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o Morphogenesis in animals
= Changes in the cell adhesion, protrusion and motility
=  Extracellular matrix regulators of morphogenesis
=  Specificity of cell aggregations and its molecular determinants
= Morphogenic manoeuvres
= Changes in the cell motility and tissue interactions during organogenesis

o Morphogenesis in plants
= Introducing leaf development as an example of morphogenesis in plants
=  The role of oriented cell division and its relative distribution
= Regulation of cell division by TCP and boundary genes
=  Auxin-regulated positional information for cell division
=  KNOX and boundary genes in the leaf complexity



Outline of Lesson 9

Morphogenesis

o Morphogenesis in animals
Changes in the cell adhesion, protrusion and motility
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Outline of Lesson 9

Morphogenesis

o Morphogenesis in animals
= Changes in the cell adhesion, protrusion and motility
= Extracellular matrix regulators of morphogenesis
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"TaABLE 12.1 THE MAJOR TYPES OF COLLAGEN
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Outline of Lesson 9

Morphogenesis

o Morphogenesis in animals
= Changes in the cell adhesion, protrusion and motility
= Extracellular matrix regulators of morphogenesis
= Specificity of cell aggregations and its molecular determinants
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Morphogenesis

o Morphogenesis in animals
= Changes in the cell adhesion, protrusion and motility
= Extracellular matrix regulators of morphogenesis
= Specificity of cell aggregations and its molecular determinants
=  Morphogenic manoeuvres
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Morphogenic maneuvers
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TWIST localization during neural furrow formation in Drosophila

Regulation of cell proliferation
by AER in mouse

Cell
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m DICEITEC



Outline of Lesson 9

Morphogenesis

o Morphogenesis in animals
= Changes in the cell adhesion, protrusion and motility
= Extracellular matrix regulators of morphogenesis
= Specificity of cell aggregations and its molecular determinants
= Morphogenic manoeuvres
= Changes in the cell motility and tissue interactions during organogenesis

DPCEITEC



PGCs mlgratlon in human

PGCs migration in chicken

/ mlgru”cl

bunky
podél

b dorzainiho
empryo mezentéria
Neural tube anhO stieva
——— odtud do gen. Llsty
PGCs migrating
along the dorzal
Somite Presence of Mgf mesentery into the
(pmduc! of STEEL hindgut and from
/) expression) there into the genital
D Mgf/cKit interaction in PGCs ridge.
’ and melanocytes localization
Genital ridge Migration path
Mesentery
Migrating PGCs
Gut Migration from — ith cKit receptors (RTKs encoded by W gene)

extraembryonic
endoderm via
blood circulation

o= 7/

Vacek, Embryologie (2006)

DICEITEC



Neural crest cells migration
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Outline of Lesson 9

Morphogenesis

o Morphogenesis in animals

Changes in the cell adhesion, protrusion and motility

Extracellular matrix regulators of morphogenesis

Specificity of cell aggregations and its molecular determinants
Morphogenic manoeuvres

Changes in the cell motility and tissue interactions during organogenesis

o Morphogenesis in plants

Introducing leaf development as an example of morphogenesis in plants
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Origin of leaves

Leaves

Shoot apex at germination

Post-embryonic
leaf formation

Leaves
Cotyledons v

C?O\ 7

Reprinted by permission from Macmillan Publishers, Ltd: NATURE. Long, J.A., Moan, E.I., Medford, J.I., and Barton, M.K.
(1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66-
69.

Cotyledons
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How does a leaf primordium become a leaf?
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How does a leaf primordium become a leaf?

GROWTH

The leaf primordium increases in
length ~ 2500 fold by cell division 500 mm
and cell expansion.
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How does a leaf primordium become a leaf?

But unregulated growth doesn't
make a leaf, it makes an
undifferentiated tissue called callus
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How does a leaf primordium become a leaf?

To make a leaf, each cell in
the primordium must divide,
grow and differentiate in a
controlled way.

Remain

Divide \@ / undifferentiated
Don’t divide K \

Differentiate

S o cerec



Leaf diversity
What determines leaf size and shape?

What determines if a leaf is simple or
compound?

What controls cell differentiation?
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Leaf forms

11060

Podlouhly Elipticky Kopistovity
Linear Kopinaty Elliptical Vejgity Spatulate
Lanceolate Ovate
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Leaf forms

Hladky
Dilny/Secny
Smooth

LaloCnaty

Serrated

Lobed
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Leaf forms

9k

Jednoduch Slozeny
y Compound
Simple
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Outline of Lesson 9

Morphogenesis

o Morphogenesis in animals

Changes in the cell adhesion, protrusion and motility

Extracellular matrix regulators of morphogenesis

Specificity of cell aggregations and its molecular determinants
Morphogenic manoeuvres

Changes in the cell motility and tissue interactions during organogenesis

o Morphogenesis in plants

Introducing leaf development as an example of morphogenesis in plants
The role of oriented cell division and its relative distribution
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Size is determined by growth. Shape is determined by
differential growth

Uniform Differential
growth growth
— —

Image credit: From Lewis Carroll's Alice in Wonderland (1865), illustrated by John Tenniel, from The Victorian Web.
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Total number of cell division cycles
Relative distribution of cell divisions
Relative timing of cell cycle arrest
Presence or absence of leaflets

Reprinted by permission from Macmillan Publishers, Ltd: NATURE 425: 257-263. Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab,
R., Carrington, J.C., and Weigel, D. Control of leaf morphogenesis by microRNAs. Copyright (2003).




