1 1 851 Cop — Cog
- + * > T 2 2

2 2 2 2 2
(11.28)

In order to obtain a hypercomplex two-dimensional spectrum, the measurements is repeated with ¢2 advanced by 90° for each t;
increment. The components of p(d) contributing to the signal, = —g(%(snsn £521571)22 1y + (s11871+521571)251y 1)
are converted by the third 90° pulse to
ple) = =5 (3 (511851 +521571)2510. 71 + 5(s11871+521571)2.512512),
which evolves during to as
pta) = =5 (5 (s11sy1+521571)c12s 5271y — 5 (s11801+501571)812572 10 + 5 (S10871+521571) 0005 1252y — (511871 +521571)5225 12 P22

plus unmeasurable anti-quantum coherences.
Considering orthogonality of the matrices,

Tr{p(t2) (12 + iI1y + Jou +152y)} =

1

k.1 1 1
—5(15(511&11 Fso1571)c128 02 — 5(5115J1 Fs501571)s12872 + 15(8118J1 Fs21871)c228 52 — 5( 118J1+521871)s22872).  (11.29)

Including the factor of two and using the trigonometric relations (Eq. [11.15)),

Tr{p(t2)(S1z + iI1y + Soz +iS0y)}

K . .
—2(1(511SJ1 Fso1s71)e128 g2 — (S11871+521571)812872 +1(S11871+521571) 205 70 — (S11871+521571)5225.72)

— _if 1 *Cirl *5172+5;r2 + €21 — 21 *5172+Sir2 + ClilchLl —Sgp 1 Sa9 + Ca1 — Cg1 —Sgp 1 8o
4 2 2 2 2 2 2 2 2
T S S 4o ot - _ 4 , .
R S bl ’312_6124_‘:1*‘21 012_012+C11—C11‘33*‘:z+‘31*‘11 Ca2 — Co9
2 2 2 2 2 2 2 2

(11.30)
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Introducing relaxation, applying phase correction, and performing Fourier transformation in the direct dimension, discaring the

imaginary component (see Section [9.5.1), multiplying Eq. [L1.30| by ”1” and combining it with Eq. [I1.28] introducing relaxation and
performing Fourier transformation in the indirect dimension provides a signal with the real part proportional to

N~2h2 By Ro1 _ Ra 1 Ro 1 _ Ro 1
32k8T \ Ry, + (w1~ +7)2  Roq+(wi—Q—7))2) \ By + (w2 —Q+7J)2 Ry, + (w2 — Q1 —7J)?

[Q1,94]

N’y2ﬁ2 Bo
32kpT

R21 EQ,I
R21+ LUQ—Q1+7TJ) E;l-‘r(a&—ﬂl—ﬂ' )2

)
)
)

[Q2,01]

32]<:BT

[Q1,24]

( ) (@
S ( )
(& )

N72f230 Ro1 Ro1
32kpT 1+(w1—91 +7wJ)2 R21+(w1—91—7rJ
[©22,91]
(11.31)
The terms with the same indices of € represent diagonal peaks with a Lorentzian absorption shape at [Q1,Q1] and [(22,()5] and the
terms with different indices represent cross-peaks with a Lorentzian absorption shape at [(22, Q1] and [Q1, (22]. Comparison with Egs. [11.26]

and [11.25|shows that (i) a phase shift between diagonal peaks and cross-peaks is present only in standard COSY but not in DQF-COSY,
and (ii) the DQF-COSY signal intensity is half of the value obtained in standard COSY. The spectrum is plotted in Figure Note
that diagonal peaks and cross-peaks have the same phase (form anti-phase doublets).
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Lecture 12
Strong coupling, TOCSY

Literature: The strong coupling for a pair of nuclei is discussed in K12.1, L.14.1-1.14.3, C2.5.2, and
analyzed in detail in LA.8. The idea of the magnetic equivalence is presented in K12.2, L.14.4 (for two
nuclei), L17.5 (in larger molecules, with some details discussed in LA.9). The TOCSY experiment
discussed in Section [12.3] (mixing the .#,, coherences) is described in L18.14, another variant (mixing
the .#,, coherences) is presented in K8.11, C4.2.1.2, and C6.5.

12.1 Strong J-coupling

We have seen in Section that the secular approximation substantially simplifies the Hamiltonian
of the J-coupling if 7 and/or the chemical shifts differ (the weak coupling). However, the description
of the system of interacting nuclei changes dramatically if v; = +9 and chemical shifts are similar
(the strong coupling). We now analyze how a density matrix describing a strongly coupled pair of
magnetic moments evolves in a one-pulse 1D NMR experiment.

As usually, the density matrix at the beginning of the experiment is given by the thermal equilib-
rium. As mentioned in Section [10.10.6] the effect of the J-coupling on the populations is negligible.
Therefore, the initial form of the density matrix and its form after the 90° excitation pulse are the
same as in the case of a weak coupling:

K
—Ioy. (12.1)
2

In order to describe the evolution of p, we need to know the Hamiltonian. For a pair of nuclei,
the Hamiltonian (expressed in the rotating coordinate frame) is given by Eq. [10.3| In the presence

of very similar chemical shifts

R 1 K
p(b) = 5% - §j1y_

% = +Qlj1z + szgz + 7TJ (2f1$f2m + leyfgy + Qflzfgz) . (122)

In this Hamiltonian, .#;, and .#;, do not commute with 2.%,,.%,, and 2.%;,.%5,. Therefore, we
cannot analyze the evolution of the density matrix by analyzing effects of individual components of
the Hamiltonian separately and in any order, as we did in the case of the weak coupling Hamiltonian
WA, + Qo Iy, + md - 29,5, consisting of three mutually commuting components.

If we use matrices listed in Tables and [8.2], the matrix representation of the Hamiltonian is
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i L2y 0 0 0
B 0 D _1j mJ 0
H = 0 BRI Y 0 (12.3)
Y s
0 0 0 —ah 4 2g

Obviously, the matrix is not diagonal. In order to find the eigenvalues of the Hamiltonian,
corresponding to the frequencies observed in the spectra, we have to find a new basis where the
Hamiltonian is represented by a diagonal matrix. This is done in Section [12.4.1] The diagonalized
matrix 7’ can be written as a linear combination of matrices listed in Table [8.1]

H = VI, + QI + 7] - 29,55, (12.4)
where
1
Q0 = = (4 + 2+ V(6 — )7+ 47272) (12.5)
1
Q) = 5 <91 + Q= /(2 — )2 + 47r2J2> : (12.6)

We see that J#” consists of the same product operators as the Hamiltonian describing the weak
J-coupling, only the frequencies differ. The density matrix p(b) and the operator of the measured
quantity M+ should be also expressed in the basis found in Section . The transformed density
matrix o’ consists of the same product operators as the density matrlx in the original basis, they are
just combined with different coefficients. We can thus repeat the analysis presented for the weak J-
coupling in Section using the same rotations in the operators space as presented in Figure [10.3|
The analysis of a strongly J-coupled system differs only in three issues: (i) we start to rotate from
a different combination of product operators, (ii) the angles of rotations differ, being given by the
frequencies ), 2, instead of the frequency offsets €21, €25, and (iii) we have to calculate a trace of the
density matrix multiplied by the transformed operator of the transverse magnetization, M Y. The

analysis is presented in Section [12.4.2] The Fourier transform of the result (Eq. [12.52) is

orJ N~2R2B R

R{Y()} = (1~ S :
V(@ — Q)2 + 4n2 )2 8kpT Ry + (2 —mJ —w)?

I 2nJ N’72h230 Fg
V(@1 — Q)% + 4722 8ksT R+ (Q+ 7] —w)?

2 2

+14 2mJ N1 By By
VO = )2 ar2 2 | 8ksT R 4 () — 7 — w)?

. 27 J Nf)/2h230 E2

VO =02 +4n2 07 ) 8ksT Ry 4+ (0 + 7] — w)?
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S{Y ()} =i [ 1 2nJ N~2h? By Q) —7mJ —w
R3 = —
VO =2+ dn2? | 8keT R 4 () — 7] — w)?
. 2 J N2W?By,  Qy+ 7 —w
+i[ 1+ —
VO =02 +4x22 ) 8ksT R 4 () + 7 — w)?
, 2nJ N~2h? By Q) —nJ—w
+i[ 1+ —
V=02 +472J2 ) 8ksT R 4 (Q) — ] —w)?

(12.7)

wiflao 2mJ N*W?By Q) +7J —w
VO — W) 422 | 8ksT Rl 4 () 7] —w)?

Spectra for three different values of [y — 25| are plotted in Figure [12.1] The following features
distinguish spectra of strongly coupled nuclear magnetic moments from those of weakly coupled pairs:

e The centers of doublets of peaks of individual nuclei are shifted from the precession frequencies

of the nuclei ; and €5 by a factor of + <Ql — Qs — /(O — Q)2 + 47T2J2> /2.

e The intensities of the inner peaks of the doublet of doublets are increased and the intensities
of the outer peaks are decreased by a factor of 27.J// (0 — Q9)? + 472 J2.

The square root \/(Q; — Q)2 + 472J2 specifies the limit between the weak and the strong J-
coupling. If |y — Q| > 27|J|, the factors modifying the peak intensities are negligible and the
J-coupling is considered weak. The other limit, [, — Q5| — 0, deserves a special attention and is
discussed in more details in the next section.

12.2 Magnetic equivalence

If two interacting nuclear magnetic moments have the same precession frequencies (due to a molecular
Symmetryﬂ or accidentally), and if they are not distinguished by different couplings to other nuclei,
they are magnetically equivalent.

Following the trends in Figure [12.1| suggests that only one peak appears in a spectrum of a pair
of magnetically equivalent nuclei. This explains why we do not observe e.g. splitting due to the
relatively large J-coupling of protons in water (|>J| ~ 7 Hz).

From the theoretical point of view, a pair of magnetically equivalent nuclei represents a funda-
mentally different system than a pair of weakly coupled nuclei (even for the identical J constant).
The eigenstates of the Hamiltonian of the magnetically equivalent nuclei in B, are not direct products
of the |a) and |3) eigenstates (as we described in Section[8.9.3). The pair of magnetically equivalent

INuclei can be inequivalent even if the whole molecule is symmetric (i.e., achiral). The existence of a plane of
symmetry is not sufficient, the plane must bisect the particular pair of nuclei. Otherwise, the nuclei are diastereotopic
and magnetically inequivalent.
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Figure 12.1: One-dimensional spectra of strongly J-coupled 'H-'H pairs. The spectra are plotted for ; —Qy = 47.J
(top), Q1 — Qo = 27J (middle), and Q1 — Qs = 0.87J (bottom).
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TablAe 12.1: Eigenvalues of selected operators for a pair of magnetically equivalent nuclei. The operators I 2 I 2 I 2,
and I are defined in Section [10.10.2} J#' = (wo + 7J) A1, + (wo — 7J) I, + 7J - 291, Fo,.

Eigenfunction I? 2 12 j; E%
) ® [e) 324 3h2/4 217 +h +wo+2J
Lla)®|8) + L8 @la) 3h*/4 3R/4 202 0 +5J
L)@ [8) — LB ®la) 3R/4 3R/4 0 0 4y
18) ®16) 3h2/4 3R/A 202 —h —wy+ %]

nuclei is similar to a pair of electrons discussed in Section|10.10.2| The eigenfunctions and eigenvalues
for important operators are listed in Table

The eigenfunctions help us to understand the difference between quantum states of non-interacting
or weakly J-coupled pairs on one hand, and magnetically equivalent pairs on the other hand. We
have discussed in detail that the stationary states |a) ®|a), |a) ®|5), |5)®@|a), |B)®|5) are important
in single pairs of nuclei, but are rarely present in large macroscopic ensembles. Now we see that in
the case of magnetically equivalent nuclei, |a) ® |5) and |5) ® |a) do not even describe stationary
states of a single pair. Instead, the stationary states are their combinations.

The eigenvalues of the operator representing the square of the total angular momentum 17 tells
us that three eigenstates have the same size of the total angular momentum (v/2h) and one does
not have any angular momentum (and therefore any magnetic moment). The energy differences
(eigenvalues of " multiplied by &) between the three "magnetic states” are the same in isotropic
liquids (but they differ if the dipole-dipole coupling is not averaged to zero), which explains why
we see only one frequency in the spectrum. The "non-magnetic” state does not have any magnetic
moment and thus does not contribute to the observable magnetization.

