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DIAGNOSTIC TEST 2 - 1

Measure of Diagnostic Accuracy

• G0 group of n0 subjects without a condition.

• G1 group of n1 subjects with a condition

• D = 0, 1 random variable denotes absence or presence of the
condition

• T = 1 positive test result

• T = 0 negative test result

Test results: Confusion matrix
Positive test, T = 1 Negative test, T = 0 Total

G1 (D = 1) True positive (TP ) False negative (FN) TP + FN

G0 (D = 0) False positive (FP ) True negative (TN) FP + TN

Total TP + FP FN + TN n = n0 + n1

QPRC’09, June 4th, New York



DIAGNOSTIC TEST 2 - 2

The sensitivity (Se) of the test is its ability to detect the condition
when it is present.
Se = P (T = 1|D = 1) is a probability P that the test result is positive
(T = 1), given that the condition is present (D = 1).
The specificity (Sp) of a test is its ability to exclude the condition
when it is absent.
Sp = P (T = 0|D = 0) is a probability P that the test result is
negative (T = 0), given that the condition is absent (D = 0).

Se =
TP

TP + FN
, Sp =

TN

FP + TN

Accuracy: Ac =
TP + TN

n

False positive rate: FPR = 1− Sp = FP

FP + TN
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ROC CURVE 3 - 1

Receiver Operating Characteristic (ROC) Curve

Construction of the test

• X – the diagnostic test variable (one-dimensional absolutely
continuous random variable)

• c – given cutoff point, c ∈ R

• The subject is classified as G1 if X ≥ c and G0 otherwise for given
cutoff point c

• F0(c) = P (X ≤ c|G0) =
c∫
−∞

f0(x)dx

F1(c) = P (X ≤ c|G1) =
c∫
−∞

f1(x)dx

F0 or F1 are cumulative distribution functions (c.d.f.) of group G0
or G1 and f0 and f1 are corresponding probability density
functions (p.d.f.).
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ROC CURVE 3 - 2
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ROC CURVE 3 - 3

• F0 – the specificity (Sp) of the test

• 1− F1 – the sensitivity (Se) of the test

• p – the probability of false classification of subject from G0
• q – the probability of true classification of subject from G1

p = 1− F0(c)⇒ c = F−10 (1− p), 0 ≤ p ≤ 1
q = 1− F1(c) = 1− F1(F−10 (1− p)), 0 ≤ p ≤ 1

⇓

ROC(p) = 1− F1(F−10 (1− p)), 0 ≤ p ≤ 1

ROC curve is displayed by plotting 1− F1(c)︸ ︷︷ ︸
Se

against 1− F0(c)︸ ︷︷ ︸
1−Sp

for a range of cutoff points c ∈ R.
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ROC CURVE 3 - 4
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ROC CURVE 3 - 5
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ROC CURVE 3 - 6
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ROC CURVE 3 - 7
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ROC CURVE 3 - 8
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ROC CURVE 3 - 9
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ROC CURVE 3 - 10

Extreme cases
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when 1-specificity is 0.0
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A diagonal – chance diagonal. The test is not usable
for separation of the subjects.

Diagnostic tests with ROC curves above the chance diagonal have at
least some ability do discriminate between subjects with and without
condition.

QPRC’09, June 4th, New York



ROC CURVE 3 - 11

ROC curve close to the perfectly accurate one
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ROC MEASURE 4 - 1

ROC Measure

Area under curve

• The most common used global index of diagnostic accuracy is the
area under the ROC curve – AUC.

• The area under the ROC curve is the probability that a pair of
individuals known to be from different groups will be correctly
classified

AUC =

1∫
0

ROC(p)dp.

• Values of AUC close to 1 indicate that the test has high diagnostic
accuracy.

• Known also as Gini coefficient

Gini = 2 AUC − 1
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NONPARAMETRIC ROC ESTIMATORS 6 - 1

Nonparametric estimates of ROC curve

Suppose that independent samples X01,. . . ,X0n0 from G0 and
X11,. . . ,X1n1 from G1.

