Fast radio bursts:
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Radiotransients

' Many different types of transient sources
M are already detected at radio wavelengths.

Fast Radio"Bursts,-"..- ,"AGN/B,lalzar/QS_G'v x '
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e However, detection of very short

and non-repeating flares of unknown sources
without identification at other bands

."‘Pulsar;'GRPs

A ’§ is a very complicated task.
fleab na.r’lo‘-shotst‘,-‘ ‘-'3
5: Rotating Radio Transients (RRATs) —
. j S & A XdayBinarie Ll Millisecond radio bursts from neutron stars, -
g ._,,'SM'B.J:S%S :f'.;.. ffwﬁSCVNAbols have been identified in 2006.
' ‘ ' e . MagneticCV
% | .°,,-’°"- In 2007 the first example of a new class
Flare §ﬁr;/Brown Dwarves of millisecond radio transients
e - have been announced:
- the first extragalactic millisecond radio burst.
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1507.00729, 1411.1067



Science 318, 777 (2007)

One of the most interesting discoveries in the XXlc.

No coincident bursts in other wavelengths.
1‘

,|U

! '.?; 'J No source identification.

Frequency (GHz)

[About the difference between RRATs and FRB
see 1512.02513]

Discovered in 2007.

Large dispersion measure.
If dispersion is due to intergalactic medium

Origin - unknown. _ Dadind
then radio luminosity is ~10%3 erg/s.




Science 318, 777 (2007)

The first event
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Millisecond radio bursts — definite at last

2007 The first burst.
2011 Perytons. Doubts
2012 The second event. Galactic plane. Unclear.

2013 — Four more!
Rate ~few thousand per sky per day confirmed

A new type of astronomical phenomena
with unknown origin is established.

In this paper the final notation —
Fast Radio Bursts — was proposed.
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FRBs. Different hypotheses

Millisecond extragalactic radio bursts of that intensity without immediate identification with other bursts
have not been predicted by earlier studies.

Since 2007 many hypotheses have been proposed.

A real flow started in late summer of 2013 after the paper by Thornton et al.

« Magnetars  Coalescing NSs » Supramassive NSs * Cosmic strings
e Super radio pulsars * Coalescing WDs « Deconfinement of a NS * Charged BHs
* Evaporating black holes ¢ Coalescing NS+BH * Axion clouds and NSs * NS collapse

bestiary.ca/




Neutron stars and exotics

A neutron star has mass ~solar and
radius ~10 km.
This gives free fall velocity v=(2GM/R)¥2 ~0.5 ¢

Free fall time scale t=R/v< 0.1 msec Absence of counterparts and, in general,
Thus, it is easy to get very short events. shortage of data allows to propose
The same is true for BHSs. very exotics scenarios for explanation

of Fast Radio Bursts.

In addition, NSs have strong magnetic fields
and they are known sources of strong short radio bursts.

So, model of FRBs can divided into two parts:
neutron stars and exotics.
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A review on FRB models: 1810.05836. The on-line catalogue of proposed theories: frbtheorycat.org



Cosmic strings

Strings can behave in a peculiar way.

In particular, cusps — where strings are bended,

can be formed, and they can move with superluminal velocity.
Such points on strings might become strong

sources of electro-magnetic radiation.

This is the base of this model of FRBs.

Superconducting strings Also, the model of cosmic strings in application to FRBs
Vachaspati 0802.0711 Was discussed in several other papers: 1110.1631, 1409.5516, ....



Primordial black holes

-~ ,ur..mm.m ¢ Bt A m.outhm'z'mw RN Cannot be extragalactic due to low luminosity.
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Supernova and pulsar

e N T Shock wave after a SN in a close HMXB
\ O can interact with the NS magnetosphere
VA forming a magnetotail.
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) Reconnection in the magnetotail
e may result in a short radio flare
(Egorov, Postnov arXiv: 0810.2219).

So, radio bursts might be always accompanied by a supernova.




http://www.int.washington.edu/PROGRAMS/14-2a/

t=74ms

Ig(rho)[glem?]

Coalescence of neutron stars

Might be accompanied by a GW burst.

