Plasma and Dry Micro/Nanotechnologies 1. Introduction to Plasma Processing Lenka Zajíčková Faculty of Science, Masaryk University, Brno & Central European Institute of Technology - CEITEC lenkaz@physics.muni.cz spring semester 2023 Plasma & Dry Technologies . Introduction to Plasma Processing ka Zajíčková 2/19 o 1. Introduction to Plasma Processing 1.1 How to Create Plasma? 1.2 Fundamental Plasma Parameters 1.3 Conditions for Plasma as Ionized Gas 1.5 Plasma Sheath 1.6 Overview of Plasma Processing Methods ► What is plasma? The 4th state of matter: the gas containing electrons and ions, fulfilling some special conditions ionization processes, ionization degree ► Fundamental plasma parameters: electron temperature and density. What about parameters of other particles? ► Quantities and terms important for plasma physics: Debye length, plasma frequency, cyclotron frequency, Larmor radius. ► Plasma interacting with solid matter - plasma sheath (Boltzmann relation for electron density, Bohm velocity), plasma potential, floating potential. ► Why plasma in material processing? ► Many existing methods: plasma treatment, magnetron sputter-deposition, plasma enhanced CVD, plasma polymerization, plasma synthesis of nanoparticles, plasma etching. Plasma & Dry Technologies 1. Introduction to Plasma Processing Lenka Zajíčková 3/19 1.1 How to Create Plasma? Plasma is 4th state of matter (created from neutral gas by ionization, i. e. generation of electron-ion pairs): ♦ j energy Adding sufficient energy to molecular gas leads to the dissociation of molecules into atoms due to collisions of the particles having energies higher than bond energy. If the particles have even higher energie, the collisions leads to ionization (electrons are set free from the atom). creation of plasma as quasineutral system of electrons, ions and neutrals. plasma ionization degree a = a « 1 - fully ionized plasma a < 1 - weakly ionized plasma Plasma & Dry Technologies I. Introduction to Plasma Processing ka Zajíčková 4/19 ► Increase of temperature The system is in thermodynamic equilibrium. Electron temperature 7"e and degree of ionization ai = /7i/(/7i + ng) are binded by Saha equation - not usual for laboratory plasma but can be often found in nature (space plasma). S Systém je v termodynamické rovnováze - tj. popsán jedním parametrem = teplotou T S Jestliže uvažujeme systém N slabě interagujících částic, který je uzavřený (nevyměňuje si částice s okolím), pak je průměrná hodnota počtu částic ve stavech s energií E{ dán Boltzmanovým vztahem (faktorem) Ei Nt = C exp — kTJ' kde C je normalizační konstanta určená ze vztahu ^ ^ -ex^^ EJkT) Výše jsme předpokládali, že počet stavuje pro každou skupinu stavů o energii E{ stejný. Pokud musíme vzít do úvahy statistickou váhu stavu g{ / Et \ Nt = C Qi exp - kTJ' S Pro plazma v termodynamické rovnováze je (elektronová) teplota a stupeň ionizace jsou svázány Sáhovou rovnicí. 2 a 1 — a Eioniz.\ = -Cexp[-^r) i n S Laboratorní plazma není obvykle v termodynamické rovnováze, v přírodě je to častější (astrofyzikální plazma). ^^^^^^^^m Plasma & Dry Technologies 1. Introduction to Plasma Processing Lenka Zajíčková 5/19 Several Methods for Plasma Generation ► Using additional ionization processes the ionization degree is increased above its equilibrium value. When the source of additional ionization is switched off the plasma fades out due to recombination. photoionization - ionization potential of e. g. oxygen atom is 13.6eV photon with 91 nm (vacuum UV) photon ejected eteclmw gaseous electrical discharges - el. field accelerates free electrons to energies sufficient for ionization Anode Positive column with filiations Negative glow Cathode glow Faraday dark space Cathode layer atfrn resulting ion example: d.c. glow discharge - laboratory plasma example: Earth ionosphere - natural photoionized plasma Plasma & Dry Technologies 1. Introduction to Plasma Processing Lenka Zajíčková 6/19 Where to find plasma? glow discharge for etching & thin film deposition (CCP) n =1014-1016 m-3 T =1-2 eV plasma torch for waste treatment ne=1021-1024 m-3 Te=0.5-2 eV (LTE) Plasma & Dry Technologies 1. Introduction to Plasma Processing Lenka Zajíčková 7/19 25 Solid