The analysis is more demanding if a magnetically equivalent pair is a part of a larger molecule.
Nevertheless, it can be shown that the J-couplings between magnetically equivalent nuclei in larger
molecules do not affect the NMR spectra (Sections [12.4.3| and [12.4.4]).

12.3 TOCSY

At the first glance, molecules whose nuclei have very similar chemical shifts (by accident or as a result
of a molecular symmetry), and are therefore very strongly J-coupled, seem to represent a special
case. However, tricks discussed in the previous lectures allow us to exploit advantages of the magnetic
equivalence even if the chemical shifts are very different. We have learnt that we can use a spin echo
to suppress the effect of the chemical shift evolution, which is exactly what we need: no chemical
shift evolution corresponds to zero difference in the frequency offset. If we apply the simultaneous
echo (actually, the only echo applicable to homonuclear pairs) that keeps the J-coupling evolution
but refocuses the evolution due to the chemical shift, the state of the system of nuclei at the end of
the echo is the same as a state of a system of nuclei with identical chemical shifts. Note, however,
that a single application of a spin echo is not sufficient. Our goal is to make the strong coupling
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Figure 12.2: TOCSY pulse sequence. The narrow black and wide cyan rectangles, respectively, represent 90° and
180° radio wave pulses applied at a frequency sufficiently close to the precession frequencies of all interacting magnetic
moments.

to act continuously for a certain period of time, comparable to 1/(2J), not just in one moment.
Therefore, we have to apply a series of radio-frequency pulses to keep the strong coupling active for a
whole mixing period. In principle, a series of very short coupling echoes with very short 180 ° pulses
should work (Figure [12.2). However, specially designed sequences of pulses with much weaker offset
effects are used in practiceﬂ Two-dimensional experiment utilizing a mixing mimicking the strong
coupling is known as Totally Correlated Spectroscopy (TOCSY). There are numerous variants of the
experiment, here we present only the simplest version (Figure illustrating the basic idea.

In order to describe the major advantage of the TOCSY experiment, we analyze a simple system
of three nuclei (e.g. three protons) where nuclei 1 and 2 are coupled, nuclei 2 and 3 are also coupled,
but there is no coupling between nuclei 1 and 3 (a more general analysis and matrix representations
of the product operators for ensembles are presented in Sections . Let us assume that
both coupling constants are identical (J;o = Jog = J). Before the TOCSY mixing period, the density
matrix of our system evolves like in the NOESY or COSY experiment. The evolution starts from
the equilibrium density matrix
pla) = i(ft + kI, + kI, + K I3,),
derived in Section for a general case of N magnetic moments. The starting density matrix is
converted to
p(b) = 1(Jr — Iy — KTy — £Iy)
by a 90° excitation pulse and evolves during the incremented evolution period ¢;. For the sake of
simplicity, we pay attention to the fate of the coherences modulated by the chemical shift of nucleus 1:
p(c) = =5 cos(Qty) cos(mJty) Iy + ...

Let us assume that the TOCSY pulse train is applied with the 90° or —90° (y or —y) phases of
the radio waves. As a consequence, the pulses keep the .#,, S, %3, components of the density
matrix intact and rotate other coherences "about” the .%,, "axis”. Because the trains contain many
(hundreds) of pulses, the imperfections of the pulses and stochastic molecular motions randomize the
direction of the polarizations in the zz plane (an effect similar to the loss of coherence in the zy plane
during the evolution in the éo field). Therefore, we assume that only the .#,, %,, .3, coherences,
"locked” in the y direction of the rotating frame, survive the TOCSY mixing pulse trainf

The Hamiltonian describing the evolution of our simple system during the TOCSY mixing period
is

2Technically, our task is very similar to the decoupling during the acquisition, shown in Section [11.6
3If coherences other than .#,, are not destroyed completely, their contribution can be removed by phase cycling.
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Jrocsy = 1 (291, I0, + 291y Ioy + 291, I, + 259, Isy + 255y I3y + 255, 95,) . (12.8)

Note that the Hamiltonian is fully symmetric in our coordinate system. In our version of the
TOCSY experiment, we decided to preserve only the .#,, coherences by the choice of the phase
of the applied pulses. However, the Hamiltonian itself acts on .#,,, #,,, and .%,, in a completely
identical wayﬁ Therefore, the effect of the Hamiltonian is called isotropic mizing (working equally
in all directions).

All components of the Hamiltonian in Eq. commute (because the echo removed the chemical
shift components) and it is possible to inspect their effects separately. Such analysis is straight-
forward for two interacting nuclei, but gets complicated for three or more nuclei. Nevertheless,
a useful insight can be gained from the inspection of the commutation relations of the .7#ocsy
Hamiltonian, derived in Section [12.4.7] First, S#1ocsy does not commute with #,. It tells us that
—4 cos(ity) cos(mJty).#1, partially evolves to other coherences (or populations) during the TOCSY
mixing (Eq. . Second, HTocsy does not commute with .#,+.%, either (Eq. . We see that
the lost portion of —% cos(€1t1) cos(mw.Jt1)#, is not completely converted to —% cos(€1t1) cos(mJt1).Fay.
Finally, #rocsy does commuteﬂ with S, + Sy + S5, (Eq. . If A, + Sy + 3, does not
change and .#;, is not completely converted to .#,,, the missing portion of .#;,, must be compensated
by formation of —% cos(Qt1) cos(w.Jt1)-#5,. The fraction of the density matrix converted to %, and
F3, depends on the length of the TOCSY pulse train (mizing time), on the actual values of the J
constants (they are not identical in a real case), on the relaxation, and on the evolution during the
pulses (their duration is not negligible compared to the lengths of individual echoes in the train if
the goal is to have the echoes as short as possible). In our analysis, we describe the fraction that
stays in #, by a factor a1, the efficiency of the transfer from nucleus 1 to nucleus 2 by a factor a;,
and the efficiency of the transfer from nucleus 1 to nucleus 3 by a factor a;s.

A detailed analysis of the evolution of the density matrix (the procedure, presented in Sec-
tion , is very similar to those described in previous lectures for other 2D experiments) shows
that the coherence .#, provides the following components of the signal (cf. Eq.

N’yh%ane_ﬁm (cos((2y — wJ)t1) + cos((y + wJ)t1)) e~ Rato (e‘iml_ﬂﬂt? + e_i(Ql“'”J)tQ)
+ th%algcfﬁm (cos((Qq — mJ)t1) + cos((Q + mJ)t1)) e 2t (c*i(QQ*Q’T")tQ + 2e7 2t 4 e*i(%””")tz)
+ N’yh%algefﬁm (cos((Q2y — wJ)t1) + cos((Qq + 7J)t1)) o~ Rat2 (e*i(Q?’*”‘])t2 + e*i(QBJr”J)tZ) . (12.9)

After processing the signal as described in Section [0.5.1] these components result in one set of
diagonal peaks (at the frequencies close to [€21,€}]) and in two sets of cross-peaks (Figure [12.3)),
including peaks close to the frequencies of protons that are not directly J-coupled ([€2;,€23]). This
is a fundamental difference between COSY and TOCSY spectra. Appearance of cross-peaks in the

4We could select .7, coherences equally well by applying pulses with a phase of 0° (x). The .#,. can be selected
by applying additional 90° before and after the TOCSY pulse train (this approach is described in K8.11 and C6.5).
In practice, the pulse trains are optimized for the given purpose.

5In general, J#ocsy commutes with the operators of all three components I ; of the total angular momentum,
where j € {z,y, 2} and I; is a sum of I,,; for all nuclei n.
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Figure 12.3: DQF-COSY (left) and TOCSY (right) spectra of a molecule with three protons with the .J-coupling
constants |J12| > |Jo3| and Ji3 = 0. Note the presence of a cross-peak correlating the not coupled protons 1 and 3 in
the TOCSY, but not in the DQF-COSY spectrum.

COSY spectra requires a direct J-coupling, whereas cross-peaks in the TOCSY spectra correlate
all peaks of a spin-system (a network of nuclei connected by J-coupling), even if the coupling of a
particular pair is negligible (Figure . The structural information in COSY and TOCSY spectra
is complementary. The TOCSY experiment describes the complete spin systems in a single spectrum,
COSY spectra distinguish directly J-coupled nuclei (usually vicinal and geminal protons).

HOMEWORK

Analyze the TOCSY experiment.
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12.4 SUPPORTING INFORMATION

12.4.1 Diagonalization of the J-coupling Hamiltonian matrix

The matrix representation of the Hamiltonian describing the chemical shift and the strong J-coupling, written in the basis constructed
from the a and 8 states of the interacting nuclei (i.e., |aa), |Ba), |aB), |88)), is

Z+J 0 0 0
T 0o A—-J 2J 0
=3 0 2J -A-J 0 ’ (12.10)
0 0 0 —-X+J

where ¥ = (wo,1 + wo,2)/m and A = (wg,1 — wo,2)/7. We are looking for a new, diagonal matrix representation of our Hamiltonian
H'. A similar task is solved in Section [10.10.2} the matrix in Eq. [12.10[just has more complicated elements. From the mathematical point
of view, the diagonalization of our Hamiltonian can be described using a transformation matrix 7"

H =TT, (12.11)
Multiplying by T from left gives
TH" =T (12.12)
The desired eigenvalues w;c and eigenvectors \1/12) can be obtained by comparing the eigenvalue equation

A |y) = wi|v) (12.13)

with the left-hand side of Eq. [12.12

Ti1 T2 Tis Tia wp 0 00 wiTi1 wiTi2 whTi3 w)T1a
To1 Too Tas Toa 0 wh 0 0 | _ [ wiTor whTas wiTes w)Thy (12.14)
T31 T39 T33 T34 0 0 wé 0 - w’1T31 w’2T32 w’3T33 wéT34 :
Ty Tap Tyz Tua 00 0w wiTar wyTuz wyTyz wyTas
The eigenvalue equation can be written as a set of four equations for k = 1,2,3,4
S+J 0 0 0 ik (S + )Tk Tis
ol T 0 A—-J 2J 0 Tok _ (A = J)Top +2JT3y o Top AT
=51 o 27 —A-J o0 Ty | =2 | 20100 = (A + DTy | =96 | 1y | T 9RlVR) (12.15)
0 0 0 —x+J) \ Ty (= + J)Tup Tun
The first row of the middle equality allows us to identify
= T(m gy = Stz T, (12.16)
2 2 2
if we set To; = T31 = T41 = 0, i.e.,
T11
0
WD =1 4 (12.17)
0
Similarly,
;) _ T _ wo,1two2 T
Wy= (-S4 J)= 22 TF02 L g (12.18)
2 2 2
for
0
0
) = 4 (12.19)
Tyq

The w) and w} values can be calculated from the equations
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2w} Top = m(A — J)Tag, + 27 T3, (12.20)
2wy, Tsp, = 2 Top, — (A + J)Tag (12.21)

(setting T12 = Ty2 = T13 = Ty3 = 0).
T3k can be expressed from the first equation

2wy (- A)

T: T 12.22
3k o] 2k ( )
and inserted into the second equation
(2wl 4+ m(J + A) 2w}, + 7(J — A))Tay, = (2mJ)?* Tap, (12.23)
directly giving
wl, = —g (7 + VA +az). (12.24)
Choosing
— 2 A2 J2
W= _g (J_ /12 T A2 +A2) _ V(woa w02,2) +4r2J2 gJ (12.25)
and
— 21 An2J2
wh = —g (74 Varz+a?) = Vo “02’2) HAT gJ (12.26)
completely defines the diagonalized Hamiltonian
4+J 0 0 0 , 100 O , 1000 10 00
w =T 0 VA24+4J2 -] 0 0 _“%a1 (010 O +‘*’0,1 0-10 0 L 0—-1 00
T2 0 0 —VAZ+4J2-J 0 T~ 2 |00-10 2 (0010 00 -10
0 0 0 —X4+J 00 0 -1 00 0-1 00 01
= w11z + W) 9 I2s + TI2I1: Iz, (12.27)
where
™ 1
wé’l = E(E + VA2 4J2) = 5 (WO,l + wo,2 + \/(&)0,1 — (.U(],2)2 + 47r2.]2) s (12.28)
1
wh2 = g(E — VA2 +4J2%) = 3 (wo,l +wo,2 — \/(w0,1 —wo,2)? + 47r2J2) . (12.29)
The new basis is given by Egs. @ and by the normalization condition
4
Whlvp) =1= > T5 =1. (12.30)
j=1

The normalization conditions immediately defines 711 = T44 = 1. Substituting wé into Egs. [12.20] and [12.21} respectively, gives