There are several scenarios in which
strong radio transient appear as a result
of neutron star coalescence

(Lipunov, Panchenko; Hansen, Lyutikov;
Postnov, Pshirkov).

In application to FRBs the first paper is
Totani (1307.4985).

E=—-6.2x10% (L) ( - )

10125 G/ \ 10 km

¢

[ (0.5 msec ,

Easy to obtain rapid rotation and strong magnetic field.
But there are many uncertainties.




http://cerncourier.com/cws/article/cern/31855

White dwarf coalescence

- [~2 Curvature-radiation
/7 4 \ /GHz emitting shell
/ _— -

Coherent patch t“-*. X Neoh

Magnetic energy dissipation
"’ in the polar cap

Kashiyama et al. 1307.7708

. Newly born
white dwarf pulsar

Energy release is due to magnetic field lines reconnection at the polar cap.

This also allows to obtain necessary duration of the burst.

Is accompanied by a SN la and, probably, X-ray emission due to fall back.




http://www.astro.ru.nl/~falcke/PR/blitzar/

Supramassive neutron stars

’

Neutron star can be stable against
collapse due to rapid rotation.
Such situation can appear after
NS-NS coalescence, accretion, or
immediately after a NS birth.

Collapse can happen, as it was
suggested, thousand years after
the NS formation.

Collapse can be accompanied

by a SN-like event, short GRB and
a GW burst.

Double-peaked events can also
appear in this scenario.

_ 0/9,=0.24
/0087
0/0,=0.49

_ /9~0.94

_ 0/0,=0.99

“blitzar”

Falcke, Rezzola 1307.1409



http://www.nature.com/news/quantum-bounce-could-make-black-holes-explode-1.15573

White holes (from black)

We do not know exactly, how BHs evaporate.
In loop quantum gravity this can include a white hole
formation on late stages of the process.

g BH evaporation was proposed as a possible
explanation for FRBs. In this case a shock wave
. interacts with external magnetic field.

In the case of a WH formation emission is related
to quantum gravity effects.

Initial calculations have not predict radio emission.
But the authors of 1409.4031 suggest that

there are many uncertainties in the model,

and radio emission is also possible.

Wavelength corresponds to the size of the hole.

1409.4031



Axions

Axions are dark matter particle candidates
For FRBs axions miniclusters are important.
They are formed in young universe.

Typical mass — similar to a large asteroid.
Typical size — solar radius.

A cluster can be more compact due to formation of Bose-Einstein condensate.
Then, the size can be ~few hundred km, this corresponds to expected size of
emitting region in FRB sources (duration multiplied by the velocity of light).
Mass of such compact cluster can be about the mass of the Earth!

When such cluster flies into a NS magnetosphere then due to the
Primakoff effect axions start to be converted into photons.

Thus, a flare of electromagnetic radiation is generated.

1411.3900, 1410.4323, 1512.06245, 1707.04827



Deconfinement — formation of a quark star

Strange Quark Star Neutron Star

Surface
e Hydrogen/Helium plasma
e [ron nuclei

Outer Crust
® lons
e Electron gas

Surface
e Degenerate

. Inner Crust
e Heavy ions
* Relativistic electron gas
| ® Superfluid neutrons

Outer Core
e Neutrons, protons
® Electrons, muons

http://astrobites.org

~ Inner Core
"~ o Neutrons
! e Superconducting protons
Core e e Electrons, muons
e Electrons ) ) e Hyperons (, A, E)
e u,d,s quarks e Deltas (A)
(color-superconducting) e Boson (7, K) condensates
e Deconfined (u,d,s) quarks/color-
superconducting quark matter

During its evolution the whole NS or its part
can experience deconfinement:

normal matter is converted into quarks.

This is accompanied by huge energy release.

Also there attempts to reproduce FRB

in the model of so-called “quark nova” (1505.08147).

1506.08645



1502.05171, see also 1512.06519

Falling asteroids

Accretion

sheet

Neutron

Coherent
7 patch

] For explanation of FRBs researchers actively used
| mechanisms proposed previously (~30-40 years ago)
for cosmic GRBs. Here is one of them.

Free-fall time scale in the vicinity of a NS is ~ few msec.
Energy release can be explained by potential energy.