Si at room temperature 3 De 20 High pressure arcs Laser plasma Focus Stwck tubes Treta pinches Fusion reactor electron temperature Te in eV, 1 eV = 11 600 K Outside thermodynamic equilibrium other temperatures discussed: ions (7"i), neutrals (7"n) electron concentration ne = n{ magnetic field B Other essential physical quantities are derived from Te, ne, B\ Debye length AD = plasma frequency ujp « upe cyclotron frequency uc = qB/m Larmor radius rc = v±/uc thermal velocity etc. e2r?e e0me Plasma & Dry Technologies Introduction to Plasma Processing Lenka Zajíčková 8/19 Natural length scale in plasma is Debye Natural frequency (time) scale in plasma length is plasma frequency V nee2 J 1/2 / 2\1/2 meso ► Ionized gas is the plasma namely if ne = ri[ on the scales of L > Ad- ► Plasma contains many interacting charged particles, condition: neAD > 1 ► Plasma exhibits collective behavior of electrons that is not much disturbed by electron-neutral collisions (collision frequency i/en), conditions: a;pe/(27r) > v{ en Plasma & Dry Technologies 1. Introduction to Plasma Processing Lenka Zajíčková 9/19 Plasma Conditions - Collective Behaviour Plasma contains many interacting charged particles. Condition: ne\D ^> 1. Plasma exhibits collective behavior of electrons (plasma frequency) pe Hee2 1/2 that is not much disturbed by electron-neutral collisions: a;pe/(27r) > */en ID D C U U A plasma oscillation: displaced electrons oscillate around fixed ions. The wave does not necessarily propagate. podle Chen & Chang 2003 Plasma & Dry Technologies Introduction to Plasma Processing Lenka Zajíčková 10/19 Low temperature plasma of gaseous discharges provides unique environment for material processing: ► hot electrons (Te few eV, 1 eV = 11 600 K) dissociation of molecules into reactive species e~ + AB —> A + B + e" ► positive ions that can be accelerated to hundreds of eV near solid surface sputtering of targets, implantation, modification of surfaces and growing films ► cold neutral gas =>- highly energetic process can be kept in a vessel, heat sensitive materials can be treated (e.g. polymers) Quasineutrality ne « n{ is fulfilled on the scale L > AD, i. e. on the dimensions larger than Debye length but this is violated in regions adjacent to walls and other solid objects in contact with plasma - plasma sheath. Plasma sheath regions are very important for plasma processing. Plasma potential is always the most positive potential electrons are repelled by a Coulomb barrier, ions accelerated towards solid surfaces. 1/2 -d t) d Plasma & Dry Technologies . Introduction to Plasma Processing ka Zajíčková 12/19 1.5 Plasma Sheath for Low Voltage Drop Charge densities and potential in bulk plasma, presheath and sheath adjacent to the wall or electrode sheath Relations valid for ► low sheath voltage (at floating or grounded walls) ► weakly ionized plasmas 7"e ~ feweV, 71 ^ 0 Densities of electrons and positive ions are expressed as eV — n*ekTe A?i = A?s 1 - 2eV 1/2 where vs is ion velocity at the sheath edge, approximated by so called Bohm velocity uB vs> uB = kTe M Charge density at the sheath edge is ns « 0.5n0. Plasma & Dry Technologies . Introduction to Plasma Processing ka Zajíčková 13/19 1.5 Plasma Sheath at Floating Wa Charge densities and potential in bulk plasma, presheath and sheath adjacent to the wall or electrode Electron and ion fluxes sheath 1 SkTe eV re -na\ -e^e r\ nsuB 4 V 7T/T? have to equal at the floating wall i/ i/ - kTe i f2lim\ afloat — ^plasma — ~- m 2e KIT For a typical low pressure discharge: ► Te = 2eV, ne = 108 cm"3 ► in argon floating potential is approx. 57"e = 10 V sheath thickness is approx. 