C8953 NMR structural analysis - seminar 1D ¹³C-NMR

Jan Novotny 176003@mail.muni.cz

March 1, 2022

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

¹H vs ¹³C NMR

	¹ H	¹³ C
Spin number	1 H: s= ¹ / ₂ × ² H: s=1	¹³ C: $s=\frac{1}{2} \times {}^{12}C$: $s=0$
Abundance [%]	99.98	1.1
Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]	26.8	6.7
Chemical shift range [ppm]	0 - 15	0 - 200
Nuclear shielding	$\sigma_{\sf dia}$	$\sigma_{\rm dia}$ + $\sigma_{\rm para}$
Integration of signals	\checkmark	×
T_1 relaxation [s]	1-20	1-40
Homonuclear J-interaction	\checkmark	×
H \leftrightarrow C J-interaction (\sim 100-250 Hz)	carbon satellites	$(n+1)$ splitting \times decoupling
B ₀ B ₀ B _b B _b B _b B _b	B ₀	σ _{PARA}

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

¹H vs ¹³C NMR

	¹ H	¹³ C		
Spin number	$^{1}\text{H: s=}\frac{1}{2} \times {}^{2}\text{H: s=}1$	¹³ C: $s=\frac{1}{2} \times {}^{12}C$: $s=0$		
Abundance [%]	99.98	1.1		
Gyromagnetic ratio [10 ⁷ rad.T ⁻¹ .s ⁻¹]	26.8	6.7		
Chemical shift range [ppm]	0 - 15	0 - 200		
Nuclear shielding	σ_{dia}	$\sigma_{ m dia}$ + $\sigma_{ m para}$		
Integration of signals	\checkmark	×		
T ₁ relaxation [s]	1-20	1-40		
Homonuclear J-interaction	\checkmark	×		
H \leftrightarrow C J-interaction (\sim 100-250 Hz)	carbon satellites	$(n+1)$ splitting \times decoupling		
$ω_{c}+0.5^{1}J_{Hc}$ $1H^{-13}C\alpha$ $1H^{-13}C\beta$ $1H^{-13}C\beta$ $1H^{-13}C\beta$ $1H^{-13}C\beta$ $1H^{-13}C\beta$ $1H^{-13}C\beta$ $1H^{-13}C\beta$ $1H^{-13}C\beta$				
¹ H- ¹² C	¹ H	decoupled		

Important regions of ¹³C chemical shifts

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 $^{1}J_{\rm CH}$ depends on the bond order (hybridization \Leftrightarrow *s*-character)

- ► -C-H ¹J_{CH} ≈ 125 Hz
- =C-H $^{1}J_{\text{CH}} \approx 160 \text{ Hz}$
- ► \equiv C-H ¹ $J_{CH} \approx$ 250 Hz
- ► X-C-H
 - ► X = N, O, S, F, CI, ... $^{1}J_{CH}$ \uparrow
 - ► X = Li, Mg, \dots ¹ $J_{CH} \Downarrow$
- $^2J_{\text{CH}} < 0$ or close to zero (<3 Hz)
 - often not observable

in 1D ^{13}C H-C interaction suppressed by DECOUPLING \Rightarrow simplification of spectra (splitting removed, sensitivity)

► saturation of ¹H energy levels during decoupling enhances relatively intensity of ¹³C signals because of heteronuclear nOe ⇒ quaternary carbons usually less intensive.

How many ¹³C signal would you expect in the NMR spectrum?

How many ¹³C signal would you expect in the NMR spectrum? **6**

1D ¹³C-NMR 1, bottom without CPD

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

1D ¹³C-NMR 1, bottom without CPD

Notes:

- numbers at top of peaks refers to values J_{HC} constants
- C1+C7 connected to electronegative groups (C1 quaternary)
- C2 ipso aromatic, C4+C6 shielded by M+ of OH
- C5+C4 NOE-enhanced in bit larger extend by close H
- C9 -> C12: decaying effect of N8

・ロト・西ト・ヨト ・ヨー うらぐ

1D ¹³C-NMR 2

æ

1D ¹³C-NMR 2

- C7 carbonyl, C1 attached to N
- C3/5 deshielded by M-CO, C2/6 shielded by M+ of NH₂
- C4 last quaternary aromatic signal (most isolated from H nuclei)
- C9 effect of esteric group, ? C10 affected by NH exchange

C12/C14 + C13/C15 decaying effect of N+

1D ¹³C-NMR 3, *b* - zoom of right region, *a* - full decoupled spectrum

1D ¹³C-NMR 3, *b* - zoom of right region, *a* - full decoupled spectrum

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

1D ¹³C-NMR 4, consider equilibrium minor-major form

Which form dominates and why?

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三理 - 釣A@

1D ¹³C-NMR 4, consider equilibrium minor-major form

Which form dominates and why?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Next topic

Vector Model + ¹³C APT experiment