After a massive asteroid falls onto a NS
an outflowing envelope is formed.
This can result in a radio and X-ray flare.

On madification to explain repeating FRBs see 1603.08207.

On evaporation of asteroid by PSRs see 1605.05746.



Magnetar model

The first idea of possible connection between FRBs and magnetars
has been proposed already in 2007: arXiv 0710.2006.

This hypothesis has been based on rate and energetics considerations, mainly.
FRB bursts might be related to giant flares of magnetars

Later this approach was developed by Lyubarsky (2014).

In the model by Lyubarsky the radio burst happens
due to synchrotron maser emission

after interaction between a magnetic pulse after

a giant flare of a magnetar with surrounding nebula.

1401.6674




1412.0342
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The first burst detected in real time

1000
Time (ms)

1100

In may 2014 for the first time a burst was detected in real time.
This allowed to trigger searches of an afterglow in other energy ranges.
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Parkes
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at other wavelengths
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Localization

70
Radius of uncertainty circle ~10 arcmin Small Magellanic Cloud
71
74
75 Location of Radio Burst

Usually FRBs are seen just in one beam. (Pa5™  1h30™  1M15™  1P0o™  0M4s™  0°3om
Right Ascension (J2000)




Repeating bursts

Repeating bursts are detected firstly from FRB 121102.

The source was found at Arecibo.
Initially 10 events reported.

Rate ~ 3/hour

Weak bursts (<0.02-0.3 Jy)

Variable spectral parameters.

Unclear if it is a unigue source,
or it is a close relative of other FRBs.

1603.00581
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Obsarvation frequency (MHz)

Obsanvation frequancy (MHz)

Time (ms)

2012-11-02
MJD 56233

2015-05-17
MJD 57159

2015-06-02
MJD 57175
{two scans)

40 80




VLA, Arecibo and all the rest

During periods of activity rate is few per hour.

Arecibo LLLL LLLL L |Arecibo

Simultaneous detection with Arecibo, VLA
and other instruments.

VLA L LLLLLLLLL S555SS 5SS SSS SS5SS SSSS S |VLA

Effelsberg Effelsberg

QR A> AP
o 110\’%' ’
The source is also detected at 4-8 GHz
and polarization is measured (1801.03965).

4 4 4 4 4 4 LWA

Arecibo 00000 O© @@@:}) © | Arecibo

VLA ® s ss@s @s@sccc VLA
!

Effelsberg

Effelsberg c C

AMI-LA AMI-LA

1705.07553



Host galaxy of the FRB

Thanks to precise localization of FRB 121102

it became possible to identify a host galaxy.
This a dwarf galaxy with high starformation rate
at z~0.2 (~1 Gpo).

De-dispersed Time Series

Declination

+33°08'52.53"”
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1705.04693

H-alpha emission in the host galaxy

of FRB 121102
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Keck observations.
Rectangles show the areas observed at Subaru.

Coincidence of the FRB position
with a H-alpha region is an argument
in favour of models involving

young neutron stars.

H-alpha region can also contribute
to the observed dispersion measure.




Early ideas

Exotics: sirings, axions, Catastiophi : c t obiec: th Mainstream:
2 atastrophic events: omgact objecis + smth.:
v holes, etc. 120 L €€, magnetars and pulsars

SN, GRBs, cealescence, ... asteroias on NSs, etc.




Magnetars or/and Pulsars

Giant flares: Giant pulses:
Rate Energetics
'Einni;gse;;z \ Typical Typical Time scale
distances distances /
can be might be
Can belong / ~1 Gpc ~100 Mpc Might belong
to young \ to young
population population
(collapse) or \ Problems with exact PEEEESSS e
old population emission mechanism
(coalescence) \
/ Problems with
Problems with Can repeat. efficiency

polarization, but see

No counterparts. (too high, see
Beloborodov 2019

Lyutikov 2017)




SGR 1935+2154

Discovered in 2014 (see, Israel et al. 2016). Activated in April 2020.
P=3.25 sec Finally, on April, 28 2020
Distance ~7-12 kpc (2005.03517) A simultaneous burst
Intermediate flare (Kozlova et I. 2016) in radio and X/gamma

was detected.
Astronomers’ Telegram: 13681-13769
GCN: 27666-27669
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CHIME data

