
4. Graphs 

Why graphs? 

Graphs represent a crucial tool in statistical analysis. They are used for exploratory data 
analysis, parameter comparisons between samples, and illustrations of associations 
between variables. A number of graph types exist, which are suitable for different purposes. 
They are very useful for communication, including also data/analysis result presentation. 
Most people simply prefer seeing a graph to studying numbers presented in a table. 
Producing nice graphs is thus an important part of presentation of scientific results1. There 
are no universal rules how a nice graph should look like, but the good thing is that the 
quality of your graphs will quickly improve with practice and experience. Getting inspired by 
graphical presentations of other researchers is also very helpful. 

An important aspect of the graphs is that they cannot display all the information contained 
in the raw data. An ideal graph should minimize this loss of information while efficiently 
depicting the patterns of interest. These requirements are however often in conflict. A 
reasonable solution often lies in providing the reader both the graph and the raw data 
(attached as supplementary material or deposited in a public repository such as Dryad: 
https://datadryad.org/stash). Many scientific journals nowadays require disclosure of the 
original data anyway, which is important for checking the integrity of the analyses 
presented. By contrast, presenting the same descriptive statistics in both table and graph 
format is generally considered superfluous and should be avoided. 

Basic graph types 

Table 4.1 Summary of basic graph types, their advantages and limitations 
Graph type Number of 

variables*  
Preservation of 
information 

Display of sample 
parameters 

Visualization of 
dependence 

Histogram 1 ++ -- -- 
Boxplot 1 quantitative 

+ 1 categorical 
+ - + 

Barplot (for 
counts) 

1 or 2 
categorical 

+ -- + 

Dotchart (with 
errorbars) 

1 quantitative 
+ 1 categorical 

-- ++ ++ 

Scatterplot 2 quantitative ++ - ++ 
++ excellent, + good, - (still) adequate, -- poor 

* Refers to a minimum (typical) number. May be increased e.g., by combining multiple 
categorical predictors, or categorization of point in a scatterplot. 

 

 
1 Note here, that most readers of scientific papers only read the abstract and then look at the figures; and all of 
them do this before deciding whether the paper is worth of further reading. This applies also for journal editors 
and submitted manuscript. Figure quality and attractiveness may thus have a decisive effect on the editor’s 
decision on publication.  

https://datadryad.org/stash


Graph plotting in R 

You may take several ways how to plot graphs in R. Two most common include the R base 
graphics and the package ggplot2. These approaches have their advantages and 
disadvantages. The R base graphics uses the same script grammar as the rest of R. Thus, you 
do not need to study another specialized package. However, plotting complicated plots may 
require quite a lot of programming. Producing graphically nice outputs may also require 
adjustments of many parameters in some (albeit not all) graph types. The ggplot2 package 
uses its own script grammar, which is quite different from R base. This means that you need 
to study another programming language. However, with this language you can easily plot 
complicated graphs with just two lines of code (instead of 20 in base graphics). In this 
material, I take things pragmatically. Generally, ggplot is in the focus as a modern tool of 
graph plotting. However, if it easier to to produce a particular graph type with base graphics, 
I choose that way. 

The ggplot grammar 

Each definition of a ggplot graph starts with the ggplot function, which defines the data (i.e. 
data frame where to look for variables) and so called aesthetics mappings, which are 
definition of variables used for plotting. 

For a data frame called df with variables x and y used to define a scatterplot, it is: 

ggplot2(data, mapping=aes(x=x, y=y)) 

The scatterplot is then plotted by a geom function: 

geom_point() 

The ggplot2 definition, geoms and possible further functions are separated by ”+”. In our 
case, it would be: ggplot2(data, aes(x=x, y=y))+geom_point() 

Other elements or arrangements of plot are specified by additional functions added with 
another “+”. The most essential among these are: 

• theme() – setting visual attributes; There are preset graphical themes. I really prefer 
theme_classic() or theme_bw() to the default theme_gray().  

• xlab(), ylab(), or labs() – specification of axis label text 
• facet_wrap() – faceting graphs, i.e. defining multipanel plots with panels based on a 

variable 
• grid.arrange() – creating general multipanel plots (package gridExtra) 
• ggsave(file.name, width, height) – saves the most recent plot to hard drive (height 

and width are specified in cm). File type (pdf, svg, png) is automatically set by file 
extension. 