Empirical ROC curve
F0 and F1 are replaced by their empirical cumulative distribution
functions

F̂0(x) =
1
n0

n0∑
i=1

I(X0i ≤ x), F̂1(x) =
1
n1

n1∑
i=1

I(X1i ≤ x)

Hence the empirical estimator

R̂(p) = 1− F̂1(F̂−10 (1− p)), 0 ≤ p ≤ 1
is the nonparametric estimator of R(p).
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NONPARAMETRIC ROC ESTIMATORS 6 - 2

Empirical ROC curve

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − Specificity

S
en

si
tiv

ity

QPRC’09, June 4th, New York



NONPARAMETRIC ROC ESTIMATORS 6 - 3

Kernel estimate of ROC curve
Lloyd (1999) proposed a smooth estimator based on the technology of
kernel smoothing.

The kernel estimators of F0 and F1 are

F̂0(x) =
1
n0

n0∑
i=1

W

(
x−X0i
h0

)
, F̂1(x) =

1
n1

n1∑
i=1

W

(
x−X1i
h1

)

where

W (x) =

x∫
−1

K(t)dt.

The corresponding estimator of R(p) is

R̂(p) = 1− F̂1(F̂−10 (1− p)), 0 ≤ p ≤ 1.
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KERNEL CDF ESTIMATORS 7 - 1

Kernel estimate of CDF
Let X1,. . . ,Xn be independent real random variables each having
the same cumulative distribution F . Assume F ∈ Ck0 , k0 – a positive
integer.

The kernel estimate of a cumulative distribution function F

F̂h,K(x) =
1
n

n∑
i=1

W

(
x−Xi

h

)
, W (x) =

x∫
−1

K(t)dt (1)

• K – a kernel, a nonnegative symmetric function, supported
on [−1, 1], integrated to unity
Epanechnik kernel: K(x) = 3

4 (1− x
2)I[−1,1]

quartic kernel: K(x) = 15
16 (1− x

2)2I[−1,1]

• h – a smoothing parameter – banwidth
(h = h(n) > 0, lim

n→∞
h = 0, lim

n→∞
nh =∞)
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KERNEL CDF ESTIMATORS 7 - 2

Bandwidth selection
Mean Integrated Square Error

MISE(F̂h,K) = E
∫
(F̂h,K(x)− F (x))2dx

The leading term of MISE (Bowman, A., Hall, P., Prvan, T. (1998))

MISE(F̂h,K) =
1
n

∫
F (x)(1− F (x))dx− q1 h

n︸ ︷︷ ︸
var( bFh,K)

+ q2h
4︸︷︷︸

bias
2
( bFh,K)

,

q1 =

1∫
−1

W (x)(1−W (x))dx > 0, q2 =
β22
4

∫
(F (2)(x))2dx.

Optimal bandwidth minimizing MISE

hF
opt = n

−1/3
(
q1
4q2

)1/3
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KERNEL CDF ESTIMATORS 7 - 3

Methods for estimation of the optimal bandwidth:

• Terrell and Scott (1985), Terrell (1990) – maximal smoothing
principle

• Sarda (1993) – a cross-validation method

• Altman and Léger (1995), Zhou and Harezlak (2002) – a method
of the reference (Gaussian) density

• Lloyd and Yong (1999) – a more complex selection of bandwidth,
procedure based on two-stage plug-in method

• Peng and Zhou (2004) – a method is based on local linear
smoothing

• Horová and Zelinka (2007) – an iterative method
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BOUNDARY EFFECTS 8 - 1

Boundary Effects

Assumptions:

• Xi, i = 1, . . . , n are nonnegative

• the distribution function F has a support [0,∞)

• f(0) 6= 0

Boundary effects arise by estimates in points “near” the left boundary,
it is for x ∈ [0, h].

In next, we will write

x = ch, 0 ≤ c ≤ 1.
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BOUNDARY EFFECTS 8 - 2

X ∼ Exp(1) – the kernel estimate of f (n = 100, hf
opt = 0.786)
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BOUNDARY EFFECTS 8 - 3

X ∼ Exp(1) – the kernel estimate of F (n = 100, hF
opt = 0.8479)
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BOUNDARY EFFECTS 8 - 4

The Bias of F̂h,K(x) in x = ch,

• “near” the left boundary (0 ≤ c < 1):

E(F̂h,K(x))− F (x) = hf(0)