SGR 1935+2154 STAREZ2 Limit

B sGR 1935+2154 CHIME/FRB
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STARE?2 data
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Konus-Wind data
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AGILE data

Comparison of SGR 1935 detection with monitoring of the repeating source FRB 180916 (at 149 Mpc)

AGILE-MCAL (0.4-100 MeV)
AGILE-GRID (0.05-10 GeV)
CHANDRA (0.5-7 keV)
SWIFT-XRT (0.3-10 keV)
SGR 193542154 at 12 kpc

» SGR 1935+2154 at 150 Mpc
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Insight-HXMT data and FAST
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s000f FAST Session (3)
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2005.11071, see results of a new data reduction in 2302.00176 2005.11479
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FRB associated vs. others

MICER+GEBM bursts
— Gaussian KDE
== FRB-Associated Burst

~1.0

2006.11358

~0.5 0.0 0.5
Photonindex

—4— FRB-associated Burst
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LogioF (1 —250keV, ergcm™—2s71)




http://chime.phas.ubc.ca/

CHIME

CHIME

The Canadian Hydrogen Intensity Mapping Experiment

ioom

CHIME — burst per day!
1601.02444




C H ‘ I\/I E Cata ‘Ogu e www.chime-frb.ca/catalog
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2301.08762

Right ascension (J2000)

CHIME/FRB (25; this work)
CHIME/FRB (20; already published)
Other telescope (5)

Detected by CHIME/T'RB (2)

Declination (J2000)

Second large sample of CHIME repeaters

. BA<S/N<I10

10 < §/N < 12
12 < §/N

Detected in —t
" ‘lower’ transit

CHIME/FRE Collaboration 2019

Finseca et al, 2020
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Database

HeRTA: FRBSTATS

Overview

EVENTS OBSERVED (SOURCES) FRB REPEATERS EVENT COVERAGE
822 (638) 24 96.3% oo

Event Count FRB Class

January 2023

FRB Detection Count

54000

Modified Julian Date

2208.03508 https://www.herta-experiment.org/frbstats




Estimates of the rate

Lorimer 2007 ~o— Burgay 2012 ~o— Ravi 2015 Black solid line —
Deneva 2009 Petroff 2014 —+— Petroff 2015
Keane 2010 —&— Spitler 2014 % Law 2015 new data.
Siemion 2011 —#%— Burke-Spolaor 2014 —#— Champion 2016 D :

otted lines —

95% uncertainty.

Grey line is plotted under assumption
that index is the Log N — Log S
distribution is equal to 3/2.
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See also 1612.00896

1e+00 1e+01 1e+02 587 per day with flux above 1 Jy.

S=flux sensitivity limit (Jy)

1611.00458



Rate and luminosity function
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Periodicity in FRB bursts

FRB 180916.J0158+65 Detection 1
CHIME (+Effelsberg) )

Predicted Epochs

CHIME Detection Epochs
EVN Detection Epochs
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The source is localized in a near-by massive spiral galaxy.
Period ~16.35 days

Period (days)

2001.10275



157 day periodicity of FRB 121102
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, see also



http://arxiv.org/abs/2003.03596
https://arxiv.org/abs/2008.03461

A binary system?

2002.01920



Precession?

- .
l--"‘..:.‘.:li‘:..........l...
*oeh Yo,

2002.05752

Realistic values of oblateness
due to strong magnetic field

can explain the 16-day precission.

About triaxial precession see
2107.12874, 2107.12911.

time {days)

2002.04595



Ultra-long spin periods?

E.g., fall-back can help to obtain long spin periods,

as in the case of the source in RCW 103 (6.7 hours).
Or, enhanced spin down due to winds can be at work.
Or, kick can help to spin-down the NS.