Ts2 _ V4AJ2+AZ-A

_ , (12.31)
T2 2J
T2 _ VASZ+ATHA (12.32)
T2 2J ' ’
Consequently,
T3,  VAJE+AZ-A (12.33)

T3, VA2 +AZ4+A

and applying the normalization condition T322 =1- T222
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1+T5 VA2 4+AZ-A

= 12.34
TZ, VAIZ 4+ A2 + A ( )
defines
2 1 VA2 + A2+ A
T35 = = (12.35)
_ V4I24a2-A 2v4J2 + A2
VAJZ+AZ+A
and
VAJ?2 + A% — A
TS =1-T3 = var+at -4 (12.36)
2v/4J2 + A2
Similarly, T223 and T§3 can be calculated by substituting wé into Eqgs. |12.20/and [12.21
VA4J2 + AZ — A
T2, = var+at -4 (12.37)
2v/4J2 + A2
VAJZ + AZ + A
12, = YA AT A (12.38)
2v/4J2 + A2
If we use
1 A 1 A 1
Too =T33 =4 |-+ ——=c, Toz=4|/—-— ——=858¢, T39=—/-+ ———— =—5 12.39
U TN T oA Y BT\ 2 avaEraz Y 0® 2 2VAJ2 + AZ ¢ (12.39)
we obtain a transformation matrix
10 0O
s | O0cg —s¢ 0
T = 0s¢ ce 0 (12.40)
00 0 1
which is its own inverse (T‘l =T=>T"T=1TT= 1). Later, we also use the following relations between ce and s¢:
I A 1 A —1 (12.41)
ST T 2 T oVAP AT T 2 VAT + A? '
1 A2 4J2 + A% — A2 2
2cese = 24— — = J+ = J . (12.42)
4 4(4J2 + A2) 4J2% + A2 V4J? + A2
Finally, the new basis consists of the following eigenvectors
0 0
1 1 A 0 1 A 0 0
o S 2T oaraz | | e " 2 2var24a? [ [ s n_ |0
le) - 0 ) \¢2> - 1 A = s¢ ) |1/13> - 1 N A = ce ’ |7/J4> - 0 (1243)
0 2 2\/4J24A2 0 2 0 2y/4J24A2 0 1
0 0

We can also use the transformation matrix to express the density matrix (p' = TﬁT) and the operator of the measured quantity
(Ml =TM,T) in the new basis (cf. Eq.[12.11)). In particular, we are interested in the transformed operators .9, + .75 and 9|, +.7;5, =
o+ T30 +iIy + 73,):

10 0 O 0-1-10 10 0 O 0 _(Cf +85) —(Cg — 85) 0
71 ;g & 065 —850 i 10 0 —1 065 —S;}:O _i C§+S§ 0 0 —(c§+s§)
Sy + Sz = Ty + I2)T = Osg cc 0)]2|10 0 -1 [0se ce O 2| ce—se 0 0 —(ce — s¢)
00 0 1 01 1 0 00 0 1 0 ce + s¢ Cce — Sg 0
0 —1-10 0 —141 0
i +1 0 0 -1 i +1 0 0 -1
= 655 10 0 —1 + 555 10 0 41 = Cg(]ly —+ ]Qy) —+ S§(2j12j2y — 2]1?!]22)7 (12.44)

0 +1+1 0 0 41 -1 0
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10 00 0110 10 00 0 cetsece—se O
, g = | Oce —s¢ 0 11001 0ce —s¢ 0 71 ce + S¢ 0 0 ce + S¢
AatSoe = TNt P2)T =1 g 0 50| 51001 [ |0s ce 0] T2 ce—se 0 0 ce—se
00 0 1 0110 00 0 1 0 cetsgce—sg O
0 +1+41 0 0 +1-10
1410 0 41 1[+10 0 +1
:c§§ 110 0 41 —|—85§ 10 0 -1 = ce(S1e + S22) + 56 (2912 I20 — 2915.922), (12.45)
+141 0 0 +1-1 0
OC§+S§ Cg*Sg 0
0 0 0 i ) . .
I+ Iy, = 0 0 0 zztzg = ce(Iia + Joo + 191y +1I2y) + 8¢ (2512 I20 — 2910 I2, + 1291, S0y — 1291 52.) (12.46)
0 0 0 0

12.4.2 Strong J-coupling and density matrix evolution

When the density matrix at the beginning of the evolution is written in the new basis (where the Hamiltonian matrix is diagonal), it
consists of multiple contributions. We analyze its evolution separately for the operators contributing to the signal of individual nuclei, and
write the progress of the analysis in a table. The density matrix can be divided as

N R K o ~
Starting with 47,
. . « wh 11 wJ-2.F, Py ~
Contribution g (b) OL) i _i * Te{py ()14 }

7 +5ce  +Zced] +Ececies + Bsesisy +i%C§CiCJ +igeesesiss | _ e, + 2L
291y I2z —5se —5sec) —5secieg — Seesisy +igs£c’10J+igc555s’1$J TR\ igeias 1%

Az 0 —5ces) —5cgsheg + 5secisy —gcgs/ch +5ceseersy | _ —E(shey— ——2L (s
212 S22 0 +5sesy  tsesics — Seechsy  —§sisies + Seesecisy [ 2 \U T Vageear T

Using the following trigonometric relations
— I+ /— I+ ’— 1+ ’— 1+
¢, +c¢ c;, —c¢ —s; +s sy +s
% shsg=2—21 dsyj=—"21 "1 ;=L "1 (12.48)

r_
acr= 2 2 2

where c'li = cos((wp,; — wrot = mJ)t) = cos((Q) £ wJ)t) and s/li = sin((wp 1 — wrot = 7J)t) = sin((Q] £ 7J)t) (Wrot = —Wradio),

2J K 2J
/ / / /
(Cch - m“a 2 (slc‘] - mcl‘”)
(c’l + it 2] - c’1+> K <s’1 + 57t 2J s — s’ﬁ)

Te{ph ()71} = i

N

Il
vl =

+ -= +
2 VA4J? + A2 2 2 2 VAaTZ + AZ 2
K 2J ,_ ( 2J ) P (( 2J ) ,_ ( 2J ) /+))
1+ === )+ (1- = | +i( (1 = ) s + (1 - =
4 (( VAaJ? 1 AQ) “ Viriaz)r ! Virrtaz)’ Varyaz)®

i

(G
Fe s~
4 4J2 + A2

_ Rz 2J )ei(Q’lfﬂ-J)t " (1 _ 2J RICIEEY (12.49)
VaJZ + A2 ’ ’
We now repeat the analysis for nucleus 2.
/
. s A z 2512522 -
Contribution g4 (b) «0,2-2 251252 Tr{p5(t)-#5, }
v 2 v
oy +§c£ +§chi2 "F%C&C%CJ - 2855:2@ ﬂ%cgc%w - %505555:25‘] } s (C/QCJ _ Lsgs‘])
29122y +5 ¢ +§S§C/2 +g$5C/QCJ — 2055/25J +1’§82§C,26J _’150555,828(] 2 VAT2FA2
K
BZm 0 —5CeSy —5CeS9CT — 58¢Cy8 TCeS20) T 9CeSeCST | w shes + 2J s
291, Iou 0 —%s§sé —%S§S’QCJ - gCgCéSJ 7%S§8lzcv] - 505550’25J 2 \ 728 U gaian 27
Using the following trigonometric relations
’— /4 ’— 14 ’— I+ ’— I+
c, +c c, —¢cC —S5 + S8 Sy + 8
CIQC‘]:% 5'251:% 5'25]:% SIQC‘]:%, (12.50)
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where c’zi = cos((wp g — wrot & mJ)t) = cos((Q2) £ wJ)t) and 3'2:‘: = sin((wp o — wWrot £ mJ)t) = sin((Q £ 7 J)1),

. K 2J K 2J
Tr{P2(t)j2/+} = 15 (0,20J - W555J> 3 (SéCJ + WCQSJ)

_ i c'; + 0'2+ _ 2J c'; - c’2Jr K 5/27 + s'; B 2J 5’27 — s';
2 2 V4aJ? + A2 2 2 2 VAJ2 + A2 2

K 2J _ 2J T 2J ,_ 2J I+

' ((1_\/4J2+A2)c2 +(1+\/4J2+A2)c2 P Vi) T Vi)
K ;m 2J Y 2J oy

— DT 1— i(Qo—7J)t (1 ) l(QQ+TrJ)t> . 12.51
1° (( NZwes A?) ¢ T\t ar)f (12.51)

Combining the results presented in Eqgs. [12.51] and [12.49] applying the phase correction, and including the relaxation, we obtain the
following description of the evolution of the signal:

N~2h%Bg o Tat

BT ((1 — 2cese) e (@1=m)t 4 (14 2cese) @+t (1+ 2cese) i@ =7t 4 (1 — 2cese) eimé"""J)t) , (12.52)
B

(My) =
where 2cese = 2J/V4J2 + A2,

12.4.3 J; and operators of components of total [ commute

We show that the operator of each component of the total angular momentum (e.g., fz X Iy = Jg + Soz + S35 + ...) commutes
with the strong coupling Hamiltonian .5 for any number of nuclei in the coupled system and for any values of the J constants. For
j=a,k=1y,l =z or for any cyclic permutation (j =y,k=z,l=xzor j =z k=uz,l =vy),

(5, 0] =D > 21Ty [Ings (I Intj + InkIne + Int-Iun)]

n n'#n

=32 2" 2 (I Fukl Tk + g Fall Fpr) = D D 20 ds (I Tul Itk = (It Inl Iurt)
n n'/#n noni#En

=33 2indp (It Inrk — InkInnt) =0,
n n/#n

(12.53)

where n and n/ are two different nuclei. The commutator is equal to zero because for any pair of nuclei p and ¢, the term
AT Tt (It Ik — Ik Inr1) appears twice in the sum, with the opposite sign: once for n = p and n’ = q as 2inJpq(Ip1Igk — TpkFq1),
and once for n = ¢ and n’ = p as 2w Jpq (I Ipk — Lqk-Fpl)-

12.4.4 J-coupling of magnetically equivalent nuclei

In general, the free evolution of multiple spin-1/2 magnetic moments is governed by the Hamiltonian

H = wo,nInz + Tl pp 2SI naIpre +2Iny Inry +2In: I ,) = wo,nInz + Hy (12.54)
y

n n!

If the nuclei are magnetically equivalent,

H = w0y In: + Ay =wo I+ HJ, (12.55)

where .#, and #; commute, as shown in Section [12.4.3] Therefore, the effect of chemical shift and J-coupling can be analyzed
separately. Note that J#; commutes also with M, which is proportional to %, +i.%,.
In order to analyze the effect of the J-coupling on the spectrum, we evaluate (M) as

(My) = Te{pM1} = > " pje M, (12.56)
7k
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where we expressed the trace explicitly in terms of the elements of the matrices p and M+. If the system evolves due to the J-coupling,
(M) should change, i.e., the time derivative of (M) should differ from zero.

d(M) dpji M jk {dﬁ - }
= — 0 =Tr< — M . 12.57
dt XJ:Z,C: at lae (12.57)

According to the Liouville-von Neumann equation,

dp
— =i[p, S =
ai i[p, 7]

d(M)
dt

=iTr {[p, %j,]Jm} =iTr {ﬁjﬁ]\?u} —iTr {%J,sz\}u} . (12.58)

Because #; commutes with M. (and therefore 55 My = My .#;), and because Tr{AB} = Tr{ BA},

d(M)
dt

=iTr {pz\‘@,%@} —iTr {nyﬁMJr} =iTr {(ﬁM+)ny} —iTr {,;/zi,(ﬁzm)} =iTr {(ﬁMJr)ny} —iTr {(pz\‘@),%} =0. (12.59)

We see that (M) does not change due to the J-coupling regardless of the actual form of p. This proves that the J-coupling between
magnetically equivalent nuclei does not have any effect on the spectrum (is invisible).

12.4.5 Product operators of three and more coupled magnetic moments

Features of the TOCSY experiments are fully manifested only in networks consisting of three or more interacting magnetic moments.
Therefore, we need to find product operators for systems of more than two nuclei. We start by the normalized bases of density matrices
of isolated magnetic moments, consisting of four operators V254,25, \/iﬂy, V/2.7,. They can be also written as

L ( (1)
2.7 ) , 12.60
\/5 7 ( )
where j € {t,z,y, 2} and the superscript (1), not written in practice, emphasizes that we describe a single magnetic moment. Note

that all operators 2.4 Y are represented my matrices with elements equal to 0, 1, or =i.
We continue by the procedure introduced in Section [8.3] Eqgs. describe _construction of an orthonormal basis consisting of
direct products of operators v/2.%;, where j € {t,z,y, 2}. A general form of Egs. can be written as

27,757 = (Var) e (vVar?) = % (27") @ (24), (12.61)

where j,k € {t,z,y, z}. The unit matrices 1 = (QJt(")) are usually not written explicitly.