−c∫
−1

W (t)dt

+ h2f (1)(0)

c22 + c
−c∫
−1

W (t)dt−
c∫
−1

tW (t)dt


+ o(h2)

• interior points (c ≥ 1):

E(F̂h,K(x))− F (x) =
h2

2
f (1)(0)

1∫
−1

tW (t)dt+ o(h2)
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BOUNDARY EFFECTS 8 - 5

Possible solutions

• boundary kernels – estimators could be negative, some remedies
have been proposed

• pseudo-data – generating some extra data nearby the boundary
and then combining them with the original data

• data transformation

(a) a transformation is selected from a parametric family,

(b) a kernel estimator is applied to transformed data,

(c) estimated values are converted by an inverse formula

• reflection method – reflecting the data and applying the classical
kernel estimator

F̂h,K(x) =
1
n

n∑
i=1

{
W

(
x−Xi

h

)
−W

(
−x+Xi

h

)}
(2)
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PROPOSED ESTIMATOR 9 - 1

Proposed estimator

Generalized reflection method

• the density case – Zhang et al. (1999), Karunamuni and
Alberts (2005)

• the CDF case

F̃h,K(x) =
1
n

n∑
i=1

{
W

(
x− ĝc(Xi)

h

)
−W

(
−x+ ĝc(Xi)

h

)}
where

ĝc(y) = Â
2
cy
3 +
1
2
Âcy

2 + y,

for more see Koláček and Karunamuni (2009).
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EXAMPLES 10 - 1

Real data

Consumer loans data

• The use of some (not specified) scoring function for predicting the
likelihood of repayment of a client.

• We are interested in determining which clients are able to repay
their loans.

• A test set: 332 clients – 309 have repaid their loans (group G0)
and 23 had problems with payments or did not pay (group G1).

• We use the ROC curve to assess the discrimination power of given
scoring function.
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EXAMPLES 10 - 2

The estimate of f0(x) (ĥf0
opt = 0.0032) and f1(x) (ĥf1

opt = 0.0153) with
boundary effects
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EXAMPLES 10 - 3

The estimate of f0(x) (ĥf0
opt = 0.0032) and f1(x) (ĥf1

opt = 0.0153) with
NO boundary effects
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EXAMPLES 10 - 4

The estimate of F0(x) (ĥF0
opt = 0.0068) and F1(x) (ĥF1

opt = 0.0286)
with boundary effects
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EXAMPLES 10 - 5

The estimate of F0(x) (ĥF0
opt = 0.0068) and F1(x) (ĥF1

opt = 0.0286)
with NO boundary effects
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EXAMPLES 10 - 6

The estimate of ROC
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EXAMPLES 10 - 7

Some statistics or measures

K–S Gini AUC

Empirical ROC 0.2708 0.2175 0.6088

Estimate with boundary effects 0.2088 0.2117 0.6059

Estimate with NO boundary effects 0.2303 0.3223 0.6612
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Head trauma data

• The use of cerebrospinal fluid CK–BB (creative kinase – BB)
isoenzyme measured within 24 hours of injury for predicting
the outcome of severe head trauma.

• We are interested in determining which patients have a poor
outcome after suffering a severe head trauma.

• 60 patients: 19 had moderate to full recovery and 41 eventually
had poor or not recovery.

• We use the ROC curve to assess the discrimination between
patients with and without a poor outcome.

• We want to know if the CK–BB isoenzyme is a good predictor of
the outcome.
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The estimate of f0(x) (ĥf0
opt = 145.7135) and f1(x) (ĥf1

opt = 253.6472)
with boundary effects.
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The estimate of f0(x) (ĥf0
opt = 145.7135) and f1(x) (ĥf1

opt = 253.6472)
with NO boundary effects.
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The estimate of F0(x) (ĥF0
opt = 158.6975) and F1(x)

(ĥF1
opt = 276.5697) with boundary effects.
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The estimate of F0(x) (ĥF0
opt = 158.6975) and F1(x)

(ĥF1
opt = 276.5697) with NO boundary effects.
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The estimate of ROC
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Some statistics or measures

K–S Gini AUC

Empirical ROC 0.5366 0.6573 0.8286

Estimate with boundary effects 0.4761 0.5802 0.7901

Estimate with NO boundary effects 0.5541 0.6239 0.8119
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