For ggplot2, there is abundant reference available, such as a free online book 
(https://ggplot2-book.org/index.html ; printed version for $$) and ggplot2 cheat sheet 
(https://raw.githubusercontent.com/rstudio/cheatsheets/main/data-visualization.pdf) . You 
can also find valuable reference/guidelines by Google searches such as “scatterplot in 

https://ggplot2-book.org/index.html
https://raw.githubusercontent.com/rstudio/cheatsheets/main/data-visualization.pdf


ggplot”. The Google searches are very efficient way how to get the guidelines, generally 
more efficient than using the R help like ?ggplot_function. 

R base graphics 

The R base graphics uses the common R grammar, i.e.  

plot(df$x, df$y, further parameters) or plot(y~x, data=df, further parameters). 

For the base R graphics, there is also a cheat sheet available 
(http://publish.illinois.edu/johnrgallagher/files/2015/10/BaseGraphicsCheatsheet.pdf) as 
well as abundant online resources. R help is in general quite informative. Info on parameters 
of graphical functions can be called by ?par. 

To export plots produced by R graphics, you need to define a graphical device in a file, draw 
the plot there and save the file. I.e.: 

pdf(“filename.pdf”, width, height) # Creating the file – width and height are in inches (vector 
graphics – pdf, svg) or in pixels (raster graphics – png, jpg, tif) 

plot(y~x, data=df, further parameters) 

dev.off() #Closes and saves the file. This is essential. 

 

Histogram 

Histogram was already introduced in chapter 2. Construction of histograms is done in two 
steps. The range of the values is first divided into a number of intervals. These are plotted on 
the x-axis. Individual values are then assigned into them and the resulting frequencies of 
observations are plotted on the y-axis. Thus, histograms display the data with only minimal 
loss of information. They are a perfect tool for exploration of data distribution. 

http://publish.illinois.edu/johnrgallagher/files/2015/10/BaseGraphicsCheatsheet.pdf


 

Fig. 4.1. Histogram of the variable xy.2$y2 plotted by base R. 

 

How to do in R 

The R base function hist applied on the variable to be plotted 
produces the histogram. 

In ggplot, plotting the histogram is rather complicated.  

 

Boxplot 

Boxplot was also introduced in chapter 2. Boxplots display summary of descriptive statistics 
of samples: the median, quartiles, non-outlier range and outliers. Typically, they are used to 
study association between a categorical (factor) and a quantitative (numeric) variable, where 
they display differences between individual categories (levels). Boxplots do not display 
means, so it is not possible to use them for direct mean comparisons. However, crucial 
characteristics of the distributions are visible on the plots: variability, symmetry, presence of 
outliers. This makes boxplots an important tool of exploratory data analysis 



 

Fig 4.2. Boxplot displaying the values of the variable y2 for individual categories of type.1. 
Note the non-symmetric distributions and the outliers. Plotted by ggplot. 

How to do in R 

base R: function boxplot applied to formula numeric~character 
produces the boxplot 

ggplot: ggplot(data=xy.2,mapping=aes(x=type.1, y=y2))+ 
geom_boxplot(fill="grey")+theme_classic()+ 
theme(text=element_text(size=15))+xlab("Type") 

Modern alternatives to boxplots  

Boxplots have many advantages, which makes them a standard plot type for displaying 
associations between a categorical and quantitative variable. However, there are also some 
issues. One obvious is that they do not display the mean values. In addition, they may 
provide misleading results if the underlying distribution is e.g. bimodal. For these reasons, 
alternative types were developed called Bean plot and Violin plot. While useful, their use is 
still rather limited in biological community. For more information, see e.g. https://cran.r-
project.org/web/packages/beanplot/vignettes/beanplot.pdf . 

https://cran.r-project.org/web/packages/beanplot/vignettes/beanplot.pdf
https://cran.r-project.org/web/packages/beanplot/vignettes/beanplot.pdf


 

Fig 4.3. Beanplot displaying the values and densities of the variable y2 for individual 
categories of type.1. Dotted line, bold lines and short narrow lines indicate global mean, 
group means and individual observations respectively.  

  



Barplot 

Barplot is an efficient graphical tool to display counts of a categorical variable. Multiple 
categorical variables may also be combined to define types of observations. 