In a similar manner, 64 operators constituting an orthonormal bases of density matrices of three coupled magnetic moments can be
obtained by calculating

WII j Iy I3 123 = (\/iyjm) ® (\@Jk@)) ® (\/iﬂl(?’)) - % (2]}“) ® (2f,§2)) ® (Ml(”) 7 (12.62)

where j, k,l € {t,z,y, 2}

In general, 22V operators constituting an orthonormal basis of density matrices of N coupled magnetic moments are obtained by
calculating
V2N 1
v s (1--N) _ /(1)) < (N) _7( 1) ( (N)>
Ay I - <\/§/j @ ® (V2s ) = o= 2.7 ) ®---® (22, (12.63)

Note that the operators of angular momentum components divided by h, .#,;, are orthonormal only for systems of two magnetic
moments (together with % = %i and product operators 2.%,;.%,). In general, product operators of N coupled magnetic moments

S e TN = (2/}1)) ® - ® (24(]‘”) , (12.64)

1
2

including .#;,j, must be multiplied by 2/\/2W to be normalized. For example, single-quantum coherences of a set of three magnetic
moments are normalized by dividing the product operators %1, 214 5., 49149273, etc., by v/2.

In conclusion, we have to distinguish whether we use the product operator to represent a physical quantity, or to serve as a mathematical
object, i.e., a basis matrix. In the former case, we should use the operator without normalization: e.g., .#,, multiplied by A to represent
angular momentum, multiplied by «/ to represent magnetic moment, multiplied by —yBph to represent energy in the magnetic field Eo,
etc. In the latter case, normalization is useful e.g. when calculating traces of products of matrices.
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12.4.6 Three magnetic moments in thermal equilibrium

Derivation of the density matrix describing an ensemble of pairs of nuclear magnetic moments presented in Section can be easily
extended to a sets of N nuclei. As the influence of direct or indirect interaction on the distribution of magnetic moments is negligible in
liquid samples, and the impact of the chemical shift is also very small, it is sufficient to consider the Hamiltonian reflecting the effect of
the external magnetic field Bo:

N N
H==> vuBoln: == ynBohn.. (12.65)
n=1

n=1

The density matrix describing the mixed state in the equilibrium consists of populations

g.
—&;/kpT 1— -S4
Pl = 213 ~ QJ@BT, (12.66)
Z e—sk/kBT
k=1

where £; is the eigenvalue of the Hamiltonian corresponding the population P;. Consequently, the equilibrium density matrix is

1 N Boh 1 N
Y= — <1 + ”’jnz> == (ﬂt +> nnjm> , (12.67)
2 — kpT 2 —~
where
Boh
Ko = Z;BOT . (12.68)

12.4.7 Commutation relations of the TOCSY mixing Hamiltonian

The commutators of the .#;, operators with the #rocsy Hamiltonian for a set of three protons with Ji12 = J23 > 0 and J13 = 0 are given
by

A1y, Hrocsy) = T [ Iy, 2510 Ioe+2I1y Ioy+2.91. 2] = 2nJ [ Iy, P1e)Iee+2TT [ Iy, P12 T2 = =20 (I I2e—I10522), (12.69)

[Aoy, Hrocsy] = mJ[ Sy, 2910 T2z + 291y Iy + 291 2, + 2525 930 + 252y I3y + 292, .932]
27TJf1z[f2y, fgz} + 2#Jﬂ1z[,ﬂ2y, fzz] + 27I'J[j2y, sz}fB,z + 27rJ[f2y, ,ﬂzz]jg,z
NI (Fro Iy — Iy Ian) — 27T (Fag Ty — Tz Isa), (12.70)

A3y, Hrocsy] = T [ I3y, 250, I30+2I2y I3y +2.92. 93, = 270 Ioy[ I3y, I34| 4270 I, [ I3y, 32| = —2inJ (I2g I3, —I2.I3,). (12.71)
A sum of the first two commutators (Egs. and [12.70)) shows that
A1y + Foy, Hrocsy] = 2inJ (I24I3: — I22-34) (12.72)
and a sum of all three commutators (Egs. shows that
[H1y + I2y + I3y, #rocsy) =0 (12.73)

in agreement with Eq. [[2.53]



318

12.4.8 Density matrix evolution in the TOCSY experiment

As discussed in Section , the TOCSY pulse sequence starts by a 90° excitation pulse that converts p(a) = i(ﬂt +hI1ztKrI2+KI3,) =
J

to
p(b) = § (St — kIy — KIay — KI3y) = 150 — 55 Ty,
J

which evolves during the incremented evolution period t1. An example of a set of nuclei interacting via couplings described by constants
Ji2 = Jo3 = J and Ji3 = 0 is presented in Section [12.3] here we analyze a general case that evolves (considering only .#;, coherences that
survive the TOCSY mixing) as

ple) = =4 3 Ci1I5y,
where ’
C11 = cos(Qit1) cos(mJiatr) cos(mJizt1) = % cos(Q1t1)(cos(mJiats — wJist1) — cos(mJi2ts + wJist1))
= i(cos((ﬂl — w12 — wJi3)t1) + cos((Q1 — wJi2 + wJi3)t1) + cos((Q1 + wJi2 — wJ13)t1) + cos((Q21 + wJ12 + wJ13)t1))
Ca21 = cos(Qat1) cos(mJiatr) cos(mJagtr) = %COS(QQtl)(COS(ﬂ'Jlgtl — wJagt1) — cos(mJi2t1 + wJ2st1))
= %(cos((ﬂg — w12 — wJ23)t1) + cos((Q2 — wJi2 + wJ23)t1) + cos((Q2 + w12 — wJ23)t1) + cos((Q2 + wJ12 + wJ23)t1))
C31 = cos(Q3t1) cos(mJizt1) cos(mJazt1) = %COS(Qgtl)(COS(ﬂ'Jlgtl — wJagt1) — cos(mJists + wJ2st1))

1
= Z(COS((QS —mwJi3 — 7I'J23)t1) + COS((Qg —7nJi3 + 7TJ23)t1) + COS((Qg + 7 Ji3 — 7TJ23)t1) + COS((Qg + wJis + ﬂjzg)tl)).
(12.74)
The —4Cj1.%;, components of the density matrix, converted to p(d) = —4% Z zk:ajkcjljky during the TOCSY mixing period (see
J

Section [12.3)), further evolve during t2 to
p(t2) = =5 2> ajnCi1(Cra Iy — SkaFkz), where
Jj k

C12 = cos(Qita) cos(mJiate) cos(mJigte) = % cos(Qit2)(cos(mwJiate — wJiste) — cos(mJizte + wJi3t2))

= i(COS((Ql — wJiz — wJ13)ta) + cos((Q — wJi2 + wJ13)t2) + cos(( + w12 — wJi3)te) + cos((Q + w12 + wJ13)t2))
Ca2 = cos(Qata) cos(mJiate) cos(mJagta) = % cos(Qata)(cos(mwJiate — wJagte) — cos(mJizte + wJ23t2))

= i(COS((Qz — wJ12 — wJag)ta) + cos((Qa — wJ12 4+ wJag)ta) + cos((Q2 + wJ12 — wJag)ta) + cos((Q2 + wJ12 + wJa3)ta))
C32 = cos(Qsta) cos(mJiste) cos(mJagta) = % cos(Qast2)(cos(mJigte — wJagte) — cos(mJigte + wJ23ta))

1
= Z(COS((Qg — w1z — wJ2s)te) + cos((Qs — wJ1z + wJ23)t2) + cos((Qs + w13 — wJ23)t2) + cos((Q3 + wJ13 + wJ23)t2)).
(12.75)

S12 = sin(Q1t2) cos(mwJi2t2) cos(mJizta) = % sin(Q1t2)(cos(mJi2ts — wJiste) — cos(mJiats + wJ13t2))

= i(Sin((fh —nJi2 — wJi3)t2) +sin((Q1 — w12 + wJ13)t2) +sin((Q1 + w12 — wJ13)t2) + sin((Q1 + wJi2 + wJ13)t2))
Soo = sin(Qat2) cos(mwJi2t2) cos(mJasta) = % sin(Qat2)(cos(mJi2ts — wJasgta) — cos(mJiats + wJ23t2))

= i(Sin((Qz —nJi2 — wJ23)ta) +sin((Q2 — w12 + wJ23)t2) +sin((Q2 + w12 — wJ23)t2) + sin((Q2 + wJ12 + wJ23)t2))
Sz = sin(Qat2) cos(mwJista) cos(mJagts) = % sin(Qst2)(cos(mJigts — wJasta) — cos(mJista + wJ23ta))

1
= Z(Sin((Qg — w1z — wJ23)te) + sin((Qs — wJi13 + wJ23)t2) + sin((Q3 + wJ13 — wJ23)t2) + sin((Q3 + wJ13 + wJ23)t2)).
(12.76)
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Considering the orthogonality of the matrices and the normalization used in our analysisﬂ the nonzero traces are

Te{Ine It} =2, Tr{InyInys} =2 (12.77)

R ~ K . . K . . K
Tr{p(tg)M+} = _N’Wii ZZajijl(lez — Skg) = _LA/’YEE Zzajijl(CkQ —+ 1Sk2) = —L/\/"th ZzajkCﬂEkQ, (12.78)
J k 7 k J k

where

Ei2 = Ci2 +1S12 = (ei(ﬂlfﬂ"lz*m}m)tz 4 l(—mJiztmdiz)te | GH(QitmJiz—mT13)t2 4 (l(QutmTi2+m 13)t2

Eg92 = Co3 +1S92 = (ei(ﬂzfﬂ"lz*m}z‘%)tz 4 el(Q2—mJi2+mJos)ts | Gi(Q2+m i2—m23)t2 4 (I(QatmT12+ T 23)t2

E33 = C32 +iS32 =

N S N

(ei(ﬂsfﬂ"ls*m}z‘%)tz 4 el(Q—mIiztmdos)ts | Gi(Q3+mIi3—m23)t2 4 ei(Q3+7rJ13+7f123)t2> .

(12.79)
As the previously discussed two-dimensional experiments, TOCSY is also applied so that a hypercomplex 2D spectrum is obtained.

Therefore, acquisition is repeated for each ¢ increment with the phase of the radio wave shifted by 90° (y) during the 90° pulse. The
original density matrix

ﬁ(a): %(ﬂt+ﬁjlz+ﬂrﬂ2z+ﬁf3z): ijt"l‘%zﬂ]z
J

is then converted to
p(b) = 1 (It + KI1e + KIoe + £ I3z) = 1T + 5 5 Fja,s
J

which evolves during ¢1 to the .#;, components, selected during the TOCSY mixing, with the following modulation: p(c) = § > Si15Gy,
J

where

S12 = sin(Qqt2) cos(mJi2t2) cos(mJizta) = % cos(Qit2)(cos(mJiate — wJiate) — cos(mJiata + wJ13t2))

= i(Sin((Ql — w12 — wJi3)te) + sin((Q1 — wJi2 + wJ13)t2) + sin((Q1 + 7J12 — wJ13)t2) + sin((Q1 + wJ12 + wJ13)t2))
Soo = sin(Qat2) cos(mJi2t2) cos(mJagta) = % sin(Qat2)(cos(wJi2ta — wJagta) — cos(mJiatas + wJ23t2))

= i(sin((QQ — w12 — wJ23)t2) + sin((Q2 — wJi2 + wJ23)t2) + sin((Q2 + wJ12 — wJ23)t2) + sin((Q2 + wJ12 + wJ23)t2))
Sz = cos(Qata) cos(mJigta) cos(mJagta) = % cos(Qat2)(cos(mJizte — wJagta) — cos(mJigta + mwJ23t2))

1
= Z(sin((Qg — w1z — wJ23)te) + sin((Qs — wJi13 + wJ23)t2) + sin((Q3 + wJ13 — wJ23)t2) + sin((Q3 + wJ13 + wJ23)t2)).