ANT

l

CYCD3

l

Cell division

ant-1 WT ANT-OX

>
Increasing number of cell cycles in developing leaf

Mizukami, Y., and Fischer, R.L. Plant organ size control: AINTEGUMENTA regulates growth and cell
numbers during organogenesis. PNAS 97:942-947. Copyright (2000) National Academy of Sciences, U.S.A.



Patterns of cell divisions (and expansion) determine leaf
shape

I >
e
R
o

Monocot leaves are elongated and strap-like, with parallel sides and veins

Image courtesy of J. Derksen, J. Hiddink and E.S. Pierson Copyright Radboud University Nijmegen
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Monocot leaves grow linearly

P — —

T ~"
sheath blade
pochva Cepel

Image courtesy of J. Derksen, J. Hiddink and E.S. Pierson Copyright Radboud University Nijmegen
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Leaf growth in dicots

7

Image courtesy of J. Derksen, J. Hiddink and E.S. Pierson Copyright Radboud University Nijmegen GvF ‘-“ _ i
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Patterns of cell division correlate with blade expansion

ProCYC:GUS

Cell division arrests
first at the tip and
later at the base.

1 mm
Day 4 Day 8 Day 12

Redrawn from Donnelly et al., (1999) Dev Biol 215: 407-419.
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Outline of Lesson 9

Morphogenesis

o Morphogenesis in animals

Changes in the cell adhesion, protrusion and motility

Extracellular matrix regulators of morphogenesis

Specificity of cell aggregations and its molecular determinants
Morphogenic manoeuvres

Changes in the cell motility and tissue interactions during organogenesis

o Morphogenesis in plants

Introducing leaf development as an example of morphogenesis in plants
The role of oriented cell division and its relative distribution
= Regulation of cell division by TCP and boundary genes
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CINCINNATA (CIN) encodes a TCP-type
transcription factor

concave

Cell cycle arrest
progression

convex

Crawford, B.C.W., Nath, U., Carpenter, R., and Coen, E.S. (2004) CINCINNATA controls both cell

CIn CInna ta (CIn) differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol. 135: 244253.



TCP genes

*TEOSINTE BRANCHED1 (TB1) (from maize),
*CYCLOIDEA (CYC) (from Antirrhinum ), and
*PROLIFERATING CELL FACTOR (PCF) (from rice) Class 1l Class |

TB1/CYC
TB1

Basic-helix-loop-helix TFs OsTB1

TCP12 TCP1

l cYc
Cell division TCP16
TCP11
o Pc?cpzo
pcr2 PCF
TCP19
733 6238
9.1 1oppy TCPO
TCP22
TCP15
TCP7
TCP21

Aguilar-Martinez, J.A., Poza-Carrion, C., and Cubas, P. (2007) Arabidopsis BRANCHED1
acts as an integrator of branching signals within axillary buds. Plant Cell 19:458-472.
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Pro35S:miR-JAW

miR-jaw targets RNA from
TCP genes (like CIN) for
degradation

CIN orM

miR-jaw AAAA

o

Phenoco Of CinCinnata Reprinted by permission from Macmillan Publishers, Ltd: NATURE 425: 257-263. Palatnik, J.F., Allen, E., Wu, X., Schommer,
py C., Schwab, R., Carrington, J.C., and Weigel, D. Control of leaf morphogenesis by microRNAs. Copyright (2003).

e,
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Control of cell divisions underlies growth of leaf margins

CUC2 contributes to the ProCUC2 :GUS

i f serration
fO rmation of serrations Nikovics, K., Blein, T., Peaucelle, A., Isida, T., Morin, H., Aida, M., and Laufs, P. (2006) The balance between the

MIR1644 and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18: 2929-2945.
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CUC2 expression is controlled by miR164

Loss of miR164 Loss of CUC2
function function

wild type (Ler)

cuc2-1 (Ler)

Cell
proliferation
at sinus

More serrated Less serrated

Nikovics, K., Blein, T., Peaucelle, A., Isida, T., Morin, H., Aida, M., and Laufs, P. (2006) The balance between the
MIR164A4 and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18: 2929-2945.
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Outline of Lesson 9

Morphogenesis

o Morphogenesis in animals

Changes in the cell adhesion, protrusion and motility

Extracellular matrix regulators of morphogenesis

Specificity of cell aggregations and its molecular determinants
Morphogenic manoeuvres

Changes in the cell motility and tissue interactions during organogenesis

o Morphogenesis in plants

Introducing leaf development as an example of morphogenesis in plants
The role of oriented cell division and its relative distribution

= Regulation of cell division by TCP and boundary genes

=  Auxin-regulated positional information for cell division
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Interfering with auxin
transport results in
smooth-margined

Wild-type  pin1  Control NPAtreated 'aves

PIN1 orientation
produces an auxin

maximum at the
serration tip

DR5pro:GFP PIN-GFP

Reproduced with permission Hay, A., Barkoulas, M., and Tsiantis, M. (2006) ASYMMETRIC LEAVESI and auxin activities
converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133, 3955-3961.




miR164

Growth arrest

Growth upregulation




What determines if a leaf is simple or compound?