5AD = 0.37 mm. Plasma & Dry Technologies . Introduction to Plasma Processing ka Zajíčková 14/19 1.5 Plasma Sheath for High Voltage Drop (Applied Voltage) High-voltage sheath (a voltage is applied) can be approximated by a model with Child-Langmuir sheath: Sheath is artificially divided into Debye sheath which contains electrons and high-voltage Child-Langmuir sheath which has ions only. Then, current density y, voltage drop V0 and sheath thickness d are related by the Child-Langmuir Law of Space-Charge-Limited Diodes 1/2 e0V*/2 d2 following previous example with assumption V0 = 400 V d = 30AD, total sheath thickness 35AD; i.e. about 1 cm i Chrid-Lanepnur PLASMA An exact calculation for a plane sheath shows that C-L scaling is not followed unless the sheath is very thick (notice log-log scale) Plasma & Dry Technologies 1. Introduction to Plasma Processing Lenka Zajíčková 15/19 Table 4-2 Secondary Electron Coeficients 7( for Argon Ion Impact Ion Energy 10 eV 100 eV 1000eV Mo 0.122 0.115 C.118 W 0.096 0.095 0.099 Si (100) 0.024 0.027 0.039 Ni (111) 0.034 0.036 0.07 Ge (111) 0.032 0.037 0.047 high-energy ion bombardment at the cathode Plasma Quasi-Neutral Transition Region CATHODE PLASMA POTENTIAL ANODE Positive Self-limiting process a^e : 1) electron move away from the plasma Region —> 2) the plasma results in more positive —» 3) it hinders the escape of the negative electrons I APPLIED I POTENTIAL CATHODE SHEATH A. LARGE ANODE 2.0 Secondary emission y o ratio 6 el. bombardment significant at the anode and walls u(0)>| V4 rrijUiO)2 = eV(0) therefore, V(0) = miU(0)2/2e = (nV2e) (kiyrrii) = kTe/2e MO 1000 1500 2000 Incident energy E. eV Secondary emission coefficient« of different metals as a function of the energy of incident electrons (Hemenway et al. 1967) Plasma & Dry Technologies 1. Introduction to Plasma Processing Lenka Zajíčková 16/19 1.6 Overview of Plasma Processing Methods Plasma etching - irreplaceable anisotropic dry etching: combination of chemistry and effect of ions (reactive ion etching) ® I cm O Material atom O Activated material atom Vdal i le product *. V.*. '« *■*» -m VaT.V.'. . *# ****** *•*■*. VV**■»*•**** ■. *»*, '« *■*.** '«*»*» . V ÍVW>> .tV-****: V***'* ** *•*• ** ** ***■ ** ****** ******** 1 ************** *»***•*. ******** ***. Vť*W*V*V**-W#>*^^ Plasma treatment dry modification of the top surface layer (no material added) ► roughness ► surface chemistry ► dangling bonds in Ar, 02, NH3 ... discharges Plasma synthesis - high purity plasma in liquids ► plasma synthesis of nanoparticles e.g. iron oxide superparamagnetic NPs (minimum toxic effects for cells) Plasma deposition of thin films see next slide Plasma & Dry Technologies 1. Introduction to Plasma Processing Lenka Zajíčková 17/19 Plasma Deposition Plasma deposition of thin films ► plasma enhanced chemical vapor deposition (PECVD) Si(OC, 1,1-,\ + e -+ Ki{pC,U,)y(OU)+ QMi + c~ O, + tf -* 20 + (~ O + SHOC^J^OH)^ Si {OCH J,(OH), + Otf-O iiiilJ^llll^flSliii ,\he;ith feature Silicon ► physical vapor deposition (PVD) - dc diode sputtering, magnetron sputtering Ground shield - 1 Anode Substrate 8L « Plasma \ Cathode (target) OOOOOOOOOOOOO waier cooling T Plasma & Dry Technologies 1. Introduction to Plasma Processing Lenka Zajíčková 18/19 Applications of Plasma Treatment and Deposition Material surface can be plasma treated or plasma coated with a thin film thickness of the plasma modified layer ranges from few nm to tens of /xm. ► hydrophilic surfaces for improved painting, printing, lacquering ► surfaces for improved adhesion of coatings or strength of adhesive bonds ► hydrophobic surfaces for nonadhesive, self-cleaning or antifouling applications ► thin films for electronic applications (a-Si:H, Si-based dielectric films) ► thin films for optical applications (low and high refractive index oxides) ► hard and tribological coatings (metal nitrides, metal carbides, diamond like carbon) ► barrier coatings (a-C:H, organosilicon plasma polymers) ► bioapplications such as biosensors, drug immobilization, tissue engineering (surface functionalization, plasma polymers) ^^^^^^ Plasma & Dry Technologies . Introduction to Plasma Processing ka Zajíčková 19/19 Unique Features of Plasma Technologies: ► dry process (gas phase), i.e. with low consumption of chemicals, ► offering replacement of toxic and explosive reactants, i.e. environmentally and user friendly ► irreplaceable for anisotropic etching required in microelectronics or MEMS applications ► preparation of new materials that cannot be obtained by pure chemical methods How it can be used? ► in vacuum reactor (at low pressure) - excellent control over the process ► at atmospheric pressure with no need of vessel (except because of safety reasons in case of toxic chemicals)