(12.80)
The %Sjlij components of the density matrix, converted to p(d) = % > a;xSj15ky during the TOCSY mixing period, evolve
Jj k
during t2 to
plt2) =—52 ; ;%551 (Cr2Iky — Sk2Ika), and
J
R N K . . K . . K
Tr{p(t2) M1} = N’th D> akS81(iCka — Sk2) = W’Yh5 D> akS851(Cra +iSk2) = W’th > akS81 Era, (12.81)
Jj k Jj k ik

If we introduce relaxation, apply phase correction and perform Fourier transformation in the direct dimension, discard the imaginary
component of the signal, multiply Eq.[12.81| by ”i” and combine it with Eq.[12.78] introduce relaxation and perform Fourier transformation
in the indirect dimension, we obtain a hypercomplex signal with the real component

R{Y (w1, w2} :N'ythZajijlYkg, (12.82)
Jj k

6 As discussed in Section 12.4.5| the product operators listed in Tables differ from normalized basis matrices by a factor of
V2, resulting in the factor of 2 in the traces Tr{FneIn+} and Tr{ Iy I }.
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where

1 Ry 1 Ro>
Yo = 152 + 452
R2 + (Qn - 7rJnn’ - ﬂ—‘]nn” - “’l)2 RZ + (Qn - 7r‘]nn’ + Tr‘]nn” - "*)l)2
1 R 1 R
+ 1 fie TN 2 (12.83)
4 R2 + (Qn + s — T — wl)2 4 R2 + (Qn + mpnt + T — wl)2

(n,n’,n"" € {1,2,3}).

12.4.9 Cartesian basis matrices for a three-spin system
Explict forms of the Cartesian basis matrices for a three-spin system are presented in Tables
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Jf[

Jf[

jlz

Table 12.2: Cartesian basis for a three-spin system: population operators. Symbols ”+” and ”—" stand for +1 and —1, respectively.
1
] | [

All operators have to be divided by v/2 to obtain orthonormal matrices.
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J
J

Table 12.3: Cartesian basis for a three-spin system: single/triple-quantum operators. Symbols ”+” and ”—” stand for +1 and —1,

respectively. All operators have to be divided by /2 to obtain orthonormal matrices.
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Table 12.4: Cartesian basis for a three-spin system: single-quantum operators. Symbols ”+” and ” —” stand for +1 and —1, respectively.
Yy gle-q y Y

All operators have to be divided by v/2 to obtain orthonormal matrices.
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Table 12.5: Cartesian basis for a three-spin system: zero/double-quantum operators. Symbols ”+” and ”—” stand for +1 and —1,

respectively. All operators have to be divided by v/2 to obtain orthonormal matrices.
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Lecture 13
Magnetic field gradients

Literature: The use of magnetic field gradients in the NMR spectroscopy is nicely reviewed in
K11 (in particular, K11.11-11.14, presented more systematically and in more detail than here) and
also presented in 4.7 and L.12.4 (with detailed analysis in LA12), C4.3.3., and B19.5. The magnetic
resonance imaging is discussed in B22; the basic ideas of slice selection and frequency encoding are
also described in L12.5. A very nice introduction has been written by Lars G. Hanson (currently
available at http://www.drcmr.dk/).

13.1 Pulsed field gradients in NMR spectroscopy

Resonance frequencies of nuclei depend on the external magnetic field and on properties of the
molecule (inherent properties of nuclei and interactions of nuclei with their microscopic environment).
The external magnetic field is what we control and the molecular properties is what we study. We
try to keep the external magnetic field as homogeneous as possible so that all nuclei feel the same
external field By and their frequencies are modulated by their molecular environment only. Now we
learn a trick of the spin alchemy which is based on violating this paradigm. It is possible to create
a magnetic field that is inhomogeneous in a controlled way. We will discuss an example when the
field is linearly increasing along the z axis (Figure left, Sections [13.4.1f and [13.4.2). A linear
gradient of magnetic field (or simply ”a gradient” in the NMR jargon) is applied in the z direction.
The nuclei close to the bottom of the sample tube feel a weaker magnetic field and have a lower
precession frequency, whereas the nuclei close to the top feel a stronger field and have a higher
precession frequency in such case. If we label the gradient in the z direction 0By/0z = G, the
frequency offset 2" at different at different positions is given by

V(2) = Q — G,z (13.1)

We can say that the frequency carries information about the position along the z axis.

If the gradient in the z direction is applied when the total magnetization vector rotates in the
xy plane, nuclei at different height of the sample acquire different frequencies of the magnetic mo-
ment precession (an analysis of the density matrix evolution is presented in Section [13.4.1)). In the
individual slices, the coherence is preserved. But after a while, vectors of the local transverse polar-
ization (magnetization) rotating at different frequencies in different slices of the sample would point
to all possible directions and they would no longer add up to a measurable total magnetization. We
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Figure 13.1: Magnetic field gradients in the vertical (z, left) and horizontal (y, right) directions. Top, magnetic
induction lines and the corresponding schematic drawings of the gradients (used to present the gradients in pulse
sequence diagrams) are shown in purple and black, respectively. Bottom, local transverse polarizations (magnetization)
at different positions in the sample tube for increasing gradients (indicated by the black schematic drawings below the
sample tubes). The arrows representing the transverse polarizations (magnetization) vectors are color-coded so that
blue corresponds to My, red corresponds to —M,, and white corresponds to £M,,. The round shape of the gradient
symbols indicates that the gradients were applied with smoothly changing amplitudes as discussed in Section
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can say (i) that the gradient allows us to distinguish magnetic moments in different slices, or (ii)
that the gradient destroys the bulk (net) transverse magnetization. The longitudinal polarizations
are not influenced. We postpone the discussion of the first point of view (selectivity introduced by
the gradient) to Section and now explore the consequences of the loss of the net transverse
magnetization.

At the first glance, it seems that dephasing of coherences and the consequent loss of the signal
are completely useless and should be avoided in NMR experiments. It is not true, gradients are very
useful if they are applied correctly. The first trick is to apply gradients that destroy coherences we
are not interested in. Such gradients have cleaning effects and remove unwanted contributions from
the spectra.

Another trick is to recover the magnetization back. If we apply the same gradient for the same
time, but in the opposite direction (—z) later in the pulse sequence, the magnetic vectors are refocused
and the signal appears again. We see how an echo can be created from two opposite gradients.
There are also other ways of creating gradient echoes, presented in Figure [13.2] Instead of using two
opposite gradients, two identical gradients can be applied during the refocusing echo (described in
Section [10.7]), one in the first half of the echo and the other one in the other half (the left echo in
Figure @[) The gradients do nothing else but adding another source of frequency variation, on
the top of the chemical shift and J-coupling effects. Magnetic moments of the nuclei affected by
the 180 ° pulse in the middle of the echo get always refocused, no matter what was the origin of the
frequency variability. On the other hand, magnetic moments of nuclei not affected by the 180° pulse
(e.g., *C or N nuclei if radio waves are applied at the proton frequency) feel two identical gradients
and get dephased. We see the selective cleaning effect of the gradient echo, e.g. preserving the .7,
and 2.7,.7, coherences but destroying unwanted .7, and ., coherences. Gradients incorporated into
the decoupling echo (described in Section have exactly the opposite effect (the right echo in
Figure . In this spirit, gradients are frequently added to the echoes in the pulse sequence to
clean imperfections of the used pulses.

An application of a cleaning gradient and of gradient echoes in a real NMR experiment is presented
in Figure m (magenta and cyan symbols, respectively). Note that the cleaning (magenta) gradient
is applied when no coherence (transverse polarization) should contribute to the density matrix (p(d) =
S — §25..7,, cf. the magnetic moment distribution at "d” in Figure . The cyan gradients are
applied during the simultaneous echoes and refocus coherences that evolve due to the J-coupling.

Figure [13.3| also shows another, more tricky use of gradients implemented in an improved version
of the HSQC experiment (green and blue/red symbols). The idea is to apply one gradient during
the time when the desired coherence rotates in the operator space (and the corresponding transverse
polarization rotates in the real space) with the frequency of ¥*C (or ®N) and the other gradient
during the time when the total magnetization rotates with the frequency of protons. In order to
do it, we must generate a space in the pulse sequence by including a refocusing echo (a typical
example of using refocusing echoes in situation when we need more space but do not want to change
the evolution). The two applied gradients are not identical, they change the magnetic fields to a
different extent. The deviations of the field must be exactly in the ratio of resonance frequencies of
13C and 'H. Then, the gradients form a heteronuclear gradient echo. Note what happens to various
coherences of protons. The coherence which contributed to the polarization transfer to 3C and back
experiences the gradients as an echo and gets refocused. On the other hand, population of protons
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Figure 13.2: Gradient echoes. The black rectangles at the lines labeled ”Wanted” and ”Unwanted” indicate pluses
of radio waves. The black rectangles at the lines labeled G, indicate magnetic field gradients. Evolution of the phase
of the desired and undesired transverse coherence (describing direction of the corresponding transverse polarization)
is shown as green and red lines, respectively. Values of the phase at different positions in the sample tubes correspond
to the distances of the green and red lines from the central black line.

whose polarization was not transferred to *C (e.g. protons of water that are not *C-bonded) feels
just two gradients of different strengths and its coherence is destroyed. The gradient echo makes the
experiment selective for protons correlated with carbons and suppresses the signal of uncorrelated
protons.

13.2 Magnetic resonance imaging

We now explore the selectivity of gradients, mentioned in Section [13.1} During a field gradient in the
z direction, the actual precession frequency depends on the position of the molecule along the z axis.
This relationship can be used to selectively acquire NMR signal only from molecules in a certain slice
perpendicular to the z axis. As discussed in Section [13.4.5] the pulse sequence presented in the right
panel of Figure allows us to detect the transverse magnetization in an axial slice (perpendicular
to z) of a given thickness (the signal is detected from the whole slice but not from outside the slice).
The gradient can be also applied in the z and y directions (right part of Figure . It is therefore
possible to select signal in sagittal, coronal, and axial slices of a human body as shown in Figure|[13.5]

Gradients also allow us to investigate variations of the local magnetization inside the selected
slice. One possibility, called frequency encoding and presented in Figure [13.6] is to apply a gradient
during the signal acquisition and to convert the frequency of the Fourier-transformed spectrum to
the position information. In order to understand the principle, we recall that the direction of the
transverse magnetization is described by a phase ¢ having an initial value ¢y and increasing in time
as
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1
4J § 4

Figure 13.3: Gradient enhanced HSQC experiment. Cleaning gradients and gradient echoes are shown in magenta
and cyan, respectively. The heteronuclear gradient echo consists of a gradient shown in green, applied during the
refocusing echo between time instants "f” and ”g” (when density matrix evolves with the 3C or N frequency),
and of another gradient applied during the last echo (when density matrix evolves with the proton frequency). The
latter gradient is shown in blue for recording the real component of hypercomplex data and in red for recording the
imaginary component.

"H
G, I

slice select

Figure 13.4: Slice selection pulse sequence: the basic idea (left) and real application (right). Gradients of By in
the z direction are shown in green. The 90° radio wave pulses are shown schematically as filled black rectangles, the
actual modulation of the radio-wave amplitude is depicted in cyan.



330

Figure 13.5: Selection of sagittal, coronal, and axial slices by G, Gy, and G, gradients, respectively.

O(t) = go + Qt = ¢o + (Q — G 2)t. (13.2)

We measure the magnetization in discrete time intervals separated by the time step At

o(t) = ¢o + (2 — vGrx)nAt. (13.3)

In the standard NMR experiment, no gradient is applied during the signal acquisition (G, = 0).
The Fourier transformation then converts the signal varying in time (with the phase growing as
QnAt) to a spectrum describing how the signal depends on the frequency w, which is a quantity
reciprocal to time (w = 27 /t).

In the frequency encoding imaging, we work on resonance (2 = 0) and typically set ¢ to a
convenient value. The signal varies in time as —yG,znAt. However, we are not interested in how
signal changes in time but in its variation in space. Therefore, we can rearrange (—vG,x)t to
x(—vG,t) = xk,, where k, has the same meaning as the  component of the wave vector describing
the propagation of waves in space. We can treat the measured signal as a set of intensities acquired
for a series of incremented values k, (with the step Ak, = —yG,At). Therefore, we can write

¢(ks) = ¢o + znlk, (13.4)

and apply the Fourier transformation to convert the dependence on k, to the dependence on =,
which is a quantity reciprocal to k, (z = 27/k,). More details are presented in see Section

Another option, called phase encoding and presented in Figure is to vary the strength
of a gradient applied for a constant time 7,. In this case, the phase can be still described by
Eq. but the incrementation step is given by Ak, = —yAG,7,. If we combine the frequency
encoding using the gradient G, with the phase encoding using the gradient G, as depicted in the
left panel of Figure [13.7, we can image signal variation in the whole selected two-dimensional slice

(see Section for details).
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Figure 13.6: Pulse sequences allowing frequency encoded 1D (left) and 2D (right) imaging in the selected slice.
Gradients of By in the z, y, and z direction are shown in blue, red, and green, respectively. The 90° radio wave pulses
are shown schematically as filled black rectangles, the actual modulation of the radio-wave amplitude is depicted in
cyan.