10° 10 10* 10° 10% 10'7
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2003.12509



Second localization of a FRB

ASKAP
—40°53'56"

FRB 180924

non-repeating

Flux (Jy)

16 Jy

DM~360

linear polarization
RM~14

—54'00"

Localization
~0.12 arcsec
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Third localization

DSA-10 antenna Zoomed g-band Zoomed R-band
1.4 GHz -

FRB 190523
non-repeating

DM=760
Massive galaxy

z=0.66
SFR<~1/3 of Galactic
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Fifth localization

FRB180916.J0158+65
Repeator
FRB 180916.J0158+65 y
NS * i Near-by spiral galaxy
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See data on the immediate (60 pc) vicinity of the source
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FRB from M817

CHIME
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Even a globular cluster in M817?
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Analysis of 23 hosts

6 repeaters and 17 one-off
21 out of 23 are starforming
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Now we know who, we do not know how

. c “Exotic” magnetars: Normal magnetars:
iant pulses:
D rot coalescence, AIC, .... core collapse SN

Exotics: No counterparts
coalescence, %
. o
deconfinement, % :
: % host galaxies
supramassive NSs, %,
axion clouds,

) _ Known types
falling asteroids ... of transients: ™) Magnetar flares: Enag

SGR 1935 High-energy flare
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no counterparts




Murase et al. 2016

Origin of magnetars

“Normal”:
single core-collapse

Magnetosphere or
current sheet of
NS orWD

Acceleration of
pre-existing
non-thermal et

»

lmpulsuve burst Highly relativistic
&FRB? magnetic outflow

t=74ms

lg(rho)[glem?]

Coalescence
(NS+NS, NS+WD, WD+WD).




Magnetosphere or outer shocks?

Zhang 2020 (Nature)

Q
1

Comptonized
hard X-rays

— Thermal soft X-rays

lon shell

5
:
;

Polarization

Termination shock

Persistent radio




Synchrotron maser

Synchrotron maser emission

(Alsop & Arons 1988; Hoshino & Arons 1991).
To obtain high frequency it is necessary to
have a relativistic (magnetized) shock.

In FRB models emission is typically
generated due to interaction with
a nebula at ~10*3-10'® cm from the NS.

. 3/2
G K33

174 3
L 1se 477 Tms

v=2>5

3
Uwind Vwind

The first detailed magnetar model
with emission mechanism Erre = XE€ = 10*' x_3Lpyise 47 Tms €I
was developed by Lyubarsky (2014).

GHz.

See a review, e.g. in
Lyubarsky 2021



Numerous models with synchrotron masers

A burst produces a blast wave. A shock appears due to
interaction of the blast and the wind. At the shock the

maser mechanism is operating.

Anisotropic synchrotron maser emission at the
reverse shock in the flare’s weakly magnetized matter

flare ejecta
ore-flarel wind

E TI't R~ - T,

Cw = 10

o
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=
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w
=,
=,
-
=

A

A ~ 10" em

Hare

Origin B

synchrotron radio maser

Beloborodov 2020 Khangulyan et al. 2022



Magnetospheric processes

Perturbations of a NS magnetic field (including reconnection)
might result in generation of waves, particle production and
acceleration.

At the end, this can produce a burst of radio emission.

Electron-positron pairs bunches produce
coherent curvature radiation

Early models were based on analogy with radio pulsars,
i.e. rotational energy losses

(Pen & Connor 2015; Cordes & Wasserman 2016).

New models usually assume magnetic energy dissipation.

Magnetospheric models can face difficulties:

- total energy budget (e.g., size of bunches)

- propagation from the inner magnetosphere (external plasma)
- unobserved correlations, e.g. Luminosity-Frequency

- narrow spectra

About early magnetospheric models see e.g. Katz (2014), Kumar et al. (2017).

Yang et al. 2020



Variety of models: some examples

Alfven waves+ Relativistic magnetic reconnection
two-stream instability in the outer magnetosphere of the magnetar

R ‘ !
o o J
A i e}
Bl i i
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’
o8
: '
1
)

Free electron laser.
Bunches of particles oscillate and
emit coherently

starvation

Comptonized

hard X-rays

beam frame

E-field in
the wave

Lyutikov 2020, 2021 Lu et al. 2020 Lyubarsky 2020



Polarization variability from burst to burst

FRB 180301

PA (7

On other hand,

in the case of

FRB 121102

the polarization
angle was stable
for many months
(Michilli et al. 2018)
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Luo et al. 2020



Periodicity in the burst structure

CHIME
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Andersen et al. 2022 Might be a strong argument in favour of magnetospheric models, see 2211.07669



A microsecond periodicity?