 

Fig 4.4. Dodged and stacked barplots displaying counts of conference participants 
categorized by their country of origin and position held. 

How to do in R 

ggplot: ggplot(data=conf,mapping=aes(x=Country, 
fill=Position))+geom_bar(position="stack")+ 
theme_classic()+theme(text=element_text(size=14))+ 
xlab("Country")+labs(title="Stacked barplot") 

Note that the combination of the two categorical variables is done by defining one as x and 
the other as fill. The position parameter in geom_bar may be “stacked”, “dodge” or 
“dodge2”. Producing the upper panel of Fig. 4.4 however required a bit more complicated 
geom_bar(position = position_dodge2(preserve = "single")) because of the zero postdocs 
from Denmark 

 



Dotchart 

Dotchart can be used to display means of quantitative variables, in particular differences 
between means of individual categories (factor levels). To judge on difference between 
means, it is necessary to display also a characteristic of uncertainty of mean estimate or 
variability. Therefore, dotcharts should be supplied by error bars displaying standard errors, 
confidence intervals or standard deviations. Of these, the general best choice is probably the 
confidence intervals, which indicates the range of values within which the population mean 
lies with 95% probability (more on that in chapter 7). In any case, specification of error bars 
(what they display) must always be included in graph caption. The strong aspect of 
dotcharts is that they allow judging on difference between means. However, this comes with 
substantial loss of information: dotcharts do not display the distribution at all and may even 
be misleading in this respect.  

 

Fig. 4.5. Dotchart displaying mean values of variable y2 for individual categories of type.1. 
Error bars indicate 1 standard error. 

How to do in R 

ggplot: The layer is defined by a stat function here, which 
produces a statistical summary of the data (as opposed to 
geom_xx functions which need to be supplied by the data for 
direct plotting). In this case (which is applicable in 
general): 

stat_summary(fun.data=mean_se, geom="pointrange") 



fun.data may be mean_se (mean +- standard error), 
mean_cl_normal(95%-confidence interval), or smean_sdl 
(standard deviation).  

geom="pointrange" defines the geom function used for plotting. 

 

The full script for fig. 4.5. is: 

ggplot(data=xy.2,mapping=aes(x=type.1, y=y2))+ 
stat_summary(fun.data=mean_se, geom="pointrange")+ 
theme_classic()+theme(text=element_text(size=15))+xlab("Type") 

 

Scatterplot 

Scatterplot is a simple point-based plot illustrating the association between two quantitative 
variables. The points in scatterplot usually represent original data, thus there is little loss of 
information, if any. Scatterplot is perfect for exploration of interdependence between two 
variables. Regression line (with confidence) intervals may also be added to the raw 
scatterplot to visualize a regression model (see chapter 10 for details). 

 

Fig 4.6. Scatterplots displaying the relationships between x and y. An additional categorical 
variable may be displayed by point colors.  

How to do in R 

base R: plot(y~x, data=df) – quick and simple, the graphics is 
reasonable; adding colors of faceting quite complicated  

ggplot: geom_point is the function plotting the scatterplot. 

color=color.variable must be included in aes for colored 
points following the valued of the color.variable 



The full script for fig. 4.6 (note grid.arrange function used 
to combine the two panels in a single plot. 

library(gridExtra) 

p1<-ggplot(data=xy.2,mapping=aes(x=x, y=y))+ 
geom_point()+theme_classic()+ 
theme(text=element_text(size=15))+labs(title="Simple 
scatterplot") 

p2<-ggplot(data=xy.2,mapping=aes(x=x, y=y, color=type.1))+ 
geom_point()+ theme_classic()+ 
theme(text=element_text(size=15))+labs(color="Type")+ 
labs(title="Scatterplot categorized by Type") 

grid.arrange(p1, p2, nrow=1) 

 

Facetting 

Facetting is a powerful tool display dependence of two variables at different levels of a 
factor. It may often be better that displaying colors.  

Fig. 4.7. Facetted scatterplot showing the relationships between x and y at different levels of 
Type. 

How to do in R 

ggplot: function facet_wrap 

ggplot(data=xy.2,mapping=aes(x=x, y=y))+geom_point()+ 
facet_wrap(~type.1)+theme_bw()+ 
theme(text=element_text(size=15)) 
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