The slice-selective imaging techniques, discussed above, have one disadvantage. It is difficult
to select a very thin slice. Therefore, the imaging has limited resolution in one dimension. An
alternative approach exists that is not restricted in this sense. It is possible to apply gradient
encoding to all three dimensions. An example of such a pulse sequence is shown in the right panel
in Figure [13.7. However, such a high-resolution 3D imaging is considerably more time consuming.
To save time, shorter that 90° pulses are often applied. Such short pulses leave a large portion
of the magnetization in the z direction. Therefore, a next short pulse, generating some transverse
polarization can be applied immediately after the signal acquisition without the need to wait for
the return to the equilibrium. In this fashion, several acquisitions may be performed in one Tg
period before the longitudinal magnetization is completely ”consumed”. This significantly reduces
the measurement time.

Reconstruction of the two-dimensional image from frequency- and phase-encoded data can be
described in the same manner. Both frequency and phase encoding gradients introduce variation of
the magnetic field, and consequently of the precession frequency, in the selected slice (the xy plane
in our example). Linear variations of the magnetic field create "waves” of phases of the transverse
polarization, as shown in Figures [13.8 and [13.9, The waves propagate in the z or y direction,
respectively, if the gradients G, and G, are applied separately. Simultaneous application of both
gradients generates waves spreading in a direction given by the relative ratio of the gradient strengths
(Figure|[13.8B). Each imaging experiment consists of a series of measurements with a different setting
of the gradients. Each combination of the gradients can be described by two parameters, k, and k,,
that can be combined in a vector (the vector k in Figure ) The values of k, and k, vary as the
acquisition time proceeds in the case of the frequency encoding gradient, or as the strength of the
phase encoding gradient is incremented (see Sections [13.4.6( and [13.4.7] for details). Each panel in
Figure represents a phase wave for a particular value of k; and k,. In terms of the phase waves,

the direction of k defines the direction of the wave propagation and the magnitude of k says how
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Figure 13.7: Examples of slice-selective 2D imaging experiment, combining phase and frequency encoding (left) and
of 3D phase encoding imaging experiment (right). The frequency and phase encode gradients are labeled "read” and
”encode” respectively. Ty and Ty are echo time and repetition time, respectively. Gradients of By in the z, y, and z
direction are shown in blue, red, and green, respectively. The radio wave pulses (90° in the left panel and 10° in the
right panel) are shown schematically as filled black rectangles, the actual modulation of the radio-wave amplitude is
depicted in cyan. The 180° pulse in the left panel creates an echo that refocuses evolution of residual € (due to the
field inhomogeneity). The first G, gradient in the right panel allows us to reduce the phase encoding to a limited
range of x. Therefore fewer phase encoding steps can be used without problems with aliasing (longer Ak, can be used
to achieve a good resolution by having larger N, Ak, with lower N).

dense the waves are. We see that k behaves as a wave vector describing any other physical waves
(e.g. electromagnetic waves), and we can expect that the signal reconstruction is based on similar
principles as the analysis of diffraction patterns providing the structure of the diffracting objects.
Instead of describing the image reconstruction technically (it is done in Sections|13.4.6/and [13.4.7)),
here we try to get a general idea by inspecting Figure [13.8, For the sake of simplicity, we assume
that all observed nuclei have the same chemical shiftH Figure shows transverse polarization
phases in the absence of gradients. The phases are aligned at the beginning of the experiment and
move coherently, i.e., do not move at all in the coordinate frame rotating with the frequency —wyaqio
(Figure[13.8A). In the absence of the gradients (k, = k, = 0), the coherent arrangement of the phases
depicted in Figure does not change (except for relaxation effects and technical imperfections).
We therefore record a signal proportional to the number of observed nuclei in the slice and to
the magnetic moment distribution in equilibrium (our constant ). The application of gradients
redistributes the phases as shown in Figure [13.8B. Local transverse polarizations (magnetizations)
pointing in opposite directions at different sites of the slice cancel each other, and the net transverse
magnetization of the whole slice is very small (equal to zero in Figure [13.8B). We see that the
gradients greatly reduce the signal in slices with a uniform distribution of the magnetic moments
(of the spin density). What happens if the magnetic moments (the spin density) are not distributed
uniformly, but have some structure? For example, if bones (containing much less protons than soft
tissues) intersect the slice? If the structure is periodic (e.g. like ribs) and if it has a period and
orientation matching the period and direction of the phase waves, the signal may greatly increase
because protons are concentrated in the regions of the slice with a similar phase of the transverse

!The chemical shift differences (e.g. between aliphatic protons of lipids and protons in water) result in artifacts,
displacements of the apparent positions of the observed molecules in the image.
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Figure 13.8: Coherent phase distribution (A) and a phase wave generated by the gradients G, and G, in selected

axial slice with a uniform spin density (B) and with a low-spin density structure (C). The wave vector k is depicted
in Panel B.

polarization (magnetization). An example is shown in Figure [13.8[C.

The example of Figure [13.8(C represents an extreme case of signal enhancement. Most structures
in the human body are not periodic as the ribs. But any deviation from the uniform distribution of
protons perturbs the regular patterns of phase waves resulting in net transverse magnetization close
to zero. Each wave interferes with the given structure differently. Therefore, the signal obtained for
different k, and k, varies. Mathematically, the set of all values of k,, k, (and k, in some experiments)
forms a two-dimensional (or three-dimensional) space, called k-space. Each combination of gradients
represents one point in the k-space. If we plot the values of the signal obtained for different gradient
settings in the order of increasing £, and k,, we obtain a picture of the imaged object in the k-space.
The task of the image reconstruction is to convert this picture into dependence of the spin density
on the coordinates x and y. A very simple example is provided in Figure[13.10] Although the signal
is calculated only for 25 different k values in Figure , it exhibits some general features. For
example, comparison of data collected for shapes with increasing complexity documents that higher
values of k,, k, (data further from the middle of the k-space) reflect finer structural details.

In reality, there is a straightforward relation between the shape of the imaged object in a real space
(described by the coordinates z, y, and z in some experiments) and the shape of the object’s picture
in the k-space (described by the ”coordinates” k,, k,, and k, in some experiments). As shown in
Sections[13.4.6| and [13.4.7], the dependence of the signal on the distribution of the magnetic moments
(spin density) in the z,y plane (and in space in general) has a form of the Fourier transformation.
Therefore, the distribution of the spin density, defining the shape of the object, can be calculated
simply by applying the inverse Fourier transformation.

13.3 Weighting

The NMR spectroscopy of diluted chemical compounds is often limited by the inherently low sensi-
tivity of the NMR experiments. However, the highest possible sensitivity is not the ultimate goal of
imaging. It is much more important to obtain a high contrast. It does not help us to get a very bright
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Figure 13.9
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Figure 13.10: A simple example of image reconstruction. In each panel, phase waves (left) and obtained relative
signal intensities (right) are shown for 25 different gradient settings (25 small squares). The phases are presented as
arrows, color-coded as in Figure (+M, in blue, —M, in red, £M, in white). The signal intensities are displayed
as numbers and corresponding colors (positive and negative intensities are shown in blue and red). Imaging of an
object with uniform proton density (A) and with structures of three different shapes (B-D) is presented. Matter with
high and low proton density is shown in cyan and yellow, respectively. The depicted waves correspond to the k,
values of 2Ak,, Aky, 0, —Ak,, and —2Ak, (top-to-bottom) and to k, values of 2Ak,, Ak,, 0, —Ak,, and —2Ak,
(right-to-left).
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image of the human body if we cannot distinguish individual organs and finer structural details. So
far, we discussed how magnetic resonance imaging reflects the variations in the local concentration of
magnetic moments (spin density). But the signal is also influenced by the relaxation. The relaxation
gives us a unique opportunity to distinguish regions of the body where protons are present in sim-
ilar concentrations but in molecules with different dynamics and consequently different relaxation.
Among numerous, often sophisticated imaging techniques, three major approaches can be recognized.

e Spin density weighting. The highest possible signal, depending only on the spin density is
obtained if the experiment starts from the thermodynamic equilibrium and the transverse re-
laxation does not decrease the signal significantly. This is the case if (i) the time between the
individual measurements is much longer than 1/R; (where R; is the relaxation constant of
longitudinal relazation which drives the system back to the equilibrium) and (ii) the duration
of the experiment is much shorter than 1/R, (where R, is the relaxation constant of trans-
verse relaxation which is the source of the signal decay). Therefore, the spin density weighted
experiments are run with a short echo time Ty and a long repetition time Tg.

e T, weighting. The signal strongly depending on the relaxation constant Ry (or on the relaxation
time Ty = 1/Ry) is obtained if (i) the time between the individual measurements is much longer
than 1/R; and (ii) the duration of the experiment is such that the differences in the factors
e f2Te of different molecules are most pronounced. Therefore, the T, weighted experiments are
run with a long echo time Ty and a long repetition time Tgr. As Ry is mostly given by J(0)
and J(0) is proportional to the rotational correlation time (cf. Eq , the Ty-weighted signal
is most attenuated for slowly reorienting molecules (molecules in firm tissues).

e 17 weighting. The signal strongly depending on the relaxation constant R; (or on the relaxation
time 77 = 1/R;) is obtained if (i) the time between the individual measurements is comparable
to 1/R; and (ii) the duration of the experiment is is much shorter than 1/Rs. Therefore,
the T weighted experiments are run with a short echo time Tg and a short repetition time
Tr. In contrast to Ry, the major contribution to R is J(wp), which has a maximum (in the
approximation of Eq. for the rotational correlation time equal to 1/wy, i.e. 3.75ns at 1T
or 1.25ns at 3'T. Therefore, the highest contrast of T7-weighted signal is obtained for molecules
with intermediate (low-nanosecond) dynamics (molecules in semi-firm tissues).
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13.4 SUPPORTING INFORMATION

13.4.1 Coherence dephasing and slice selection by field gradients

Quantitatively, the magnetic field gradient in the direction z is defined as G, = ABy/Az. The same applies to gradients applied in other
directions: G = ABy/Az, Gy = ABy/Ay. Note that all gradient describe linear perturbations of the vertical magnetic field Bo. As the
precession frequency wg, and consequently the frequency offset Q = wp — wrot = wo — (—Wradio), are proportional to By, the gradient makes
the frequency dependent on the position:

Q(z) = Q-1Goz, Q(y) =Q—1Gyy, () =Q-1G.z, (13.5)

where we set the origins of the axes z, y, z at the place where the gradient has no effect. For the sake of simplicity, we analyze the
effect of the gradients for magnetic moments not influenced by interactions with electrons and other magnetic dipoles (i.e., we assume that
all molecules have the same chemical shift and the dipole-dipole and J couplings are not present or can be neglected). We start with a
density matrix describing an ensemble of magnetic moments uniformly rotated by a 90° radio wave pulse from the equilibrium distribution
p(0) = S — kI (Figure , Then we apply a gradient, e.g. in the z direction. The density matrix at evolves as

p(t) = Ft — kIycos(Q (2)t) + kIpsin(Q (2)t) = Sy — kIycos((2 — YG22)t) + kIesin((Q — vG. 2)t) = S — kIycos P(z,t) + kIpsin P(z, t),

(13.6)
where the horizontal bar indicates ensemble averaging. The expected value of the transverse magnetization is
N 2p2 B, - 2K2 B, -
(M)(t) = Te{p(O) N1} = -N L2200 g, 7, Yeos((2 — 7Ga2)t) + N 20 Ty {7, 7, Ysin((2 — 7 GL2)E)
2kpT 2%pT
252
7*I* Bo el 7 el(Q-7G o)t (13.7)
4kpT
Performing the phase correction and including the relaxation,
v2h%Bg et v¥2h% By
(My)(t) = Nme—wewm—vcm - Nme—w <cos((Q —7Ga2)t) + isin((Q — 7Gzz)t)> . (13.8)