X1

Redrawn from Champagne, C., and Sinha, N. (2004). Development 131:4401-4412
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Cardamine hirsuta is closely related to Arabidopsis thaliana
but has compound leaves

Cardamine hirsuta rerisnice srstnata

Listky
Leaflets

Reprinted by permission from Macmillan Publishers, Ltd: NATURE GENETICS 38: 942-947. Hay, A., and Tsiantis, M.The
genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Copyright
(2006).
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Cardamine hirsuta

WT et ' WT+NPA

Reprinted by permission from Macmillan Publishers Ltd: NATURE GENETICS 40: 1136-1141. Barkoulas, M., Hay, A., Kougioumoutzi, E., and Tsiantis, M.
A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. copyright (2008)
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ProPIN1:PIN1-GFP DRS5:YFP

Auxin accumulation in
the prospective leaflet
position

Reprinted by permission from Macmillan Publishers Ltd: NATURE GENETICS 40: 1136-1141. Barkoulas, M., Hay, A., Kougioumoutzi, E., and Tsiantis, M.
A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. copyright (2008)

PIN1 expression in the
prospective leaflet
position




Lobe formation

Leaf initiation
Leaflet initiation

Koenig, D., Bayer, E., Kang, J., Kuhlemeier, C., and Sinha, N. (2009) Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 136: 2997-
3006.
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Outline of Lesson 9

Morphogenesis

o Morphogenesis in animals
= Changes in the cell adhesion, protrusion and motility
= Extracellular matrix regulators of morphogenesis
= Specificity of cell aggregations and its molecular determinants
= Morphogenic manoeuvres
= Changes in the cell motility and tissue interactions during organogenesis

o Morphogenesis in plants
» Introducing leaf development as an example of morphogenesis in plants
» The role of oriented cell division and its relative distribution
= Regulation of cell division by TCP and boundary genes
=  Auxin-regulated positional information for cell division
= KNOX and boundary genes in the leaf complexity
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Cardamine hirsuta

STM RNAi Pro35S::KN1-GR

WT  KNOTTED-like homeobox TFs

Reprinted by permission from Macmillan Publishers, Ltd: NATURE GENETICS 38: 942-947. Hay, A., and Tsiantis, M.The
genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Copyright
(2006).




KNOX1 expression

Leave primordia

Jackson, D., Veit, B., and Hake, S. (1994) Expression of maize KNOTTED! related homeobox genes in the shoot apical meristem
predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405-413. Reproduced with permission.
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Simple Ieaf In plants with Compound leaf

compound leaves,

KNOX1 expression

turns back on in
primordia

KNOX1 OFFin leaves

KNOX1 ON in leaves

i

W
e
=

£ A 2 [ !
<1 . nt w e #om s N ke

yz vonny

Pimpinella anisum an
From Bharathan, G., Goliber, T.E., Moore, C., Kessler, S., Pham T., and Sinha, N.R. (2002) Homologies in leaf form inferred
from KNOXT gene expression during development. Science 296: 1858-1860. Reprinted with permission from AAAS.



Tomato

Pro35S:KNOTTED1 .

Homeobox TF gene from
maize

Reprinted from Cell, 84 (5). Hareven, D., Gutfinger, T., Parnis, A., Eshed, Y., Lifschitz, E. The making of a compound leaf: Genetic
manipulation of leaf architecture in tomato. 735-744. Copyright Cell Press (1996), with permission from Elsevier.
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KNOX1 genes have a recurring role in
leaf development

Simple leaves

Compound leaves
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Geny rozhrani
Boundary genes have a recurring role in leaf development

Compound leave formation in tomato

Secondary leaflet initiation and separation

A

Allows novel leaflet formation

Berger, Y., Harpaz-Saad, S., Brand, A., Melnik, H., Sirding, N., Alvarez, J.P., Zinder, M., Samach, A., Eshed, Y., and Ori, N. (2009) The NAC-
domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves Development 136, 823-832. Reproduced with

permission.
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In animals, regulated cell motility and adhesion is necessary
for proper morphogenesis

The interaction between cells and surrounding environment
is critical for the changes in adhesion and/or cell motility

Presence of specific interacting molecules and their quantity
allows formation of self-organizing system based on the
selective cellular adhesiveness

Cellular interactions and signalling are critical for proper
organogenesis

Morphogenesis in plants is regulated by direction and
localization of cell division and cell elongation

Auxin-provided positional information and spatial-specific
requlated gene expression are involved in the modulation of
cell division and organ (leaf) patterning
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