
9. Linear regression and correlation and intro to general linear models 

Regression and correlation 

Both regression and correlation refer to associations between two quantitative variables. 

One variable, the predictor, is considered independent in regression, and its values are 

considered not to be random. The other variable, the response, is dependent on the values 

of the predictor with a certain level of error variability, i.e. it is a random variable. In the case 

of correlation, both variables are considered random. Regression and correlation are thus 

quite different – theoretically. In practice, however, they are numerically identical 

concerning both the measure of association and p-values (type I error probabilities) 

associated with rejecting the null hypothesis on independence between the two variables. 

Linear regression 

Linear association between two quantitative variables X and Y, of which Y is a random 

variable, can be described by the equation: 

Y = a + bX + ε 

where a and b are intercept and slope of a linear function, respectively. These represent the 

systematic (deterministic) component of the regression model, while ε is the error (residual) 

variation representing the stochastic component. ε is assumed to follow the normal 

distribution with mean = 0. The goal of regression model fitting is to estimate the population 

slope and intercept from sample data of Y and X. a and b are thus estimates of population 

parameters. There are multiple approaches to conduct such estimates. Maximum-likelihood 

estimation is most common, which provides numerically identical results to least-square 

estimation in ordinary regression. We shall discuss the least square estimation here, as it is 

fairly intuitive and will help us to understand the relationship with ANOVA. The least-square 

estimation aims at minimizing the sum of error squares (SSerror), i.e. the squares of the 

differences between fitted and observed values of the response variable (Fig. 9.1). Note that 

this mechanism is notably similar to that of analysis of variance. In parallel with ANOVA, we 

can also define the total sum of squares (SStotal) and the regression sum of squares (SSregr). 

Subsequently, we can calculate mean squares (MS) by dividing SS by corresponding DF, with 

DFtotal = n – 1, DFregr = 1, and  

DFerror = DFtotal – DFeffect = n – 2, where n is total number of observations. Hence, we get: 

MSregr = SSregr/DFregr 

MSerror = SSerror/DFerror 

As in ANOVA, the ratio between MS can be used in an F-test of a null hypothesis that there is 

no linear relationship between the two variables: 

FDFregr,DFerror = MSregr/ MSerror 

Rejecting the null hypothesis means that the two variables are linearly related. Note, 

however, that a non-significant result may also be produced in cases when the relationship 

exists but is not linear (e.g. when it is quadratic). 



 

Fig. 9.1 Mechanism of least square estimation in regression: definition of squares 

exemplified with the red data point. 

In regression, we are usually interested in statistical significance, and the strength of the 

association, i.e. the proportion of variability in Y explained by X. That is measured by the 

coefficient of determination (R2): 

R2 = SSregr/SStotal 

which can range from 0 (no association) to 1 (deterministic linear relationship). Alternatively, 

so-called adjusted-R2 may be used (and is reported by R), which accounts for the fact that 

the association is computed from samples and not from populations: 

adjusted-R2 = 1 – MSerror/MStotal 

Coming back to the regression coefficients – the fact that these are estimates means that 

associated errors of such estimates may be computed. Their significance (i.e. significant 

difference from zero) may thus be tested by a single sample t-test. The p-value of such a test 

for the slope (b) is identical to that of the F-test in simple regression with a single predictor. 

Note that the test of the intercept (reported by R or other statistical software) is irrelevant 

for the significance of the regression itself. Significant intercept only indicates that mean(Y) 

is significantly different from zero.  

Regression diagnostics 

We have discussed the systematic component of the regression equation. However, the 

stochastic component is also important. This is because its properties can provide crucial 

information on the validity of regression assumptions and thus the validity of the whole 

model. The stochastic component of the model, called model residuals, can be computed 

using the equation: 

ε = Y – a – bX = Y – fitted(Y) 



Residuals form a vector of values for each of the data points. As such, they can be analyzed 

by descriptive statistics. They may also be standardized by division of their standard 

deviation. The basic assumptions concerning the residuals are: 

1. Residuals should follow the normal distribution  

2. The size of their absolute value should be independent of the fitted value. 

3. There should be no obvious trend in residuals associated with fitted values, which 

would indicate the non-linearity of the relationship between X and Y. 

These assumptions are best evaluated on a regression-diagnostics plot (Fig 9.2). In addition, 

it may be worth checking that the regression result is not driven by a single extreme 

observation (or a few of these), which is provided on the bottom-right plot in Fig 9.2.  

 

Fig 9.2. Regression diagnostics plots. 1. Residuals vs. fitted values indicate potential non-

linearity of the relationship (smoothed trend displayed by the red line). 2. Normal Q-Q plot 

displays agreement between normal distribution and distribution of residuals (dashed line). 

3. Square root of the absolute value of residuals indicate a potential correlation between the 

size of residuals and fitted values. 4. Residuals vs. leverage 

(https://en.wikipedia.org/wiki/Leverage_(statistics))   plot detect points, which have a strong 

influence on the regression parameter estimates (these points have high Cook distance; 

https://en.wikipedia.org/wiki/Cook%27s_distance). 

See also the detailed explanation of regression diagnostics here: 

https://arc.lib.montana.edu/book/statistics-with-r-textbook/item/57 
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Correlation 

Correlation is a symmetric measure of the association between two random variables, of 

which neither can be considered a predictor or a response. Correlation is most commonly 

measured by the Pearson correlation coefficient: 
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Its values can range from -1 (absolute negative correlation) to +1 {absolute positive 

correlation), with r = 0 corresponding to no correlation. r2 then refers to the amount of 

shared variability. Numerically, Pearson r2 and regression R2 have identical values for given 

data and have basically the same meaning. Pearson r is also an estimate of the population 

parameter; its significance (i.e. significant difference from zero) can thus be tested by a 

single sample t-test with n – 2 degrees of freedom. 

On correlation and causality 

Note that a significant result of a regression of observational data may only be interpreted as 

correlation (or coincidence) despite there is a variable called the predictor and the response. 

Causal explanations imply that a change of predictor value causes a directional change in the 

response. Causality may, therefore, only be tested in manipulative experiments, where the 

predictor is manipulated. the See more details on this in Chapter 6. 

How to do in R 

1. Regression (or a linear model) 

start with function lm to fit the model and save the lm output 

into an object: 

model.1<-lm(response~predictor)  

or model.2<-lm(response~predictor1+predictor2+…) 

anova(model.1) performs analysis of variance of the model 

(i.e. tests its significance by an F test). Models may also be 

compared by anova(model.1, model.2) 

summary(model.1) displays a summary of the model, including 

the t-tests of individual coefficients. 

resid(model.1) extracts model residuals 

predict(model.1) returns predicted values 

plot(model.1) plots regression diagnostic plots of the model 

2. Pearson correlation coefficient 

cor(Var1~Var2) computes just the coefficient value 



cor.test(Var1~Var2) computes the coefficient value together 

with significance test 

3. Plotting 

Plotting a scatterplot with regression line is straightforward 

in ggplot 

geom_point() is used to produce the scatterplot and then 

geom_smooth(method="lm”) can be used to add the regression 

line with confidence intervals. The line color can be adjusted 

by parameter color in the geom_smooth function.  

For instance, the full script to plot e.g. the plot of task #1 

of the practicals is: 

ggplot(snow, aes(x=temp, y=diam))+ 

geom_point()+geom_smooth(method="lm", color=1)+ 

theme_classic()+labs(x="Temperature", y="Snowflake diameter") 