If the gradient is sufficiently strong, the sine and cosine terms oscillate rapidly with frequencies depending on z and their ensemble
averages tend to zero. Let us now assume that the gradient is applied not after the 90° pulse, but during the excitation pulse. Then, the
resonance condition is fulfilled exactly only for a certain value of yG.z that matches the chemical shift (position-independent frequency
offset 2), Q@ = vG.z. Therefore, the strongest signal is obtained from a slice of the signal at

Y= Q _ wo — Wrot _ wo — (7wradi0)
’YGZ "YGZ ’YGZ

(13.9)

The reduction of the signal form other vertical positions is given by the excitation profile of the 90° pulse. The thickness of the slice
depends on the value of G, (the stronger G the thinner the slice) and the position z can be varied by changing the carrier frequency of
the radio wave wyaqio- The dependence of the magnetization on the position in the investigated sample is used in different manners in
NMR spectroscopy and imaging:

e In NMR spectroscopy of samples with relatively low concentrations of the studied substance, the signal, obtained only from a
selected slice would be very low, often below the limit of detection. Usually, a 90° pulse applied in the absence of gradients creates
transverse magnetization in the whole sample and a gradient is applied later to de-phase magnetization at different positions. This
is the principle of the action of cleaning gradients and gradient echoes destroying coherences that are not interesting. The use of
gradients in the NMR spectroscopy is discussed in Section [I3.1] and further analyzed in Sections

e If the concentration of the detected compound is sufficiently high and the transverse magnetization in the selected slice is observable,
the signal from different slices can be compared and further investigated. This is interesting especially if the number of magnetic
moments per volume element, or the spin density N'(z) varies in the z direction. Detection of the magnetization dependent on the
spin density in individual selected slices is the basis of slice-selective imaging, described in Sections [[3.4.5ff.
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13.4.2 Field gradients with smooth amplitude

In NMR pulse sequences, the gradient is usually not switched on and off suddenly. Instead, the linear magnetic field perturbation is
increased and decreased in a smooth fashion, following for example a function sin(nt/7;) for a gradient that starts at ¢ = 0 and is finished
at t = 7. In such a case, the total rotation angle of the transverse polarization (the phase ¢) is

Tz
P(z,t) = Qt — 'yzw /sin 71F—tdt. (13.10)
z ) Tz
Because the ratio
t
J F@)Hde
Of (13.11)

is constant (definition of the average value of f(t)), it is convenient to absorb the effect of the smooth amplitude of the gradient into
the value of G:

fzsin 7t ¢
ABo(t=72/2) o Tz

T, = Q1 — G275 (13.12)
Az T,

P(z,72) = Q12 — 72

Gz

The equations describing actions of gradients can be modified for the gradients with a smooth amplitude (shaped gradients) by
changing t to 7.

13.4.3 Coherence selection by pulsed-field gradients

Unwanted coherences can be suppressed by cleaning gradients and gradient echoes. The principle of cleaning gradients (e.g. the magenta
gradient in Figure is fairly simple. Phases of magnetizations corresponding to a coherence evolving during the gradient at different
vertical positions in the sample are spread to the whole zy plane, resulting in the zero overall transverse magnetization.

The product operator analysis of gradient echoes is also straightforward. Let us assume that the density matrix at the beginning of
the echoes presented in Figure [13.2]is

1 1 )
p(0) = A — Eﬁl,ﬁy — 5#;2,,7/7,, (13.13)

where .7, is the desired coherence and .7, is the undesired one. The density matrix at the end of the first delay 7 in Figure @ is

(cf. Eq.[13.6)

I — 1 1 1 _—
p(t) = ftfimcos(QT —y1Gr272) + EHI Fpsin(Qr — 1 GZZTZ)firiQCOS(QT —v2Go272) + inzﬂmsin(QT — v2G2272)
1 1 1 ,/ 1 o
= ft*i"ileyycll + §Hl=%r<‘>’11*§’{layy02] + 5’11:7&:521~ (13.14)

The following 180° radio-wave pulse in the left echo in Figure|13.2] influencing only the wanted coherences converts the density matrix
to

) T 11 .
p(t) = ft-‘rihilaﬁycu + iﬁlf‘;r:~%’11—§f<15”;z/€21 + 5""/1*—%&'3217 (13.15)
which evolves during the second delay 7 to
X 1 1 S T B
pt) = ft+§l‘€1/‘y(011012 +s11812) + 551»%-(611512 - 511012)*§H1»7y(621022 — 521822) + il‘ilfm(cmé’m + s21C22). (13.16)

As the second gradient in the left echo in Figure@ is the same as the first one,

ciiciz fs11s12 =3 + 53, =1 €11512 — S11€12 = €11511 — 11511 = 0, (13.17)
— S5 o — N 1 K K _—
C21C22 — S21822 = C51 — 83 c21822 + s21¢22 = p(b) = iﬂt* i-flyf 5-%211021821 + 21821, (13.18)

and
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p(t) = %Klﬁfy—%ﬁgfgcos(fl(%') —v2G.2(272)) + %Hgy’msin(Q(ZT) —v2G2(2712)), (13.19)
where the red terms provide only a very small signal in the selected slice. The .7, and .7, symbols may represent a nucleus we are
not interested in, or a portion of the coherence of the observed nucleus that is not refocused due to the offset effects. The cyna gradient
echoes in Figure [[3.3] represent such an application.
Analysis of the right gradient echo in Figure [[3.2]is similar. The 180° radio-wave pulse following the first delay 7 in the right echo in
Figure [I3.2] influences only the unwanted coherences and converts the density matrix to

. 1 1 1 1 o
pt) = ﬂt—ihilfyt’u + ilﬂeﬁl:~%’11+§mcy’y(121 + §Hi1a72ua'?217 (13.20)
which evolves during the second delay 7 to
R 1 1 e N — r -
p(t) = %&*5/%‘1-5@/(011012 —s11812) + imfm((mé‘m + 811012)+5H1e7y(021022 + s21822) — ilflr(//z(CQISZQ — 521C22). (13.21)

As the second gradients in the right echo in Figure [[3.2] has the opposite effect than the first one,

c11c12 — s11812 = cos(QT — 1 G272 ) cos(QT + 1 G272 ) — sin(Q1 — y1 G2 272 ) sin(Q7r + y1 G2 272) = cos(207), (13.22)
c11812 + s11¢12 = cos(QT — Y1 G2 272) sin(Qr + 11 G2 272) + cos(QT — 11 G2 272) sin(Q7 + 11 G2 272) = sin(2Q71), (13.23)
c21022 + s21822 = cos(QT — Y1 G272 ) cos(QT + Y1 G272) +sin(Qr — y1G2272) sin(Qr + 711Gz 272) = cos(271 G2 272), (13.24)
c21822 — s21¢22 = €o8(QT — 711G 2 272) sin(Q7 + y1G2272) — sin(Q1 — v1G2272) cos(QT + v1G2272) = sin(271 G2 272), (13.25)
and
R 1 1 . 1 — 1 S —
pt) = —Eh',l,/y cos(2Q7) + ih:l,ﬁ,, 5111(297)—0—iﬁgéﬂu(:()s(ngGzzn) + 5}«',2,7}115111(272G22TZ), (13.26)

where the red terms again provide only a negligible signal (the averaged sines and cosines tend to zero because the arguments range
from —m to ). Note that the chemical shift evolution is not refocused because no 180° pulse affects the desired coherences in the right
echo in Figure It suggests that the right gradient echo presented in Figure can be used to select the desired coherences during
the incremented delays introducing the indirect time dimension (¢1).

13.4.4 Pulsed-field gradients and frequency discrimination

The green and blue gradients in Figure (gradient-enhanced HSQC experiment) represent a gradient echo that selects only the coherences
that evolve with the frequency of *3C or 1°N in ¢; and with the proton frequency in t3. Following the analysis presented in Section [11.5]
the density matrix at point f in Figure [[3.3]is

ﬁ(f) = %,ﬂt + %I{l (6212ﬂzt5ﬁy — 5212fz§ﬂz) + %I{Q (CQLY}, — 5215725).

The sequence in Figure [13.3| continues by a refocusing echo with the green gradient. The analysis in Section shows that the red or
green terms do not contribute to the observed signal. Therefore, we analyze here only the fate of the blue terms. Combination of the
chemical shift evolution during ¢; and during the gradient echo results in

p(g) = %nl (cos(Qat1)sin(y2G1721)+sin(Qat1)cos(v2G21721)) 252 S+ %f{l (sin(Q2t1)sin(y2G,1721) —cos(Qat1)cos(12G1721))25. Sy +. ..
= %nlsin(Qgtl + ’nglezl)Q,fzeyz — %chOS(tal + 72G21Tz1)2ffzey}y + ...

The following two 90° pulses with x phase convert —2.7..%, to 2.4,.%,, which evolves to ., during the second INEPT, and 2.7,.%, to
a multiple-quantum coherence 2.7,.%;, which does not contribute to the signal. The chemical shift evolution during the blue gradient
combines with the chemical shift evolution during ¢2 and results in

pt2) = %MCOS(QQH 4+ Y2G21721)cos(Qute + 11 G22722) Iw — %KICOS(QQtl + 72 G 1721)sin(Qrt2 + 11 Gr2722) Iy + ...

= %H1(COS(Q2t1 + Qta + 72G1721 + 11G22722) + cos(Qat1 — Quito + 72 G171 — 11G22722)) In

+im1(fsin(92t1 + Qito + ¥2G21721 + 71G22722) + sin(Qot1 — Qita + 72G21721 — 'YleZTzQ))eﬁy +...

Calculating the trace of p(t2) M4, proportional to jp(t2).#4, shows that the observable signal is modulated as

im(COS(tal + Qito + v2G21721 + 11 Gr2722) + cos(Qat1 — Qita + 72G21721 — 11 G22722))

+r1(=sin(Qat1 + Qut2 +72G 21721 + 711G 22722) +5in(Q2t1 — Qute + 712G 21721 — 71G22722))

= % (e+i(92i1)e*i(91t2>e+i('yszlm—'y1Gzzfzz) + e*i(QQtl)efi(fhtz)e—i('mGzlTz1+'nGz27’zz))_
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The green and blue gradients make an echo if +7y2G;1721 — 71G22722 = 0 (note that j evolves with the chemical shift s, proportional
to 2, during the green gradient, but with the chemical shift 1, proportional to 1, during the blue gradient). With such setting of the
gradients, the signal is modulated as

eti@2t1)o—i(Qt2) 4 o—i(2211) o =i(21t2) o—i(72G21721+71Gz2722) (13.27)

where the red term results only in a very weak signal in the selected slice. This is a remarkable result, showing that the frequency
discrimination is achieved without the need to repeat the acquisition with a phase of a 90° pulse shifted by 90 ° (note that the Fourier
transform of €'(2%) is a signal with only one peak at the right frequency Q). However, the Fourier transformation of the obtained signal
yields phase-twisted peaks, as described in Section m Therefore, the acquisition is repeated while shifting a phase of the 90° pulse
following the green gradient by 90° (the red mark y in Figure [13.3]). In the repeated acquisition, the two 90° pulses convert 2.7..7, to
2.9, .y, which evolves to .#; during the second INEPT, and 2.7,.7) to a multiple-quantum coherence 2.7,.7,, which does not contribute
to the signal. The chemical shift evolution during the second gradient (labeled in red for the repeated experiment) and during ¢1
pt2) = 2rasin(Qat1 + 12G21721)cos(Qt2 + 11Gr2Te2) Yo — sr18in(Qat1 + 712G21721)sin(Q1t2 + 11 Gr2T22) 5y + ...
= k1 (sin(Q2t1 + Qta + 72Go1721 + 71Ga27e2) + sin(Qots — Qutz + 1261721 — 11G22722)) Sa
+%H1(COS(ta1 + Quta + 72G17e1 + 11G22722) — cos(Q2t1 — Quta +72G171 — 11G22722)) Iy + ...
Calculating the trace of p(t2) M.y, proportional to p(t2).#y, shows that the observable signal is modulated as
Lr1(sin(Qat1 + Qita + 712G21721 + 11 Gr2Ta2) + sin(Qats — Quta +72Go1721 — 11G22722))
+gr1(cos(Qat1 + Qute +72G21721 + 71G22722) — cos(Qat1 — Quta +72G1721 — 71G22722))
= % (e—i(QZtl)e—i(QItQ)e—i(’Yszl‘f'zl+’Y1Gz27'z2) _ eti(Q2t1) g—i(Qt2) g+i(v2G21721—71G22722) ) £i7/2,

Now the red gradient is applied in the opposite direction than the blue one. The green and red gradients make an echo if v2G 1721 +
v1G 22722 = 0. With such setting of the gradients and after correcting the unimportant phase shift by 7/2 (the last exponential term), the
signal is modulated as

e i(Q2t1) o —i(R1t2) _ o Fi(2201) g =i(Q1t2) o +i(12G 2172171 G22722) (13.28)
where the red term again results only in a very weak signal in the selected slice. Note that the signal acquired with the ”blue” phase
of the 13C (or ®N) pulse z (Eq. is modulated by frequencies with the opposite signs in the direct and direct dimensions, whereas
the signal acquired with the "red” phase of the 13C (or '®N) pulse y (Eq. is modulated by frequencies with the same signs in the
direct and direct dimensions. Such signals are labeled N and P, or anti-echo and echo, respectively, in the literature. The sum and the
difference of Egs. and yield a signal which is cosine and sine modulated, respectively, in the indirect dimension and can be
processed as described in Section to provide the frequency-discriminated, purely absorptive real part of the signal. However, it takes
twice as long to acquire the signal of the same size, compared to the discrimination by the States-Haberkorn-Ruben method without the
gradient. Therefore, the signal-to-noise ratio is lower by a factor of y/2 for the same measurement time. A more sophisticated gradient
HSQC experiment preserving the original sensitivity (except for some relaxation loss) has been also developed and is used routinely.