FRB 20200120E. The one in a GC in M81
2-3 microsecond structure
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Narrow radio spectra (of repeaters)

No coincident bursts at significantly different frequencies for FRB 20180916B A very narrow spectra of FRB 20190711A
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Frequency drift

Sad trombone ~5% of CHIME bursts demonstrate complex structure downward drifting (Pleunis et al. 2021)

GMRT B

Intensity

=
W
o

=
o)
=,
B
]
=
@
=
o
o
—
[T

1
|
-

-

; B :

L Y

=

w

L ol v
-

N
T
-
=)
&
€400
Q
=3
o
T
—
59

.

w
w
o

0

-10 -5 0 5 10 '
Time [ms| Time [ms] Time [ms] Time [ms]

Time (ms)

Sand et al. 2020



Rapid variations

FRB 20180916B

Effelsberg telescope
1.7 GHz

I L sl Mhl Hlli;dim‘h.uj b il 1 e

Constant PA

in and between

the bursts

(with slight variations

at the shortest time scale
<100 microseconds).

Single components of bursts
600 550 down to 3-4 microseconds.

Time [us]

Nimmo et al. 2021



The Galactic magnetar burst was peculiar

105
Peak Flux (erg cm™?%s71)

Ridnaia et al. 2021

Fluence (erg cm™?2)

Correlation of
high-energy properties
of the burst with

radio can be

in favour of
magnetospheric models.

But Oct. 2022

bursts may be do not
support the uniqueness
of radio+gamma bursts.



Delay between radio and X/gamma-rays

In radio the pulses appear a little bit earlier
(Mereghetti et al. 2020; Li et al. 2021).

This peculiarity also can be
explained in both frameworks
(Lyutikov 2021; Yuan et al. 2020).

Tau_p1l — delay between
X-ray and FRB
for the first pulse
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Repeaters vs. (yet?)non-repeaters
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Search for lensing (and PBHs limit)

CHIME observation

ldea:
direct detection of a second image
of the same FRB in the time domain
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Ridnaia et al. 2021

Where do we stand?

FRBs are due to strongly magnetized NSs A
ast Raglo Burstf,.. . . AGN/BIazar/QSG ..’,.
' ' ' : ' GRES © 4

SGR 1935 18-80 keV (G1)

Pulsar GRPS '
. D
. Crab nano- shols
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o
™
a

erane Burst GCRT 17
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A coherent emission

.- field line mechanism might operate
Magnetic Tie

Still, it is not for sure that all FRBs are explained by a single model and that all exotics is ruled out. Review: 2212.03972



Conclusions and hopes

* Magnetars are THE sources * Counterparts
(small contributions from other types e Spin periodicity
of sources are not excluded, yet) * More Galactic events

* Two main frameworks are formulated * Delay between hard and radio emission
(relativistic shocks and magnetospheres) * Clear differences between events

* Both explain many observed features from sources of (presumably) different origin

* Both have some problems
* Both cannot be proved or falsified, right now

» Differences between repeaters
and non-repeaters
* Different hosts — different origin

See a set of reviews (Caleb, Keane; Lyubarsky; Nicastro et al.; Pilia) in a special issue on FRBs in Universe (2021).



https://arxiv.org/abs/2210.14268

1512.07670

Test of equivalence principle

Also FRBs can be used to test
Lorentz-invariance,

especially, if a FRB is

accompanied by a gamma-ray flare.

See also 1509.00150, 1601.04558



Improvements on the limit of parametery

Independent distance evaluation allows to use FRBs
to put constraints on the post-Newtonian parameter y
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Limits on the photon mass

Crab Nebula pulsar
v

()"~ (&) | Hi2)

m., = (1.56 x 10717g)

GHz GHz

Flare stars
v

Now this result is just of historic interest,
GRB-980703 : .
oRe f[ : as it was shown that association of the source
with a proposed host galaxy is spurious.

FRB- 150418
v

See also 1602.09135
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New limits on photon mass

tal DM

1701.03097

FRB121102




More results and better limits
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Limits with 9 localized bursts
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Photon mass constraint from

17 well-localized FRBs

my < 4.8 x 107°! kg

2301.12103
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