13.4.5 Slice-selective imaging

As described in Section a 90 ° pulse applied during a gradient G, fully rotates the magnetization to the zy plane at z = Q/(vG>).
The more z differs from Q/(yGz), the lower is the signal.

In practice, we prefer to select signal from a region of a well defined thickness. This is achieved by applying simultaneously the gradient
and a radio wave with the amplitude modulated so that magnetic moments with frequencies in a certain interval are rotated by an angle
close to 90 °, whereas magnetic moments with frequencies outside the selected interval are almost unaffected. The amplitude modulation
is achieved by dividing a radio-wave pulse into a series of short pulses with different Bj, as described in Section [1.5.11] The modulation
is shown in cyan in Figure Then, the resonance condition —wyadio = wo — YG- 2 is fulfilled in an interval of z defined by the range
of the frequencies affected by the radio-wave pulse. The amplitude-modulated radio-wave pulse is usually relatively long and magnetic
moments with different precession frequencies (within the selected range) have enough time to rotate significantly during the pulse. This
rotation, of different rates at different vertical positions inside the selected slice, is refocused by a negative gradient. It can be shown that
the gradients make an exact echo if the negative gradient corresponds to the second half of the positive gradient (between the middle and
end of the amplitude-modulated radio-wave pulse, see Figure|13.4)). The exact mathematical prove is not easy, but approximative solutions
can be obtained more easily. The first insight can be obtained if we imagine that the chosen range of frequencies was selectively excited by
a narrow pulse in the middle of the selection gradient (black bar in Figure[13.4). Then, no transverse magnetization exists before the pulse
and the transverse magnetization created by the pulse experiences a gradient echo consisting of the second half of the positive selection
gradient and by the negative refocusing gradient.

Such filtering of the signal according to the z coordinate of the observed molecule is the basis of slice-selective imaging techniques.
The gradients applied in the z or y direction can be used in the same manner to select slices perpendicular to the x or y axis, respectively.
In human body imaging, the coordinate system is used so that G, Gy, and G selects sagittal, coronal, and axial slices, respectively (see

Figure [13.5).

13.4.6 Frequency encoding gradients

We now proceed to the imaging in the slice selected at z = (wo — (—wradio))/(7YGz). In order to describe imaging in the z direction based
on the frequency encoding, we analyze how the density matrix evolves during the G, gradient in Figure @ The density matrix at the
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beginning of G is p(c) = % — k.Zy in the selected slice and j(c) = .#; everywhere else. During G, (t)) in the slice evolves as

p(t) = St — kIycos((2 — vGrx)t) + K Izsin((Q — yGrx)t), (13.29)

which can be also written as

p(x) = It — kIycos((QU — YGrtx) + kKIgsin((U — yGrtx) = Sy — kIycos((Q — kzx) + KILsin((Qt — ko), (13.30)

where kg is the xz-component of the wave vector Kk in Figure m Introducing the relaxation and performing the phase correction,

2h?B ; —_—
(My)(t) = %e*m i~ B2tz () e~V Gt (13.31)
B

Expressing the ensemble averaging explicitly,

Lg Lg
2n?B , ; 2n?B , ‘
(M1)(t) = ’yzlkiToefRQTze'mfth /N(m)eﬂvcxmdx = ’yzlkiToefRsze'mfth /./\f(gc)eﬂk”“”dgc7 (13.32)
B B
0 0

where L, is the size of the imaged object in the x direction.
The Fourier transformation of (M4 )(¢) gives a spectrum corresponding to

Lw
2h’B Q— -
Y(w) = 2150 —ror /N(z) ( . R +ig RASE ) dz, (13.33)
4kpT R3+ (2 —~7Gex —w)? R34+ (2 — 7Gx — w)?
0

with the spatial distribution encoded in the apparent frequency Q' = Q — yGyz.

In reality, the signal is stored as N discrete data points sampled with a time increment At. The value ky = 7Ggt = vGz - nAt can
be written as nAkg, where Ak, = yG, - At. The sampled time points correspond to nAt = nAky/(yGs). Considering AtAf = 1/N
(Eq. 37), Ake = vGo/(NAF). The second integral in Eq. has the form of the Fourier transformation (as A (z) = 0 for z < 0 and
x > L, the integration can be extended to +o0). The distribution of the spin density N'(z) can be evaluated at discrete values of z = jAxz
by the inverse discrete Fourier transformation of the signal sampled at nAt = nAky/(vGz):

n

N-1
AkpT Ak, (i Ry) Ak
N(z)=Nj = 522200 N~ (M e (9758

252 —RoT
v¥2h? Boe o

2T IR (13.34)

Note that all features of the discrete Fourier transformation (e.g. aliasing) are relevant for the image reconstruction.
Extending the discussion to the two-dimensional experiment (right panel in Figure [13.6)), is straightforward:

T = jzAx ke = YGgta = YGy - ngAtg Aky = vGy - Atg = vGg /(N2 A f2) (13.35)
y = JjyAy ky =1Gyt1 =Gy - ny Aty Aky =Gy - Aty = vGy/(NyAf1), (13.36)
and
Ny—1Ny—1 . Akgong , Akym ) o ng | Jyn
AknT —(iQ—R>) gy  BFyny ) oo (dong | Ty Ty
N@.) = Nis gy = bbby g pimr 22 2 Midnanye (S e o (M5 s 2552 (13.37)

nge=0 ny,=0

13.4.7 Phase encoding gradients

In order to describe imaging in the y direction based on the phase encoding, we analyze how the density matrix evolves during the Gy,
gradient in the pulse sequence presented in the left panel in Figure The gradient is placed in a refocusing echo of the duration T%.
We ignore the possible phase shift and assume that the density matrix at the beginning of Gy, is p(d) = % + k.#, inside the selected slice
and p(d) = #; everywhere else. During G, p(d) evolves to

ple) = J + kIycos((Q — vGyy)1y) — KIesin((Q — vGyy)7y), (13.38)

where 7, is the duration of the gradient. Expressing j(e) as a function of y,

p(y) = Ft + s Iycos((Qry — YGyTyy) — KIzsin((Qry — YGyTyy) = I + kIycos((Qry — kyy) — K Izsin((Qry — kyy). (13.39)

During imaging, 7, is kept constant and the phase shift 27y is refocused by the echo. The parameter that is varied is the strength of
the gradient G, gradually decreased from the originally positive value to a negative one by increments AG,.
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Then, a negative pre-phasing gradient G is applied for a time period equal to the half of the total acquisition time N;At/2. Ignoring
the phase shifts Q7 and —QN;At/2 that get refocused at Tg, the density matrix at the beginning of data acquisition is

Ng Ng
pf) = A + wIy (cos(—'yGyTyy) cos (+WGm7Atl") — sin(—yGy7yy) sin (—i—'meTAtx))

— kIz (sin(f'yGyTyy) cos (+7GI %At:p) — cos(—yGyTyy) sin (Jr'sz %Atm)) (13.40)

and further evolves during the acquisition as

p(x,y) = It + KIycacy — SuSy — KISz Cy + Ca Sy, (13.41)

where

Sz

sin(hr) = —sin (557 —ns) Ak ) e = cos(ia) = cos ( (5 = e ) Ak ) (13.42)

N,
sy = sin(kyy) = —sin ((Ty — ny) Akyy) ¢y = cos(kyy) = cos ((— — ny) Akyy) (13.43)

Z

T = jzAx kz = kz(0) + vGat = (— - nz) vGz At Aky = —vGy - At = yGy /(N Af) (13.44)

[\

. N,
y = JjyAy ky = ky(0) — nyvAGyTy = (f - ”y) YTy AGy Aky = —yAGy - 7y. (13.45)

The pre-phasing gradient makes the evolution of the density matrix to start from negative k; and pass kz = 0 in the middle of the
experiment. The modulation by k.2 and kyy thus has the same form.
Using the standard trigonometric relations,

plx,y) = It + KIycos ((% - nz) Akzx + (N7 — ny) Akyy) + k.Zzsin ((% — nz) Akgx + (% — ny> Al@y), (13.46)

Introducing the relaxation and performing the phase correction,

252 - . -
(M) (kg, ky) = 4]): ?Oedb(TE (Nifnz)%)N(m,y)ef'((NT*"I)A’“IIJF(%*"E’)A’W”), (13.47)

Expressing the ensemble averaging explicitly,

252 - " ; . -
<M+>(k‘z,ky) %efRz(TE (Nifnr) ﬁckl) / /N(Ly)efl((NT—nz)Akx:nr(%7ny)Akyy)dxdy. (13.48)
0 0

The inverse discrete Fourier transformation converts the signal into the two-dimensional image

Ny
4kpT Ak, Ak g Ry (Ne ) Ake i2x(dzne  duty
N(@,y) =Nj, 5, = oo Z Z <M+>nx,nye Ao (% —me) 585 ¢! o) (13.49)

xsJy 72h2BOe—R2TE

nlsz

nyff

The analysis can be easily extended to the three-dimensional imaging experiment presented in the right panel in Figure [I3.7, where
two phase-encoding gradients G and Gy are applied (the frequency encoding gradient is G.). The evolution of the density matrix matrix
from p(d) introduces the modulation

p(x,y) = It + KIyCaCyCr — SaSyCz — SaCySz — CaCyCs — KIgpSpCyCs + CaSyCz + CoCySz — SpSySz, (13.50)

where
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N Ny
sg = sin(kzz) = —sin ((7 ) Akz:r) ¢z = cos(kzx) = cos ((7 - nz) Akz;t) (13.51)
Ny Ny
sy = sin(kyy) = —sin o T Akyy ¢y = cos(kyy) = cos - Akyy (13.52)
N, N.
sz = sin(kzz) = —sin ((72 ) Akzz) ¢, = cos(k.z) = cos ((Tz — nz) Akzz) (13.53)
. Ng
T = jzAx kz = kz(0) — neyAGzTe = (7 - nz) YTz AGy Aky = —vAGg - T2 (13.54)
. Ny
y = jyAy ky = ky(0) — nyyAGyTy = o MW YTy AGy Aky = —7AGy -7y (13.55)
N,
z = j.Az k. =kz(0) +vG.t = — (72 - nz> G, At Ak, = —vG, - At =~vG, /(N Af). (13.56)
The corresponding signal is
25,2 N aray I N, N N
By — = —n & —i( (=t —n (L —n == -—n z
<M+>(kzak3yv kz) = TTOE Rz(TE ( Z)’Ycz) / /N(a@yyz)e (( 2 I)Akl +( 2 y)Aknyr( 2 Z)Akz )d];dyd;/;7
00 0
(13.57)

and the inverse discrete Fourier transformation converts it into the three-dimensional image

Ne 4 Ny

—1

B _ 4kpTAkyAkyAk. 3 3
N(@,y,2) = Nj, 5,5, = T 2R Bge—FaTs 2}& >

N
7! N Ak Jzone Jv Y iz
*Rz( 2z 7,"(2) GZ i27m Na + = Ny + 42z N
> AMi)ngn.n.e "Gz e .
_ N _ N,
ne=— 58 ny=—f na=—5F

(13.58)
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